disk-io.c 123 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2007 Oracle. All rights reserved.
  4. */
  5. #include <linux/fs.h>
  6. #include <linux/blkdev.h>
  7. #include <linux/scatterlist.h>
  8. #include <linux/swap.h>
  9. #include <linux/radix-tree.h>
  10. #include <linux/writeback.h>
  11. #include <linux/buffer_head.h>
  12. #include <linux/workqueue.h>
  13. #include <linux/kthread.h>
  14. #include <linux/slab.h>
  15. #include <linux/migrate.h>
  16. #include <linux/ratelimit.h>
  17. #include <linux/uuid.h>
  18. #include <linux/semaphore.h>
  19. #include <linux/error-injection.h>
  20. #include <linux/crc32c.h>
  21. #include <asm/unaligned.h>
  22. #include "ctree.h"
  23. #include "disk-io.h"
  24. #include "transaction.h"
  25. #include "btrfs_inode.h"
  26. #include "volumes.h"
  27. #include "print-tree.h"
  28. #include "locking.h"
  29. #include "tree-log.h"
  30. #include "free-space-cache.h"
  31. #include "free-space-tree.h"
  32. #include "inode-map.h"
  33. #include "check-integrity.h"
  34. #include "rcu-string.h"
  35. #include "dev-replace.h"
  36. #include "raid56.h"
  37. #include "sysfs.h"
  38. #include "qgroup.h"
  39. #include "compression.h"
  40. #include "tree-checker.h"
  41. #include "ref-verify.h"
  42. #ifdef CONFIG_X86
  43. #include <asm/cpufeature.h>
  44. #endif
  45. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  46. BTRFS_HEADER_FLAG_RELOC |\
  47. BTRFS_SUPER_FLAG_ERROR |\
  48. BTRFS_SUPER_FLAG_SEEDING |\
  49. BTRFS_SUPER_FLAG_METADUMP |\
  50. BTRFS_SUPER_FLAG_METADUMP_V2)
  51. static const struct extent_io_ops btree_extent_io_ops;
  52. static void end_workqueue_fn(struct btrfs_work *work);
  53. static void free_fs_root(struct btrfs_root *root);
  54. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
  55. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57. struct btrfs_fs_info *fs_info);
  58. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  59. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  60. struct extent_io_tree *dirty_pages,
  61. int mark);
  62. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  63. struct extent_io_tree *pinned_extents);
  64. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  65. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  66. /*
  67. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  68. * is complete. This is used during reads to verify checksums, and it is used
  69. * by writes to insert metadata for new file extents after IO is complete.
  70. */
  71. struct btrfs_end_io_wq {
  72. struct bio *bio;
  73. bio_end_io_t *end_io;
  74. void *private;
  75. struct btrfs_fs_info *info;
  76. blk_status_t status;
  77. enum btrfs_wq_endio_type metadata;
  78. struct btrfs_work work;
  79. };
  80. static struct kmem_cache *btrfs_end_io_wq_cache;
  81. int __init btrfs_end_io_wq_init(void)
  82. {
  83. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  84. sizeof(struct btrfs_end_io_wq),
  85. 0,
  86. SLAB_MEM_SPREAD,
  87. NULL);
  88. if (!btrfs_end_io_wq_cache)
  89. return -ENOMEM;
  90. return 0;
  91. }
  92. void __cold btrfs_end_io_wq_exit(void)
  93. {
  94. kmem_cache_destroy(btrfs_end_io_wq_cache);
  95. }
  96. /*
  97. * async submit bios are used to offload expensive checksumming
  98. * onto the worker threads. They checksum file and metadata bios
  99. * just before they are sent down the IO stack.
  100. */
  101. struct async_submit_bio {
  102. void *private_data;
  103. struct btrfs_fs_info *fs_info;
  104. struct bio *bio;
  105. extent_submit_bio_start_t *submit_bio_start;
  106. extent_submit_bio_done_t *submit_bio_done;
  107. int mirror_num;
  108. unsigned long bio_flags;
  109. /*
  110. * bio_offset is optional, can be used if the pages in the bio
  111. * can't tell us where in the file the bio should go
  112. */
  113. u64 bio_offset;
  114. struct btrfs_work work;
  115. blk_status_t status;
  116. };
  117. /*
  118. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  119. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  120. * the level the eb occupies in the tree.
  121. *
  122. * Different roots are used for different purposes and may nest inside each
  123. * other and they require separate keysets. As lockdep keys should be
  124. * static, assign keysets according to the purpose of the root as indicated
  125. * by btrfs_root->objectid. This ensures that all special purpose roots
  126. * have separate keysets.
  127. *
  128. * Lock-nesting across peer nodes is always done with the immediate parent
  129. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  130. * subclass to avoid triggering lockdep warning in such cases.
  131. *
  132. * The key is set by the readpage_end_io_hook after the buffer has passed
  133. * csum validation but before the pages are unlocked. It is also set by
  134. * btrfs_init_new_buffer on freshly allocated blocks.
  135. *
  136. * We also add a check to make sure the highest level of the tree is the
  137. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  138. * needs update as well.
  139. */
  140. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  141. # if BTRFS_MAX_LEVEL != 8
  142. # error
  143. # endif
  144. static struct btrfs_lockdep_keyset {
  145. u64 id; /* root objectid */
  146. const char *name_stem; /* lock name stem */
  147. char names[BTRFS_MAX_LEVEL + 1][20];
  148. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  149. } btrfs_lockdep_keysets[] = {
  150. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  151. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  152. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  153. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  154. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  155. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  156. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  157. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  158. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  159. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  160. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  161. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  162. { .id = 0, .name_stem = "tree" },
  163. };
  164. void __init btrfs_init_lockdep(void)
  165. {
  166. int i, j;
  167. /* initialize lockdep class names */
  168. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  169. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  170. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  171. snprintf(ks->names[j], sizeof(ks->names[j]),
  172. "btrfs-%s-%02d", ks->name_stem, j);
  173. }
  174. }
  175. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  176. int level)
  177. {
  178. struct btrfs_lockdep_keyset *ks;
  179. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  180. /* find the matching keyset, id 0 is the default entry */
  181. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  182. if (ks->id == objectid)
  183. break;
  184. lockdep_set_class_and_name(&eb->lock,
  185. &ks->keys[level], ks->names[level]);
  186. }
  187. #endif
  188. /*
  189. * extents on the btree inode are pretty simple, there's one extent
  190. * that covers the entire device
  191. */
  192. struct extent_map *btree_get_extent(struct btrfs_inode *inode,
  193. struct page *page, size_t pg_offset, u64 start, u64 len,
  194. int create)
  195. {
  196. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  197. struct extent_map_tree *em_tree = &inode->extent_tree;
  198. struct extent_map *em;
  199. int ret;
  200. read_lock(&em_tree->lock);
  201. em = lookup_extent_mapping(em_tree, start, len);
  202. if (em) {
  203. em->bdev = fs_info->fs_devices->latest_bdev;
  204. read_unlock(&em_tree->lock);
  205. goto out;
  206. }
  207. read_unlock(&em_tree->lock);
  208. em = alloc_extent_map();
  209. if (!em) {
  210. em = ERR_PTR(-ENOMEM);
  211. goto out;
  212. }
  213. em->start = 0;
  214. em->len = (u64)-1;
  215. em->block_len = (u64)-1;
  216. em->block_start = 0;
  217. em->bdev = fs_info->fs_devices->latest_bdev;
  218. write_lock(&em_tree->lock);
  219. ret = add_extent_mapping(em_tree, em, 0);
  220. if (ret == -EEXIST) {
  221. free_extent_map(em);
  222. em = lookup_extent_mapping(em_tree, start, len);
  223. if (!em)
  224. em = ERR_PTR(-EIO);
  225. } else if (ret) {
  226. free_extent_map(em);
  227. em = ERR_PTR(ret);
  228. }
  229. write_unlock(&em_tree->lock);
  230. out:
  231. return em;
  232. }
  233. u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
  234. {
  235. return crc32c(seed, data, len);
  236. }
  237. void btrfs_csum_final(u32 crc, u8 *result)
  238. {
  239. put_unaligned_le32(~crc, result);
  240. }
  241. /*
  242. * compute the csum for a btree block, and either verify it or write it
  243. * into the csum field of the block.
  244. */
  245. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  246. struct extent_buffer *buf,
  247. int verify)
  248. {
  249. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  250. char result[BTRFS_CSUM_SIZE];
  251. unsigned long len;
  252. unsigned long cur_len;
  253. unsigned long offset = BTRFS_CSUM_SIZE;
  254. char *kaddr;
  255. unsigned long map_start;
  256. unsigned long map_len;
  257. int err;
  258. u32 crc = ~(u32)0;
  259. len = buf->len - offset;
  260. while (len > 0) {
  261. err = map_private_extent_buffer(buf, offset, 32,
  262. &kaddr, &map_start, &map_len);
  263. if (err)
  264. return err;
  265. cur_len = min(len, map_len - (offset - map_start));
  266. crc = btrfs_csum_data(kaddr + offset - map_start,
  267. crc, cur_len);
  268. len -= cur_len;
  269. offset += cur_len;
  270. }
  271. memset(result, 0, BTRFS_CSUM_SIZE);
  272. btrfs_csum_final(crc, result);
  273. if (verify) {
  274. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  275. u32 val;
  276. u32 found = 0;
  277. memcpy(&found, result, csum_size);
  278. read_extent_buffer(buf, &val, 0, csum_size);
  279. btrfs_warn_rl(fs_info,
  280. "%s checksum verify failed on %llu wanted %X found %X level %d",
  281. fs_info->sb->s_id, buf->start,
  282. val, found, btrfs_header_level(buf));
  283. return -EUCLEAN;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. return 0;
  289. }
  290. /*
  291. * we can't consider a given block up to date unless the transid of the
  292. * block matches the transid in the parent node's pointer. This is how we
  293. * detect blocks that either didn't get written at all or got written
  294. * in the wrong place.
  295. */
  296. static int verify_parent_transid(struct extent_io_tree *io_tree,
  297. struct extent_buffer *eb, u64 parent_transid,
  298. int atomic)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  303. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  304. return 0;
  305. if (atomic)
  306. return -EAGAIN;
  307. if (need_lock) {
  308. btrfs_tree_read_lock(eb);
  309. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  310. }
  311. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  312. &cached_state);
  313. if (extent_buffer_uptodate(eb) &&
  314. btrfs_header_generation(eb) == parent_transid) {
  315. ret = 0;
  316. goto out;
  317. }
  318. btrfs_err_rl(eb->fs_info,
  319. "parent transid verify failed on %llu wanted %llu found %llu",
  320. eb->start,
  321. parent_transid, btrfs_header_generation(eb));
  322. ret = 1;
  323. /*
  324. * Things reading via commit roots that don't have normal protection,
  325. * like send, can have a really old block in cache that may point at a
  326. * block that has been freed and re-allocated. So don't clear uptodate
  327. * if we find an eb that is under IO (dirty/writeback) because we could
  328. * end up reading in the stale data and then writing it back out and
  329. * making everybody very sad.
  330. */
  331. if (!extent_buffer_under_io(eb))
  332. clear_extent_buffer_uptodate(eb);
  333. out:
  334. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  335. &cached_state);
  336. if (need_lock)
  337. btrfs_tree_read_unlock_blocking(eb);
  338. return ret;
  339. }
  340. /*
  341. * Return 0 if the superblock checksum type matches the checksum value of that
  342. * algorithm. Pass the raw disk superblock data.
  343. */
  344. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  345. char *raw_disk_sb)
  346. {
  347. struct btrfs_super_block *disk_sb =
  348. (struct btrfs_super_block *)raw_disk_sb;
  349. u16 csum_type = btrfs_super_csum_type(disk_sb);
  350. int ret = 0;
  351. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  352. u32 crc = ~(u32)0;
  353. char result[sizeof(crc)];
  354. /*
  355. * The super_block structure does not span the whole
  356. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  357. * is filled with zeros and is included in the checksum.
  358. */
  359. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  360. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  361. btrfs_csum_final(crc, result);
  362. if (memcmp(raw_disk_sb, result, sizeof(result)))
  363. ret = 1;
  364. }
  365. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  366. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  367. csum_type);
  368. ret = 1;
  369. }
  370. return ret;
  371. }
  372. static int verify_level_key(struct btrfs_fs_info *fs_info,
  373. struct extent_buffer *eb, int level,
  374. struct btrfs_key *first_key)
  375. {
  376. int found_level;
  377. struct btrfs_key found_key;
  378. int ret;
  379. found_level = btrfs_header_level(eb);
  380. if (found_level != level) {
  381. #ifdef CONFIG_BTRFS_DEBUG
  382. WARN_ON(1);
  383. btrfs_err(fs_info,
  384. "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
  385. eb->start, level, found_level);
  386. #endif
  387. return -EIO;
  388. }
  389. if (!first_key)
  390. return 0;
  391. /*
  392. * For live tree block (new tree blocks in current transaction),
  393. * we need proper lock context to avoid race, which is impossible here.
  394. * So we only checks tree blocks which is read from disk, whose
  395. * generation <= fs_info->last_trans_committed.
  396. */
  397. if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
  398. return 0;
  399. if (found_level)
  400. btrfs_node_key_to_cpu(eb, &found_key, 0);
  401. else
  402. btrfs_item_key_to_cpu(eb, &found_key, 0);
  403. ret = btrfs_comp_cpu_keys(first_key, &found_key);
  404. #ifdef CONFIG_BTRFS_DEBUG
  405. if (ret) {
  406. WARN_ON(1);
  407. btrfs_err(fs_info,
  408. "tree first key mismatch detected, bytenr=%llu key expected=(%llu, %u, %llu) has=(%llu, %u, %llu)",
  409. eb->start, first_key->objectid, first_key->type,
  410. first_key->offset, found_key.objectid,
  411. found_key.type, found_key.offset);
  412. }
  413. #endif
  414. return ret;
  415. }
  416. /*
  417. * helper to read a given tree block, doing retries as required when
  418. * the checksums don't match and we have alternate mirrors to try.
  419. *
  420. * @parent_transid: expected transid, skip check if 0
  421. * @level: expected level, mandatory check
  422. * @first_key: expected key of first slot, skip check if NULL
  423. */
  424. static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
  425. struct extent_buffer *eb,
  426. u64 parent_transid, int level,
  427. struct btrfs_key *first_key)
  428. {
  429. struct extent_io_tree *io_tree;
  430. int failed = 0;
  431. int ret;
  432. int num_copies = 0;
  433. int mirror_num = 0;
  434. int failed_mirror = 0;
  435. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  436. io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
  437. while (1) {
  438. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  439. mirror_num);
  440. if (!ret) {
  441. if (verify_parent_transid(io_tree, eb,
  442. parent_transid, 0))
  443. ret = -EIO;
  444. else if (verify_level_key(fs_info, eb, level,
  445. first_key))
  446. ret = -EUCLEAN;
  447. else
  448. break;
  449. }
  450. /*
  451. * This buffer's crc is fine, but its contents are corrupted, so
  452. * there is no reason to read the other copies, they won't be
  453. * any less wrong.
  454. */
  455. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
  456. ret == -EUCLEAN)
  457. break;
  458. num_copies = btrfs_num_copies(fs_info,
  459. eb->start, eb->len);
  460. if (num_copies == 1)
  461. break;
  462. if (!failed_mirror) {
  463. failed = 1;
  464. failed_mirror = eb->read_mirror;
  465. }
  466. mirror_num++;
  467. if (mirror_num == failed_mirror)
  468. mirror_num++;
  469. if (mirror_num > num_copies)
  470. break;
  471. }
  472. if (failed && !ret && failed_mirror)
  473. repair_eb_io_failure(fs_info, eb, failed_mirror);
  474. return ret;
  475. }
  476. /*
  477. * checksum a dirty tree block before IO. This has extra checks to make sure
  478. * we only fill in the checksum field in the first page of a multi-page block
  479. */
  480. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  481. {
  482. u64 start = page_offset(page);
  483. u64 found_start;
  484. struct extent_buffer *eb;
  485. eb = (struct extent_buffer *)page->private;
  486. if (page != eb->pages[0])
  487. return 0;
  488. found_start = btrfs_header_bytenr(eb);
  489. /*
  490. * Please do not consolidate these warnings into a single if.
  491. * It is useful to know what went wrong.
  492. */
  493. if (WARN_ON(found_start != start))
  494. return -EUCLEAN;
  495. if (WARN_ON(!PageUptodate(page)))
  496. return -EUCLEAN;
  497. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  498. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  499. return csum_tree_block(fs_info, eb, 0);
  500. }
  501. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  502. struct extent_buffer *eb)
  503. {
  504. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  505. u8 fsid[BTRFS_FSID_SIZE];
  506. int ret = 1;
  507. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  508. while (fs_devices) {
  509. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  510. ret = 0;
  511. break;
  512. }
  513. fs_devices = fs_devices->seed;
  514. }
  515. return ret;
  516. }
  517. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  518. u64 phy_offset, struct page *page,
  519. u64 start, u64 end, int mirror)
  520. {
  521. u64 found_start;
  522. int found_level;
  523. struct extent_buffer *eb;
  524. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  525. struct btrfs_fs_info *fs_info = root->fs_info;
  526. int ret = 0;
  527. int reads_done;
  528. if (!page->private)
  529. goto out;
  530. eb = (struct extent_buffer *)page->private;
  531. /* the pending IO might have been the only thing that kept this buffer
  532. * in memory. Make sure we have a ref for all this other checks
  533. */
  534. extent_buffer_get(eb);
  535. reads_done = atomic_dec_and_test(&eb->io_pages);
  536. if (!reads_done)
  537. goto err;
  538. eb->read_mirror = mirror;
  539. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  540. ret = -EIO;
  541. goto err;
  542. }
  543. found_start = btrfs_header_bytenr(eb);
  544. if (found_start != eb->start) {
  545. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  546. found_start, eb->start);
  547. ret = -EIO;
  548. goto err;
  549. }
  550. if (check_tree_block_fsid(fs_info, eb)) {
  551. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  552. eb->start);
  553. ret = -EIO;
  554. goto err;
  555. }
  556. found_level = btrfs_header_level(eb);
  557. if (found_level >= BTRFS_MAX_LEVEL) {
  558. btrfs_err(fs_info, "bad tree block level %d",
  559. (int)btrfs_header_level(eb));
  560. ret = -EIO;
  561. goto err;
  562. }
  563. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  564. eb, found_level);
  565. ret = csum_tree_block(fs_info, eb, 1);
  566. if (ret)
  567. goto err;
  568. /*
  569. * If this is a leaf block and it is corrupt, set the corrupt bit so
  570. * that we don't try and read the other copies of this block, just
  571. * return -EIO.
  572. */
  573. if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
  574. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  575. ret = -EIO;
  576. }
  577. if (found_level > 0 && btrfs_check_node(fs_info, eb))
  578. ret = -EIO;
  579. if (!ret)
  580. set_extent_buffer_uptodate(eb);
  581. err:
  582. if (reads_done &&
  583. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  584. btree_readahead_hook(eb, ret);
  585. if (ret) {
  586. /*
  587. * our io error hook is going to dec the io pages
  588. * again, we have to make sure it has something
  589. * to decrement
  590. */
  591. atomic_inc(&eb->io_pages);
  592. clear_extent_buffer_uptodate(eb);
  593. }
  594. free_extent_buffer(eb);
  595. out:
  596. return ret;
  597. }
  598. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  599. {
  600. struct extent_buffer *eb;
  601. eb = (struct extent_buffer *)page->private;
  602. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  603. eb->read_mirror = failed_mirror;
  604. atomic_dec(&eb->io_pages);
  605. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  606. btree_readahead_hook(eb, -EIO);
  607. return -EIO; /* we fixed nothing */
  608. }
  609. static void end_workqueue_bio(struct bio *bio)
  610. {
  611. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  612. struct btrfs_fs_info *fs_info;
  613. struct btrfs_workqueue *wq;
  614. btrfs_work_func_t func;
  615. fs_info = end_io_wq->info;
  616. end_io_wq->status = bio->bi_status;
  617. if (bio_op(bio) == REQ_OP_WRITE) {
  618. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  619. wq = fs_info->endio_meta_write_workers;
  620. func = btrfs_endio_meta_write_helper;
  621. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  622. wq = fs_info->endio_freespace_worker;
  623. func = btrfs_freespace_write_helper;
  624. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  625. wq = fs_info->endio_raid56_workers;
  626. func = btrfs_endio_raid56_helper;
  627. } else {
  628. wq = fs_info->endio_write_workers;
  629. func = btrfs_endio_write_helper;
  630. }
  631. } else {
  632. if (unlikely(end_io_wq->metadata ==
  633. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  634. wq = fs_info->endio_repair_workers;
  635. func = btrfs_endio_repair_helper;
  636. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  637. wq = fs_info->endio_raid56_workers;
  638. func = btrfs_endio_raid56_helper;
  639. } else if (end_io_wq->metadata) {
  640. wq = fs_info->endio_meta_workers;
  641. func = btrfs_endio_meta_helper;
  642. } else {
  643. wq = fs_info->endio_workers;
  644. func = btrfs_endio_helper;
  645. }
  646. }
  647. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  648. btrfs_queue_work(wq, &end_io_wq->work);
  649. }
  650. blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  651. enum btrfs_wq_endio_type metadata)
  652. {
  653. struct btrfs_end_io_wq *end_io_wq;
  654. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  655. if (!end_io_wq)
  656. return BLK_STS_RESOURCE;
  657. end_io_wq->private = bio->bi_private;
  658. end_io_wq->end_io = bio->bi_end_io;
  659. end_io_wq->info = info;
  660. end_io_wq->status = 0;
  661. end_io_wq->bio = bio;
  662. end_io_wq->metadata = metadata;
  663. bio->bi_private = end_io_wq;
  664. bio->bi_end_io = end_workqueue_bio;
  665. return 0;
  666. }
  667. static void run_one_async_start(struct btrfs_work *work)
  668. {
  669. struct async_submit_bio *async;
  670. blk_status_t ret;
  671. async = container_of(work, struct async_submit_bio, work);
  672. ret = async->submit_bio_start(async->private_data, async->bio,
  673. async->bio_offset);
  674. if (ret)
  675. async->status = ret;
  676. }
  677. static void run_one_async_done(struct btrfs_work *work)
  678. {
  679. struct async_submit_bio *async;
  680. async = container_of(work, struct async_submit_bio, work);
  681. /* If an error occurred we just want to clean up the bio and move on */
  682. if (async->status) {
  683. async->bio->bi_status = async->status;
  684. bio_endio(async->bio);
  685. return;
  686. }
  687. async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
  688. }
  689. static void run_one_async_free(struct btrfs_work *work)
  690. {
  691. struct async_submit_bio *async;
  692. async = container_of(work, struct async_submit_bio, work);
  693. kfree(async);
  694. }
  695. blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
  696. int mirror_num, unsigned long bio_flags,
  697. u64 bio_offset, void *private_data,
  698. extent_submit_bio_start_t *submit_bio_start,
  699. extent_submit_bio_done_t *submit_bio_done)
  700. {
  701. struct async_submit_bio *async;
  702. async = kmalloc(sizeof(*async), GFP_NOFS);
  703. if (!async)
  704. return BLK_STS_RESOURCE;
  705. async->private_data = private_data;
  706. async->fs_info = fs_info;
  707. async->bio = bio;
  708. async->mirror_num = mirror_num;
  709. async->submit_bio_start = submit_bio_start;
  710. async->submit_bio_done = submit_bio_done;
  711. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  712. run_one_async_done, run_one_async_free);
  713. async->bio_flags = bio_flags;
  714. async->bio_offset = bio_offset;
  715. async->status = 0;
  716. if (op_is_sync(bio->bi_opf))
  717. btrfs_set_work_high_priority(&async->work);
  718. btrfs_queue_work(fs_info->workers, &async->work);
  719. return 0;
  720. }
  721. static blk_status_t btree_csum_one_bio(struct bio *bio)
  722. {
  723. struct bio_vec *bvec;
  724. struct btrfs_root *root;
  725. int i, ret = 0;
  726. ASSERT(!bio_flagged(bio, BIO_CLONED));
  727. bio_for_each_segment_all(bvec, bio, i) {
  728. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  729. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  730. if (ret)
  731. break;
  732. }
  733. return errno_to_blk_status(ret);
  734. }
  735. static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
  736. u64 bio_offset)
  737. {
  738. /*
  739. * when we're called for a write, we're already in the async
  740. * submission context. Just jump into btrfs_map_bio
  741. */
  742. return btree_csum_one_bio(bio);
  743. }
  744. static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
  745. int mirror_num)
  746. {
  747. struct inode *inode = private_data;
  748. blk_status_t ret;
  749. /*
  750. * when we're called for a write, we're already in the async
  751. * submission context. Just jump into btrfs_map_bio
  752. */
  753. ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
  754. if (ret) {
  755. bio->bi_status = ret;
  756. bio_endio(bio);
  757. }
  758. return ret;
  759. }
  760. static int check_async_write(struct btrfs_inode *bi)
  761. {
  762. if (atomic_read(&bi->sync_writers))
  763. return 0;
  764. #ifdef CONFIG_X86
  765. if (static_cpu_has(X86_FEATURE_XMM4_2))
  766. return 0;
  767. #endif
  768. return 1;
  769. }
  770. static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
  771. int mirror_num, unsigned long bio_flags,
  772. u64 bio_offset)
  773. {
  774. struct inode *inode = private_data;
  775. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  776. int async = check_async_write(BTRFS_I(inode));
  777. blk_status_t ret;
  778. if (bio_op(bio) != REQ_OP_WRITE) {
  779. /*
  780. * called for a read, do the setup so that checksum validation
  781. * can happen in the async kernel threads
  782. */
  783. ret = btrfs_bio_wq_end_io(fs_info, bio,
  784. BTRFS_WQ_ENDIO_METADATA);
  785. if (ret)
  786. goto out_w_error;
  787. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  788. } else if (!async) {
  789. ret = btree_csum_one_bio(bio);
  790. if (ret)
  791. goto out_w_error;
  792. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  793. } else {
  794. /*
  795. * kthread helpers are used to submit writes so that
  796. * checksumming can happen in parallel across all CPUs
  797. */
  798. ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
  799. bio_offset, private_data,
  800. btree_submit_bio_start,
  801. btree_submit_bio_done);
  802. }
  803. if (ret)
  804. goto out_w_error;
  805. return 0;
  806. out_w_error:
  807. bio->bi_status = ret;
  808. bio_endio(bio);
  809. return ret;
  810. }
  811. #ifdef CONFIG_MIGRATION
  812. static int btree_migratepage(struct address_space *mapping,
  813. struct page *newpage, struct page *page,
  814. enum migrate_mode mode)
  815. {
  816. /*
  817. * we can't safely write a btree page from here,
  818. * we haven't done the locking hook
  819. */
  820. if (PageDirty(page))
  821. return -EAGAIN;
  822. /*
  823. * Buffers may be managed in a filesystem specific way.
  824. * We must have no buffers or drop them.
  825. */
  826. if (page_has_private(page) &&
  827. !try_to_release_page(page, GFP_KERNEL))
  828. return -EAGAIN;
  829. return migrate_page(mapping, newpage, page, mode);
  830. }
  831. #endif
  832. static int btree_writepages(struct address_space *mapping,
  833. struct writeback_control *wbc)
  834. {
  835. struct btrfs_fs_info *fs_info;
  836. int ret;
  837. if (wbc->sync_mode == WB_SYNC_NONE) {
  838. if (wbc->for_kupdate)
  839. return 0;
  840. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  841. /* this is a bit racy, but that's ok */
  842. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  843. BTRFS_DIRTY_METADATA_THRESH);
  844. if (ret < 0)
  845. return 0;
  846. }
  847. return btree_write_cache_pages(mapping, wbc);
  848. }
  849. static int btree_readpage(struct file *file, struct page *page)
  850. {
  851. struct extent_io_tree *tree;
  852. tree = &BTRFS_I(page->mapping->host)->io_tree;
  853. return extent_read_full_page(tree, page, btree_get_extent, 0);
  854. }
  855. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  856. {
  857. if (PageWriteback(page) || PageDirty(page))
  858. return 0;
  859. return try_release_extent_buffer(page);
  860. }
  861. static void btree_invalidatepage(struct page *page, unsigned int offset,
  862. unsigned int length)
  863. {
  864. struct extent_io_tree *tree;
  865. tree = &BTRFS_I(page->mapping->host)->io_tree;
  866. extent_invalidatepage(tree, page, offset);
  867. btree_releasepage(page, GFP_NOFS);
  868. if (PagePrivate(page)) {
  869. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  870. "page private not zero on page %llu",
  871. (unsigned long long)page_offset(page));
  872. ClearPagePrivate(page);
  873. set_page_private(page, 0);
  874. put_page(page);
  875. }
  876. }
  877. static int btree_set_page_dirty(struct page *page)
  878. {
  879. #ifdef DEBUG
  880. struct extent_buffer *eb;
  881. BUG_ON(!PagePrivate(page));
  882. eb = (struct extent_buffer *)page->private;
  883. BUG_ON(!eb);
  884. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  885. BUG_ON(!atomic_read(&eb->refs));
  886. btrfs_assert_tree_locked(eb);
  887. #endif
  888. return __set_page_dirty_nobuffers(page);
  889. }
  890. static const struct address_space_operations btree_aops = {
  891. .readpage = btree_readpage,
  892. .writepages = btree_writepages,
  893. .releasepage = btree_releasepage,
  894. .invalidatepage = btree_invalidatepage,
  895. #ifdef CONFIG_MIGRATION
  896. .migratepage = btree_migratepage,
  897. #endif
  898. .set_page_dirty = btree_set_page_dirty,
  899. };
  900. void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
  901. {
  902. struct extent_buffer *buf = NULL;
  903. struct inode *btree_inode = fs_info->btree_inode;
  904. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  905. if (IS_ERR(buf))
  906. return;
  907. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  908. buf, WAIT_NONE, 0);
  909. free_extent_buffer(buf);
  910. }
  911. int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
  912. int mirror_num, struct extent_buffer **eb)
  913. {
  914. struct extent_buffer *buf = NULL;
  915. struct inode *btree_inode = fs_info->btree_inode;
  916. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  917. int ret;
  918. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  919. if (IS_ERR(buf))
  920. return 0;
  921. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  922. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  923. mirror_num);
  924. if (ret) {
  925. free_extent_buffer(buf);
  926. return ret;
  927. }
  928. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  929. free_extent_buffer(buf);
  930. return -EIO;
  931. } else if (extent_buffer_uptodate(buf)) {
  932. *eb = buf;
  933. } else {
  934. free_extent_buffer(buf);
  935. }
  936. return 0;
  937. }
  938. struct extent_buffer *btrfs_find_create_tree_block(
  939. struct btrfs_fs_info *fs_info,
  940. u64 bytenr)
  941. {
  942. if (btrfs_is_testing(fs_info))
  943. return alloc_test_extent_buffer(fs_info, bytenr);
  944. return alloc_extent_buffer(fs_info, bytenr);
  945. }
  946. int btrfs_write_tree_block(struct extent_buffer *buf)
  947. {
  948. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  949. buf->start + buf->len - 1);
  950. }
  951. void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  952. {
  953. filemap_fdatawait_range(buf->pages[0]->mapping,
  954. buf->start, buf->start + buf->len - 1);
  955. }
  956. /*
  957. * Read tree block at logical address @bytenr and do variant basic but critical
  958. * verification.
  959. *
  960. * @parent_transid: expected transid of this tree block, skip check if 0
  961. * @level: expected level, mandatory check
  962. * @first_key: expected key in slot 0, skip check if NULL
  963. */
  964. struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
  965. u64 parent_transid, int level,
  966. struct btrfs_key *first_key)
  967. {
  968. struct extent_buffer *buf = NULL;
  969. int ret;
  970. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  971. if (IS_ERR(buf))
  972. return buf;
  973. ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
  974. level, first_key);
  975. if (ret) {
  976. free_extent_buffer(buf);
  977. return ERR_PTR(ret);
  978. }
  979. return buf;
  980. }
  981. void clean_tree_block(struct btrfs_fs_info *fs_info,
  982. struct extent_buffer *buf)
  983. {
  984. if (btrfs_header_generation(buf) ==
  985. fs_info->running_transaction->transid) {
  986. btrfs_assert_tree_locked(buf);
  987. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  988. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  989. -buf->len,
  990. fs_info->dirty_metadata_batch);
  991. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  992. btrfs_set_lock_blocking(buf);
  993. clear_extent_buffer_dirty(buf);
  994. }
  995. }
  996. }
  997. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  998. {
  999. struct btrfs_subvolume_writers *writers;
  1000. int ret;
  1001. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1002. if (!writers)
  1003. return ERR_PTR(-ENOMEM);
  1004. ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
  1005. if (ret < 0) {
  1006. kfree(writers);
  1007. return ERR_PTR(ret);
  1008. }
  1009. init_waitqueue_head(&writers->wait);
  1010. return writers;
  1011. }
  1012. static void
  1013. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1014. {
  1015. percpu_counter_destroy(&writers->counter);
  1016. kfree(writers);
  1017. }
  1018. static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1019. u64 objectid)
  1020. {
  1021. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1022. root->node = NULL;
  1023. root->commit_root = NULL;
  1024. root->state = 0;
  1025. root->orphan_cleanup_state = 0;
  1026. root->objectid = objectid;
  1027. root->last_trans = 0;
  1028. root->highest_objectid = 0;
  1029. root->nr_delalloc_inodes = 0;
  1030. root->nr_ordered_extents = 0;
  1031. root->name = NULL;
  1032. root->inode_tree = RB_ROOT;
  1033. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1034. root->block_rsv = NULL;
  1035. root->orphan_block_rsv = NULL;
  1036. INIT_LIST_HEAD(&root->dirty_list);
  1037. INIT_LIST_HEAD(&root->root_list);
  1038. INIT_LIST_HEAD(&root->delalloc_inodes);
  1039. INIT_LIST_HEAD(&root->delalloc_root);
  1040. INIT_LIST_HEAD(&root->ordered_extents);
  1041. INIT_LIST_HEAD(&root->ordered_root);
  1042. INIT_LIST_HEAD(&root->logged_list[0]);
  1043. INIT_LIST_HEAD(&root->logged_list[1]);
  1044. spin_lock_init(&root->orphan_lock);
  1045. spin_lock_init(&root->inode_lock);
  1046. spin_lock_init(&root->delalloc_lock);
  1047. spin_lock_init(&root->ordered_extent_lock);
  1048. spin_lock_init(&root->accounting_lock);
  1049. spin_lock_init(&root->log_extents_lock[0]);
  1050. spin_lock_init(&root->log_extents_lock[1]);
  1051. spin_lock_init(&root->qgroup_meta_rsv_lock);
  1052. mutex_init(&root->objectid_mutex);
  1053. mutex_init(&root->log_mutex);
  1054. mutex_init(&root->ordered_extent_mutex);
  1055. mutex_init(&root->delalloc_mutex);
  1056. init_waitqueue_head(&root->log_writer_wait);
  1057. init_waitqueue_head(&root->log_commit_wait[0]);
  1058. init_waitqueue_head(&root->log_commit_wait[1]);
  1059. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1060. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1061. atomic_set(&root->log_commit[0], 0);
  1062. atomic_set(&root->log_commit[1], 0);
  1063. atomic_set(&root->log_writers, 0);
  1064. atomic_set(&root->log_batch, 0);
  1065. atomic_set(&root->orphan_inodes, 0);
  1066. refcount_set(&root->refs, 1);
  1067. atomic_set(&root->will_be_snapshotted, 0);
  1068. root->log_transid = 0;
  1069. root->log_transid_committed = -1;
  1070. root->last_log_commit = 0;
  1071. if (!dummy)
  1072. extent_io_tree_init(&root->dirty_log_pages, NULL);
  1073. memset(&root->root_key, 0, sizeof(root->root_key));
  1074. memset(&root->root_item, 0, sizeof(root->root_item));
  1075. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1076. if (!dummy)
  1077. root->defrag_trans_start = fs_info->generation;
  1078. else
  1079. root->defrag_trans_start = 0;
  1080. root->root_key.objectid = objectid;
  1081. root->anon_dev = 0;
  1082. spin_lock_init(&root->root_item_lock);
  1083. }
  1084. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1085. gfp_t flags)
  1086. {
  1087. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1088. if (root)
  1089. root->fs_info = fs_info;
  1090. return root;
  1091. }
  1092. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1093. /* Should only be used by the testing infrastructure */
  1094. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
  1095. {
  1096. struct btrfs_root *root;
  1097. if (!fs_info)
  1098. return ERR_PTR(-EINVAL);
  1099. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1100. if (!root)
  1101. return ERR_PTR(-ENOMEM);
  1102. /* We don't use the stripesize in selftest, set it as sectorsize */
  1103. __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1104. root->alloc_bytenr = 0;
  1105. return root;
  1106. }
  1107. #endif
  1108. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1109. struct btrfs_fs_info *fs_info,
  1110. u64 objectid)
  1111. {
  1112. struct extent_buffer *leaf;
  1113. struct btrfs_root *tree_root = fs_info->tree_root;
  1114. struct btrfs_root *root;
  1115. struct btrfs_key key;
  1116. int ret = 0;
  1117. uuid_le uuid = NULL_UUID_LE;
  1118. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1119. if (!root)
  1120. return ERR_PTR(-ENOMEM);
  1121. __setup_root(root, fs_info, objectid);
  1122. root->root_key.objectid = objectid;
  1123. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1124. root->root_key.offset = 0;
  1125. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1126. if (IS_ERR(leaf)) {
  1127. ret = PTR_ERR(leaf);
  1128. leaf = NULL;
  1129. goto fail;
  1130. }
  1131. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1132. btrfs_set_header_bytenr(leaf, leaf->start);
  1133. btrfs_set_header_generation(leaf, trans->transid);
  1134. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1135. btrfs_set_header_owner(leaf, objectid);
  1136. root->node = leaf;
  1137. write_extent_buffer_fsid(leaf, fs_info->fsid);
  1138. write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
  1139. btrfs_mark_buffer_dirty(leaf);
  1140. root->commit_root = btrfs_root_node(root);
  1141. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1142. root->root_item.flags = 0;
  1143. root->root_item.byte_limit = 0;
  1144. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1145. btrfs_set_root_generation(&root->root_item, trans->transid);
  1146. btrfs_set_root_level(&root->root_item, 0);
  1147. btrfs_set_root_refs(&root->root_item, 1);
  1148. btrfs_set_root_used(&root->root_item, leaf->len);
  1149. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1150. btrfs_set_root_dirid(&root->root_item, 0);
  1151. if (is_fstree(objectid))
  1152. uuid_le_gen(&uuid);
  1153. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1154. root->root_item.drop_level = 0;
  1155. key.objectid = objectid;
  1156. key.type = BTRFS_ROOT_ITEM_KEY;
  1157. key.offset = 0;
  1158. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1159. if (ret)
  1160. goto fail;
  1161. btrfs_tree_unlock(leaf);
  1162. return root;
  1163. fail:
  1164. if (leaf) {
  1165. btrfs_tree_unlock(leaf);
  1166. free_extent_buffer(root->commit_root);
  1167. free_extent_buffer(leaf);
  1168. }
  1169. kfree(root);
  1170. return ERR_PTR(ret);
  1171. }
  1172. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1173. struct btrfs_fs_info *fs_info)
  1174. {
  1175. struct btrfs_root *root;
  1176. struct extent_buffer *leaf;
  1177. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1178. if (!root)
  1179. return ERR_PTR(-ENOMEM);
  1180. __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1181. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1182. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1183. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1184. /*
  1185. * DON'T set REF_COWS for log trees
  1186. *
  1187. * log trees do not get reference counted because they go away
  1188. * before a real commit is actually done. They do store pointers
  1189. * to file data extents, and those reference counts still get
  1190. * updated (along with back refs to the log tree).
  1191. */
  1192. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1193. NULL, 0, 0, 0);
  1194. if (IS_ERR(leaf)) {
  1195. kfree(root);
  1196. return ERR_CAST(leaf);
  1197. }
  1198. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1199. btrfs_set_header_bytenr(leaf, leaf->start);
  1200. btrfs_set_header_generation(leaf, trans->transid);
  1201. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1202. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1203. root->node = leaf;
  1204. write_extent_buffer_fsid(root->node, fs_info->fsid);
  1205. btrfs_mark_buffer_dirty(root->node);
  1206. btrfs_tree_unlock(root->node);
  1207. return root;
  1208. }
  1209. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1210. struct btrfs_fs_info *fs_info)
  1211. {
  1212. struct btrfs_root *log_root;
  1213. log_root = alloc_log_tree(trans, fs_info);
  1214. if (IS_ERR(log_root))
  1215. return PTR_ERR(log_root);
  1216. WARN_ON(fs_info->log_root_tree);
  1217. fs_info->log_root_tree = log_root;
  1218. return 0;
  1219. }
  1220. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1221. struct btrfs_root *root)
  1222. {
  1223. struct btrfs_fs_info *fs_info = root->fs_info;
  1224. struct btrfs_root *log_root;
  1225. struct btrfs_inode_item *inode_item;
  1226. log_root = alloc_log_tree(trans, fs_info);
  1227. if (IS_ERR(log_root))
  1228. return PTR_ERR(log_root);
  1229. log_root->last_trans = trans->transid;
  1230. log_root->root_key.offset = root->root_key.objectid;
  1231. inode_item = &log_root->root_item.inode;
  1232. btrfs_set_stack_inode_generation(inode_item, 1);
  1233. btrfs_set_stack_inode_size(inode_item, 3);
  1234. btrfs_set_stack_inode_nlink(inode_item, 1);
  1235. btrfs_set_stack_inode_nbytes(inode_item,
  1236. fs_info->nodesize);
  1237. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1238. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1239. WARN_ON(root->log_root);
  1240. root->log_root = log_root;
  1241. root->log_transid = 0;
  1242. root->log_transid_committed = -1;
  1243. root->last_log_commit = 0;
  1244. return 0;
  1245. }
  1246. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1247. struct btrfs_key *key)
  1248. {
  1249. struct btrfs_root *root;
  1250. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1251. struct btrfs_path *path;
  1252. u64 generation;
  1253. int ret;
  1254. int level;
  1255. path = btrfs_alloc_path();
  1256. if (!path)
  1257. return ERR_PTR(-ENOMEM);
  1258. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1259. if (!root) {
  1260. ret = -ENOMEM;
  1261. goto alloc_fail;
  1262. }
  1263. __setup_root(root, fs_info, key->objectid);
  1264. ret = btrfs_find_root(tree_root, key, path,
  1265. &root->root_item, &root->root_key);
  1266. if (ret) {
  1267. if (ret > 0)
  1268. ret = -ENOENT;
  1269. goto find_fail;
  1270. }
  1271. generation = btrfs_root_generation(&root->root_item);
  1272. level = btrfs_root_level(&root->root_item);
  1273. root->node = read_tree_block(fs_info,
  1274. btrfs_root_bytenr(&root->root_item),
  1275. generation, level, NULL);
  1276. if (IS_ERR(root->node)) {
  1277. ret = PTR_ERR(root->node);
  1278. goto find_fail;
  1279. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1280. ret = -EIO;
  1281. free_extent_buffer(root->node);
  1282. goto find_fail;
  1283. }
  1284. root->commit_root = btrfs_root_node(root);
  1285. out:
  1286. btrfs_free_path(path);
  1287. return root;
  1288. find_fail:
  1289. kfree(root);
  1290. alloc_fail:
  1291. root = ERR_PTR(ret);
  1292. goto out;
  1293. }
  1294. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1295. struct btrfs_key *location)
  1296. {
  1297. struct btrfs_root *root;
  1298. root = btrfs_read_tree_root(tree_root, location);
  1299. if (IS_ERR(root))
  1300. return root;
  1301. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1302. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1303. btrfs_check_and_init_root_item(&root->root_item);
  1304. }
  1305. return root;
  1306. }
  1307. int btrfs_init_fs_root(struct btrfs_root *root)
  1308. {
  1309. int ret;
  1310. struct btrfs_subvolume_writers *writers;
  1311. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1312. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1313. GFP_NOFS);
  1314. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1315. ret = -ENOMEM;
  1316. goto fail;
  1317. }
  1318. writers = btrfs_alloc_subvolume_writers();
  1319. if (IS_ERR(writers)) {
  1320. ret = PTR_ERR(writers);
  1321. goto fail;
  1322. }
  1323. root->subv_writers = writers;
  1324. btrfs_init_free_ino_ctl(root);
  1325. spin_lock_init(&root->ino_cache_lock);
  1326. init_waitqueue_head(&root->ino_cache_wait);
  1327. ret = get_anon_bdev(&root->anon_dev);
  1328. if (ret)
  1329. goto fail;
  1330. mutex_lock(&root->objectid_mutex);
  1331. ret = btrfs_find_highest_objectid(root,
  1332. &root->highest_objectid);
  1333. if (ret) {
  1334. mutex_unlock(&root->objectid_mutex);
  1335. goto fail;
  1336. }
  1337. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1338. mutex_unlock(&root->objectid_mutex);
  1339. return 0;
  1340. fail:
  1341. /* the caller is responsible to call free_fs_root */
  1342. return ret;
  1343. }
  1344. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1345. u64 root_id)
  1346. {
  1347. struct btrfs_root *root;
  1348. spin_lock(&fs_info->fs_roots_radix_lock);
  1349. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1350. (unsigned long)root_id);
  1351. spin_unlock(&fs_info->fs_roots_radix_lock);
  1352. return root;
  1353. }
  1354. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1355. struct btrfs_root *root)
  1356. {
  1357. int ret;
  1358. ret = radix_tree_preload(GFP_NOFS);
  1359. if (ret)
  1360. return ret;
  1361. spin_lock(&fs_info->fs_roots_radix_lock);
  1362. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1363. (unsigned long)root->root_key.objectid,
  1364. root);
  1365. if (ret == 0)
  1366. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1367. spin_unlock(&fs_info->fs_roots_radix_lock);
  1368. radix_tree_preload_end();
  1369. return ret;
  1370. }
  1371. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1372. struct btrfs_key *location,
  1373. bool check_ref)
  1374. {
  1375. struct btrfs_root *root;
  1376. struct btrfs_path *path;
  1377. struct btrfs_key key;
  1378. int ret;
  1379. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1380. return fs_info->tree_root;
  1381. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1382. return fs_info->extent_root;
  1383. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1384. return fs_info->chunk_root;
  1385. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1386. return fs_info->dev_root;
  1387. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1388. return fs_info->csum_root;
  1389. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1390. return fs_info->quota_root ? fs_info->quota_root :
  1391. ERR_PTR(-ENOENT);
  1392. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1393. return fs_info->uuid_root ? fs_info->uuid_root :
  1394. ERR_PTR(-ENOENT);
  1395. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1396. return fs_info->free_space_root ? fs_info->free_space_root :
  1397. ERR_PTR(-ENOENT);
  1398. again:
  1399. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1400. if (root) {
  1401. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1402. return ERR_PTR(-ENOENT);
  1403. return root;
  1404. }
  1405. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1406. if (IS_ERR(root))
  1407. return root;
  1408. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1409. ret = -ENOENT;
  1410. goto fail;
  1411. }
  1412. ret = btrfs_init_fs_root(root);
  1413. if (ret)
  1414. goto fail;
  1415. path = btrfs_alloc_path();
  1416. if (!path) {
  1417. ret = -ENOMEM;
  1418. goto fail;
  1419. }
  1420. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1421. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1422. key.offset = location->objectid;
  1423. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1424. btrfs_free_path(path);
  1425. if (ret < 0)
  1426. goto fail;
  1427. if (ret == 0)
  1428. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1429. ret = btrfs_insert_fs_root(fs_info, root);
  1430. if (ret) {
  1431. if (ret == -EEXIST) {
  1432. free_fs_root(root);
  1433. goto again;
  1434. }
  1435. goto fail;
  1436. }
  1437. return root;
  1438. fail:
  1439. free_fs_root(root);
  1440. return ERR_PTR(ret);
  1441. }
  1442. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1443. {
  1444. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1445. int ret = 0;
  1446. struct btrfs_device *device;
  1447. struct backing_dev_info *bdi;
  1448. rcu_read_lock();
  1449. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1450. if (!device->bdev)
  1451. continue;
  1452. bdi = device->bdev->bd_bdi;
  1453. if (bdi_congested(bdi, bdi_bits)) {
  1454. ret = 1;
  1455. break;
  1456. }
  1457. }
  1458. rcu_read_unlock();
  1459. return ret;
  1460. }
  1461. /*
  1462. * called by the kthread helper functions to finally call the bio end_io
  1463. * functions. This is where read checksum verification actually happens
  1464. */
  1465. static void end_workqueue_fn(struct btrfs_work *work)
  1466. {
  1467. struct bio *bio;
  1468. struct btrfs_end_io_wq *end_io_wq;
  1469. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1470. bio = end_io_wq->bio;
  1471. bio->bi_status = end_io_wq->status;
  1472. bio->bi_private = end_io_wq->private;
  1473. bio->bi_end_io = end_io_wq->end_io;
  1474. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1475. bio_endio(bio);
  1476. }
  1477. static int cleaner_kthread(void *arg)
  1478. {
  1479. struct btrfs_root *root = arg;
  1480. struct btrfs_fs_info *fs_info = root->fs_info;
  1481. int again;
  1482. struct btrfs_trans_handle *trans;
  1483. do {
  1484. again = 0;
  1485. /* Make the cleaner go to sleep early. */
  1486. if (btrfs_need_cleaner_sleep(fs_info))
  1487. goto sleep;
  1488. /*
  1489. * Do not do anything if we might cause open_ctree() to block
  1490. * before we have finished mounting the filesystem.
  1491. */
  1492. if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
  1493. goto sleep;
  1494. if (!mutex_trylock(&fs_info->cleaner_mutex))
  1495. goto sleep;
  1496. /*
  1497. * Avoid the problem that we change the status of the fs
  1498. * during the above check and trylock.
  1499. */
  1500. if (btrfs_need_cleaner_sleep(fs_info)) {
  1501. mutex_unlock(&fs_info->cleaner_mutex);
  1502. goto sleep;
  1503. }
  1504. mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
  1505. btrfs_run_delayed_iputs(fs_info);
  1506. mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
  1507. again = btrfs_clean_one_deleted_snapshot(root);
  1508. mutex_unlock(&fs_info->cleaner_mutex);
  1509. /*
  1510. * The defragger has dealt with the R/O remount and umount,
  1511. * needn't do anything special here.
  1512. */
  1513. btrfs_run_defrag_inodes(fs_info);
  1514. /*
  1515. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1516. * with relocation (btrfs_relocate_chunk) and relocation
  1517. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1518. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1519. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1520. * unused block groups.
  1521. */
  1522. btrfs_delete_unused_bgs(fs_info);
  1523. sleep:
  1524. if (!again) {
  1525. set_current_state(TASK_INTERRUPTIBLE);
  1526. if (!kthread_should_stop())
  1527. schedule();
  1528. __set_current_state(TASK_RUNNING);
  1529. }
  1530. } while (!kthread_should_stop());
  1531. /*
  1532. * Transaction kthread is stopped before us and wakes us up.
  1533. * However we might have started a new transaction and COWed some
  1534. * tree blocks when deleting unused block groups for example. So
  1535. * make sure we commit the transaction we started to have a clean
  1536. * shutdown when evicting the btree inode - if it has dirty pages
  1537. * when we do the final iput() on it, eviction will trigger a
  1538. * writeback for it which will fail with null pointer dereferences
  1539. * since work queues and other resources were already released and
  1540. * destroyed by the time the iput/eviction/writeback is made.
  1541. */
  1542. trans = btrfs_attach_transaction(root);
  1543. if (IS_ERR(trans)) {
  1544. if (PTR_ERR(trans) != -ENOENT)
  1545. btrfs_err(fs_info,
  1546. "cleaner transaction attach returned %ld",
  1547. PTR_ERR(trans));
  1548. } else {
  1549. int ret;
  1550. ret = btrfs_commit_transaction(trans);
  1551. if (ret)
  1552. btrfs_err(fs_info,
  1553. "cleaner open transaction commit returned %d",
  1554. ret);
  1555. }
  1556. return 0;
  1557. }
  1558. static int transaction_kthread(void *arg)
  1559. {
  1560. struct btrfs_root *root = arg;
  1561. struct btrfs_fs_info *fs_info = root->fs_info;
  1562. struct btrfs_trans_handle *trans;
  1563. struct btrfs_transaction *cur;
  1564. u64 transid;
  1565. unsigned long now;
  1566. unsigned long delay;
  1567. bool cannot_commit;
  1568. do {
  1569. cannot_commit = false;
  1570. delay = HZ * fs_info->commit_interval;
  1571. mutex_lock(&fs_info->transaction_kthread_mutex);
  1572. spin_lock(&fs_info->trans_lock);
  1573. cur = fs_info->running_transaction;
  1574. if (!cur) {
  1575. spin_unlock(&fs_info->trans_lock);
  1576. goto sleep;
  1577. }
  1578. now = get_seconds();
  1579. if (cur->state < TRANS_STATE_BLOCKED &&
  1580. (now < cur->start_time ||
  1581. now - cur->start_time < fs_info->commit_interval)) {
  1582. spin_unlock(&fs_info->trans_lock);
  1583. delay = HZ * 5;
  1584. goto sleep;
  1585. }
  1586. transid = cur->transid;
  1587. spin_unlock(&fs_info->trans_lock);
  1588. /* If the file system is aborted, this will always fail. */
  1589. trans = btrfs_attach_transaction(root);
  1590. if (IS_ERR(trans)) {
  1591. if (PTR_ERR(trans) != -ENOENT)
  1592. cannot_commit = true;
  1593. goto sleep;
  1594. }
  1595. if (transid == trans->transid) {
  1596. btrfs_commit_transaction(trans);
  1597. } else {
  1598. btrfs_end_transaction(trans);
  1599. }
  1600. sleep:
  1601. wake_up_process(fs_info->cleaner_kthread);
  1602. mutex_unlock(&fs_info->transaction_kthread_mutex);
  1603. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1604. &fs_info->fs_state)))
  1605. btrfs_cleanup_transaction(fs_info);
  1606. if (!kthread_should_stop() &&
  1607. (!btrfs_transaction_blocked(fs_info) ||
  1608. cannot_commit))
  1609. schedule_timeout_interruptible(delay);
  1610. } while (!kthread_should_stop());
  1611. return 0;
  1612. }
  1613. /*
  1614. * this will find the highest generation in the array of
  1615. * root backups. The index of the highest array is returned,
  1616. * or -1 if we can't find anything.
  1617. *
  1618. * We check to make sure the array is valid by comparing the
  1619. * generation of the latest root in the array with the generation
  1620. * in the super block. If they don't match we pitch it.
  1621. */
  1622. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1623. {
  1624. u64 cur;
  1625. int newest_index = -1;
  1626. struct btrfs_root_backup *root_backup;
  1627. int i;
  1628. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1629. root_backup = info->super_copy->super_roots + i;
  1630. cur = btrfs_backup_tree_root_gen(root_backup);
  1631. if (cur == newest_gen)
  1632. newest_index = i;
  1633. }
  1634. /* check to see if we actually wrapped around */
  1635. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1636. root_backup = info->super_copy->super_roots;
  1637. cur = btrfs_backup_tree_root_gen(root_backup);
  1638. if (cur == newest_gen)
  1639. newest_index = 0;
  1640. }
  1641. return newest_index;
  1642. }
  1643. /*
  1644. * find the oldest backup so we know where to store new entries
  1645. * in the backup array. This will set the backup_root_index
  1646. * field in the fs_info struct
  1647. */
  1648. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1649. u64 newest_gen)
  1650. {
  1651. int newest_index = -1;
  1652. newest_index = find_newest_super_backup(info, newest_gen);
  1653. /* if there was garbage in there, just move along */
  1654. if (newest_index == -1) {
  1655. info->backup_root_index = 0;
  1656. } else {
  1657. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1658. }
  1659. }
  1660. /*
  1661. * copy all the root pointers into the super backup array.
  1662. * this will bump the backup pointer by one when it is
  1663. * done
  1664. */
  1665. static void backup_super_roots(struct btrfs_fs_info *info)
  1666. {
  1667. int next_backup;
  1668. struct btrfs_root_backup *root_backup;
  1669. int last_backup;
  1670. next_backup = info->backup_root_index;
  1671. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1672. BTRFS_NUM_BACKUP_ROOTS;
  1673. /*
  1674. * just overwrite the last backup if we're at the same generation
  1675. * this happens only at umount
  1676. */
  1677. root_backup = info->super_for_commit->super_roots + last_backup;
  1678. if (btrfs_backup_tree_root_gen(root_backup) ==
  1679. btrfs_header_generation(info->tree_root->node))
  1680. next_backup = last_backup;
  1681. root_backup = info->super_for_commit->super_roots + next_backup;
  1682. /*
  1683. * make sure all of our padding and empty slots get zero filled
  1684. * regardless of which ones we use today
  1685. */
  1686. memset(root_backup, 0, sizeof(*root_backup));
  1687. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1688. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1689. btrfs_set_backup_tree_root_gen(root_backup,
  1690. btrfs_header_generation(info->tree_root->node));
  1691. btrfs_set_backup_tree_root_level(root_backup,
  1692. btrfs_header_level(info->tree_root->node));
  1693. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1694. btrfs_set_backup_chunk_root_gen(root_backup,
  1695. btrfs_header_generation(info->chunk_root->node));
  1696. btrfs_set_backup_chunk_root_level(root_backup,
  1697. btrfs_header_level(info->chunk_root->node));
  1698. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1699. btrfs_set_backup_extent_root_gen(root_backup,
  1700. btrfs_header_generation(info->extent_root->node));
  1701. btrfs_set_backup_extent_root_level(root_backup,
  1702. btrfs_header_level(info->extent_root->node));
  1703. /*
  1704. * we might commit during log recovery, which happens before we set
  1705. * the fs_root. Make sure it is valid before we fill it in.
  1706. */
  1707. if (info->fs_root && info->fs_root->node) {
  1708. btrfs_set_backup_fs_root(root_backup,
  1709. info->fs_root->node->start);
  1710. btrfs_set_backup_fs_root_gen(root_backup,
  1711. btrfs_header_generation(info->fs_root->node));
  1712. btrfs_set_backup_fs_root_level(root_backup,
  1713. btrfs_header_level(info->fs_root->node));
  1714. }
  1715. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1716. btrfs_set_backup_dev_root_gen(root_backup,
  1717. btrfs_header_generation(info->dev_root->node));
  1718. btrfs_set_backup_dev_root_level(root_backup,
  1719. btrfs_header_level(info->dev_root->node));
  1720. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1721. btrfs_set_backup_csum_root_gen(root_backup,
  1722. btrfs_header_generation(info->csum_root->node));
  1723. btrfs_set_backup_csum_root_level(root_backup,
  1724. btrfs_header_level(info->csum_root->node));
  1725. btrfs_set_backup_total_bytes(root_backup,
  1726. btrfs_super_total_bytes(info->super_copy));
  1727. btrfs_set_backup_bytes_used(root_backup,
  1728. btrfs_super_bytes_used(info->super_copy));
  1729. btrfs_set_backup_num_devices(root_backup,
  1730. btrfs_super_num_devices(info->super_copy));
  1731. /*
  1732. * if we don't copy this out to the super_copy, it won't get remembered
  1733. * for the next commit
  1734. */
  1735. memcpy(&info->super_copy->super_roots,
  1736. &info->super_for_commit->super_roots,
  1737. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1738. }
  1739. /*
  1740. * this copies info out of the root backup array and back into
  1741. * the in-memory super block. It is meant to help iterate through
  1742. * the array, so you send it the number of backups you've already
  1743. * tried and the last backup index you used.
  1744. *
  1745. * this returns -1 when it has tried all the backups
  1746. */
  1747. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1748. struct btrfs_super_block *super,
  1749. int *num_backups_tried, int *backup_index)
  1750. {
  1751. struct btrfs_root_backup *root_backup;
  1752. int newest = *backup_index;
  1753. if (*num_backups_tried == 0) {
  1754. u64 gen = btrfs_super_generation(super);
  1755. newest = find_newest_super_backup(info, gen);
  1756. if (newest == -1)
  1757. return -1;
  1758. *backup_index = newest;
  1759. *num_backups_tried = 1;
  1760. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1761. /* we've tried all the backups, all done */
  1762. return -1;
  1763. } else {
  1764. /* jump to the next oldest backup */
  1765. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1766. BTRFS_NUM_BACKUP_ROOTS;
  1767. *backup_index = newest;
  1768. *num_backups_tried += 1;
  1769. }
  1770. root_backup = super->super_roots + newest;
  1771. btrfs_set_super_generation(super,
  1772. btrfs_backup_tree_root_gen(root_backup));
  1773. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1774. btrfs_set_super_root_level(super,
  1775. btrfs_backup_tree_root_level(root_backup));
  1776. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1777. /*
  1778. * fixme: the total bytes and num_devices need to match or we should
  1779. * need a fsck
  1780. */
  1781. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1782. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1783. return 0;
  1784. }
  1785. /* helper to cleanup workers */
  1786. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1787. {
  1788. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1789. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1790. btrfs_destroy_workqueue(fs_info->workers);
  1791. btrfs_destroy_workqueue(fs_info->endio_workers);
  1792. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1793. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1794. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1795. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1796. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1797. btrfs_destroy_workqueue(fs_info->submit_workers);
  1798. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1799. btrfs_destroy_workqueue(fs_info->caching_workers);
  1800. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1801. btrfs_destroy_workqueue(fs_info->flush_workers);
  1802. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1803. btrfs_destroy_workqueue(fs_info->extent_workers);
  1804. /*
  1805. * Now that all other work queues are destroyed, we can safely destroy
  1806. * the queues used for metadata I/O, since tasks from those other work
  1807. * queues can do metadata I/O operations.
  1808. */
  1809. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1810. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1811. }
  1812. static void free_root_extent_buffers(struct btrfs_root *root)
  1813. {
  1814. if (root) {
  1815. free_extent_buffer(root->node);
  1816. free_extent_buffer(root->commit_root);
  1817. root->node = NULL;
  1818. root->commit_root = NULL;
  1819. }
  1820. }
  1821. /* helper to cleanup tree roots */
  1822. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1823. {
  1824. free_root_extent_buffers(info->tree_root);
  1825. free_root_extent_buffers(info->dev_root);
  1826. free_root_extent_buffers(info->extent_root);
  1827. free_root_extent_buffers(info->csum_root);
  1828. free_root_extent_buffers(info->quota_root);
  1829. free_root_extent_buffers(info->uuid_root);
  1830. if (chunk_root)
  1831. free_root_extent_buffers(info->chunk_root);
  1832. free_root_extent_buffers(info->free_space_root);
  1833. }
  1834. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1835. {
  1836. int ret;
  1837. struct btrfs_root *gang[8];
  1838. int i;
  1839. while (!list_empty(&fs_info->dead_roots)) {
  1840. gang[0] = list_entry(fs_info->dead_roots.next,
  1841. struct btrfs_root, root_list);
  1842. list_del(&gang[0]->root_list);
  1843. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1844. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1845. } else {
  1846. free_extent_buffer(gang[0]->node);
  1847. free_extent_buffer(gang[0]->commit_root);
  1848. btrfs_put_fs_root(gang[0]);
  1849. }
  1850. }
  1851. while (1) {
  1852. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1853. (void **)gang, 0,
  1854. ARRAY_SIZE(gang));
  1855. if (!ret)
  1856. break;
  1857. for (i = 0; i < ret; i++)
  1858. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1859. }
  1860. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1861. btrfs_free_log_root_tree(NULL, fs_info);
  1862. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  1863. }
  1864. }
  1865. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1866. {
  1867. mutex_init(&fs_info->scrub_lock);
  1868. atomic_set(&fs_info->scrubs_running, 0);
  1869. atomic_set(&fs_info->scrub_pause_req, 0);
  1870. atomic_set(&fs_info->scrubs_paused, 0);
  1871. atomic_set(&fs_info->scrub_cancel_req, 0);
  1872. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1873. fs_info->scrub_workers_refcnt = 0;
  1874. }
  1875. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1876. {
  1877. spin_lock_init(&fs_info->balance_lock);
  1878. mutex_init(&fs_info->balance_mutex);
  1879. atomic_set(&fs_info->balance_running, 0);
  1880. atomic_set(&fs_info->balance_pause_req, 0);
  1881. atomic_set(&fs_info->balance_cancel_req, 0);
  1882. fs_info->balance_ctl = NULL;
  1883. init_waitqueue_head(&fs_info->balance_wait_q);
  1884. }
  1885. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
  1886. {
  1887. struct inode *inode = fs_info->btree_inode;
  1888. inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1889. set_nlink(inode, 1);
  1890. /*
  1891. * we set the i_size on the btree inode to the max possible int.
  1892. * the real end of the address space is determined by all of
  1893. * the devices in the system
  1894. */
  1895. inode->i_size = OFFSET_MAX;
  1896. inode->i_mapping->a_ops = &btree_aops;
  1897. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  1898. extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
  1899. BTRFS_I(inode)->io_tree.track_uptodate = 0;
  1900. extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
  1901. BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
  1902. BTRFS_I(inode)->root = fs_info->tree_root;
  1903. memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
  1904. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  1905. btrfs_insert_inode_hash(inode);
  1906. }
  1907. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1908. {
  1909. fs_info->dev_replace.lock_owner = 0;
  1910. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1911. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1912. rwlock_init(&fs_info->dev_replace.lock);
  1913. atomic_set(&fs_info->dev_replace.read_locks, 0);
  1914. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  1915. init_waitqueue_head(&fs_info->replace_wait);
  1916. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  1917. }
  1918. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1919. {
  1920. spin_lock_init(&fs_info->qgroup_lock);
  1921. mutex_init(&fs_info->qgroup_ioctl_lock);
  1922. fs_info->qgroup_tree = RB_ROOT;
  1923. fs_info->qgroup_op_tree = RB_ROOT;
  1924. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1925. fs_info->qgroup_seq = 1;
  1926. fs_info->qgroup_ulist = NULL;
  1927. fs_info->qgroup_rescan_running = false;
  1928. mutex_init(&fs_info->qgroup_rescan_lock);
  1929. }
  1930. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1931. struct btrfs_fs_devices *fs_devices)
  1932. {
  1933. u32 max_active = fs_info->thread_pool_size;
  1934. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1935. fs_info->workers =
  1936. btrfs_alloc_workqueue(fs_info, "worker",
  1937. flags | WQ_HIGHPRI, max_active, 16);
  1938. fs_info->delalloc_workers =
  1939. btrfs_alloc_workqueue(fs_info, "delalloc",
  1940. flags, max_active, 2);
  1941. fs_info->flush_workers =
  1942. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  1943. flags, max_active, 0);
  1944. fs_info->caching_workers =
  1945. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  1946. /*
  1947. * a higher idle thresh on the submit workers makes it much more
  1948. * likely that bios will be send down in a sane order to the
  1949. * devices
  1950. */
  1951. fs_info->submit_workers =
  1952. btrfs_alloc_workqueue(fs_info, "submit", flags,
  1953. min_t(u64, fs_devices->num_devices,
  1954. max_active), 64);
  1955. fs_info->fixup_workers =
  1956. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  1957. /*
  1958. * endios are largely parallel and should have a very
  1959. * low idle thresh
  1960. */
  1961. fs_info->endio_workers =
  1962. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  1963. fs_info->endio_meta_workers =
  1964. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  1965. max_active, 4);
  1966. fs_info->endio_meta_write_workers =
  1967. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  1968. max_active, 2);
  1969. fs_info->endio_raid56_workers =
  1970. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  1971. max_active, 4);
  1972. fs_info->endio_repair_workers =
  1973. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  1974. fs_info->rmw_workers =
  1975. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  1976. fs_info->endio_write_workers =
  1977. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  1978. max_active, 2);
  1979. fs_info->endio_freespace_worker =
  1980. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  1981. max_active, 0);
  1982. fs_info->delayed_workers =
  1983. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  1984. max_active, 0);
  1985. fs_info->readahead_workers =
  1986. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  1987. max_active, 2);
  1988. fs_info->qgroup_rescan_workers =
  1989. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  1990. fs_info->extent_workers =
  1991. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  1992. min_t(u64, fs_devices->num_devices,
  1993. max_active), 8);
  1994. if (!(fs_info->workers && fs_info->delalloc_workers &&
  1995. fs_info->submit_workers && fs_info->flush_workers &&
  1996. fs_info->endio_workers && fs_info->endio_meta_workers &&
  1997. fs_info->endio_meta_write_workers &&
  1998. fs_info->endio_repair_workers &&
  1999. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2000. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2001. fs_info->caching_workers && fs_info->readahead_workers &&
  2002. fs_info->fixup_workers && fs_info->delayed_workers &&
  2003. fs_info->extent_workers &&
  2004. fs_info->qgroup_rescan_workers)) {
  2005. return -ENOMEM;
  2006. }
  2007. return 0;
  2008. }
  2009. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2010. struct btrfs_fs_devices *fs_devices)
  2011. {
  2012. int ret;
  2013. struct btrfs_root *log_tree_root;
  2014. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2015. u64 bytenr = btrfs_super_log_root(disk_super);
  2016. int level = btrfs_super_log_root_level(disk_super);
  2017. if (fs_devices->rw_devices == 0) {
  2018. btrfs_warn(fs_info, "log replay required on RO media");
  2019. return -EIO;
  2020. }
  2021. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2022. if (!log_tree_root)
  2023. return -ENOMEM;
  2024. __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2025. log_tree_root->node = read_tree_block(fs_info, bytenr,
  2026. fs_info->generation + 1,
  2027. level, NULL);
  2028. if (IS_ERR(log_tree_root->node)) {
  2029. btrfs_warn(fs_info, "failed to read log tree");
  2030. ret = PTR_ERR(log_tree_root->node);
  2031. kfree(log_tree_root);
  2032. return ret;
  2033. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2034. btrfs_err(fs_info, "failed to read log tree");
  2035. free_extent_buffer(log_tree_root->node);
  2036. kfree(log_tree_root);
  2037. return -EIO;
  2038. }
  2039. /* returns with log_tree_root freed on success */
  2040. ret = btrfs_recover_log_trees(log_tree_root);
  2041. if (ret) {
  2042. btrfs_handle_fs_error(fs_info, ret,
  2043. "Failed to recover log tree");
  2044. free_extent_buffer(log_tree_root->node);
  2045. kfree(log_tree_root);
  2046. return ret;
  2047. }
  2048. if (sb_rdonly(fs_info->sb)) {
  2049. ret = btrfs_commit_super(fs_info);
  2050. if (ret)
  2051. return ret;
  2052. }
  2053. return 0;
  2054. }
  2055. static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
  2056. {
  2057. struct btrfs_root *tree_root = fs_info->tree_root;
  2058. struct btrfs_root *root;
  2059. struct btrfs_key location;
  2060. int ret;
  2061. BUG_ON(!fs_info->tree_root);
  2062. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2063. location.type = BTRFS_ROOT_ITEM_KEY;
  2064. location.offset = 0;
  2065. root = btrfs_read_tree_root(tree_root, &location);
  2066. if (IS_ERR(root)) {
  2067. ret = PTR_ERR(root);
  2068. goto out;
  2069. }
  2070. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2071. fs_info->extent_root = root;
  2072. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2073. root = btrfs_read_tree_root(tree_root, &location);
  2074. if (IS_ERR(root)) {
  2075. ret = PTR_ERR(root);
  2076. goto out;
  2077. }
  2078. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2079. fs_info->dev_root = root;
  2080. btrfs_init_devices_late(fs_info);
  2081. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2082. root = btrfs_read_tree_root(tree_root, &location);
  2083. if (IS_ERR(root)) {
  2084. ret = PTR_ERR(root);
  2085. goto out;
  2086. }
  2087. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2088. fs_info->csum_root = root;
  2089. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2090. root = btrfs_read_tree_root(tree_root, &location);
  2091. if (!IS_ERR(root)) {
  2092. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2093. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2094. fs_info->quota_root = root;
  2095. }
  2096. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2097. root = btrfs_read_tree_root(tree_root, &location);
  2098. if (IS_ERR(root)) {
  2099. ret = PTR_ERR(root);
  2100. if (ret != -ENOENT)
  2101. goto out;
  2102. } else {
  2103. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2104. fs_info->uuid_root = root;
  2105. }
  2106. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2107. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2108. root = btrfs_read_tree_root(tree_root, &location);
  2109. if (IS_ERR(root)) {
  2110. ret = PTR_ERR(root);
  2111. goto out;
  2112. }
  2113. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2114. fs_info->free_space_root = root;
  2115. }
  2116. return 0;
  2117. out:
  2118. btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
  2119. location.objectid, ret);
  2120. return ret;
  2121. }
  2122. int open_ctree(struct super_block *sb,
  2123. struct btrfs_fs_devices *fs_devices,
  2124. char *options)
  2125. {
  2126. u32 sectorsize;
  2127. u32 nodesize;
  2128. u32 stripesize;
  2129. u64 generation;
  2130. u64 features;
  2131. struct btrfs_key location;
  2132. struct buffer_head *bh;
  2133. struct btrfs_super_block *disk_super;
  2134. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2135. struct btrfs_root *tree_root;
  2136. struct btrfs_root *chunk_root;
  2137. int ret;
  2138. int err = -EINVAL;
  2139. int num_backups_tried = 0;
  2140. int backup_index = 0;
  2141. int clear_free_space_tree = 0;
  2142. int level;
  2143. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2144. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2145. if (!tree_root || !chunk_root) {
  2146. err = -ENOMEM;
  2147. goto fail;
  2148. }
  2149. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2150. if (ret) {
  2151. err = ret;
  2152. goto fail;
  2153. }
  2154. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2155. if (ret) {
  2156. err = ret;
  2157. goto fail_srcu;
  2158. }
  2159. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2160. (1 + ilog2(nr_cpu_ids));
  2161. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2162. if (ret) {
  2163. err = ret;
  2164. goto fail_dirty_metadata_bytes;
  2165. }
  2166. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2167. if (ret) {
  2168. err = ret;
  2169. goto fail_delalloc_bytes;
  2170. }
  2171. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2172. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2173. INIT_LIST_HEAD(&fs_info->trans_list);
  2174. INIT_LIST_HEAD(&fs_info->dead_roots);
  2175. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2176. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2177. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2178. INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
  2179. spin_lock_init(&fs_info->pending_raid_kobjs_lock);
  2180. spin_lock_init(&fs_info->delalloc_root_lock);
  2181. spin_lock_init(&fs_info->trans_lock);
  2182. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2183. spin_lock_init(&fs_info->delayed_iput_lock);
  2184. spin_lock_init(&fs_info->defrag_inodes_lock);
  2185. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2186. spin_lock_init(&fs_info->super_lock);
  2187. spin_lock_init(&fs_info->qgroup_op_lock);
  2188. spin_lock_init(&fs_info->buffer_lock);
  2189. spin_lock_init(&fs_info->unused_bgs_lock);
  2190. rwlock_init(&fs_info->tree_mod_log_lock);
  2191. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2192. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2193. mutex_init(&fs_info->reloc_mutex);
  2194. mutex_init(&fs_info->delalloc_root_mutex);
  2195. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2196. seqlock_init(&fs_info->profiles_lock);
  2197. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2198. INIT_LIST_HEAD(&fs_info->space_info);
  2199. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2200. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2201. btrfs_mapping_init(&fs_info->mapping_tree);
  2202. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2203. BTRFS_BLOCK_RSV_GLOBAL);
  2204. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2205. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2206. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2207. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2208. BTRFS_BLOCK_RSV_DELOPS);
  2209. atomic_set(&fs_info->async_delalloc_pages, 0);
  2210. atomic_set(&fs_info->defrag_running, 0);
  2211. atomic_set(&fs_info->qgroup_op_seq, 0);
  2212. atomic_set(&fs_info->reada_works_cnt, 0);
  2213. atomic64_set(&fs_info->tree_mod_seq, 0);
  2214. fs_info->sb = sb;
  2215. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2216. fs_info->metadata_ratio = 0;
  2217. fs_info->defrag_inodes = RB_ROOT;
  2218. atomic64_set(&fs_info->free_chunk_space, 0);
  2219. fs_info->tree_mod_log = RB_ROOT;
  2220. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2221. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2222. /* readahead state */
  2223. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2224. spin_lock_init(&fs_info->reada_lock);
  2225. btrfs_init_ref_verify(fs_info);
  2226. fs_info->thread_pool_size = min_t(unsigned long,
  2227. num_online_cpus() + 2, 8);
  2228. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2229. spin_lock_init(&fs_info->ordered_root_lock);
  2230. fs_info->btree_inode = new_inode(sb);
  2231. if (!fs_info->btree_inode) {
  2232. err = -ENOMEM;
  2233. goto fail_bio_counter;
  2234. }
  2235. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2236. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2237. GFP_KERNEL);
  2238. if (!fs_info->delayed_root) {
  2239. err = -ENOMEM;
  2240. goto fail_iput;
  2241. }
  2242. btrfs_init_delayed_root(fs_info->delayed_root);
  2243. btrfs_init_scrub(fs_info);
  2244. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2245. fs_info->check_integrity_print_mask = 0;
  2246. #endif
  2247. btrfs_init_balance(fs_info);
  2248. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2249. sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
  2250. sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
  2251. btrfs_init_btree_inode(fs_info);
  2252. spin_lock_init(&fs_info->block_group_cache_lock);
  2253. fs_info->block_group_cache_tree = RB_ROOT;
  2254. fs_info->first_logical_byte = (u64)-1;
  2255. extent_io_tree_init(&fs_info->freed_extents[0], NULL);
  2256. extent_io_tree_init(&fs_info->freed_extents[1], NULL);
  2257. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2258. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2259. mutex_init(&fs_info->ordered_operations_mutex);
  2260. mutex_init(&fs_info->tree_log_mutex);
  2261. mutex_init(&fs_info->chunk_mutex);
  2262. mutex_init(&fs_info->transaction_kthread_mutex);
  2263. mutex_init(&fs_info->cleaner_mutex);
  2264. mutex_init(&fs_info->volume_mutex);
  2265. mutex_init(&fs_info->ro_block_group_mutex);
  2266. init_rwsem(&fs_info->commit_root_sem);
  2267. init_rwsem(&fs_info->cleanup_work_sem);
  2268. init_rwsem(&fs_info->subvol_sem);
  2269. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2270. btrfs_init_dev_replace_locks(fs_info);
  2271. btrfs_init_qgroup(fs_info);
  2272. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2273. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2274. init_waitqueue_head(&fs_info->transaction_throttle);
  2275. init_waitqueue_head(&fs_info->transaction_wait);
  2276. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2277. init_waitqueue_head(&fs_info->async_submit_wait);
  2278. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2279. /* Usable values until the real ones are cached from the superblock */
  2280. fs_info->nodesize = 4096;
  2281. fs_info->sectorsize = 4096;
  2282. fs_info->stripesize = 4096;
  2283. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2284. if (ret) {
  2285. err = ret;
  2286. goto fail_alloc;
  2287. }
  2288. __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2289. invalidate_bdev(fs_devices->latest_bdev);
  2290. /*
  2291. * Read super block and check the signature bytes only
  2292. */
  2293. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2294. if (IS_ERR(bh)) {
  2295. err = PTR_ERR(bh);
  2296. goto fail_alloc;
  2297. }
  2298. /*
  2299. * We want to check superblock checksum, the type is stored inside.
  2300. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2301. */
  2302. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2303. btrfs_err(fs_info, "superblock checksum mismatch");
  2304. err = -EINVAL;
  2305. brelse(bh);
  2306. goto fail_alloc;
  2307. }
  2308. /*
  2309. * super_copy is zeroed at allocation time and we never touch the
  2310. * following bytes up to INFO_SIZE, the checksum is calculated from
  2311. * the whole block of INFO_SIZE
  2312. */
  2313. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2314. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2315. sizeof(*fs_info->super_for_commit));
  2316. brelse(bh);
  2317. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2318. ret = btrfs_check_super_valid(fs_info);
  2319. if (ret) {
  2320. btrfs_err(fs_info, "superblock contains fatal errors");
  2321. err = -EINVAL;
  2322. goto fail_alloc;
  2323. }
  2324. disk_super = fs_info->super_copy;
  2325. if (!btrfs_super_root(disk_super))
  2326. goto fail_alloc;
  2327. /* check FS state, whether FS is broken. */
  2328. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2329. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2330. /*
  2331. * run through our array of backup supers and setup
  2332. * our ring pointer to the oldest one
  2333. */
  2334. generation = btrfs_super_generation(disk_super);
  2335. find_oldest_super_backup(fs_info, generation);
  2336. /*
  2337. * In the long term, we'll store the compression type in the super
  2338. * block, and it'll be used for per file compression control.
  2339. */
  2340. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2341. ret = btrfs_parse_options(fs_info, options, sb->s_flags);
  2342. if (ret) {
  2343. err = ret;
  2344. goto fail_alloc;
  2345. }
  2346. features = btrfs_super_incompat_flags(disk_super) &
  2347. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2348. if (features) {
  2349. btrfs_err(fs_info,
  2350. "cannot mount because of unsupported optional features (%llx)",
  2351. features);
  2352. err = -EINVAL;
  2353. goto fail_alloc;
  2354. }
  2355. features = btrfs_super_incompat_flags(disk_super);
  2356. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2357. if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2358. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2359. else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
  2360. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
  2361. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2362. btrfs_info(fs_info, "has skinny extents");
  2363. /*
  2364. * flag our filesystem as having big metadata blocks if
  2365. * they are bigger than the page size
  2366. */
  2367. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2368. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2369. btrfs_info(fs_info,
  2370. "flagging fs with big metadata feature");
  2371. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2372. }
  2373. nodesize = btrfs_super_nodesize(disk_super);
  2374. sectorsize = btrfs_super_sectorsize(disk_super);
  2375. stripesize = sectorsize;
  2376. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2377. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2378. /* Cache block sizes */
  2379. fs_info->nodesize = nodesize;
  2380. fs_info->sectorsize = sectorsize;
  2381. fs_info->stripesize = stripesize;
  2382. /*
  2383. * mixed block groups end up with duplicate but slightly offset
  2384. * extent buffers for the same range. It leads to corruptions
  2385. */
  2386. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2387. (sectorsize != nodesize)) {
  2388. btrfs_err(fs_info,
  2389. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2390. nodesize, sectorsize);
  2391. goto fail_alloc;
  2392. }
  2393. /*
  2394. * Needn't use the lock because there is no other task which will
  2395. * update the flag.
  2396. */
  2397. btrfs_set_super_incompat_flags(disk_super, features);
  2398. features = btrfs_super_compat_ro_flags(disk_super) &
  2399. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2400. if (!sb_rdonly(sb) && features) {
  2401. btrfs_err(fs_info,
  2402. "cannot mount read-write because of unsupported optional features (%llx)",
  2403. features);
  2404. err = -EINVAL;
  2405. goto fail_alloc;
  2406. }
  2407. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2408. if (ret) {
  2409. err = ret;
  2410. goto fail_sb_buffer;
  2411. }
  2412. sb->s_bdi->congested_fn = btrfs_congested_fn;
  2413. sb->s_bdi->congested_data = fs_info;
  2414. sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  2415. sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
  2416. sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
  2417. sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
  2418. sb->s_blocksize = sectorsize;
  2419. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2420. memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
  2421. mutex_lock(&fs_info->chunk_mutex);
  2422. ret = btrfs_read_sys_array(fs_info);
  2423. mutex_unlock(&fs_info->chunk_mutex);
  2424. if (ret) {
  2425. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2426. goto fail_sb_buffer;
  2427. }
  2428. generation = btrfs_super_chunk_root_generation(disk_super);
  2429. level = btrfs_super_chunk_root_level(disk_super);
  2430. __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2431. chunk_root->node = read_tree_block(fs_info,
  2432. btrfs_super_chunk_root(disk_super),
  2433. generation, level, NULL);
  2434. if (IS_ERR(chunk_root->node) ||
  2435. !extent_buffer_uptodate(chunk_root->node)) {
  2436. btrfs_err(fs_info, "failed to read chunk root");
  2437. if (!IS_ERR(chunk_root->node))
  2438. free_extent_buffer(chunk_root->node);
  2439. chunk_root->node = NULL;
  2440. goto fail_tree_roots;
  2441. }
  2442. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2443. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2444. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2445. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2446. ret = btrfs_read_chunk_tree(fs_info);
  2447. if (ret) {
  2448. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2449. goto fail_tree_roots;
  2450. }
  2451. /*
  2452. * Keep the devid that is marked to be the target device for the
  2453. * device replace procedure
  2454. */
  2455. btrfs_free_extra_devids(fs_devices, 0);
  2456. if (!fs_devices->latest_bdev) {
  2457. btrfs_err(fs_info, "failed to read devices");
  2458. goto fail_tree_roots;
  2459. }
  2460. retry_root_backup:
  2461. generation = btrfs_super_generation(disk_super);
  2462. level = btrfs_super_root_level(disk_super);
  2463. tree_root->node = read_tree_block(fs_info,
  2464. btrfs_super_root(disk_super),
  2465. generation, level, NULL);
  2466. if (IS_ERR(tree_root->node) ||
  2467. !extent_buffer_uptodate(tree_root->node)) {
  2468. btrfs_warn(fs_info, "failed to read tree root");
  2469. if (!IS_ERR(tree_root->node))
  2470. free_extent_buffer(tree_root->node);
  2471. tree_root->node = NULL;
  2472. goto recovery_tree_root;
  2473. }
  2474. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2475. tree_root->commit_root = btrfs_root_node(tree_root);
  2476. btrfs_set_root_refs(&tree_root->root_item, 1);
  2477. mutex_lock(&tree_root->objectid_mutex);
  2478. ret = btrfs_find_highest_objectid(tree_root,
  2479. &tree_root->highest_objectid);
  2480. if (ret) {
  2481. mutex_unlock(&tree_root->objectid_mutex);
  2482. goto recovery_tree_root;
  2483. }
  2484. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2485. mutex_unlock(&tree_root->objectid_mutex);
  2486. ret = btrfs_read_roots(fs_info);
  2487. if (ret)
  2488. goto recovery_tree_root;
  2489. fs_info->generation = generation;
  2490. fs_info->last_trans_committed = generation;
  2491. ret = btrfs_recover_balance(fs_info);
  2492. if (ret) {
  2493. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2494. goto fail_block_groups;
  2495. }
  2496. ret = btrfs_init_dev_stats(fs_info);
  2497. if (ret) {
  2498. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2499. goto fail_block_groups;
  2500. }
  2501. ret = btrfs_init_dev_replace(fs_info);
  2502. if (ret) {
  2503. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2504. goto fail_block_groups;
  2505. }
  2506. btrfs_free_extra_devids(fs_devices, 1);
  2507. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2508. if (ret) {
  2509. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2510. ret);
  2511. goto fail_block_groups;
  2512. }
  2513. ret = btrfs_sysfs_add_device(fs_devices);
  2514. if (ret) {
  2515. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2516. ret);
  2517. goto fail_fsdev_sysfs;
  2518. }
  2519. ret = btrfs_sysfs_add_mounted(fs_info);
  2520. if (ret) {
  2521. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2522. goto fail_fsdev_sysfs;
  2523. }
  2524. ret = btrfs_init_space_info(fs_info);
  2525. if (ret) {
  2526. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2527. goto fail_sysfs;
  2528. }
  2529. ret = btrfs_read_block_groups(fs_info);
  2530. if (ret) {
  2531. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2532. goto fail_sysfs;
  2533. }
  2534. if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
  2535. btrfs_warn(fs_info,
  2536. "writeable mount is not allowed due to too many missing devices");
  2537. goto fail_sysfs;
  2538. }
  2539. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2540. "btrfs-cleaner");
  2541. if (IS_ERR(fs_info->cleaner_kthread))
  2542. goto fail_sysfs;
  2543. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2544. tree_root,
  2545. "btrfs-transaction");
  2546. if (IS_ERR(fs_info->transaction_kthread))
  2547. goto fail_cleaner;
  2548. if (!btrfs_test_opt(fs_info, NOSSD) &&
  2549. !fs_info->fs_devices->rotating) {
  2550. btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
  2551. }
  2552. /*
  2553. * Mount does not set all options immediately, we can do it now and do
  2554. * not have to wait for transaction commit
  2555. */
  2556. btrfs_apply_pending_changes(fs_info);
  2557. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2558. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
  2559. ret = btrfsic_mount(fs_info, fs_devices,
  2560. btrfs_test_opt(fs_info,
  2561. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2562. 1 : 0,
  2563. fs_info->check_integrity_print_mask);
  2564. if (ret)
  2565. btrfs_warn(fs_info,
  2566. "failed to initialize integrity check module: %d",
  2567. ret);
  2568. }
  2569. #endif
  2570. ret = btrfs_read_qgroup_config(fs_info);
  2571. if (ret)
  2572. goto fail_trans_kthread;
  2573. if (btrfs_build_ref_tree(fs_info))
  2574. btrfs_err(fs_info, "couldn't build ref tree");
  2575. /* do not make disk changes in broken FS or nologreplay is given */
  2576. if (btrfs_super_log_root(disk_super) != 0 &&
  2577. !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
  2578. ret = btrfs_replay_log(fs_info, fs_devices);
  2579. if (ret) {
  2580. err = ret;
  2581. goto fail_qgroup;
  2582. }
  2583. }
  2584. ret = btrfs_find_orphan_roots(fs_info);
  2585. if (ret)
  2586. goto fail_qgroup;
  2587. if (!sb_rdonly(sb)) {
  2588. ret = btrfs_cleanup_fs_roots(fs_info);
  2589. if (ret)
  2590. goto fail_qgroup;
  2591. mutex_lock(&fs_info->cleaner_mutex);
  2592. ret = btrfs_recover_relocation(tree_root);
  2593. mutex_unlock(&fs_info->cleaner_mutex);
  2594. if (ret < 0) {
  2595. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2596. ret);
  2597. err = -EINVAL;
  2598. goto fail_qgroup;
  2599. }
  2600. }
  2601. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2602. location.type = BTRFS_ROOT_ITEM_KEY;
  2603. location.offset = 0;
  2604. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2605. if (IS_ERR(fs_info->fs_root)) {
  2606. err = PTR_ERR(fs_info->fs_root);
  2607. btrfs_warn(fs_info, "failed to read fs tree: %d", err);
  2608. goto fail_qgroup;
  2609. }
  2610. if (sb_rdonly(sb))
  2611. return 0;
  2612. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2613. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2614. clear_free_space_tree = 1;
  2615. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2616. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2617. btrfs_warn(fs_info, "free space tree is invalid");
  2618. clear_free_space_tree = 1;
  2619. }
  2620. if (clear_free_space_tree) {
  2621. btrfs_info(fs_info, "clearing free space tree");
  2622. ret = btrfs_clear_free_space_tree(fs_info);
  2623. if (ret) {
  2624. btrfs_warn(fs_info,
  2625. "failed to clear free space tree: %d", ret);
  2626. close_ctree(fs_info);
  2627. return ret;
  2628. }
  2629. }
  2630. if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
  2631. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2632. btrfs_info(fs_info, "creating free space tree");
  2633. ret = btrfs_create_free_space_tree(fs_info);
  2634. if (ret) {
  2635. btrfs_warn(fs_info,
  2636. "failed to create free space tree: %d", ret);
  2637. close_ctree(fs_info);
  2638. return ret;
  2639. }
  2640. }
  2641. down_read(&fs_info->cleanup_work_sem);
  2642. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2643. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2644. up_read(&fs_info->cleanup_work_sem);
  2645. close_ctree(fs_info);
  2646. return ret;
  2647. }
  2648. up_read(&fs_info->cleanup_work_sem);
  2649. ret = btrfs_resume_balance_async(fs_info);
  2650. if (ret) {
  2651. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2652. close_ctree(fs_info);
  2653. return ret;
  2654. }
  2655. ret = btrfs_resume_dev_replace_async(fs_info);
  2656. if (ret) {
  2657. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2658. close_ctree(fs_info);
  2659. return ret;
  2660. }
  2661. btrfs_qgroup_rescan_resume(fs_info);
  2662. if (!fs_info->uuid_root) {
  2663. btrfs_info(fs_info, "creating UUID tree");
  2664. ret = btrfs_create_uuid_tree(fs_info);
  2665. if (ret) {
  2666. btrfs_warn(fs_info,
  2667. "failed to create the UUID tree: %d", ret);
  2668. close_ctree(fs_info);
  2669. return ret;
  2670. }
  2671. } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
  2672. fs_info->generation !=
  2673. btrfs_super_uuid_tree_generation(disk_super)) {
  2674. btrfs_info(fs_info, "checking UUID tree");
  2675. ret = btrfs_check_uuid_tree(fs_info);
  2676. if (ret) {
  2677. btrfs_warn(fs_info,
  2678. "failed to check the UUID tree: %d", ret);
  2679. close_ctree(fs_info);
  2680. return ret;
  2681. }
  2682. } else {
  2683. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2684. }
  2685. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2686. /*
  2687. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2688. * no need to keep the flag
  2689. */
  2690. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2691. return 0;
  2692. fail_qgroup:
  2693. btrfs_free_qgroup_config(fs_info);
  2694. fail_trans_kthread:
  2695. kthread_stop(fs_info->transaction_kthread);
  2696. btrfs_cleanup_transaction(fs_info);
  2697. btrfs_free_fs_roots(fs_info);
  2698. fail_cleaner:
  2699. kthread_stop(fs_info->cleaner_kthread);
  2700. /*
  2701. * make sure we're done with the btree inode before we stop our
  2702. * kthreads
  2703. */
  2704. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2705. fail_sysfs:
  2706. btrfs_sysfs_remove_mounted(fs_info);
  2707. fail_fsdev_sysfs:
  2708. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2709. fail_block_groups:
  2710. btrfs_put_block_group_cache(fs_info);
  2711. fail_tree_roots:
  2712. free_root_pointers(fs_info, 1);
  2713. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2714. fail_sb_buffer:
  2715. btrfs_stop_all_workers(fs_info);
  2716. btrfs_free_block_groups(fs_info);
  2717. fail_alloc:
  2718. fail_iput:
  2719. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2720. iput(fs_info->btree_inode);
  2721. fail_bio_counter:
  2722. percpu_counter_destroy(&fs_info->bio_counter);
  2723. fail_delalloc_bytes:
  2724. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2725. fail_dirty_metadata_bytes:
  2726. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2727. fail_srcu:
  2728. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2729. fail:
  2730. btrfs_free_stripe_hash_table(fs_info);
  2731. btrfs_close_devices(fs_info->fs_devices);
  2732. return err;
  2733. recovery_tree_root:
  2734. if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
  2735. goto fail_tree_roots;
  2736. free_root_pointers(fs_info, 0);
  2737. /* don't use the log in recovery mode, it won't be valid */
  2738. btrfs_set_super_log_root(disk_super, 0);
  2739. /* we can't trust the free space cache either */
  2740. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2741. ret = next_root_backup(fs_info, fs_info->super_copy,
  2742. &num_backups_tried, &backup_index);
  2743. if (ret == -1)
  2744. goto fail_block_groups;
  2745. goto retry_root_backup;
  2746. }
  2747. ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
  2748. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2749. {
  2750. if (uptodate) {
  2751. set_buffer_uptodate(bh);
  2752. } else {
  2753. struct btrfs_device *device = (struct btrfs_device *)
  2754. bh->b_private;
  2755. btrfs_warn_rl_in_rcu(device->fs_info,
  2756. "lost page write due to IO error on %s",
  2757. rcu_str_deref(device->name));
  2758. /* note, we don't set_buffer_write_io_error because we have
  2759. * our own ways of dealing with the IO errors
  2760. */
  2761. clear_buffer_uptodate(bh);
  2762. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2763. }
  2764. unlock_buffer(bh);
  2765. put_bh(bh);
  2766. }
  2767. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2768. struct buffer_head **bh_ret)
  2769. {
  2770. struct buffer_head *bh;
  2771. struct btrfs_super_block *super;
  2772. u64 bytenr;
  2773. bytenr = btrfs_sb_offset(copy_num);
  2774. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2775. return -EINVAL;
  2776. bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
  2777. /*
  2778. * If we fail to read from the underlying devices, as of now
  2779. * the best option we have is to mark it EIO.
  2780. */
  2781. if (!bh)
  2782. return -EIO;
  2783. super = (struct btrfs_super_block *)bh->b_data;
  2784. if (btrfs_super_bytenr(super) != bytenr ||
  2785. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2786. brelse(bh);
  2787. return -EINVAL;
  2788. }
  2789. *bh_ret = bh;
  2790. return 0;
  2791. }
  2792. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2793. {
  2794. struct buffer_head *bh;
  2795. struct buffer_head *latest = NULL;
  2796. struct btrfs_super_block *super;
  2797. int i;
  2798. u64 transid = 0;
  2799. int ret = -EINVAL;
  2800. /* we would like to check all the supers, but that would make
  2801. * a btrfs mount succeed after a mkfs from a different FS.
  2802. * So, we need to add a special mount option to scan for
  2803. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2804. */
  2805. for (i = 0; i < 1; i++) {
  2806. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2807. if (ret)
  2808. continue;
  2809. super = (struct btrfs_super_block *)bh->b_data;
  2810. if (!latest || btrfs_super_generation(super) > transid) {
  2811. brelse(latest);
  2812. latest = bh;
  2813. transid = btrfs_super_generation(super);
  2814. } else {
  2815. brelse(bh);
  2816. }
  2817. }
  2818. if (!latest)
  2819. return ERR_PTR(ret);
  2820. return latest;
  2821. }
  2822. /*
  2823. * Write superblock @sb to the @device. Do not wait for completion, all the
  2824. * buffer heads we write are pinned.
  2825. *
  2826. * Write @max_mirrors copies of the superblock, where 0 means default that fit
  2827. * the expected device size at commit time. Note that max_mirrors must be
  2828. * same for write and wait phases.
  2829. *
  2830. * Return number of errors when buffer head is not found or submission fails.
  2831. */
  2832. static int write_dev_supers(struct btrfs_device *device,
  2833. struct btrfs_super_block *sb, int max_mirrors)
  2834. {
  2835. struct buffer_head *bh;
  2836. int i;
  2837. int ret;
  2838. int errors = 0;
  2839. u32 crc;
  2840. u64 bytenr;
  2841. int op_flags;
  2842. if (max_mirrors == 0)
  2843. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2844. for (i = 0; i < max_mirrors; i++) {
  2845. bytenr = btrfs_sb_offset(i);
  2846. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2847. device->commit_total_bytes)
  2848. break;
  2849. btrfs_set_super_bytenr(sb, bytenr);
  2850. crc = ~(u32)0;
  2851. crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
  2852. BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  2853. btrfs_csum_final(crc, sb->csum);
  2854. /* One reference for us, and we leave it for the caller */
  2855. bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
  2856. BTRFS_SUPER_INFO_SIZE);
  2857. if (!bh) {
  2858. btrfs_err(device->fs_info,
  2859. "couldn't get super buffer head for bytenr %llu",
  2860. bytenr);
  2861. errors++;
  2862. continue;
  2863. }
  2864. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2865. /* one reference for submit_bh */
  2866. get_bh(bh);
  2867. set_buffer_uptodate(bh);
  2868. lock_buffer(bh);
  2869. bh->b_end_io = btrfs_end_buffer_write_sync;
  2870. bh->b_private = device;
  2871. /*
  2872. * we fua the first super. The others we allow
  2873. * to go down lazy.
  2874. */
  2875. op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
  2876. if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
  2877. op_flags |= REQ_FUA;
  2878. ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
  2879. if (ret)
  2880. errors++;
  2881. }
  2882. return errors < i ? 0 : -1;
  2883. }
  2884. /*
  2885. * Wait for write completion of superblocks done by write_dev_supers,
  2886. * @max_mirrors same for write and wait phases.
  2887. *
  2888. * Return number of errors when buffer head is not found or not marked up to
  2889. * date.
  2890. */
  2891. static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
  2892. {
  2893. struct buffer_head *bh;
  2894. int i;
  2895. int errors = 0;
  2896. bool primary_failed = false;
  2897. u64 bytenr;
  2898. if (max_mirrors == 0)
  2899. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2900. for (i = 0; i < max_mirrors; i++) {
  2901. bytenr = btrfs_sb_offset(i);
  2902. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2903. device->commit_total_bytes)
  2904. break;
  2905. bh = __find_get_block(device->bdev,
  2906. bytenr / BTRFS_BDEV_BLOCKSIZE,
  2907. BTRFS_SUPER_INFO_SIZE);
  2908. if (!bh) {
  2909. errors++;
  2910. if (i == 0)
  2911. primary_failed = true;
  2912. continue;
  2913. }
  2914. wait_on_buffer(bh);
  2915. if (!buffer_uptodate(bh)) {
  2916. errors++;
  2917. if (i == 0)
  2918. primary_failed = true;
  2919. }
  2920. /* drop our reference */
  2921. brelse(bh);
  2922. /* drop the reference from the writing run */
  2923. brelse(bh);
  2924. }
  2925. /* log error, force error return */
  2926. if (primary_failed) {
  2927. btrfs_err(device->fs_info, "error writing primary super block to device %llu",
  2928. device->devid);
  2929. return -1;
  2930. }
  2931. return errors < i ? 0 : -1;
  2932. }
  2933. /*
  2934. * endio for the write_dev_flush, this will wake anyone waiting
  2935. * for the barrier when it is done
  2936. */
  2937. static void btrfs_end_empty_barrier(struct bio *bio)
  2938. {
  2939. complete(bio->bi_private);
  2940. }
  2941. /*
  2942. * Submit a flush request to the device if it supports it. Error handling is
  2943. * done in the waiting counterpart.
  2944. */
  2945. static void write_dev_flush(struct btrfs_device *device)
  2946. {
  2947. struct request_queue *q = bdev_get_queue(device->bdev);
  2948. struct bio *bio = device->flush_bio;
  2949. if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
  2950. return;
  2951. bio_reset(bio);
  2952. bio->bi_end_io = btrfs_end_empty_barrier;
  2953. bio_set_dev(bio, device->bdev);
  2954. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  2955. init_completion(&device->flush_wait);
  2956. bio->bi_private = &device->flush_wait;
  2957. btrfsic_submit_bio(bio);
  2958. set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
  2959. }
  2960. /*
  2961. * If the flush bio has been submitted by write_dev_flush, wait for it.
  2962. */
  2963. static blk_status_t wait_dev_flush(struct btrfs_device *device)
  2964. {
  2965. struct bio *bio = device->flush_bio;
  2966. if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
  2967. return BLK_STS_OK;
  2968. clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
  2969. wait_for_completion_io(&device->flush_wait);
  2970. return bio->bi_status;
  2971. }
  2972. static int check_barrier_error(struct btrfs_fs_info *fs_info)
  2973. {
  2974. if (!btrfs_check_rw_degradable(fs_info, NULL))
  2975. return -EIO;
  2976. return 0;
  2977. }
  2978. /*
  2979. * send an empty flush down to each device in parallel,
  2980. * then wait for them
  2981. */
  2982. static int barrier_all_devices(struct btrfs_fs_info *info)
  2983. {
  2984. struct list_head *head;
  2985. struct btrfs_device *dev;
  2986. int errors_wait = 0;
  2987. blk_status_t ret;
  2988. lockdep_assert_held(&info->fs_devices->device_list_mutex);
  2989. /* send down all the barriers */
  2990. head = &info->fs_devices->devices;
  2991. list_for_each_entry(dev, head, dev_list) {
  2992. if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
  2993. continue;
  2994. if (!dev->bdev)
  2995. continue;
  2996. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  2997. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  2998. continue;
  2999. write_dev_flush(dev);
  3000. dev->last_flush_error = BLK_STS_OK;
  3001. }
  3002. /* wait for all the barriers */
  3003. list_for_each_entry(dev, head, dev_list) {
  3004. if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
  3005. continue;
  3006. if (!dev->bdev) {
  3007. errors_wait++;
  3008. continue;
  3009. }
  3010. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  3011. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  3012. continue;
  3013. ret = wait_dev_flush(dev);
  3014. if (ret) {
  3015. dev->last_flush_error = ret;
  3016. btrfs_dev_stat_inc_and_print(dev,
  3017. BTRFS_DEV_STAT_FLUSH_ERRS);
  3018. errors_wait++;
  3019. }
  3020. }
  3021. if (errors_wait) {
  3022. /*
  3023. * At some point we need the status of all disks
  3024. * to arrive at the volume status. So error checking
  3025. * is being pushed to a separate loop.
  3026. */
  3027. return check_barrier_error(info);
  3028. }
  3029. return 0;
  3030. }
  3031. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3032. {
  3033. int raid_type;
  3034. int min_tolerated = INT_MAX;
  3035. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3036. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3037. min_tolerated = min(min_tolerated,
  3038. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3039. tolerated_failures);
  3040. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3041. if (raid_type == BTRFS_RAID_SINGLE)
  3042. continue;
  3043. if (!(flags & btrfs_raid_group[raid_type]))
  3044. continue;
  3045. min_tolerated = min(min_tolerated,
  3046. btrfs_raid_array[raid_type].
  3047. tolerated_failures);
  3048. }
  3049. if (min_tolerated == INT_MAX) {
  3050. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  3051. min_tolerated = 0;
  3052. }
  3053. return min_tolerated;
  3054. }
  3055. int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
  3056. {
  3057. struct list_head *head;
  3058. struct btrfs_device *dev;
  3059. struct btrfs_super_block *sb;
  3060. struct btrfs_dev_item *dev_item;
  3061. int ret;
  3062. int do_barriers;
  3063. int max_errors;
  3064. int total_errors = 0;
  3065. u64 flags;
  3066. do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
  3067. /*
  3068. * max_mirrors == 0 indicates we're from commit_transaction,
  3069. * not from fsync where the tree roots in fs_info have not
  3070. * been consistent on disk.
  3071. */
  3072. if (max_mirrors == 0)
  3073. backup_super_roots(fs_info);
  3074. sb = fs_info->super_for_commit;
  3075. dev_item = &sb->dev_item;
  3076. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3077. head = &fs_info->fs_devices->devices;
  3078. max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
  3079. if (do_barriers) {
  3080. ret = barrier_all_devices(fs_info);
  3081. if (ret) {
  3082. mutex_unlock(
  3083. &fs_info->fs_devices->device_list_mutex);
  3084. btrfs_handle_fs_error(fs_info, ret,
  3085. "errors while submitting device barriers.");
  3086. return ret;
  3087. }
  3088. }
  3089. list_for_each_entry(dev, head, dev_list) {
  3090. if (!dev->bdev) {
  3091. total_errors++;
  3092. continue;
  3093. }
  3094. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  3095. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  3096. continue;
  3097. btrfs_set_stack_device_generation(dev_item, 0);
  3098. btrfs_set_stack_device_type(dev_item, dev->type);
  3099. btrfs_set_stack_device_id(dev_item, dev->devid);
  3100. btrfs_set_stack_device_total_bytes(dev_item,
  3101. dev->commit_total_bytes);
  3102. btrfs_set_stack_device_bytes_used(dev_item,
  3103. dev->commit_bytes_used);
  3104. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3105. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3106. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3107. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3108. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
  3109. flags = btrfs_super_flags(sb);
  3110. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3111. ret = write_dev_supers(dev, sb, max_mirrors);
  3112. if (ret)
  3113. total_errors++;
  3114. }
  3115. if (total_errors > max_errors) {
  3116. btrfs_err(fs_info, "%d errors while writing supers",
  3117. total_errors);
  3118. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3119. /* FUA is masked off if unsupported and can't be the reason */
  3120. btrfs_handle_fs_error(fs_info, -EIO,
  3121. "%d errors while writing supers",
  3122. total_errors);
  3123. return -EIO;
  3124. }
  3125. total_errors = 0;
  3126. list_for_each_entry(dev, head, dev_list) {
  3127. if (!dev->bdev)
  3128. continue;
  3129. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  3130. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  3131. continue;
  3132. ret = wait_dev_supers(dev, max_mirrors);
  3133. if (ret)
  3134. total_errors++;
  3135. }
  3136. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3137. if (total_errors > max_errors) {
  3138. btrfs_handle_fs_error(fs_info, -EIO,
  3139. "%d errors while writing supers",
  3140. total_errors);
  3141. return -EIO;
  3142. }
  3143. return 0;
  3144. }
  3145. /* Drop a fs root from the radix tree and free it. */
  3146. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3147. struct btrfs_root *root)
  3148. {
  3149. spin_lock(&fs_info->fs_roots_radix_lock);
  3150. radix_tree_delete(&fs_info->fs_roots_radix,
  3151. (unsigned long)root->root_key.objectid);
  3152. spin_unlock(&fs_info->fs_roots_radix_lock);
  3153. if (btrfs_root_refs(&root->root_item) == 0)
  3154. synchronize_srcu(&fs_info->subvol_srcu);
  3155. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3156. btrfs_free_log(NULL, root);
  3157. if (root->reloc_root) {
  3158. free_extent_buffer(root->reloc_root->node);
  3159. free_extent_buffer(root->reloc_root->commit_root);
  3160. btrfs_put_fs_root(root->reloc_root);
  3161. root->reloc_root = NULL;
  3162. }
  3163. }
  3164. if (root->free_ino_pinned)
  3165. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3166. if (root->free_ino_ctl)
  3167. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3168. free_fs_root(root);
  3169. }
  3170. static void free_fs_root(struct btrfs_root *root)
  3171. {
  3172. iput(root->ino_cache_inode);
  3173. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3174. btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
  3175. root->orphan_block_rsv = NULL;
  3176. if (root->anon_dev)
  3177. free_anon_bdev(root->anon_dev);
  3178. if (root->subv_writers)
  3179. btrfs_free_subvolume_writers(root->subv_writers);
  3180. free_extent_buffer(root->node);
  3181. free_extent_buffer(root->commit_root);
  3182. kfree(root->free_ino_ctl);
  3183. kfree(root->free_ino_pinned);
  3184. kfree(root->name);
  3185. btrfs_put_fs_root(root);
  3186. }
  3187. void btrfs_free_fs_root(struct btrfs_root *root)
  3188. {
  3189. free_fs_root(root);
  3190. }
  3191. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3192. {
  3193. u64 root_objectid = 0;
  3194. struct btrfs_root *gang[8];
  3195. int i = 0;
  3196. int err = 0;
  3197. unsigned int ret = 0;
  3198. int index;
  3199. while (1) {
  3200. index = srcu_read_lock(&fs_info->subvol_srcu);
  3201. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3202. (void **)gang, root_objectid,
  3203. ARRAY_SIZE(gang));
  3204. if (!ret) {
  3205. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3206. break;
  3207. }
  3208. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3209. for (i = 0; i < ret; i++) {
  3210. /* Avoid to grab roots in dead_roots */
  3211. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3212. gang[i] = NULL;
  3213. continue;
  3214. }
  3215. /* grab all the search result for later use */
  3216. gang[i] = btrfs_grab_fs_root(gang[i]);
  3217. }
  3218. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3219. for (i = 0; i < ret; i++) {
  3220. if (!gang[i])
  3221. continue;
  3222. root_objectid = gang[i]->root_key.objectid;
  3223. err = btrfs_orphan_cleanup(gang[i]);
  3224. if (err)
  3225. break;
  3226. btrfs_put_fs_root(gang[i]);
  3227. }
  3228. root_objectid++;
  3229. }
  3230. /* release the uncleaned roots due to error */
  3231. for (; i < ret; i++) {
  3232. if (gang[i])
  3233. btrfs_put_fs_root(gang[i]);
  3234. }
  3235. return err;
  3236. }
  3237. int btrfs_commit_super(struct btrfs_fs_info *fs_info)
  3238. {
  3239. struct btrfs_root *root = fs_info->tree_root;
  3240. struct btrfs_trans_handle *trans;
  3241. mutex_lock(&fs_info->cleaner_mutex);
  3242. btrfs_run_delayed_iputs(fs_info);
  3243. mutex_unlock(&fs_info->cleaner_mutex);
  3244. wake_up_process(fs_info->cleaner_kthread);
  3245. /* wait until ongoing cleanup work done */
  3246. down_write(&fs_info->cleanup_work_sem);
  3247. up_write(&fs_info->cleanup_work_sem);
  3248. trans = btrfs_join_transaction(root);
  3249. if (IS_ERR(trans))
  3250. return PTR_ERR(trans);
  3251. return btrfs_commit_transaction(trans);
  3252. }
  3253. void close_ctree(struct btrfs_fs_info *fs_info)
  3254. {
  3255. struct btrfs_root *root = fs_info->tree_root;
  3256. int ret;
  3257. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3258. /* wait for the qgroup rescan worker to stop */
  3259. btrfs_qgroup_wait_for_completion(fs_info, false);
  3260. /* wait for the uuid_scan task to finish */
  3261. down(&fs_info->uuid_tree_rescan_sem);
  3262. /* avoid complains from lockdep et al., set sem back to initial state */
  3263. up(&fs_info->uuid_tree_rescan_sem);
  3264. /* pause restriper - we want to resume on mount */
  3265. btrfs_pause_balance(fs_info);
  3266. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3267. btrfs_scrub_cancel(fs_info);
  3268. /* wait for any defraggers to finish */
  3269. wait_event(fs_info->transaction_wait,
  3270. (atomic_read(&fs_info->defrag_running) == 0));
  3271. /* clear out the rbtree of defraggable inodes */
  3272. btrfs_cleanup_defrag_inodes(fs_info);
  3273. cancel_work_sync(&fs_info->async_reclaim_work);
  3274. if (!sb_rdonly(fs_info->sb)) {
  3275. /*
  3276. * If the cleaner thread is stopped and there are
  3277. * block groups queued for removal, the deletion will be
  3278. * skipped when we quit the cleaner thread.
  3279. */
  3280. btrfs_delete_unused_bgs(fs_info);
  3281. ret = btrfs_commit_super(fs_info);
  3282. if (ret)
  3283. btrfs_err(fs_info, "commit super ret %d", ret);
  3284. }
  3285. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
  3286. test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
  3287. btrfs_error_commit_super(fs_info);
  3288. kthread_stop(fs_info->transaction_kthread);
  3289. kthread_stop(fs_info->cleaner_kthread);
  3290. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3291. btrfs_free_qgroup_config(fs_info);
  3292. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3293. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3294. percpu_counter_sum(&fs_info->delalloc_bytes));
  3295. }
  3296. btrfs_sysfs_remove_mounted(fs_info);
  3297. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3298. btrfs_free_fs_roots(fs_info);
  3299. btrfs_put_block_group_cache(fs_info);
  3300. /*
  3301. * we must make sure there is not any read request to
  3302. * submit after we stopping all workers.
  3303. */
  3304. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3305. btrfs_stop_all_workers(fs_info);
  3306. btrfs_free_block_groups(fs_info);
  3307. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3308. free_root_pointers(fs_info, 1);
  3309. iput(fs_info->btree_inode);
  3310. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3311. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
  3312. btrfsic_unmount(fs_info->fs_devices);
  3313. #endif
  3314. btrfs_close_devices(fs_info->fs_devices);
  3315. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3316. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3317. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3318. percpu_counter_destroy(&fs_info->bio_counter);
  3319. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3320. btrfs_free_stripe_hash_table(fs_info);
  3321. btrfs_free_ref_cache(fs_info);
  3322. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3323. root->orphan_block_rsv = NULL;
  3324. while (!list_empty(&fs_info->pinned_chunks)) {
  3325. struct extent_map *em;
  3326. em = list_first_entry(&fs_info->pinned_chunks,
  3327. struct extent_map, list);
  3328. list_del_init(&em->list);
  3329. free_extent_map(em);
  3330. }
  3331. }
  3332. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3333. int atomic)
  3334. {
  3335. int ret;
  3336. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3337. ret = extent_buffer_uptodate(buf);
  3338. if (!ret)
  3339. return ret;
  3340. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3341. parent_transid, atomic);
  3342. if (ret == -EAGAIN)
  3343. return ret;
  3344. return !ret;
  3345. }
  3346. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3347. {
  3348. struct btrfs_fs_info *fs_info;
  3349. struct btrfs_root *root;
  3350. u64 transid = btrfs_header_generation(buf);
  3351. int was_dirty;
  3352. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3353. /*
  3354. * This is a fast path so only do this check if we have sanity tests
  3355. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3356. * outside of the sanity tests.
  3357. */
  3358. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3359. return;
  3360. #endif
  3361. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3362. fs_info = root->fs_info;
  3363. btrfs_assert_tree_locked(buf);
  3364. if (transid != fs_info->generation)
  3365. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3366. buf->start, transid, fs_info->generation);
  3367. was_dirty = set_extent_buffer_dirty(buf);
  3368. if (!was_dirty)
  3369. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  3370. buf->len,
  3371. fs_info->dirty_metadata_batch);
  3372. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3373. /*
  3374. * Since btrfs_mark_buffer_dirty() can be called with item pointer set
  3375. * but item data not updated.
  3376. * So here we should only check item pointers, not item data.
  3377. */
  3378. if (btrfs_header_level(buf) == 0 &&
  3379. btrfs_check_leaf_relaxed(fs_info, buf)) {
  3380. btrfs_print_leaf(buf);
  3381. ASSERT(0);
  3382. }
  3383. #endif
  3384. }
  3385. static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
  3386. int flush_delayed)
  3387. {
  3388. /*
  3389. * looks as though older kernels can get into trouble with
  3390. * this code, they end up stuck in balance_dirty_pages forever
  3391. */
  3392. int ret;
  3393. if (current->flags & PF_MEMALLOC)
  3394. return;
  3395. if (flush_delayed)
  3396. btrfs_balance_delayed_items(fs_info);
  3397. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  3398. BTRFS_DIRTY_METADATA_THRESH);
  3399. if (ret > 0) {
  3400. balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
  3401. }
  3402. }
  3403. void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
  3404. {
  3405. __btrfs_btree_balance_dirty(fs_info, 1);
  3406. }
  3407. void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
  3408. {
  3409. __btrfs_btree_balance_dirty(fs_info, 0);
  3410. }
  3411. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
  3412. struct btrfs_key *first_key)
  3413. {
  3414. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3415. struct btrfs_fs_info *fs_info = root->fs_info;
  3416. return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
  3417. level, first_key);
  3418. }
  3419. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
  3420. {
  3421. struct btrfs_super_block *sb = fs_info->super_copy;
  3422. u64 nodesize = btrfs_super_nodesize(sb);
  3423. u64 sectorsize = btrfs_super_sectorsize(sb);
  3424. int ret = 0;
  3425. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3426. btrfs_err(fs_info, "no valid FS found");
  3427. ret = -EINVAL;
  3428. }
  3429. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
  3430. btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
  3431. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3432. ret = -EINVAL;
  3433. }
  3434. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3435. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3436. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3437. ret = -EINVAL;
  3438. }
  3439. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3440. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3441. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3442. ret = -EINVAL;
  3443. }
  3444. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3445. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3446. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3447. ret = -EINVAL;
  3448. }
  3449. /*
  3450. * Check sectorsize and nodesize first, other check will need it.
  3451. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3452. */
  3453. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3454. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3455. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3456. ret = -EINVAL;
  3457. }
  3458. /* Only PAGE SIZE is supported yet */
  3459. if (sectorsize != PAGE_SIZE) {
  3460. btrfs_err(fs_info,
  3461. "sectorsize %llu not supported yet, only support %lu",
  3462. sectorsize, PAGE_SIZE);
  3463. ret = -EINVAL;
  3464. }
  3465. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3466. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3467. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3468. ret = -EINVAL;
  3469. }
  3470. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3471. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3472. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3473. ret = -EINVAL;
  3474. }
  3475. /* Root alignment check */
  3476. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3477. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3478. btrfs_super_root(sb));
  3479. ret = -EINVAL;
  3480. }
  3481. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3482. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3483. btrfs_super_chunk_root(sb));
  3484. ret = -EINVAL;
  3485. }
  3486. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3487. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3488. btrfs_super_log_root(sb));
  3489. ret = -EINVAL;
  3490. }
  3491. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
  3492. btrfs_err(fs_info,
  3493. "dev_item UUID does not match fsid: %pU != %pU",
  3494. fs_info->fsid, sb->dev_item.fsid);
  3495. ret = -EINVAL;
  3496. }
  3497. /*
  3498. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3499. * done later
  3500. */
  3501. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3502. btrfs_err(fs_info, "bytes_used is too small %llu",
  3503. btrfs_super_bytes_used(sb));
  3504. ret = -EINVAL;
  3505. }
  3506. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3507. btrfs_err(fs_info, "invalid stripesize %u",
  3508. btrfs_super_stripesize(sb));
  3509. ret = -EINVAL;
  3510. }
  3511. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3512. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3513. btrfs_super_num_devices(sb));
  3514. if (btrfs_super_num_devices(sb) == 0) {
  3515. btrfs_err(fs_info, "number of devices is 0");
  3516. ret = -EINVAL;
  3517. }
  3518. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3519. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3520. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3521. ret = -EINVAL;
  3522. }
  3523. /*
  3524. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3525. * and one chunk
  3526. */
  3527. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3528. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3529. btrfs_super_sys_array_size(sb),
  3530. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3531. ret = -EINVAL;
  3532. }
  3533. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3534. + sizeof(struct btrfs_chunk)) {
  3535. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3536. btrfs_super_sys_array_size(sb),
  3537. sizeof(struct btrfs_disk_key)
  3538. + sizeof(struct btrfs_chunk));
  3539. ret = -EINVAL;
  3540. }
  3541. /*
  3542. * The generation is a global counter, we'll trust it more than the others
  3543. * but it's still possible that it's the one that's wrong.
  3544. */
  3545. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3546. btrfs_warn(fs_info,
  3547. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3548. btrfs_super_generation(sb),
  3549. btrfs_super_chunk_root_generation(sb));
  3550. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3551. && btrfs_super_cache_generation(sb) != (u64)-1)
  3552. btrfs_warn(fs_info,
  3553. "suspicious: generation < cache_generation: %llu < %llu",
  3554. btrfs_super_generation(sb),
  3555. btrfs_super_cache_generation(sb));
  3556. return ret;
  3557. }
  3558. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
  3559. {
  3560. mutex_lock(&fs_info->cleaner_mutex);
  3561. btrfs_run_delayed_iputs(fs_info);
  3562. mutex_unlock(&fs_info->cleaner_mutex);
  3563. down_write(&fs_info->cleanup_work_sem);
  3564. up_write(&fs_info->cleanup_work_sem);
  3565. /* cleanup FS via transaction */
  3566. btrfs_cleanup_transaction(fs_info);
  3567. }
  3568. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3569. {
  3570. struct btrfs_ordered_extent *ordered;
  3571. spin_lock(&root->ordered_extent_lock);
  3572. /*
  3573. * This will just short circuit the ordered completion stuff which will
  3574. * make sure the ordered extent gets properly cleaned up.
  3575. */
  3576. list_for_each_entry(ordered, &root->ordered_extents,
  3577. root_extent_list)
  3578. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3579. spin_unlock(&root->ordered_extent_lock);
  3580. }
  3581. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3582. {
  3583. struct btrfs_root *root;
  3584. struct list_head splice;
  3585. INIT_LIST_HEAD(&splice);
  3586. spin_lock(&fs_info->ordered_root_lock);
  3587. list_splice_init(&fs_info->ordered_roots, &splice);
  3588. while (!list_empty(&splice)) {
  3589. root = list_first_entry(&splice, struct btrfs_root,
  3590. ordered_root);
  3591. list_move_tail(&root->ordered_root,
  3592. &fs_info->ordered_roots);
  3593. spin_unlock(&fs_info->ordered_root_lock);
  3594. btrfs_destroy_ordered_extents(root);
  3595. cond_resched();
  3596. spin_lock(&fs_info->ordered_root_lock);
  3597. }
  3598. spin_unlock(&fs_info->ordered_root_lock);
  3599. }
  3600. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3601. struct btrfs_fs_info *fs_info)
  3602. {
  3603. struct rb_node *node;
  3604. struct btrfs_delayed_ref_root *delayed_refs;
  3605. struct btrfs_delayed_ref_node *ref;
  3606. int ret = 0;
  3607. delayed_refs = &trans->delayed_refs;
  3608. spin_lock(&delayed_refs->lock);
  3609. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3610. spin_unlock(&delayed_refs->lock);
  3611. btrfs_info(fs_info, "delayed_refs has NO entry");
  3612. return ret;
  3613. }
  3614. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3615. struct btrfs_delayed_ref_head *head;
  3616. struct rb_node *n;
  3617. bool pin_bytes = false;
  3618. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3619. href_node);
  3620. if (!mutex_trylock(&head->mutex)) {
  3621. refcount_inc(&head->refs);
  3622. spin_unlock(&delayed_refs->lock);
  3623. mutex_lock(&head->mutex);
  3624. mutex_unlock(&head->mutex);
  3625. btrfs_put_delayed_ref_head(head);
  3626. spin_lock(&delayed_refs->lock);
  3627. continue;
  3628. }
  3629. spin_lock(&head->lock);
  3630. while ((n = rb_first(&head->ref_tree)) != NULL) {
  3631. ref = rb_entry(n, struct btrfs_delayed_ref_node,
  3632. ref_node);
  3633. ref->in_tree = 0;
  3634. rb_erase(&ref->ref_node, &head->ref_tree);
  3635. RB_CLEAR_NODE(&ref->ref_node);
  3636. if (!list_empty(&ref->add_list))
  3637. list_del(&ref->add_list);
  3638. atomic_dec(&delayed_refs->num_entries);
  3639. btrfs_put_delayed_ref(ref);
  3640. }
  3641. if (head->must_insert_reserved)
  3642. pin_bytes = true;
  3643. btrfs_free_delayed_extent_op(head->extent_op);
  3644. delayed_refs->num_heads--;
  3645. if (head->processing == 0)
  3646. delayed_refs->num_heads_ready--;
  3647. atomic_dec(&delayed_refs->num_entries);
  3648. rb_erase(&head->href_node, &delayed_refs->href_root);
  3649. RB_CLEAR_NODE(&head->href_node);
  3650. spin_unlock(&head->lock);
  3651. spin_unlock(&delayed_refs->lock);
  3652. mutex_unlock(&head->mutex);
  3653. if (pin_bytes)
  3654. btrfs_pin_extent(fs_info, head->bytenr,
  3655. head->num_bytes, 1);
  3656. btrfs_put_delayed_ref_head(head);
  3657. cond_resched();
  3658. spin_lock(&delayed_refs->lock);
  3659. }
  3660. spin_unlock(&delayed_refs->lock);
  3661. return ret;
  3662. }
  3663. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3664. {
  3665. struct btrfs_inode *btrfs_inode;
  3666. struct list_head splice;
  3667. INIT_LIST_HEAD(&splice);
  3668. spin_lock(&root->delalloc_lock);
  3669. list_splice_init(&root->delalloc_inodes, &splice);
  3670. while (!list_empty(&splice)) {
  3671. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3672. delalloc_inodes);
  3673. list_del_init(&btrfs_inode->delalloc_inodes);
  3674. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3675. &btrfs_inode->runtime_flags);
  3676. spin_unlock(&root->delalloc_lock);
  3677. btrfs_invalidate_inodes(btrfs_inode->root);
  3678. spin_lock(&root->delalloc_lock);
  3679. }
  3680. spin_unlock(&root->delalloc_lock);
  3681. }
  3682. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3683. {
  3684. struct btrfs_root *root;
  3685. struct list_head splice;
  3686. INIT_LIST_HEAD(&splice);
  3687. spin_lock(&fs_info->delalloc_root_lock);
  3688. list_splice_init(&fs_info->delalloc_roots, &splice);
  3689. while (!list_empty(&splice)) {
  3690. root = list_first_entry(&splice, struct btrfs_root,
  3691. delalloc_root);
  3692. list_del_init(&root->delalloc_root);
  3693. root = btrfs_grab_fs_root(root);
  3694. BUG_ON(!root);
  3695. spin_unlock(&fs_info->delalloc_root_lock);
  3696. btrfs_destroy_delalloc_inodes(root);
  3697. btrfs_put_fs_root(root);
  3698. spin_lock(&fs_info->delalloc_root_lock);
  3699. }
  3700. spin_unlock(&fs_info->delalloc_root_lock);
  3701. }
  3702. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  3703. struct extent_io_tree *dirty_pages,
  3704. int mark)
  3705. {
  3706. int ret;
  3707. struct extent_buffer *eb;
  3708. u64 start = 0;
  3709. u64 end;
  3710. while (1) {
  3711. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3712. mark, NULL);
  3713. if (ret)
  3714. break;
  3715. clear_extent_bits(dirty_pages, start, end, mark);
  3716. while (start <= end) {
  3717. eb = find_extent_buffer(fs_info, start);
  3718. start += fs_info->nodesize;
  3719. if (!eb)
  3720. continue;
  3721. wait_on_extent_buffer_writeback(eb);
  3722. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3723. &eb->bflags))
  3724. clear_extent_buffer_dirty(eb);
  3725. free_extent_buffer_stale(eb);
  3726. }
  3727. }
  3728. return ret;
  3729. }
  3730. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  3731. struct extent_io_tree *pinned_extents)
  3732. {
  3733. struct extent_io_tree *unpin;
  3734. u64 start;
  3735. u64 end;
  3736. int ret;
  3737. bool loop = true;
  3738. unpin = pinned_extents;
  3739. again:
  3740. while (1) {
  3741. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3742. EXTENT_DIRTY, NULL);
  3743. if (ret)
  3744. break;
  3745. clear_extent_dirty(unpin, start, end);
  3746. btrfs_error_unpin_extent_range(fs_info, start, end);
  3747. cond_resched();
  3748. }
  3749. if (loop) {
  3750. if (unpin == &fs_info->freed_extents[0])
  3751. unpin = &fs_info->freed_extents[1];
  3752. else
  3753. unpin = &fs_info->freed_extents[0];
  3754. loop = false;
  3755. goto again;
  3756. }
  3757. return 0;
  3758. }
  3759. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3760. {
  3761. struct inode *inode;
  3762. inode = cache->io_ctl.inode;
  3763. if (inode) {
  3764. invalidate_inode_pages2(inode->i_mapping);
  3765. BTRFS_I(inode)->generation = 0;
  3766. cache->io_ctl.inode = NULL;
  3767. iput(inode);
  3768. }
  3769. btrfs_put_block_group(cache);
  3770. }
  3771. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3772. struct btrfs_fs_info *fs_info)
  3773. {
  3774. struct btrfs_block_group_cache *cache;
  3775. spin_lock(&cur_trans->dirty_bgs_lock);
  3776. while (!list_empty(&cur_trans->dirty_bgs)) {
  3777. cache = list_first_entry(&cur_trans->dirty_bgs,
  3778. struct btrfs_block_group_cache,
  3779. dirty_list);
  3780. if (!list_empty(&cache->io_list)) {
  3781. spin_unlock(&cur_trans->dirty_bgs_lock);
  3782. list_del_init(&cache->io_list);
  3783. btrfs_cleanup_bg_io(cache);
  3784. spin_lock(&cur_trans->dirty_bgs_lock);
  3785. }
  3786. list_del_init(&cache->dirty_list);
  3787. spin_lock(&cache->lock);
  3788. cache->disk_cache_state = BTRFS_DC_ERROR;
  3789. spin_unlock(&cache->lock);
  3790. spin_unlock(&cur_trans->dirty_bgs_lock);
  3791. btrfs_put_block_group(cache);
  3792. spin_lock(&cur_trans->dirty_bgs_lock);
  3793. }
  3794. spin_unlock(&cur_trans->dirty_bgs_lock);
  3795. /*
  3796. * Refer to the definition of io_bgs member for details why it's safe
  3797. * to use it without any locking
  3798. */
  3799. while (!list_empty(&cur_trans->io_bgs)) {
  3800. cache = list_first_entry(&cur_trans->io_bgs,
  3801. struct btrfs_block_group_cache,
  3802. io_list);
  3803. list_del_init(&cache->io_list);
  3804. spin_lock(&cache->lock);
  3805. cache->disk_cache_state = BTRFS_DC_ERROR;
  3806. spin_unlock(&cache->lock);
  3807. btrfs_cleanup_bg_io(cache);
  3808. }
  3809. }
  3810. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3811. struct btrfs_fs_info *fs_info)
  3812. {
  3813. btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
  3814. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3815. ASSERT(list_empty(&cur_trans->io_bgs));
  3816. btrfs_destroy_delayed_refs(cur_trans, fs_info);
  3817. cur_trans->state = TRANS_STATE_COMMIT_START;
  3818. wake_up(&fs_info->transaction_blocked_wait);
  3819. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3820. wake_up(&fs_info->transaction_wait);
  3821. btrfs_destroy_delayed_inodes(fs_info);
  3822. btrfs_assert_delayed_root_empty(fs_info);
  3823. btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
  3824. EXTENT_DIRTY);
  3825. btrfs_destroy_pinned_extent(fs_info,
  3826. fs_info->pinned_extents);
  3827. cur_trans->state =TRANS_STATE_COMPLETED;
  3828. wake_up(&cur_trans->commit_wait);
  3829. }
  3830. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
  3831. {
  3832. struct btrfs_transaction *t;
  3833. mutex_lock(&fs_info->transaction_kthread_mutex);
  3834. spin_lock(&fs_info->trans_lock);
  3835. while (!list_empty(&fs_info->trans_list)) {
  3836. t = list_first_entry(&fs_info->trans_list,
  3837. struct btrfs_transaction, list);
  3838. if (t->state >= TRANS_STATE_COMMIT_START) {
  3839. refcount_inc(&t->use_count);
  3840. spin_unlock(&fs_info->trans_lock);
  3841. btrfs_wait_for_commit(fs_info, t->transid);
  3842. btrfs_put_transaction(t);
  3843. spin_lock(&fs_info->trans_lock);
  3844. continue;
  3845. }
  3846. if (t == fs_info->running_transaction) {
  3847. t->state = TRANS_STATE_COMMIT_DOING;
  3848. spin_unlock(&fs_info->trans_lock);
  3849. /*
  3850. * We wait for 0 num_writers since we don't hold a trans
  3851. * handle open currently for this transaction.
  3852. */
  3853. wait_event(t->writer_wait,
  3854. atomic_read(&t->num_writers) == 0);
  3855. } else {
  3856. spin_unlock(&fs_info->trans_lock);
  3857. }
  3858. btrfs_cleanup_one_transaction(t, fs_info);
  3859. spin_lock(&fs_info->trans_lock);
  3860. if (t == fs_info->running_transaction)
  3861. fs_info->running_transaction = NULL;
  3862. list_del_init(&t->list);
  3863. spin_unlock(&fs_info->trans_lock);
  3864. btrfs_put_transaction(t);
  3865. trace_btrfs_transaction_commit(fs_info->tree_root);
  3866. spin_lock(&fs_info->trans_lock);
  3867. }
  3868. spin_unlock(&fs_info->trans_lock);
  3869. btrfs_destroy_all_ordered_extents(fs_info);
  3870. btrfs_destroy_delayed_inodes(fs_info);
  3871. btrfs_assert_delayed_root_empty(fs_info);
  3872. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  3873. btrfs_destroy_all_delalloc_inodes(fs_info);
  3874. mutex_unlock(&fs_info->transaction_kthread_mutex);
  3875. return 0;
  3876. }
  3877. static struct btrfs_fs_info *btree_fs_info(void *private_data)
  3878. {
  3879. struct inode *inode = private_data;
  3880. return btrfs_sb(inode->i_sb);
  3881. }
  3882. static const struct extent_io_ops btree_extent_io_ops = {
  3883. /* mandatory callbacks */
  3884. .submit_bio_hook = btree_submit_bio_hook,
  3885. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3886. /* note we're sharing with inode.c for the merge bio hook */
  3887. .merge_bio_hook = btrfs_merge_bio_hook,
  3888. .readpage_io_failed_hook = btree_io_failed_hook,
  3889. .set_range_writeback = btrfs_set_range_writeback,
  3890. .tree_fs_info = btree_fs_info,
  3891. /* optional callbacks */
  3892. };