intel_pm.c 158 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/i915_powerwell.h>
  34. #include <linux/pm_runtime.h>
  35. /**
  36. * RC6 is a special power stage which allows the GPU to enter an very
  37. * low-voltage mode when idle, using down to 0V while at this stage. This
  38. * stage is entered automatically when the GPU is idle when RC6 support is
  39. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  40. *
  41. * There are different RC6 modes available in Intel GPU, which differentiate
  42. * among each other with the latency required to enter and leave RC6 and
  43. * voltage consumed by the GPU in different states.
  44. *
  45. * The combination of the following flags define which states GPU is allowed
  46. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  47. * RC6pp is deepest RC6. Their support by hardware varies according to the
  48. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  49. * which brings the most power savings; deeper states save more power, but
  50. * require higher latency to switch to and wake up.
  51. */
  52. #define INTEL_RC6_ENABLE (1<<0)
  53. #define INTEL_RC6p_ENABLE (1<<1)
  54. #define INTEL_RC6pp_ENABLE (1<<2)
  55. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  56. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  57. * during in-memory transfers and, therefore, reduce the power packet.
  58. *
  59. * The benefits of FBC are mostly visible with solid backgrounds and
  60. * variation-less patterns.
  61. *
  62. * FBC-related functionality can be enabled by the means of the
  63. * i915.i915_enable_fbc parameter
  64. */
  65. static void i8xx_disable_fbc(struct drm_device *dev)
  66. {
  67. struct drm_i915_private *dev_priv = dev->dev_private;
  68. u32 fbc_ctl;
  69. /* Disable compression */
  70. fbc_ctl = I915_READ(FBC_CONTROL);
  71. if ((fbc_ctl & FBC_CTL_EN) == 0)
  72. return;
  73. fbc_ctl &= ~FBC_CTL_EN;
  74. I915_WRITE(FBC_CONTROL, fbc_ctl);
  75. /* Wait for compressing bit to clear */
  76. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  77. DRM_DEBUG_KMS("FBC idle timed out\n");
  78. return;
  79. }
  80. DRM_DEBUG_KMS("disabled FBC\n");
  81. }
  82. static void i8xx_enable_fbc(struct drm_crtc *crtc)
  83. {
  84. struct drm_device *dev = crtc->dev;
  85. struct drm_i915_private *dev_priv = dev->dev_private;
  86. struct drm_framebuffer *fb = crtc->fb;
  87. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  88. struct drm_i915_gem_object *obj = intel_fb->obj;
  89. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  90. int cfb_pitch;
  91. int i;
  92. u32 fbc_ctl;
  93. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  94. if (fb->pitches[0] < cfb_pitch)
  95. cfb_pitch = fb->pitches[0];
  96. /* FBC_CTL wants 32B or 64B units */
  97. if (IS_GEN2(dev))
  98. cfb_pitch = (cfb_pitch / 32) - 1;
  99. else
  100. cfb_pitch = (cfb_pitch / 64) - 1;
  101. /* Clear old tags */
  102. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  103. I915_WRITE(FBC_TAG + (i * 4), 0);
  104. if (IS_GEN4(dev)) {
  105. u32 fbc_ctl2;
  106. /* Set it up... */
  107. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  108. fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
  109. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  110. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  111. }
  112. /* enable it... */
  113. fbc_ctl = I915_READ(FBC_CONTROL);
  114. fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
  115. fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
  116. if (IS_I945GM(dev))
  117. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  118. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  119. fbc_ctl |= obj->fence_reg;
  120. I915_WRITE(FBC_CONTROL, fbc_ctl);
  121. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
  122. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  123. }
  124. static bool i8xx_fbc_enabled(struct drm_device *dev)
  125. {
  126. struct drm_i915_private *dev_priv = dev->dev_private;
  127. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  128. }
  129. static void g4x_enable_fbc(struct drm_crtc *crtc)
  130. {
  131. struct drm_device *dev = crtc->dev;
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. struct drm_framebuffer *fb = crtc->fb;
  134. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  135. struct drm_i915_gem_object *obj = intel_fb->obj;
  136. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  137. u32 dpfc_ctl;
  138. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
  139. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  140. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  141. else
  142. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  143. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  144. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  145. /* enable it... */
  146. I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  147. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  148. }
  149. static void g4x_disable_fbc(struct drm_device *dev)
  150. {
  151. struct drm_i915_private *dev_priv = dev->dev_private;
  152. u32 dpfc_ctl;
  153. /* Disable compression */
  154. dpfc_ctl = I915_READ(DPFC_CONTROL);
  155. if (dpfc_ctl & DPFC_CTL_EN) {
  156. dpfc_ctl &= ~DPFC_CTL_EN;
  157. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  158. DRM_DEBUG_KMS("disabled FBC\n");
  159. }
  160. }
  161. static bool g4x_fbc_enabled(struct drm_device *dev)
  162. {
  163. struct drm_i915_private *dev_priv = dev->dev_private;
  164. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  165. }
  166. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  167. {
  168. struct drm_i915_private *dev_priv = dev->dev_private;
  169. u32 blt_ecoskpd;
  170. /* Make sure blitter notifies FBC of writes */
  171. /* Blitter is part of Media powerwell on VLV. No impact of
  172. * his param in other platforms for now */
  173. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
  174. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  175. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  176. GEN6_BLITTER_LOCK_SHIFT;
  177. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  178. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  179. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  180. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  181. GEN6_BLITTER_LOCK_SHIFT);
  182. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  183. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  184. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
  185. }
  186. static void ironlake_enable_fbc(struct drm_crtc *crtc)
  187. {
  188. struct drm_device *dev = crtc->dev;
  189. struct drm_i915_private *dev_priv = dev->dev_private;
  190. struct drm_framebuffer *fb = crtc->fb;
  191. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  192. struct drm_i915_gem_object *obj = intel_fb->obj;
  193. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  194. u32 dpfc_ctl;
  195. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
  196. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  197. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  198. else
  199. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  200. dpfc_ctl |= DPFC_CTL_FENCE_EN;
  201. if (IS_GEN5(dev))
  202. dpfc_ctl |= obj->fence_reg;
  203. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  204. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  205. /* enable it... */
  206. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  207. if (IS_GEN6(dev)) {
  208. I915_WRITE(SNB_DPFC_CTL_SA,
  209. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  210. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  211. sandybridge_blit_fbc_update(dev);
  212. }
  213. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  214. }
  215. static void ironlake_disable_fbc(struct drm_device *dev)
  216. {
  217. struct drm_i915_private *dev_priv = dev->dev_private;
  218. u32 dpfc_ctl;
  219. /* Disable compression */
  220. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  221. if (dpfc_ctl & DPFC_CTL_EN) {
  222. dpfc_ctl &= ~DPFC_CTL_EN;
  223. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  224. DRM_DEBUG_KMS("disabled FBC\n");
  225. }
  226. }
  227. static bool ironlake_fbc_enabled(struct drm_device *dev)
  228. {
  229. struct drm_i915_private *dev_priv = dev->dev_private;
  230. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  231. }
  232. static void gen7_enable_fbc(struct drm_crtc *crtc)
  233. {
  234. struct drm_device *dev = crtc->dev;
  235. struct drm_i915_private *dev_priv = dev->dev_private;
  236. struct drm_framebuffer *fb = crtc->fb;
  237. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  238. struct drm_i915_gem_object *obj = intel_fb->obj;
  239. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  240. u32 dpfc_ctl;
  241. dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
  242. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  243. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  244. else
  245. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  246. dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
  247. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  248. if (IS_IVYBRIDGE(dev)) {
  249. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  250. I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
  251. } else {
  252. /* WaFbcAsynchFlipDisableFbcQueue:hsw */
  253. I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
  254. HSW_BYPASS_FBC_QUEUE);
  255. }
  256. I915_WRITE(SNB_DPFC_CTL_SA,
  257. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  258. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  259. sandybridge_blit_fbc_update(dev);
  260. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  261. }
  262. bool intel_fbc_enabled(struct drm_device *dev)
  263. {
  264. struct drm_i915_private *dev_priv = dev->dev_private;
  265. if (!dev_priv->display.fbc_enabled)
  266. return false;
  267. return dev_priv->display.fbc_enabled(dev);
  268. }
  269. static void intel_fbc_work_fn(struct work_struct *__work)
  270. {
  271. struct intel_fbc_work *work =
  272. container_of(to_delayed_work(__work),
  273. struct intel_fbc_work, work);
  274. struct drm_device *dev = work->crtc->dev;
  275. struct drm_i915_private *dev_priv = dev->dev_private;
  276. mutex_lock(&dev->struct_mutex);
  277. if (work == dev_priv->fbc.fbc_work) {
  278. /* Double check that we haven't switched fb without cancelling
  279. * the prior work.
  280. */
  281. if (work->crtc->fb == work->fb) {
  282. dev_priv->display.enable_fbc(work->crtc);
  283. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  284. dev_priv->fbc.fb_id = work->crtc->fb->base.id;
  285. dev_priv->fbc.y = work->crtc->y;
  286. }
  287. dev_priv->fbc.fbc_work = NULL;
  288. }
  289. mutex_unlock(&dev->struct_mutex);
  290. kfree(work);
  291. }
  292. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  293. {
  294. if (dev_priv->fbc.fbc_work == NULL)
  295. return;
  296. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  297. /* Synchronisation is provided by struct_mutex and checking of
  298. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  299. * entirely asynchronously.
  300. */
  301. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  302. /* tasklet was killed before being run, clean up */
  303. kfree(dev_priv->fbc.fbc_work);
  304. /* Mark the work as no longer wanted so that if it does
  305. * wake-up (because the work was already running and waiting
  306. * for our mutex), it will discover that is no longer
  307. * necessary to run.
  308. */
  309. dev_priv->fbc.fbc_work = NULL;
  310. }
  311. static void intel_enable_fbc(struct drm_crtc *crtc)
  312. {
  313. struct intel_fbc_work *work;
  314. struct drm_device *dev = crtc->dev;
  315. struct drm_i915_private *dev_priv = dev->dev_private;
  316. if (!dev_priv->display.enable_fbc)
  317. return;
  318. intel_cancel_fbc_work(dev_priv);
  319. work = kzalloc(sizeof(*work), GFP_KERNEL);
  320. if (work == NULL) {
  321. DRM_ERROR("Failed to allocate FBC work structure\n");
  322. dev_priv->display.enable_fbc(crtc);
  323. return;
  324. }
  325. work->crtc = crtc;
  326. work->fb = crtc->fb;
  327. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  328. dev_priv->fbc.fbc_work = work;
  329. /* Delay the actual enabling to let pageflipping cease and the
  330. * display to settle before starting the compression. Note that
  331. * this delay also serves a second purpose: it allows for a
  332. * vblank to pass after disabling the FBC before we attempt
  333. * to modify the control registers.
  334. *
  335. * A more complicated solution would involve tracking vblanks
  336. * following the termination of the page-flipping sequence
  337. * and indeed performing the enable as a co-routine and not
  338. * waiting synchronously upon the vblank.
  339. *
  340. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  341. */
  342. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  343. }
  344. void intel_disable_fbc(struct drm_device *dev)
  345. {
  346. struct drm_i915_private *dev_priv = dev->dev_private;
  347. intel_cancel_fbc_work(dev_priv);
  348. if (!dev_priv->display.disable_fbc)
  349. return;
  350. dev_priv->display.disable_fbc(dev);
  351. dev_priv->fbc.plane = -1;
  352. }
  353. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  354. enum no_fbc_reason reason)
  355. {
  356. if (dev_priv->fbc.no_fbc_reason == reason)
  357. return false;
  358. dev_priv->fbc.no_fbc_reason = reason;
  359. return true;
  360. }
  361. /**
  362. * intel_update_fbc - enable/disable FBC as needed
  363. * @dev: the drm_device
  364. *
  365. * Set up the framebuffer compression hardware at mode set time. We
  366. * enable it if possible:
  367. * - plane A only (on pre-965)
  368. * - no pixel mulitply/line duplication
  369. * - no alpha buffer discard
  370. * - no dual wide
  371. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  372. *
  373. * We can't assume that any compression will take place (worst case),
  374. * so the compressed buffer has to be the same size as the uncompressed
  375. * one. It also must reside (along with the line length buffer) in
  376. * stolen memory.
  377. *
  378. * We need to enable/disable FBC on a global basis.
  379. */
  380. void intel_update_fbc(struct drm_device *dev)
  381. {
  382. struct drm_i915_private *dev_priv = dev->dev_private;
  383. struct drm_crtc *crtc = NULL, *tmp_crtc;
  384. struct intel_crtc *intel_crtc;
  385. struct drm_framebuffer *fb;
  386. struct intel_framebuffer *intel_fb;
  387. struct drm_i915_gem_object *obj;
  388. const struct drm_display_mode *adjusted_mode;
  389. unsigned int max_width, max_height;
  390. if (!HAS_FBC(dev)) {
  391. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  392. return;
  393. }
  394. if (!i915.powersave) {
  395. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  396. DRM_DEBUG_KMS("fbc disabled per module param\n");
  397. return;
  398. }
  399. /*
  400. * If FBC is already on, we just have to verify that we can
  401. * keep it that way...
  402. * Need to disable if:
  403. * - more than one pipe is active
  404. * - changing FBC params (stride, fence, mode)
  405. * - new fb is too large to fit in compressed buffer
  406. * - going to an unsupported config (interlace, pixel multiply, etc.)
  407. */
  408. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  409. if (intel_crtc_active(tmp_crtc) &&
  410. to_intel_crtc(tmp_crtc)->primary_enabled) {
  411. if (crtc) {
  412. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  413. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  414. goto out_disable;
  415. }
  416. crtc = tmp_crtc;
  417. }
  418. }
  419. if (!crtc || crtc->fb == NULL) {
  420. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  421. DRM_DEBUG_KMS("no output, disabling\n");
  422. goto out_disable;
  423. }
  424. intel_crtc = to_intel_crtc(crtc);
  425. fb = crtc->fb;
  426. intel_fb = to_intel_framebuffer(fb);
  427. obj = intel_fb->obj;
  428. adjusted_mode = &intel_crtc->config.adjusted_mode;
  429. if (i915.enable_fbc < 0 &&
  430. INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
  431. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  432. DRM_DEBUG_KMS("disabled per chip default\n");
  433. goto out_disable;
  434. }
  435. if (!i915.enable_fbc) {
  436. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  437. DRM_DEBUG_KMS("fbc disabled per module param\n");
  438. goto out_disable;
  439. }
  440. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  441. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  442. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  443. DRM_DEBUG_KMS("mode incompatible with compression, "
  444. "disabling\n");
  445. goto out_disable;
  446. }
  447. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  448. max_width = 4096;
  449. max_height = 2048;
  450. } else {
  451. max_width = 2048;
  452. max_height = 1536;
  453. }
  454. if (intel_crtc->config.pipe_src_w > max_width ||
  455. intel_crtc->config.pipe_src_h > max_height) {
  456. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  457. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  458. goto out_disable;
  459. }
  460. if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
  461. intel_crtc->plane != PLANE_A) {
  462. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  463. DRM_DEBUG_KMS("plane not A, disabling compression\n");
  464. goto out_disable;
  465. }
  466. /* The use of a CPU fence is mandatory in order to detect writes
  467. * by the CPU to the scanout and trigger updates to the FBC.
  468. */
  469. if (obj->tiling_mode != I915_TILING_X ||
  470. obj->fence_reg == I915_FENCE_REG_NONE) {
  471. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  472. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  473. goto out_disable;
  474. }
  475. /* If the kernel debugger is active, always disable compression */
  476. if (in_dbg_master())
  477. goto out_disable;
  478. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  479. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  480. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  481. goto out_disable;
  482. }
  483. /* If the scanout has not changed, don't modify the FBC settings.
  484. * Note that we make the fundamental assumption that the fb->obj
  485. * cannot be unpinned (and have its GTT offset and fence revoked)
  486. * without first being decoupled from the scanout and FBC disabled.
  487. */
  488. if (dev_priv->fbc.plane == intel_crtc->plane &&
  489. dev_priv->fbc.fb_id == fb->base.id &&
  490. dev_priv->fbc.y == crtc->y)
  491. return;
  492. if (intel_fbc_enabled(dev)) {
  493. /* We update FBC along two paths, after changing fb/crtc
  494. * configuration (modeswitching) and after page-flipping
  495. * finishes. For the latter, we know that not only did
  496. * we disable the FBC at the start of the page-flip
  497. * sequence, but also more than one vblank has passed.
  498. *
  499. * For the former case of modeswitching, it is possible
  500. * to switch between two FBC valid configurations
  501. * instantaneously so we do need to disable the FBC
  502. * before we can modify its control registers. We also
  503. * have to wait for the next vblank for that to take
  504. * effect. However, since we delay enabling FBC we can
  505. * assume that a vblank has passed since disabling and
  506. * that we can safely alter the registers in the deferred
  507. * callback.
  508. *
  509. * In the scenario that we go from a valid to invalid
  510. * and then back to valid FBC configuration we have
  511. * no strict enforcement that a vblank occurred since
  512. * disabling the FBC. However, along all current pipe
  513. * disabling paths we do need to wait for a vblank at
  514. * some point. And we wait before enabling FBC anyway.
  515. */
  516. DRM_DEBUG_KMS("disabling active FBC for update\n");
  517. intel_disable_fbc(dev);
  518. }
  519. intel_enable_fbc(crtc);
  520. dev_priv->fbc.no_fbc_reason = FBC_OK;
  521. return;
  522. out_disable:
  523. /* Multiple disables should be harmless */
  524. if (intel_fbc_enabled(dev)) {
  525. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  526. intel_disable_fbc(dev);
  527. }
  528. i915_gem_stolen_cleanup_compression(dev);
  529. }
  530. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  531. {
  532. drm_i915_private_t *dev_priv = dev->dev_private;
  533. u32 tmp;
  534. tmp = I915_READ(CLKCFG);
  535. switch (tmp & CLKCFG_FSB_MASK) {
  536. case CLKCFG_FSB_533:
  537. dev_priv->fsb_freq = 533; /* 133*4 */
  538. break;
  539. case CLKCFG_FSB_800:
  540. dev_priv->fsb_freq = 800; /* 200*4 */
  541. break;
  542. case CLKCFG_FSB_667:
  543. dev_priv->fsb_freq = 667; /* 167*4 */
  544. break;
  545. case CLKCFG_FSB_400:
  546. dev_priv->fsb_freq = 400; /* 100*4 */
  547. break;
  548. }
  549. switch (tmp & CLKCFG_MEM_MASK) {
  550. case CLKCFG_MEM_533:
  551. dev_priv->mem_freq = 533;
  552. break;
  553. case CLKCFG_MEM_667:
  554. dev_priv->mem_freq = 667;
  555. break;
  556. case CLKCFG_MEM_800:
  557. dev_priv->mem_freq = 800;
  558. break;
  559. }
  560. /* detect pineview DDR3 setting */
  561. tmp = I915_READ(CSHRDDR3CTL);
  562. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  563. }
  564. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  565. {
  566. drm_i915_private_t *dev_priv = dev->dev_private;
  567. u16 ddrpll, csipll;
  568. ddrpll = I915_READ16(DDRMPLL1);
  569. csipll = I915_READ16(CSIPLL0);
  570. switch (ddrpll & 0xff) {
  571. case 0xc:
  572. dev_priv->mem_freq = 800;
  573. break;
  574. case 0x10:
  575. dev_priv->mem_freq = 1066;
  576. break;
  577. case 0x14:
  578. dev_priv->mem_freq = 1333;
  579. break;
  580. case 0x18:
  581. dev_priv->mem_freq = 1600;
  582. break;
  583. default:
  584. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  585. ddrpll & 0xff);
  586. dev_priv->mem_freq = 0;
  587. break;
  588. }
  589. dev_priv->ips.r_t = dev_priv->mem_freq;
  590. switch (csipll & 0x3ff) {
  591. case 0x00c:
  592. dev_priv->fsb_freq = 3200;
  593. break;
  594. case 0x00e:
  595. dev_priv->fsb_freq = 3733;
  596. break;
  597. case 0x010:
  598. dev_priv->fsb_freq = 4266;
  599. break;
  600. case 0x012:
  601. dev_priv->fsb_freq = 4800;
  602. break;
  603. case 0x014:
  604. dev_priv->fsb_freq = 5333;
  605. break;
  606. case 0x016:
  607. dev_priv->fsb_freq = 5866;
  608. break;
  609. case 0x018:
  610. dev_priv->fsb_freq = 6400;
  611. break;
  612. default:
  613. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  614. csipll & 0x3ff);
  615. dev_priv->fsb_freq = 0;
  616. break;
  617. }
  618. if (dev_priv->fsb_freq == 3200) {
  619. dev_priv->ips.c_m = 0;
  620. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  621. dev_priv->ips.c_m = 1;
  622. } else {
  623. dev_priv->ips.c_m = 2;
  624. }
  625. }
  626. static const struct cxsr_latency cxsr_latency_table[] = {
  627. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  628. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  629. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  630. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  631. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  632. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  633. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  634. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  635. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  636. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  637. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  638. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  639. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  640. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  641. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  642. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  643. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  644. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  645. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  646. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  647. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  648. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  649. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  650. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  651. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  652. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  653. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  654. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  655. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  656. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  657. };
  658. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  659. int is_ddr3,
  660. int fsb,
  661. int mem)
  662. {
  663. const struct cxsr_latency *latency;
  664. int i;
  665. if (fsb == 0 || mem == 0)
  666. return NULL;
  667. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  668. latency = &cxsr_latency_table[i];
  669. if (is_desktop == latency->is_desktop &&
  670. is_ddr3 == latency->is_ddr3 &&
  671. fsb == latency->fsb_freq && mem == latency->mem_freq)
  672. return latency;
  673. }
  674. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  675. return NULL;
  676. }
  677. static void pineview_disable_cxsr(struct drm_device *dev)
  678. {
  679. struct drm_i915_private *dev_priv = dev->dev_private;
  680. /* deactivate cxsr */
  681. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  682. }
  683. /*
  684. * Latency for FIFO fetches is dependent on several factors:
  685. * - memory configuration (speed, channels)
  686. * - chipset
  687. * - current MCH state
  688. * It can be fairly high in some situations, so here we assume a fairly
  689. * pessimal value. It's a tradeoff between extra memory fetches (if we
  690. * set this value too high, the FIFO will fetch frequently to stay full)
  691. * and power consumption (set it too low to save power and we might see
  692. * FIFO underruns and display "flicker").
  693. *
  694. * A value of 5us seems to be a good balance; safe for very low end
  695. * platforms but not overly aggressive on lower latency configs.
  696. */
  697. static const int latency_ns = 5000;
  698. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  699. {
  700. struct drm_i915_private *dev_priv = dev->dev_private;
  701. uint32_t dsparb = I915_READ(DSPARB);
  702. int size;
  703. size = dsparb & 0x7f;
  704. if (plane)
  705. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  706. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  707. plane ? "B" : "A", size);
  708. return size;
  709. }
  710. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  711. {
  712. struct drm_i915_private *dev_priv = dev->dev_private;
  713. uint32_t dsparb = I915_READ(DSPARB);
  714. int size;
  715. size = dsparb & 0x1ff;
  716. if (plane)
  717. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  718. size >>= 1; /* Convert to cachelines */
  719. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  720. plane ? "B" : "A", size);
  721. return size;
  722. }
  723. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  724. {
  725. struct drm_i915_private *dev_priv = dev->dev_private;
  726. uint32_t dsparb = I915_READ(DSPARB);
  727. int size;
  728. size = dsparb & 0x7f;
  729. size >>= 2; /* Convert to cachelines */
  730. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  731. plane ? "B" : "A",
  732. size);
  733. return size;
  734. }
  735. /* Pineview has different values for various configs */
  736. static const struct intel_watermark_params pineview_display_wm = {
  737. PINEVIEW_DISPLAY_FIFO,
  738. PINEVIEW_MAX_WM,
  739. PINEVIEW_DFT_WM,
  740. PINEVIEW_GUARD_WM,
  741. PINEVIEW_FIFO_LINE_SIZE
  742. };
  743. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  744. PINEVIEW_DISPLAY_FIFO,
  745. PINEVIEW_MAX_WM,
  746. PINEVIEW_DFT_HPLLOFF_WM,
  747. PINEVIEW_GUARD_WM,
  748. PINEVIEW_FIFO_LINE_SIZE
  749. };
  750. static const struct intel_watermark_params pineview_cursor_wm = {
  751. PINEVIEW_CURSOR_FIFO,
  752. PINEVIEW_CURSOR_MAX_WM,
  753. PINEVIEW_CURSOR_DFT_WM,
  754. PINEVIEW_CURSOR_GUARD_WM,
  755. PINEVIEW_FIFO_LINE_SIZE,
  756. };
  757. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  758. PINEVIEW_CURSOR_FIFO,
  759. PINEVIEW_CURSOR_MAX_WM,
  760. PINEVIEW_CURSOR_DFT_WM,
  761. PINEVIEW_CURSOR_GUARD_WM,
  762. PINEVIEW_FIFO_LINE_SIZE
  763. };
  764. static const struct intel_watermark_params g4x_wm_info = {
  765. G4X_FIFO_SIZE,
  766. G4X_MAX_WM,
  767. G4X_MAX_WM,
  768. 2,
  769. G4X_FIFO_LINE_SIZE,
  770. };
  771. static const struct intel_watermark_params g4x_cursor_wm_info = {
  772. I965_CURSOR_FIFO,
  773. I965_CURSOR_MAX_WM,
  774. I965_CURSOR_DFT_WM,
  775. 2,
  776. G4X_FIFO_LINE_SIZE,
  777. };
  778. static const struct intel_watermark_params valleyview_wm_info = {
  779. VALLEYVIEW_FIFO_SIZE,
  780. VALLEYVIEW_MAX_WM,
  781. VALLEYVIEW_MAX_WM,
  782. 2,
  783. G4X_FIFO_LINE_SIZE,
  784. };
  785. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  786. I965_CURSOR_FIFO,
  787. VALLEYVIEW_CURSOR_MAX_WM,
  788. I965_CURSOR_DFT_WM,
  789. 2,
  790. G4X_FIFO_LINE_SIZE,
  791. };
  792. static const struct intel_watermark_params i965_cursor_wm_info = {
  793. I965_CURSOR_FIFO,
  794. I965_CURSOR_MAX_WM,
  795. I965_CURSOR_DFT_WM,
  796. 2,
  797. I915_FIFO_LINE_SIZE,
  798. };
  799. static const struct intel_watermark_params i945_wm_info = {
  800. I945_FIFO_SIZE,
  801. I915_MAX_WM,
  802. 1,
  803. 2,
  804. I915_FIFO_LINE_SIZE
  805. };
  806. static const struct intel_watermark_params i915_wm_info = {
  807. I915_FIFO_SIZE,
  808. I915_MAX_WM,
  809. 1,
  810. 2,
  811. I915_FIFO_LINE_SIZE
  812. };
  813. static const struct intel_watermark_params i830_wm_info = {
  814. I855GM_FIFO_SIZE,
  815. I915_MAX_WM,
  816. 1,
  817. 2,
  818. I830_FIFO_LINE_SIZE
  819. };
  820. static const struct intel_watermark_params i845_wm_info = {
  821. I830_FIFO_SIZE,
  822. I915_MAX_WM,
  823. 1,
  824. 2,
  825. I830_FIFO_LINE_SIZE
  826. };
  827. /**
  828. * intel_calculate_wm - calculate watermark level
  829. * @clock_in_khz: pixel clock
  830. * @wm: chip FIFO params
  831. * @pixel_size: display pixel size
  832. * @latency_ns: memory latency for the platform
  833. *
  834. * Calculate the watermark level (the level at which the display plane will
  835. * start fetching from memory again). Each chip has a different display
  836. * FIFO size and allocation, so the caller needs to figure that out and pass
  837. * in the correct intel_watermark_params structure.
  838. *
  839. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  840. * on the pixel size. When it reaches the watermark level, it'll start
  841. * fetching FIFO line sized based chunks from memory until the FIFO fills
  842. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  843. * will occur, and a display engine hang could result.
  844. */
  845. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  846. const struct intel_watermark_params *wm,
  847. int fifo_size,
  848. int pixel_size,
  849. unsigned long latency_ns)
  850. {
  851. long entries_required, wm_size;
  852. /*
  853. * Note: we need to make sure we don't overflow for various clock &
  854. * latency values.
  855. * clocks go from a few thousand to several hundred thousand.
  856. * latency is usually a few thousand
  857. */
  858. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  859. 1000;
  860. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  861. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  862. wm_size = fifo_size - (entries_required + wm->guard_size);
  863. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  864. /* Don't promote wm_size to unsigned... */
  865. if (wm_size > (long)wm->max_wm)
  866. wm_size = wm->max_wm;
  867. if (wm_size <= 0)
  868. wm_size = wm->default_wm;
  869. return wm_size;
  870. }
  871. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  872. {
  873. struct drm_crtc *crtc, *enabled = NULL;
  874. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  875. if (intel_crtc_active(crtc)) {
  876. if (enabled)
  877. return NULL;
  878. enabled = crtc;
  879. }
  880. }
  881. return enabled;
  882. }
  883. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  884. {
  885. struct drm_device *dev = unused_crtc->dev;
  886. struct drm_i915_private *dev_priv = dev->dev_private;
  887. struct drm_crtc *crtc;
  888. const struct cxsr_latency *latency;
  889. u32 reg;
  890. unsigned long wm;
  891. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  892. dev_priv->fsb_freq, dev_priv->mem_freq);
  893. if (!latency) {
  894. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  895. pineview_disable_cxsr(dev);
  896. return;
  897. }
  898. crtc = single_enabled_crtc(dev);
  899. if (crtc) {
  900. const struct drm_display_mode *adjusted_mode;
  901. int pixel_size = crtc->fb->bits_per_pixel / 8;
  902. int clock;
  903. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  904. clock = adjusted_mode->crtc_clock;
  905. /* Display SR */
  906. wm = intel_calculate_wm(clock, &pineview_display_wm,
  907. pineview_display_wm.fifo_size,
  908. pixel_size, latency->display_sr);
  909. reg = I915_READ(DSPFW1);
  910. reg &= ~DSPFW_SR_MASK;
  911. reg |= wm << DSPFW_SR_SHIFT;
  912. I915_WRITE(DSPFW1, reg);
  913. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  914. /* cursor SR */
  915. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  916. pineview_display_wm.fifo_size,
  917. pixel_size, latency->cursor_sr);
  918. reg = I915_READ(DSPFW3);
  919. reg &= ~DSPFW_CURSOR_SR_MASK;
  920. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  921. I915_WRITE(DSPFW3, reg);
  922. /* Display HPLL off SR */
  923. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  924. pineview_display_hplloff_wm.fifo_size,
  925. pixel_size, latency->display_hpll_disable);
  926. reg = I915_READ(DSPFW3);
  927. reg &= ~DSPFW_HPLL_SR_MASK;
  928. reg |= wm & DSPFW_HPLL_SR_MASK;
  929. I915_WRITE(DSPFW3, reg);
  930. /* cursor HPLL off SR */
  931. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  932. pineview_display_hplloff_wm.fifo_size,
  933. pixel_size, latency->cursor_hpll_disable);
  934. reg = I915_READ(DSPFW3);
  935. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  936. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  937. I915_WRITE(DSPFW3, reg);
  938. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  939. /* activate cxsr */
  940. I915_WRITE(DSPFW3,
  941. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  942. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  943. } else {
  944. pineview_disable_cxsr(dev);
  945. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  946. }
  947. }
  948. static bool g4x_compute_wm0(struct drm_device *dev,
  949. int plane,
  950. const struct intel_watermark_params *display,
  951. int display_latency_ns,
  952. const struct intel_watermark_params *cursor,
  953. int cursor_latency_ns,
  954. int *plane_wm,
  955. int *cursor_wm)
  956. {
  957. struct drm_crtc *crtc;
  958. const struct drm_display_mode *adjusted_mode;
  959. int htotal, hdisplay, clock, pixel_size;
  960. int line_time_us, line_count;
  961. int entries, tlb_miss;
  962. crtc = intel_get_crtc_for_plane(dev, plane);
  963. if (!intel_crtc_active(crtc)) {
  964. *cursor_wm = cursor->guard_size;
  965. *plane_wm = display->guard_size;
  966. return false;
  967. }
  968. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  969. clock = adjusted_mode->crtc_clock;
  970. htotal = adjusted_mode->crtc_htotal;
  971. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  972. pixel_size = crtc->fb->bits_per_pixel / 8;
  973. /* Use the small buffer method to calculate plane watermark */
  974. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  975. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  976. if (tlb_miss > 0)
  977. entries += tlb_miss;
  978. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  979. *plane_wm = entries + display->guard_size;
  980. if (*plane_wm > (int)display->max_wm)
  981. *plane_wm = display->max_wm;
  982. /* Use the large buffer method to calculate cursor watermark */
  983. line_time_us = ((htotal * 1000) / clock);
  984. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  985. entries = line_count * 64 * pixel_size;
  986. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  987. if (tlb_miss > 0)
  988. entries += tlb_miss;
  989. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  990. *cursor_wm = entries + cursor->guard_size;
  991. if (*cursor_wm > (int)cursor->max_wm)
  992. *cursor_wm = (int)cursor->max_wm;
  993. return true;
  994. }
  995. /*
  996. * Check the wm result.
  997. *
  998. * If any calculated watermark values is larger than the maximum value that
  999. * can be programmed into the associated watermark register, that watermark
  1000. * must be disabled.
  1001. */
  1002. static bool g4x_check_srwm(struct drm_device *dev,
  1003. int display_wm, int cursor_wm,
  1004. const struct intel_watermark_params *display,
  1005. const struct intel_watermark_params *cursor)
  1006. {
  1007. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1008. display_wm, cursor_wm);
  1009. if (display_wm > display->max_wm) {
  1010. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1011. display_wm, display->max_wm);
  1012. return false;
  1013. }
  1014. if (cursor_wm > cursor->max_wm) {
  1015. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1016. cursor_wm, cursor->max_wm);
  1017. return false;
  1018. }
  1019. if (!(display_wm || cursor_wm)) {
  1020. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1021. return false;
  1022. }
  1023. return true;
  1024. }
  1025. static bool g4x_compute_srwm(struct drm_device *dev,
  1026. int plane,
  1027. int latency_ns,
  1028. const struct intel_watermark_params *display,
  1029. const struct intel_watermark_params *cursor,
  1030. int *display_wm, int *cursor_wm)
  1031. {
  1032. struct drm_crtc *crtc;
  1033. const struct drm_display_mode *adjusted_mode;
  1034. int hdisplay, htotal, pixel_size, clock;
  1035. unsigned long line_time_us;
  1036. int line_count, line_size;
  1037. int small, large;
  1038. int entries;
  1039. if (!latency_ns) {
  1040. *display_wm = *cursor_wm = 0;
  1041. return false;
  1042. }
  1043. crtc = intel_get_crtc_for_plane(dev, plane);
  1044. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1045. clock = adjusted_mode->crtc_clock;
  1046. htotal = adjusted_mode->crtc_htotal;
  1047. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1048. pixel_size = crtc->fb->bits_per_pixel / 8;
  1049. line_time_us = (htotal * 1000) / clock;
  1050. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1051. line_size = hdisplay * pixel_size;
  1052. /* Use the minimum of the small and large buffer method for primary */
  1053. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1054. large = line_count * line_size;
  1055. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1056. *display_wm = entries + display->guard_size;
  1057. /* calculate the self-refresh watermark for display cursor */
  1058. entries = line_count * pixel_size * 64;
  1059. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1060. *cursor_wm = entries + cursor->guard_size;
  1061. return g4x_check_srwm(dev,
  1062. *display_wm, *cursor_wm,
  1063. display, cursor);
  1064. }
  1065. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1066. int plane,
  1067. int *plane_prec_mult,
  1068. int *plane_dl,
  1069. int *cursor_prec_mult,
  1070. int *cursor_dl)
  1071. {
  1072. struct drm_crtc *crtc;
  1073. int clock, pixel_size;
  1074. int entries;
  1075. crtc = intel_get_crtc_for_plane(dev, plane);
  1076. if (!intel_crtc_active(crtc))
  1077. return false;
  1078. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1079. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1080. entries = (clock / 1000) * pixel_size;
  1081. *plane_prec_mult = (entries > 256) ?
  1082. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1083. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1084. pixel_size);
  1085. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1086. *cursor_prec_mult = (entries > 256) ?
  1087. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1088. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1089. return true;
  1090. }
  1091. /*
  1092. * Update drain latency registers of memory arbiter
  1093. *
  1094. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1095. * to be programmed. Each plane has a drain latency multiplier and a drain
  1096. * latency value.
  1097. */
  1098. static void vlv_update_drain_latency(struct drm_device *dev)
  1099. {
  1100. struct drm_i915_private *dev_priv = dev->dev_private;
  1101. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1102. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1103. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1104. either 16 or 32 */
  1105. /* For plane A, Cursor A */
  1106. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1107. &cursor_prec_mult, &cursora_dl)) {
  1108. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1109. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1110. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1111. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1112. I915_WRITE(VLV_DDL1, cursora_prec |
  1113. (cursora_dl << DDL_CURSORA_SHIFT) |
  1114. planea_prec | planea_dl);
  1115. }
  1116. /* For plane B, Cursor B */
  1117. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1118. &cursor_prec_mult, &cursorb_dl)) {
  1119. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1120. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1121. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1122. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1123. I915_WRITE(VLV_DDL2, cursorb_prec |
  1124. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1125. planeb_prec | planeb_dl);
  1126. }
  1127. }
  1128. #define single_plane_enabled(mask) is_power_of_2(mask)
  1129. static void valleyview_update_wm(struct drm_crtc *crtc)
  1130. {
  1131. struct drm_device *dev = crtc->dev;
  1132. static const int sr_latency_ns = 12000;
  1133. struct drm_i915_private *dev_priv = dev->dev_private;
  1134. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1135. int plane_sr, cursor_sr;
  1136. int ignore_plane_sr, ignore_cursor_sr;
  1137. unsigned int enabled = 0;
  1138. vlv_update_drain_latency(dev);
  1139. if (g4x_compute_wm0(dev, PIPE_A,
  1140. &valleyview_wm_info, latency_ns,
  1141. &valleyview_cursor_wm_info, latency_ns,
  1142. &planea_wm, &cursora_wm))
  1143. enabled |= 1 << PIPE_A;
  1144. if (g4x_compute_wm0(dev, PIPE_B,
  1145. &valleyview_wm_info, latency_ns,
  1146. &valleyview_cursor_wm_info, latency_ns,
  1147. &planeb_wm, &cursorb_wm))
  1148. enabled |= 1 << PIPE_B;
  1149. if (single_plane_enabled(enabled) &&
  1150. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1151. sr_latency_ns,
  1152. &valleyview_wm_info,
  1153. &valleyview_cursor_wm_info,
  1154. &plane_sr, &ignore_cursor_sr) &&
  1155. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1156. 2*sr_latency_ns,
  1157. &valleyview_wm_info,
  1158. &valleyview_cursor_wm_info,
  1159. &ignore_plane_sr, &cursor_sr)) {
  1160. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1161. } else {
  1162. I915_WRITE(FW_BLC_SELF_VLV,
  1163. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1164. plane_sr = cursor_sr = 0;
  1165. }
  1166. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1167. planea_wm, cursora_wm,
  1168. planeb_wm, cursorb_wm,
  1169. plane_sr, cursor_sr);
  1170. I915_WRITE(DSPFW1,
  1171. (plane_sr << DSPFW_SR_SHIFT) |
  1172. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1173. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1174. planea_wm);
  1175. I915_WRITE(DSPFW2,
  1176. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1177. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1178. I915_WRITE(DSPFW3,
  1179. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1180. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1181. }
  1182. static void g4x_update_wm(struct drm_crtc *crtc)
  1183. {
  1184. struct drm_device *dev = crtc->dev;
  1185. static const int sr_latency_ns = 12000;
  1186. struct drm_i915_private *dev_priv = dev->dev_private;
  1187. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1188. int plane_sr, cursor_sr;
  1189. unsigned int enabled = 0;
  1190. if (g4x_compute_wm0(dev, PIPE_A,
  1191. &g4x_wm_info, latency_ns,
  1192. &g4x_cursor_wm_info, latency_ns,
  1193. &planea_wm, &cursora_wm))
  1194. enabled |= 1 << PIPE_A;
  1195. if (g4x_compute_wm0(dev, PIPE_B,
  1196. &g4x_wm_info, latency_ns,
  1197. &g4x_cursor_wm_info, latency_ns,
  1198. &planeb_wm, &cursorb_wm))
  1199. enabled |= 1 << PIPE_B;
  1200. if (single_plane_enabled(enabled) &&
  1201. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1202. sr_latency_ns,
  1203. &g4x_wm_info,
  1204. &g4x_cursor_wm_info,
  1205. &plane_sr, &cursor_sr)) {
  1206. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1207. } else {
  1208. I915_WRITE(FW_BLC_SELF,
  1209. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1210. plane_sr = cursor_sr = 0;
  1211. }
  1212. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1213. planea_wm, cursora_wm,
  1214. planeb_wm, cursorb_wm,
  1215. plane_sr, cursor_sr);
  1216. I915_WRITE(DSPFW1,
  1217. (plane_sr << DSPFW_SR_SHIFT) |
  1218. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1219. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1220. planea_wm);
  1221. I915_WRITE(DSPFW2,
  1222. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1223. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1224. /* HPLL off in SR has some issues on G4x... disable it */
  1225. I915_WRITE(DSPFW3,
  1226. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1227. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1228. }
  1229. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1230. {
  1231. struct drm_device *dev = unused_crtc->dev;
  1232. struct drm_i915_private *dev_priv = dev->dev_private;
  1233. struct drm_crtc *crtc;
  1234. int srwm = 1;
  1235. int cursor_sr = 16;
  1236. /* Calc sr entries for one plane configs */
  1237. crtc = single_enabled_crtc(dev);
  1238. if (crtc) {
  1239. /* self-refresh has much higher latency */
  1240. static const int sr_latency_ns = 12000;
  1241. const struct drm_display_mode *adjusted_mode =
  1242. &to_intel_crtc(crtc)->config.adjusted_mode;
  1243. int clock = adjusted_mode->crtc_clock;
  1244. int htotal = adjusted_mode->crtc_htotal;
  1245. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1246. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1247. unsigned long line_time_us;
  1248. int entries;
  1249. line_time_us = ((htotal * 1000) / clock);
  1250. /* Use ns/us then divide to preserve precision */
  1251. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1252. pixel_size * hdisplay;
  1253. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1254. srwm = I965_FIFO_SIZE - entries;
  1255. if (srwm < 0)
  1256. srwm = 1;
  1257. srwm &= 0x1ff;
  1258. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1259. entries, srwm);
  1260. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1261. pixel_size * 64;
  1262. entries = DIV_ROUND_UP(entries,
  1263. i965_cursor_wm_info.cacheline_size);
  1264. cursor_sr = i965_cursor_wm_info.fifo_size -
  1265. (entries + i965_cursor_wm_info.guard_size);
  1266. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1267. cursor_sr = i965_cursor_wm_info.max_wm;
  1268. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1269. "cursor %d\n", srwm, cursor_sr);
  1270. if (IS_CRESTLINE(dev))
  1271. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1272. } else {
  1273. /* Turn off self refresh if both pipes are enabled */
  1274. if (IS_CRESTLINE(dev))
  1275. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1276. & ~FW_BLC_SELF_EN);
  1277. }
  1278. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1279. srwm);
  1280. /* 965 has limitations... */
  1281. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1282. (8 << 16) | (8 << 8) | (8 << 0));
  1283. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1284. /* update cursor SR watermark */
  1285. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1286. }
  1287. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1288. {
  1289. struct drm_device *dev = unused_crtc->dev;
  1290. struct drm_i915_private *dev_priv = dev->dev_private;
  1291. const struct intel_watermark_params *wm_info;
  1292. uint32_t fwater_lo;
  1293. uint32_t fwater_hi;
  1294. int cwm, srwm = 1;
  1295. int fifo_size;
  1296. int planea_wm, planeb_wm;
  1297. struct drm_crtc *crtc, *enabled = NULL;
  1298. if (IS_I945GM(dev))
  1299. wm_info = &i945_wm_info;
  1300. else if (!IS_GEN2(dev))
  1301. wm_info = &i915_wm_info;
  1302. else
  1303. wm_info = &i830_wm_info;
  1304. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1305. crtc = intel_get_crtc_for_plane(dev, 0);
  1306. if (intel_crtc_active(crtc)) {
  1307. const struct drm_display_mode *adjusted_mode;
  1308. int cpp = crtc->fb->bits_per_pixel / 8;
  1309. if (IS_GEN2(dev))
  1310. cpp = 4;
  1311. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1312. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1313. wm_info, fifo_size, cpp,
  1314. latency_ns);
  1315. enabled = crtc;
  1316. } else
  1317. planea_wm = fifo_size - wm_info->guard_size;
  1318. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1319. crtc = intel_get_crtc_for_plane(dev, 1);
  1320. if (intel_crtc_active(crtc)) {
  1321. const struct drm_display_mode *adjusted_mode;
  1322. int cpp = crtc->fb->bits_per_pixel / 8;
  1323. if (IS_GEN2(dev))
  1324. cpp = 4;
  1325. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1326. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1327. wm_info, fifo_size, cpp,
  1328. latency_ns);
  1329. if (enabled == NULL)
  1330. enabled = crtc;
  1331. else
  1332. enabled = NULL;
  1333. } else
  1334. planeb_wm = fifo_size - wm_info->guard_size;
  1335. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1336. /*
  1337. * Overlay gets an aggressive default since video jitter is bad.
  1338. */
  1339. cwm = 2;
  1340. /* Play safe and disable self-refresh before adjusting watermarks. */
  1341. if (IS_I945G(dev) || IS_I945GM(dev))
  1342. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1343. else if (IS_I915GM(dev))
  1344. I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
  1345. /* Calc sr entries for one plane configs */
  1346. if (HAS_FW_BLC(dev) && enabled) {
  1347. /* self-refresh has much higher latency */
  1348. static const int sr_latency_ns = 6000;
  1349. const struct drm_display_mode *adjusted_mode =
  1350. &to_intel_crtc(enabled)->config.adjusted_mode;
  1351. int clock = adjusted_mode->crtc_clock;
  1352. int htotal = adjusted_mode->crtc_htotal;
  1353. int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
  1354. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1355. unsigned long line_time_us;
  1356. int entries;
  1357. line_time_us = (htotal * 1000) / clock;
  1358. /* Use ns/us then divide to preserve precision */
  1359. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1360. pixel_size * hdisplay;
  1361. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1362. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1363. srwm = wm_info->fifo_size - entries;
  1364. if (srwm < 0)
  1365. srwm = 1;
  1366. if (IS_I945G(dev) || IS_I945GM(dev))
  1367. I915_WRITE(FW_BLC_SELF,
  1368. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1369. else if (IS_I915GM(dev))
  1370. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1371. }
  1372. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1373. planea_wm, planeb_wm, cwm, srwm);
  1374. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1375. fwater_hi = (cwm & 0x1f);
  1376. /* Set request length to 8 cachelines per fetch */
  1377. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1378. fwater_hi = fwater_hi | (1 << 8);
  1379. I915_WRITE(FW_BLC, fwater_lo);
  1380. I915_WRITE(FW_BLC2, fwater_hi);
  1381. if (HAS_FW_BLC(dev)) {
  1382. if (enabled) {
  1383. if (IS_I945G(dev) || IS_I945GM(dev))
  1384. I915_WRITE(FW_BLC_SELF,
  1385. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1386. else if (IS_I915GM(dev))
  1387. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
  1388. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1389. } else
  1390. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1391. }
  1392. }
  1393. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1394. {
  1395. struct drm_device *dev = unused_crtc->dev;
  1396. struct drm_i915_private *dev_priv = dev->dev_private;
  1397. struct drm_crtc *crtc;
  1398. const struct drm_display_mode *adjusted_mode;
  1399. uint32_t fwater_lo;
  1400. int planea_wm;
  1401. crtc = single_enabled_crtc(dev);
  1402. if (crtc == NULL)
  1403. return;
  1404. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1405. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1406. &i845_wm_info,
  1407. dev_priv->display.get_fifo_size(dev, 0),
  1408. 4, latency_ns);
  1409. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1410. fwater_lo |= (3<<8) | planea_wm;
  1411. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1412. I915_WRITE(FW_BLC, fwater_lo);
  1413. }
  1414. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1415. struct drm_crtc *crtc)
  1416. {
  1417. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1418. uint32_t pixel_rate;
  1419. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1420. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1421. * adjust the pixel_rate here. */
  1422. if (intel_crtc->config.pch_pfit.enabled) {
  1423. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1424. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1425. pipe_w = intel_crtc->config.pipe_src_w;
  1426. pipe_h = intel_crtc->config.pipe_src_h;
  1427. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1428. pfit_h = pfit_size & 0xFFFF;
  1429. if (pipe_w < pfit_w)
  1430. pipe_w = pfit_w;
  1431. if (pipe_h < pfit_h)
  1432. pipe_h = pfit_h;
  1433. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1434. pfit_w * pfit_h);
  1435. }
  1436. return pixel_rate;
  1437. }
  1438. /* latency must be in 0.1us units. */
  1439. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1440. uint32_t latency)
  1441. {
  1442. uint64_t ret;
  1443. if (WARN(latency == 0, "Latency value missing\n"))
  1444. return UINT_MAX;
  1445. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1446. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1447. return ret;
  1448. }
  1449. /* latency must be in 0.1us units. */
  1450. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1451. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1452. uint32_t latency)
  1453. {
  1454. uint32_t ret;
  1455. if (WARN(latency == 0, "Latency value missing\n"))
  1456. return UINT_MAX;
  1457. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1458. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1459. ret = DIV_ROUND_UP(ret, 64) + 2;
  1460. return ret;
  1461. }
  1462. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1463. uint8_t bytes_per_pixel)
  1464. {
  1465. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1466. }
  1467. struct ilk_pipe_wm_parameters {
  1468. bool active;
  1469. uint32_t pipe_htotal;
  1470. uint32_t pixel_rate;
  1471. struct intel_plane_wm_parameters pri;
  1472. struct intel_plane_wm_parameters spr;
  1473. struct intel_plane_wm_parameters cur;
  1474. };
  1475. struct ilk_wm_maximums {
  1476. uint16_t pri;
  1477. uint16_t spr;
  1478. uint16_t cur;
  1479. uint16_t fbc;
  1480. };
  1481. /* used in computing the new watermarks state */
  1482. struct intel_wm_config {
  1483. unsigned int num_pipes_active;
  1484. bool sprites_enabled;
  1485. bool sprites_scaled;
  1486. };
  1487. /*
  1488. * For both WM_PIPE and WM_LP.
  1489. * mem_value must be in 0.1us units.
  1490. */
  1491. static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
  1492. uint32_t mem_value,
  1493. bool is_lp)
  1494. {
  1495. uint32_t method1, method2;
  1496. if (!params->active || !params->pri.enabled)
  1497. return 0;
  1498. method1 = ilk_wm_method1(params->pixel_rate,
  1499. params->pri.bytes_per_pixel,
  1500. mem_value);
  1501. if (!is_lp)
  1502. return method1;
  1503. method2 = ilk_wm_method2(params->pixel_rate,
  1504. params->pipe_htotal,
  1505. params->pri.horiz_pixels,
  1506. params->pri.bytes_per_pixel,
  1507. mem_value);
  1508. return min(method1, method2);
  1509. }
  1510. /*
  1511. * For both WM_PIPE and WM_LP.
  1512. * mem_value must be in 0.1us units.
  1513. */
  1514. static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
  1515. uint32_t mem_value)
  1516. {
  1517. uint32_t method1, method2;
  1518. if (!params->active || !params->spr.enabled)
  1519. return 0;
  1520. method1 = ilk_wm_method1(params->pixel_rate,
  1521. params->spr.bytes_per_pixel,
  1522. mem_value);
  1523. method2 = ilk_wm_method2(params->pixel_rate,
  1524. params->pipe_htotal,
  1525. params->spr.horiz_pixels,
  1526. params->spr.bytes_per_pixel,
  1527. mem_value);
  1528. return min(method1, method2);
  1529. }
  1530. /*
  1531. * For both WM_PIPE and WM_LP.
  1532. * mem_value must be in 0.1us units.
  1533. */
  1534. static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
  1535. uint32_t mem_value)
  1536. {
  1537. if (!params->active || !params->cur.enabled)
  1538. return 0;
  1539. return ilk_wm_method2(params->pixel_rate,
  1540. params->pipe_htotal,
  1541. params->cur.horiz_pixels,
  1542. params->cur.bytes_per_pixel,
  1543. mem_value);
  1544. }
  1545. /* Only for WM_LP. */
  1546. static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
  1547. uint32_t pri_val)
  1548. {
  1549. if (!params->active || !params->pri.enabled)
  1550. return 0;
  1551. return ilk_wm_fbc(pri_val,
  1552. params->pri.horiz_pixels,
  1553. params->pri.bytes_per_pixel);
  1554. }
  1555. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1556. {
  1557. if (INTEL_INFO(dev)->gen >= 8)
  1558. return 3072;
  1559. else if (INTEL_INFO(dev)->gen >= 7)
  1560. return 768;
  1561. else
  1562. return 512;
  1563. }
  1564. /* Calculate the maximum primary/sprite plane watermark */
  1565. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1566. int level,
  1567. const struct intel_wm_config *config,
  1568. enum intel_ddb_partitioning ddb_partitioning,
  1569. bool is_sprite)
  1570. {
  1571. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1572. unsigned int max;
  1573. /* if sprites aren't enabled, sprites get nothing */
  1574. if (is_sprite && !config->sprites_enabled)
  1575. return 0;
  1576. /* HSW allows LP1+ watermarks even with multiple pipes */
  1577. if (level == 0 || config->num_pipes_active > 1) {
  1578. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1579. /*
  1580. * For some reason the non self refresh
  1581. * FIFO size is only half of the self
  1582. * refresh FIFO size on ILK/SNB.
  1583. */
  1584. if (INTEL_INFO(dev)->gen <= 6)
  1585. fifo_size /= 2;
  1586. }
  1587. if (config->sprites_enabled) {
  1588. /* level 0 is always calculated with 1:1 split */
  1589. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1590. if (is_sprite)
  1591. fifo_size *= 5;
  1592. fifo_size /= 6;
  1593. } else {
  1594. fifo_size /= 2;
  1595. }
  1596. }
  1597. /* clamp to max that the registers can hold */
  1598. if (INTEL_INFO(dev)->gen >= 8)
  1599. max = level == 0 ? 255 : 2047;
  1600. else if (INTEL_INFO(dev)->gen >= 7)
  1601. /* IVB/HSW primary/sprite plane watermarks */
  1602. max = level == 0 ? 127 : 1023;
  1603. else if (!is_sprite)
  1604. /* ILK/SNB primary plane watermarks */
  1605. max = level == 0 ? 127 : 511;
  1606. else
  1607. /* ILK/SNB sprite plane watermarks */
  1608. max = level == 0 ? 63 : 255;
  1609. return min(fifo_size, max);
  1610. }
  1611. /* Calculate the maximum cursor plane watermark */
  1612. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1613. int level,
  1614. const struct intel_wm_config *config)
  1615. {
  1616. /* HSW LP1+ watermarks w/ multiple pipes */
  1617. if (level > 0 && config->num_pipes_active > 1)
  1618. return 64;
  1619. /* otherwise just report max that registers can hold */
  1620. if (INTEL_INFO(dev)->gen >= 7)
  1621. return level == 0 ? 63 : 255;
  1622. else
  1623. return level == 0 ? 31 : 63;
  1624. }
  1625. /* Calculate the maximum FBC watermark */
  1626. static unsigned int ilk_fbc_wm_max(const struct drm_device *dev)
  1627. {
  1628. /* max that registers can hold */
  1629. if (INTEL_INFO(dev)->gen >= 8)
  1630. return 31;
  1631. else
  1632. return 15;
  1633. }
  1634. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1635. int level,
  1636. const struct intel_wm_config *config,
  1637. enum intel_ddb_partitioning ddb_partitioning,
  1638. struct ilk_wm_maximums *max)
  1639. {
  1640. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1641. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1642. max->cur = ilk_cursor_wm_max(dev, level, config);
  1643. max->fbc = ilk_fbc_wm_max(dev);
  1644. }
  1645. static bool ilk_validate_wm_level(int level,
  1646. const struct ilk_wm_maximums *max,
  1647. struct intel_wm_level *result)
  1648. {
  1649. bool ret;
  1650. /* already determined to be invalid? */
  1651. if (!result->enable)
  1652. return false;
  1653. result->enable = result->pri_val <= max->pri &&
  1654. result->spr_val <= max->spr &&
  1655. result->cur_val <= max->cur;
  1656. ret = result->enable;
  1657. /*
  1658. * HACK until we can pre-compute everything,
  1659. * and thus fail gracefully if LP0 watermarks
  1660. * are exceeded...
  1661. */
  1662. if (level == 0 && !result->enable) {
  1663. if (result->pri_val > max->pri)
  1664. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1665. level, result->pri_val, max->pri);
  1666. if (result->spr_val > max->spr)
  1667. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1668. level, result->spr_val, max->spr);
  1669. if (result->cur_val > max->cur)
  1670. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1671. level, result->cur_val, max->cur);
  1672. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1673. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1674. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1675. result->enable = true;
  1676. }
  1677. return ret;
  1678. }
  1679. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1680. int level,
  1681. const struct ilk_pipe_wm_parameters *p,
  1682. struct intel_wm_level *result)
  1683. {
  1684. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1685. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1686. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1687. /* WM1+ latency values stored in 0.5us units */
  1688. if (level > 0) {
  1689. pri_latency *= 5;
  1690. spr_latency *= 5;
  1691. cur_latency *= 5;
  1692. }
  1693. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  1694. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  1695. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  1696. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  1697. result->enable = true;
  1698. }
  1699. static uint32_t
  1700. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  1701. {
  1702. struct drm_i915_private *dev_priv = dev->dev_private;
  1703. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1704. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  1705. u32 linetime, ips_linetime;
  1706. if (!intel_crtc_active(crtc))
  1707. return 0;
  1708. /* The WM are computed with base on how long it takes to fill a single
  1709. * row at the given clock rate, multiplied by 8.
  1710. * */
  1711. linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1712. mode->crtc_clock);
  1713. ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1714. intel_ddi_get_cdclk_freq(dev_priv));
  1715. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1716. PIPE_WM_LINETIME_TIME(linetime);
  1717. }
  1718. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1719. {
  1720. struct drm_i915_private *dev_priv = dev->dev_private;
  1721. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1722. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1723. wm[0] = (sskpd >> 56) & 0xFF;
  1724. if (wm[0] == 0)
  1725. wm[0] = sskpd & 0xF;
  1726. wm[1] = (sskpd >> 4) & 0xFF;
  1727. wm[2] = (sskpd >> 12) & 0xFF;
  1728. wm[3] = (sskpd >> 20) & 0x1FF;
  1729. wm[4] = (sskpd >> 32) & 0x1FF;
  1730. } else if (INTEL_INFO(dev)->gen >= 6) {
  1731. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1732. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1733. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1734. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1735. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1736. } else if (INTEL_INFO(dev)->gen >= 5) {
  1737. uint32_t mltr = I915_READ(MLTR_ILK);
  1738. /* ILK primary LP0 latency is 700 ns */
  1739. wm[0] = 7;
  1740. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1741. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1742. }
  1743. }
  1744. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1745. {
  1746. /* ILK sprite LP0 latency is 1300 ns */
  1747. if (INTEL_INFO(dev)->gen == 5)
  1748. wm[0] = 13;
  1749. }
  1750. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1751. {
  1752. /* ILK cursor LP0 latency is 1300 ns */
  1753. if (INTEL_INFO(dev)->gen == 5)
  1754. wm[0] = 13;
  1755. /* WaDoubleCursorLP3Latency:ivb */
  1756. if (IS_IVYBRIDGE(dev))
  1757. wm[3] *= 2;
  1758. }
  1759. static int ilk_wm_max_level(const struct drm_device *dev)
  1760. {
  1761. /* how many WM levels are we expecting */
  1762. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1763. return 4;
  1764. else if (INTEL_INFO(dev)->gen >= 6)
  1765. return 3;
  1766. else
  1767. return 2;
  1768. }
  1769. static void intel_print_wm_latency(struct drm_device *dev,
  1770. const char *name,
  1771. const uint16_t wm[5])
  1772. {
  1773. int level, max_level = ilk_wm_max_level(dev);
  1774. for (level = 0; level <= max_level; level++) {
  1775. unsigned int latency = wm[level];
  1776. if (latency == 0) {
  1777. DRM_ERROR("%s WM%d latency not provided\n",
  1778. name, level);
  1779. continue;
  1780. }
  1781. /* WM1+ latency values in 0.5us units */
  1782. if (level > 0)
  1783. latency *= 5;
  1784. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1785. name, level, wm[level],
  1786. latency / 10, latency % 10);
  1787. }
  1788. }
  1789. static void intel_setup_wm_latency(struct drm_device *dev)
  1790. {
  1791. struct drm_i915_private *dev_priv = dev->dev_private;
  1792. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  1793. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1794. sizeof(dev_priv->wm.pri_latency));
  1795. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1796. sizeof(dev_priv->wm.pri_latency));
  1797. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  1798. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  1799. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1800. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1801. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1802. }
  1803. static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
  1804. struct ilk_pipe_wm_parameters *p,
  1805. struct intel_wm_config *config)
  1806. {
  1807. struct drm_device *dev = crtc->dev;
  1808. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1809. enum pipe pipe = intel_crtc->pipe;
  1810. struct drm_plane *plane;
  1811. p->active = intel_crtc_active(crtc);
  1812. if (p->active) {
  1813. p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
  1814. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  1815. p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
  1816. p->cur.bytes_per_pixel = 4;
  1817. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  1818. p->cur.horiz_pixels = 64;
  1819. /* TODO: for now, assume primary and cursor planes are always enabled. */
  1820. p->pri.enabled = true;
  1821. p->cur.enabled = true;
  1822. }
  1823. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  1824. config->num_pipes_active += intel_crtc_active(crtc);
  1825. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  1826. struct intel_plane *intel_plane = to_intel_plane(plane);
  1827. if (intel_plane->pipe == pipe)
  1828. p->spr = intel_plane->wm;
  1829. config->sprites_enabled |= intel_plane->wm.enabled;
  1830. config->sprites_scaled |= intel_plane->wm.scaled;
  1831. }
  1832. }
  1833. /* Compute new watermarks for the pipe */
  1834. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  1835. const struct ilk_pipe_wm_parameters *params,
  1836. struct intel_pipe_wm *pipe_wm)
  1837. {
  1838. struct drm_device *dev = crtc->dev;
  1839. const struct drm_i915_private *dev_priv = dev->dev_private;
  1840. int level, max_level = ilk_wm_max_level(dev);
  1841. /* LP0 watermark maximums depend on this pipe alone */
  1842. struct intel_wm_config config = {
  1843. .num_pipes_active = 1,
  1844. .sprites_enabled = params->spr.enabled,
  1845. .sprites_scaled = params->spr.scaled,
  1846. };
  1847. struct ilk_wm_maximums max;
  1848. /* LP0 watermarks always use 1/2 DDB partitioning */
  1849. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1850. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  1851. if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
  1852. max_level = 1;
  1853. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  1854. if (params->spr.scaled)
  1855. max_level = 0;
  1856. for (level = 0; level <= max_level; level++)
  1857. ilk_compute_wm_level(dev_priv, level, params,
  1858. &pipe_wm->wm[level]);
  1859. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1860. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  1861. /* At least LP0 must be valid */
  1862. return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
  1863. }
  1864. /*
  1865. * Merge the watermarks from all active pipes for a specific level.
  1866. */
  1867. static void ilk_merge_wm_level(struct drm_device *dev,
  1868. int level,
  1869. struct intel_wm_level *ret_wm)
  1870. {
  1871. const struct intel_crtc *intel_crtc;
  1872. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  1873. const struct intel_wm_level *wm =
  1874. &intel_crtc->wm.active.wm[level];
  1875. if (!wm->enable)
  1876. return;
  1877. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  1878. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  1879. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  1880. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  1881. }
  1882. ret_wm->enable = true;
  1883. }
  1884. /*
  1885. * Merge all low power watermarks for all active pipes.
  1886. */
  1887. static void ilk_wm_merge(struct drm_device *dev,
  1888. const struct intel_wm_config *config,
  1889. const struct ilk_wm_maximums *max,
  1890. struct intel_pipe_wm *merged)
  1891. {
  1892. int level, max_level = ilk_wm_max_level(dev);
  1893. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  1894. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  1895. config->num_pipes_active > 1)
  1896. return;
  1897. /* ILK: FBC WM must be disabled always */
  1898. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  1899. /* merge each WM1+ level */
  1900. for (level = 1; level <= max_level; level++) {
  1901. struct intel_wm_level *wm = &merged->wm[level];
  1902. ilk_merge_wm_level(dev, level, wm);
  1903. if (!ilk_validate_wm_level(level, max, wm))
  1904. break;
  1905. /*
  1906. * The spec says it is preferred to disable
  1907. * FBC WMs instead of disabling a WM level.
  1908. */
  1909. if (wm->fbc_val > max->fbc) {
  1910. merged->fbc_wm_enabled = false;
  1911. wm->fbc_val = 0;
  1912. }
  1913. }
  1914. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  1915. /*
  1916. * FIXME this is racy. FBC might get enabled later.
  1917. * What we should check here is whether FBC can be
  1918. * enabled sometime later.
  1919. */
  1920. if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
  1921. for (level = 2; level <= max_level; level++) {
  1922. struct intel_wm_level *wm = &merged->wm[level];
  1923. wm->enable = false;
  1924. }
  1925. }
  1926. }
  1927. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  1928. {
  1929. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  1930. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  1931. }
  1932. /* The value we need to program into the WM_LPx latency field */
  1933. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  1934. {
  1935. struct drm_i915_private *dev_priv = dev->dev_private;
  1936. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1937. return 2 * level;
  1938. else
  1939. return dev_priv->wm.pri_latency[level];
  1940. }
  1941. static void ilk_compute_wm_results(struct drm_device *dev,
  1942. const struct intel_pipe_wm *merged,
  1943. enum intel_ddb_partitioning partitioning,
  1944. struct ilk_wm_values *results)
  1945. {
  1946. struct intel_crtc *intel_crtc;
  1947. int level, wm_lp;
  1948. results->enable_fbc_wm = merged->fbc_wm_enabled;
  1949. results->partitioning = partitioning;
  1950. /* LP1+ register values */
  1951. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  1952. const struct intel_wm_level *r;
  1953. level = ilk_wm_lp_to_level(wm_lp, merged);
  1954. r = &merged->wm[level];
  1955. if (!r->enable)
  1956. break;
  1957. results->wm_lp[wm_lp - 1] = WM3_LP_EN |
  1958. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  1959. (r->pri_val << WM1_LP_SR_SHIFT) |
  1960. r->cur_val;
  1961. if (INTEL_INFO(dev)->gen >= 8)
  1962. results->wm_lp[wm_lp - 1] |=
  1963. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  1964. else
  1965. results->wm_lp[wm_lp - 1] |=
  1966. r->fbc_val << WM1_LP_FBC_SHIFT;
  1967. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  1968. WARN_ON(wm_lp != 1);
  1969. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  1970. } else
  1971. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  1972. }
  1973. /* LP0 register values */
  1974. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  1975. enum pipe pipe = intel_crtc->pipe;
  1976. const struct intel_wm_level *r =
  1977. &intel_crtc->wm.active.wm[0];
  1978. if (WARN_ON(!r->enable))
  1979. continue;
  1980. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  1981. results->wm_pipe[pipe] =
  1982. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  1983. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  1984. r->cur_val;
  1985. }
  1986. }
  1987. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  1988. * case both are at the same level. Prefer r1 in case they're the same. */
  1989. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  1990. struct intel_pipe_wm *r1,
  1991. struct intel_pipe_wm *r2)
  1992. {
  1993. int level, max_level = ilk_wm_max_level(dev);
  1994. int level1 = 0, level2 = 0;
  1995. for (level = 1; level <= max_level; level++) {
  1996. if (r1->wm[level].enable)
  1997. level1 = level;
  1998. if (r2->wm[level].enable)
  1999. level2 = level;
  2000. }
  2001. if (level1 == level2) {
  2002. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2003. return r2;
  2004. else
  2005. return r1;
  2006. } else if (level1 > level2) {
  2007. return r1;
  2008. } else {
  2009. return r2;
  2010. }
  2011. }
  2012. /* dirty bits used to track which watermarks need changes */
  2013. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2014. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2015. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2016. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2017. #define WM_DIRTY_FBC (1 << 24)
  2018. #define WM_DIRTY_DDB (1 << 25)
  2019. static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
  2020. const struct ilk_wm_values *old,
  2021. const struct ilk_wm_values *new)
  2022. {
  2023. unsigned int dirty = 0;
  2024. enum pipe pipe;
  2025. int wm_lp;
  2026. for_each_pipe(pipe) {
  2027. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2028. dirty |= WM_DIRTY_LINETIME(pipe);
  2029. /* Must disable LP1+ watermarks too */
  2030. dirty |= WM_DIRTY_LP_ALL;
  2031. }
  2032. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2033. dirty |= WM_DIRTY_PIPE(pipe);
  2034. /* Must disable LP1+ watermarks too */
  2035. dirty |= WM_DIRTY_LP_ALL;
  2036. }
  2037. }
  2038. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2039. dirty |= WM_DIRTY_FBC;
  2040. /* Must disable LP1+ watermarks too */
  2041. dirty |= WM_DIRTY_LP_ALL;
  2042. }
  2043. if (old->partitioning != new->partitioning) {
  2044. dirty |= WM_DIRTY_DDB;
  2045. /* Must disable LP1+ watermarks too */
  2046. dirty |= WM_DIRTY_LP_ALL;
  2047. }
  2048. /* LP1+ watermarks already deemed dirty, no need to continue */
  2049. if (dirty & WM_DIRTY_LP_ALL)
  2050. return dirty;
  2051. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2052. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2053. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2054. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2055. break;
  2056. }
  2057. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2058. for (; wm_lp <= 3; wm_lp++)
  2059. dirty |= WM_DIRTY_LP(wm_lp);
  2060. return dirty;
  2061. }
  2062. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2063. unsigned int dirty)
  2064. {
  2065. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2066. bool changed = false;
  2067. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2068. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2069. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2070. changed = true;
  2071. }
  2072. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2073. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2074. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2075. changed = true;
  2076. }
  2077. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2078. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2079. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2080. changed = true;
  2081. }
  2082. /*
  2083. * Don't touch WM1S_LP_EN here.
  2084. * Doing so could cause underruns.
  2085. */
  2086. return changed;
  2087. }
  2088. /*
  2089. * The spec says we shouldn't write when we don't need, because every write
  2090. * causes WMs to be re-evaluated, expending some power.
  2091. */
  2092. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2093. struct ilk_wm_values *results)
  2094. {
  2095. struct drm_device *dev = dev_priv->dev;
  2096. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2097. unsigned int dirty;
  2098. uint32_t val;
  2099. dirty = ilk_compute_wm_dirty(dev, previous, results);
  2100. if (!dirty)
  2101. return;
  2102. _ilk_disable_lp_wm(dev_priv, dirty);
  2103. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2104. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2105. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2106. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2107. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2108. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2109. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2110. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2111. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2112. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2113. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2114. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2115. if (dirty & WM_DIRTY_DDB) {
  2116. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2117. val = I915_READ(WM_MISC);
  2118. if (results->partitioning == INTEL_DDB_PART_1_2)
  2119. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2120. else
  2121. val |= WM_MISC_DATA_PARTITION_5_6;
  2122. I915_WRITE(WM_MISC, val);
  2123. } else {
  2124. val = I915_READ(DISP_ARB_CTL2);
  2125. if (results->partitioning == INTEL_DDB_PART_1_2)
  2126. val &= ~DISP_DATA_PARTITION_5_6;
  2127. else
  2128. val |= DISP_DATA_PARTITION_5_6;
  2129. I915_WRITE(DISP_ARB_CTL2, val);
  2130. }
  2131. }
  2132. if (dirty & WM_DIRTY_FBC) {
  2133. val = I915_READ(DISP_ARB_CTL);
  2134. if (results->enable_fbc_wm)
  2135. val &= ~DISP_FBC_WM_DIS;
  2136. else
  2137. val |= DISP_FBC_WM_DIS;
  2138. I915_WRITE(DISP_ARB_CTL, val);
  2139. }
  2140. if (dirty & WM_DIRTY_LP(1) &&
  2141. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2142. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2143. if (INTEL_INFO(dev)->gen >= 7) {
  2144. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2145. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2146. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2147. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2148. }
  2149. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2150. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2151. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2152. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2153. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2154. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2155. dev_priv->wm.hw = *results;
  2156. }
  2157. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2158. {
  2159. struct drm_i915_private *dev_priv = dev->dev_private;
  2160. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2161. }
  2162. static void ilk_update_wm(struct drm_crtc *crtc)
  2163. {
  2164. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2165. struct drm_device *dev = crtc->dev;
  2166. struct drm_i915_private *dev_priv = dev->dev_private;
  2167. struct ilk_wm_maximums max;
  2168. struct ilk_pipe_wm_parameters params = {};
  2169. struct ilk_wm_values results = {};
  2170. enum intel_ddb_partitioning partitioning;
  2171. struct intel_pipe_wm pipe_wm = {};
  2172. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2173. struct intel_wm_config config = {};
  2174. ilk_compute_wm_parameters(crtc, &params, &config);
  2175. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2176. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2177. return;
  2178. intel_crtc->wm.active = pipe_wm;
  2179. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2180. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  2181. /* 5/6 split only in single pipe config on IVB+ */
  2182. if (INTEL_INFO(dev)->gen >= 7 &&
  2183. config.num_pipes_active == 1 && config.sprites_enabled) {
  2184. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2185. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  2186. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2187. } else {
  2188. best_lp_wm = &lp_wm_1_2;
  2189. }
  2190. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2191. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2192. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2193. ilk_write_wm_values(dev_priv, &results);
  2194. }
  2195. static void ilk_update_sprite_wm(struct drm_plane *plane,
  2196. struct drm_crtc *crtc,
  2197. uint32_t sprite_width, int pixel_size,
  2198. bool enabled, bool scaled)
  2199. {
  2200. struct drm_device *dev = plane->dev;
  2201. struct intel_plane *intel_plane = to_intel_plane(plane);
  2202. intel_plane->wm.enabled = enabled;
  2203. intel_plane->wm.scaled = scaled;
  2204. intel_plane->wm.horiz_pixels = sprite_width;
  2205. intel_plane->wm.bytes_per_pixel = pixel_size;
  2206. /*
  2207. * IVB workaround: must disable low power watermarks for at least
  2208. * one frame before enabling scaling. LP watermarks can be re-enabled
  2209. * when scaling is disabled.
  2210. *
  2211. * WaCxSRDisabledForSpriteScaling:ivb
  2212. */
  2213. if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
  2214. intel_wait_for_vblank(dev, intel_plane->pipe);
  2215. ilk_update_wm(crtc);
  2216. }
  2217. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2218. {
  2219. struct drm_device *dev = crtc->dev;
  2220. struct drm_i915_private *dev_priv = dev->dev_private;
  2221. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2222. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2223. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2224. enum pipe pipe = intel_crtc->pipe;
  2225. static const unsigned int wm0_pipe_reg[] = {
  2226. [PIPE_A] = WM0_PIPEA_ILK,
  2227. [PIPE_B] = WM0_PIPEB_ILK,
  2228. [PIPE_C] = WM0_PIPEC_IVB,
  2229. };
  2230. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2231. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2232. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2233. if (intel_crtc_active(crtc)) {
  2234. u32 tmp = hw->wm_pipe[pipe];
  2235. /*
  2236. * For active pipes LP0 watermark is marked as
  2237. * enabled, and LP1+ watermaks as disabled since
  2238. * we can't really reverse compute them in case
  2239. * multiple pipes are active.
  2240. */
  2241. active->wm[0].enable = true;
  2242. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2243. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2244. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2245. active->linetime = hw->wm_linetime[pipe];
  2246. } else {
  2247. int level, max_level = ilk_wm_max_level(dev);
  2248. /*
  2249. * For inactive pipes, all watermark levels
  2250. * should be marked as enabled but zeroed,
  2251. * which is what we'd compute them to.
  2252. */
  2253. for (level = 0; level <= max_level; level++)
  2254. active->wm[level].enable = true;
  2255. }
  2256. }
  2257. void ilk_wm_get_hw_state(struct drm_device *dev)
  2258. {
  2259. struct drm_i915_private *dev_priv = dev->dev_private;
  2260. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2261. struct drm_crtc *crtc;
  2262. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2263. ilk_pipe_wm_get_hw_state(crtc);
  2264. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2265. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2266. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2267. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2268. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2269. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2270. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2271. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2272. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2273. else if (IS_IVYBRIDGE(dev))
  2274. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  2275. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2276. hw->enable_fbc_wm =
  2277. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2278. }
  2279. /**
  2280. * intel_update_watermarks - update FIFO watermark values based on current modes
  2281. *
  2282. * Calculate watermark values for the various WM regs based on current mode
  2283. * and plane configuration.
  2284. *
  2285. * There are several cases to deal with here:
  2286. * - normal (i.e. non-self-refresh)
  2287. * - self-refresh (SR) mode
  2288. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2289. * - lines are small relative to FIFO size (buffer can hold more than 2
  2290. * lines), so need to account for TLB latency
  2291. *
  2292. * The normal calculation is:
  2293. * watermark = dotclock * bytes per pixel * latency
  2294. * where latency is platform & configuration dependent (we assume pessimal
  2295. * values here).
  2296. *
  2297. * The SR calculation is:
  2298. * watermark = (trunc(latency/line time)+1) * surface width *
  2299. * bytes per pixel
  2300. * where
  2301. * line time = htotal / dotclock
  2302. * surface width = hdisplay for normal plane and 64 for cursor
  2303. * and latency is assumed to be high, as above.
  2304. *
  2305. * The final value programmed to the register should always be rounded up,
  2306. * and include an extra 2 entries to account for clock crossings.
  2307. *
  2308. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2309. * to set the non-SR watermarks to 8.
  2310. */
  2311. void intel_update_watermarks(struct drm_crtc *crtc)
  2312. {
  2313. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2314. if (dev_priv->display.update_wm)
  2315. dev_priv->display.update_wm(crtc);
  2316. }
  2317. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2318. struct drm_crtc *crtc,
  2319. uint32_t sprite_width, int pixel_size,
  2320. bool enabled, bool scaled)
  2321. {
  2322. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2323. if (dev_priv->display.update_sprite_wm)
  2324. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2325. pixel_size, enabled, scaled);
  2326. }
  2327. static struct drm_i915_gem_object *
  2328. intel_alloc_context_page(struct drm_device *dev)
  2329. {
  2330. struct drm_i915_gem_object *ctx;
  2331. int ret;
  2332. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2333. ctx = i915_gem_alloc_object(dev, 4096);
  2334. if (!ctx) {
  2335. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2336. return NULL;
  2337. }
  2338. ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
  2339. if (ret) {
  2340. DRM_ERROR("failed to pin power context: %d\n", ret);
  2341. goto err_unref;
  2342. }
  2343. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2344. if (ret) {
  2345. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2346. goto err_unpin;
  2347. }
  2348. return ctx;
  2349. err_unpin:
  2350. i915_gem_object_ggtt_unpin(ctx);
  2351. err_unref:
  2352. drm_gem_object_unreference(&ctx->base);
  2353. return NULL;
  2354. }
  2355. /**
  2356. * Lock protecting IPS related data structures
  2357. */
  2358. DEFINE_SPINLOCK(mchdev_lock);
  2359. /* Global for IPS driver to get at the current i915 device. Protected by
  2360. * mchdev_lock. */
  2361. static struct drm_i915_private *i915_mch_dev;
  2362. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2363. {
  2364. struct drm_i915_private *dev_priv = dev->dev_private;
  2365. u16 rgvswctl;
  2366. assert_spin_locked(&mchdev_lock);
  2367. rgvswctl = I915_READ16(MEMSWCTL);
  2368. if (rgvswctl & MEMCTL_CMD_STS) {
  2369. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2370. return false; /* still busy with another command */
  2371. }
  2372. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2373. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2374. I915_WRITE16(MEMSWCTL, rgvswctl);
  2375. POSTING_READ16(MEMSWCTL);
  2376. rgvswctl |= MEMCTL_CMD_STS;
  2377. I915_WRITE16(MEMSWCTL, rgvswctl);
  2378. return true;
  2379. }
  2380. static void ironlake_enable_drps(struct drm_device *dev)
  2381. {
  2382. struct drm_i915_private *dev_priv = dev->dev_private;
  2383. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2384. u8 fmax, fmin, fstart, vstart;
  2385. spin_lock_irq(&mchdev_lock);
  2386. /* Enable temp reporting */
  2387. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2388. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2389. /* 100ms RC evaluation intervals */
  2390. I915_WRITE(RCUPEI, 100000);
  2391. I915_WRITE(RCDNEI, 100000);
  2392. /* Set max/min thresholds to 90ms and 80ms respectively */
  2393. I915_WRITE(RCBMAXAVG, 90000);
  2394. I915_WRITE(RCBMINAVG, 80000);
  2395. I915_WRITE(MEMIHYST, 1);
  2396. /* Set up min, max, and cur for interrupt handling */
  2397. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2398. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2399. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2400. MEMMODE_FSTART_SHIFT;
  2401. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2402. PXVFREQ_PX_SHIFT;
  2403. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2404. dev_priv->ips.fstart = fstart;
  2405. dev_priv->ips.max_delay = fstart;
  2406. dev_priv->ips.min_delay = fmin;
  2407. dev_priv->ips.cur_delay = fstart;
  2408. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2409. fmax, fmin, fstart);
  2410. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2411. /*
  2412. * Interrupts will be enabled in ironlake_irq_postinstall
  2413. */
  2414. I915_WRITE(VIDSTART, vstart);
  2415. POSTING_READ(VIDSTART);
  2416. rgvmodectl |= MEMMODE_SWMODE_EN;
  2417. I915_WRITE(MEMMODECTL, rgvmodectl);
  2418. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2419. DRM_ERROR("stuck trying to change perf mode\n");
  2420. mdelay(1);
  2421. ironlake_set_drps(dev, fstart);
  2422. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2423. I915_READ(0x112e0);
  2424. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2425. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2426. getrawmonotonic(&dev_priv->ips.last_time2);
  2427. spin_unlock_irq(&mchdev_lock);
  2428. }
  2429. static void ironlake_disable_drps(struct drm_device *dev)
  2430. {
  2431. struct drm_i915_private *dev_priv = dev->dev_private;
  2432. u16 rgvswctl;
  2433. spin_lock_irq(&mchdev_lock);
  2434. rgvswctl = I915_READ16(MEMSWCTL);
  2435. /* Ack interrupts, disable EFC interrupt */
  2436. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2437. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2438. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2439. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2440. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2441. /* Go back to the starting frequency */
  2442. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2443. mdelay(1);
  2444. rgvswctl |= MEMCTL_CMD_STS;
  2445. I915_WRITE(MEMSWCTL, rgvswctl);
  2446. mdelay(1);
  2447. spin_unlock_irq(&mchdev_lock);
  2448. }
  2449. /* There's a funny hw issue where the hw returns all 0 when reading from
  2450. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2451. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2452. * all limits and the gpu stuck at whatever frequency it is at atm).
  2453. */
  2454. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  2455. {
  2456. u32 limits;
  2457. /* Only set the down limit when we've reached the lowest level to avoid
  2458. * getting more interrupts, otherwise leave this clear. This prevents a
  2459. * race in the hw when coming out of rc6: There's a tiny window where
  2460. * the hw runs at the minimal clock before selecting the desired
  2461. * frequency, if the down threshold expires in that window we will not
  2462. * receive a down interrupt. */
  2463. limits = dev_priv->rps.max_delay << 24;
  2464. if (val <= dev_priv->rps.min_delay)
  2465. limits |= dev_priv->rps.min_delay << 16;
  2466. return limits;
  2467. }
  2468. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2469. {
  2470. int new_power;
  2471. new_power = dev_priv->rps.power;
  2472. switch (dev_priv->rps.power) {
  2473. case LOW_POWER:
  2474. if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
  2475. new_power = BETWEEN;
  2476. break;
  2477. case BETWEEN:
  2478. if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
  2479. new_power = LOW_POWER;
  2480. else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
  2481. new_power = HIGH_POWER;
  2482. break;
  2483. case HIGH_POWER:
  2484. if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
  2485. new_power = BETWEEN;
  2486. break;
  2487. }
  2488. /* Max/min bins are special */
  2489. if (val == dev_priv->rps.min_delay)
  2490. new_power = LOW_POWER;
  2491. if (val == dev_priv->rps.max_delay)
  2492. new_power = HIGH_POWER;
  2493. if (new_power == dev_priv->rps.power)
  2494. return;
  2495. /* Note the units here are not exactly 1us, but 1280ns. */
  2496. switch (new_power) {
  2497. case LOW_POWER:
  2498. /* Upclock if more than 95% busy over 16ms */
  2499. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2500. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2501. /* Downclock if less than 85% busy over 32ms */
  2502. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2503. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2504. I915_WRITE(GEN6_RP_CONTROL,
  2505. GEN6_RP_MEDIA_TURBO |
  2506. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2507. GEN6_RP_MEDIA_IS_GFX |
  2508. GEN6_RP_ENABLE |
  2509. GEN6_RP_UP_BUSY_AVG |
  2510. GEN6_RP_DOWN_IDLE_AVG);
  2511. break;
  2512. case BETWEEN:
  2513. /* Upclock if more than 90% busy over 13ms */
  2514. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2515. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2516. /* Downclock if less than 75% busy over 32ms */
  2517. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2518. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2519. I915_WRITE(GEN6_RP_CONTROL,
  2520. GEN6_RP_MEDIA_TURBO |
  2521. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2522. GEN6_RP_MEDIA_IS_GFX |
  2523. GEN6_RP_ENABLE |
  2524. GEN6_RP_UP_BUSY_AVG |
  2525. GEN6_RP_DOWN_IDLE_AVG);
  2526. break;
  2527. case HIGH_POWER:
  2528. /* Upclock if more than 85% busy over 10ms */
  2529. I915_WRITE(GEN6_RP_UP_EI, 8000);
  2530. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  2531. /* Downclock if less than 60% busy over 32ms */
  2532. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2533. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  2534. I915_WRITE(GEN6_RP_CONTROL,
  2535. GEN6_RP_MEDIA_TURBO |
  2536. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2537. GEN6_RP_MEDIA_IS_GFX |
  2538. GEN6_RP_ENABLE |
  2539. GEN6_RP_UP_BUSY_AVG |
  2540. GEN6_RP_DOWN_IDLE_AVG);
  2541. break;
  2542. }
  2543. dev_priv->rps.power = new_power;
  2544. dev_priv->rps.last_adj = 0;
  2545. }
  2546. void gen6_set_rps(struct drm_device *dev, u8 val)
  2547. {
  2548. struct drm_i915_private *dev_priv = dev->dev_private;
  2549. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2550. WARN_ON(val > dev_priv->rps.max_delay);
  2551. WARN_ON(val < dev_priv->rps.min_delay);
  2552. if (val == dev_priv->rps.cur_delay)
  2553. return;
  2554. gen6_set_rps_thresholds(dev_priv, val);
  2555. if (IS_HASWELL(dev))
  2556. I915_WRITE(GEN6_RPNSWREQ,
  2557. HSW_FREQUENCY(val));
  2558. else
  2559. I915_WRITE(GEN6_RPNSWREQ,
  2560. GEN6_FREQUENCY(val) |
  2561. GEN6_OFFSET(0) |
  2562. GEN6_AGGRESSIVE_TURBO);
  2563. /* Make sure we continue to get interrupts
  2564. * until we hit the minimum or maximum frequencies.
  2565. */
  2566. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  2567. gen6_rps_limits(dev_priv, val));
  2568. POSTING_READ(GEN6_RPNSWREQ);
  2569. dev_priv->rps.cur_delay = val;
  2570. trace_intel_gpu_freq_change(val * 50);
  2571. }
  2572. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  2573. {
  2574. struct drm_device *dev = dev_priv->dev;
  2575. mutex_lock(&dev_priv->rps.hw_lock);
  2576. if (dev_priv->rps.enabled) {
  2577. if (IS_VALLEYVIEW(dev))
  2578. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  2579. else
  2580. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  2581. dev_priv->rps.last_adj = 0;
  2582. }
  2583. mutex_unlock(&dev_priv->rps.hw_lock);
  2584. }
  2585. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  2586. {
  2587. struct drm_device *dev = dev_priv->dev;
  2588. mutex_lock(&dev_priv->rps.hw_lock);
  2589. if (dev_priv->rps.enabled) {
  2590. if (IS_VALLEYVIEW(dev))
  2591. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  2592. else
  2593. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  2594. dev_priv->rps.last_adj = 0;
  2595. }
  2596. mutex_unlock(&dev_priv->rps.hw_lock);
  2597. }
  2598. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2599. {
  2600. struct drm_i915_private *dev_priv = dev->dev_private;
  2601. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2602. WARN_ON(val > dev_priv->rps.max_delay);
  2603. WARN_ON(val < dev_priv->rps.min_delay);
  2604. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  2605. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
  2606. dev_priv->rps.cur_delay,
  2607. vlv_gpu_freq(dev_priv, val), val);
  2608. if (val == dev_priv->rps.cur_delay)
  2609. return;
  2610. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2611. dev_priv->rps.cur_delay = val;
  2612. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
  2613. }
  2614. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  2615. {
  2616. struct drm_i915_private *dev_priv = dev->dev_private;
  2617. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2618. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
  2619. /* Complete PM interrupt masking here doesn't race with the rps work
  2620. * item again unmasking PM interrupts because that is using a different
  2621. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2622. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2623. spin_lock_irq(&dev_priv->irq_lock);
  2624. dev_priv->rps.pm_iir = 0;
  2625. spin_unlock_irq(&dev_priv->irq_lock);
  2626. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  2627. }
  2628. static void gen6_disable_rps(struct drm_device *dev)
  2629. {
  2630. struct drm_i915_private *dev_priv = dev->dev_private;
  2631. I915_WRITE(GEN6_RC_CONTROL, 0);
  2632. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  2633. gen6_disable_rps_interrupts(dev);
  2634. }
  2635. static void valleyview_disable_rps(struct drm_device *dev)
  2636. {
  2637. struct drm_i915_private *dev_priv = dev->dev_private;
  2638. I915_WRITE(GEN6_RC_CONTROL, 0);
  2639. gen6_disable_rps_interrupts(dev);
  2640. if (dev_priv->vlv_pctx) {
  2641. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  2642. dev_priv->vlv_pctx = NULL;
  2643. }
  2644. }
  2645. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  2646. {
  2647. if (IS_GEN6(dev))
  2648. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  2649. if (IS_HASWELL(dev))
  2650. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  2651. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  2652. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  2653. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  2654. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  2655. }
  2656. int intel_enable_rc6(const struct drm_device *dev)
  2657. {
  2658. /* No RC6 before Ironlake */
  2659. if (INTEL_INFO(dev)->gen < 5)
  2660. return 0;
  2661. /* Respect the kernel parameter if it is set */
  2662. if (i915.enable_rc6 >= 0)
  2663. return i915.enable_rc6;
  2664. /* Disable RC6 on Ironlake */
  2665. if (INTEL_INFO(dev)->gen == 5)
  2666. return 0;
  2667. if (IS_HASWELL(dev))
  2668. return INTEL_RC6_ENABLE;
  2669. /* snb/ivb have more than one rc6 state. */
  2670. if (INTEL_INFO(dev)->gen == 6)
  2671. return INTEL_RC6_ENABLE;
  2672. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  2673. }
  2674. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  2675. {
  2676. struct drm_i915_private *dev_priv = dev->dev_private;
  2677. u32 enabled_intrs;
  2678. spin_lock_irq(&dev_priv->irq_lock);
  2679. WARN_ON(dev_priv->rps.pm_iir);
  2680. snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
  2681. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  2682. spin_unlock_irq(&dev_priv->irq_lock);
  2683. /* only unmask PM interrupts we need. Mask all others. */
  2684. enabled_intrs = GEN6_PM_RPS_EVENTS;
  2685. /* IVB and SNB hard hangs on looping batchbuffer
  2686. * if GEN6_PM_UP_EI_EXPIRED is masked.
  2687. */
  2688. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  2689. enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
  2690. I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
  2691. }
  2692. static void gen8_enable_rps(struct drm_device *dev)
  2693. {
  2694. struct drm_i915_private *dev_priv = dev->dev_private;
  2695. struct intel_ring_buffer *ring;
  2696. uint32_t rc6_mask = 0, rp_state_cap;
  2697. int unused;
  2698. /* 1a: Software RC state - RC0 */
  2699. I915_WRITE(GEN6_RC_STATE, 0);
  2700. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  2701. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  2702. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  2703. /* 2a: Disable RC states. */
  2704. I915_WRITE(GEN6_RC_CONTROL, 0);
  2705. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2706. /* 2b: Program RC6 thresholds.*/
  2707. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  2708. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  2709. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  2710. for_each_ring(ring, dev_priv, unused)
  2711. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2712. I915_WRITE(GEN6_RC_SLEEP, 0);
  2713. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  2714. /* 3: Enable RC6 */
  2715. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  2716. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  2717. DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
  2718. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  2719. GEN6_RC_CTL_EI_MODE(1) |
  2720. rc6_mask);
  2721. /* 4 Program defaults and thresholds for RPS*/
  2722. I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
  2723. I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
  2724. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  2725. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  2726. /* Docs recommend 900MHz, and 300 MHz respectively */
  2727. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  2728. dev_priv->rps.max_delay << 24 |
  2729. dev_priv->rps.min_delay << 16);
  2730. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  2731. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  2732. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  2733. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  2734. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2735. /* 5: Enable RPS */
  2736. I915_WRITE(GEN6_RP_CONTROL,
  2737. GEN6_RP_MEDIA_TURBO |
  2738. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2739. GEN6_RP_MEDIA_IS_GFX |
  2740. GEN6_RP_ENABLE |
  2741. GEN6_RP_UP_BUSY_AVG |
  2742. GEN6_RP_DOWN_IDLE_AVG);
  2743. /* 6: Ring frequency + overclocking (our driver does this later */
  2744. gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
  2745. gen6_enable_rps_interrupts(dev);
  2746. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  2747. }
  2748. static void gen6_enable_rps(struct drm_device *dev)
  2749. {
  2750. struct drm_i915_private *dev_priv = dev->dev_private;
  2751. struct intel_ring_buffer *ring;
  2752. u32 rp_state_cap;
  2753. u32 gt_perf_status;
  2754. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  2755. u32 gtfifodbg;
  2756. int rc6_mode;
  2757. int i, ret;
  2758. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2759. /* Here begins a magic sequence of register writes to enable
  2760. * auto-downclocking.
  2761. *
  2762. * Perhaps there might be some value in exposing these to
  2763. * userspace...
  2764. */
  2765. I915_WRITE(GEN6_RC_STATE, 0);
  2766. /* Clear the DBG now so we don't confuse earlier errors */
  2767. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2768. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2769. I915_WRITE(GTFIFODBG, gtfifodbg);
  2770. }
  2771. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  2772. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2773. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  2774. /* In units of 50MHz */
  2775. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  2776. dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
  2777. dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
  2778. dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
  2779. dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
  2780. dev_priv->rps.cur_delay = 0;
  2781. /* disable the counters and set deterministic thresholds */
  2782. I915_WRITE(GEN6_RC_CONTROL, 0);
  2783. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  2784. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  2785. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  2786. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  2787. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  2788. for_each_ring(ring, dev_priv, i)
  2789. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2790. I915_WRITE(GEN6_RC_SLEEP, 0);
  2791. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  2792. if (IS_IVYBRIDGE(dev))
  2793. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  2794. else
  2795. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  2796. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  2797. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  2798. /* Check if we are enabling RC6 */
  2799. rc6_mode = intel_enable_rc6(dev_priv->dev);
  2800. if (rc6_mode & INTEL_RC6_ENABLE)
  2801. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  2802. /* We don't use those on Haswell */
  2803. if (!IS_HASWELL(dev)) {
  2804. if (rc6_mode & INTEL_RC6p_ENABLE)
  2805. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  2806. if (rc6_mode & INTEL_RC6pp_ENABLE)
  2807. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  2808. }
  2809. intel_print_rc6_info(dev, rc6_mask);
  2810. I915_WRITE(GEN6_RC_CONTROL,
  2811. rc6_mask |
  2812. GEN6_RC_CTL_EI_MODE(1) |
  2813. GEN6_RC_CTL_HW_ENABLE);
  2814. /* Power down if completely idle for over 50ms */
  2815. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  2816. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2817. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  2818. if (!ret) {
  2819. pcu_mbox = 0;
  2820. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  2821. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  2822. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  2823. (dev_priv->rps.max_delay & 0xff) * 50,
  2824. (pcu_mbox & 0xff) * 50);
  2825. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  2826. }
  2827. } else {
  2828. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  2829. }
  2830. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  2831. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  2832. gen6_enable_rps_interrupts(dev);
  2833. rc6vids = 0;
  2834. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  2835. if (IS_GEN6(dev) && ret) {
  2836. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  2837. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  2838. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  2839. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  2840. rc6vids &= 0xffff00;
  2841. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  2842. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  2843. if (ret)
  2844. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  2845. }
  2846. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  2847. }
  2848. void gen6_update_ring_freq(struct drm_device *dev)
  2849. {
  2850. struct drm_i915_private *dev_priv = dev->dev_private;
  2851. int min_freq = 15;
  2852. unsigned int gpu_freq;
  2853. unsigned int max_ia_freq, min_ring_freq;
  2854. int scaling_factor = 180;
  2855. struct cpufreq_policy *policy;
  2856. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2857. policy = cpufreq_cpu_get(0);
  2858. if (policy) {
  2859. max_ia_freq = policy->cpuinfo.max_freq;
  2860. cpufreq_cpu_put(policy);
  2861. } else {
  2862. /*
  2863. * Default to measured freq if none found, PCU will ensure we
  2864. * don't go over
  2865. */
  2866. max_ia_freq = tsc_khz;
  2867. }
  2868. /* Convert from kHz to MHz */
  2869. max_ia_freq /= 1000;
  2870. min_ring_freq = I915_READ(DCLK) & 0xf;
  2871. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  2872. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  2873. /*
  2874. * For each potential GPU frequency, load a ring frequency we'd like
  2875. * to use for memory access. We do this by specifying the IA frequency
  2876. * the PCU should use as a reference to determine the ring frequency.
  2877. */
  2878. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  2879. gpu_freq--) {
  2880. int diff = dev_priv->rps.max_delay - gpu_freq;
  2881. unsigned int ia_freq = 0, ring_freq = 0;
  2882. if (INTEL_INFO(dev)->gen >= 8) {
  2883. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  2884. ring_freq = max(min_ring_freq, gpu_freq);
  2885. } else if (IS_HASWELL(dev)) {
  2886. ring_freq = mult_frac(gpu_freq, 5, 4);
  2887. ring_freq = max(min_ring_freq, ring_freq);
  2888. /* leave ia_freq as the default, chosen by cpufreq */
  2889. } else {
  2890. /* On older processors, there is no separate ring
  2891. * clock domain, so in order to boost the bandwidth
  2892. * of the ring, we need to upclock the CPU (ia_freq).
  2893. *
  2894. * For GPU frequencies less than 750MHz,
  2895. * just use the lowest ring freq.
  2896. */
  2897. if (gpu_freq < min_freq)
  2898. ia_freq = 800;
  2899. else
  2900. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  2901. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  2902. }
  2903. sandybridge_pcode_write(dev_priv,
  2904. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  2905. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  2906. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  2907. gpu_freq);
  2908. }
  2909. }
  2910. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  2911. {
  2912. u32 val, rp0;
  2913. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  2914. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  2915. /* Clamp to max */
  2916. rp0 = min_t(u32, rp0, 0xea);
  2917. return rp0;
  2918. }
  2919. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  2920. {
  2921. u32 val, rpe;
  2922. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  2923. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  2924. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  2925. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  2926. return rpe;
  2927. }
  2928. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  2929. {
  2930. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  2931. }
  2932. static void valleyview_setup_pctx(struct drm_device *dev)
  2933. {
  2934. struct drm_i915_private *dev_priv = dev->dev_private;
  2935. struct drm_i915_gem_object *pctx;
  2936. unsigned long pctx_paddr;
  2937. u32 pcbr;
  2938. int pctx_size = 24*1024;
  2939. pcbr = I915_READ(VLV_PCBR);
  2940. if (pcbr) {
  2941. /* BIOS set it up already, grab the pre-alloc'd space */
  2942. int pcbr_offset;
  2943. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  2944. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  2945. pcbr_offset,
  2946. I915_GTT_OFFSET_NONE,
  2947. pctx_size);
  2948. goto out;
  2949. }
  2950. /*
  2951. * From the Gunit register HAS:
  2952. * The Gfx driver is expected to program this register and ensure
  2953. * proper allocation within Gfx stolen memory. For example, this
  2954. * register should be programmed such than the PCBR range does not
  2955. * overlap with other ranges, such as the frame buffer, protected
  2956. * memory, or any other relevant ranges.
  2957. */
  2958. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  2959. if (!pctx) {
  2960. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  2961. return;
  2962. }
  2963. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  2964. I915_WRITE(VLV_PCBR, pctx_paddr);
  2965. out:
  2966. dev_priv->vlv_pctx = pctx;
  2967. }
  2968. static void valleyview_enable_rps(struct drm_device *dev)
  2969. {
  2970. struct drm_i915_private *dev_priv = dev->dev_private;
  2971. struct intel_ring_buffer *ring;
  2972. u32 gtfifodbg, val, rc6_mode = 0;
  2973. int i;
  2974. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2975. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2976. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  2977. gtfifodbg);
  2978. I915_WRITE(GTFIFODBG, gtfifodbg);
  2979. }
  2980. valleyview_setup_pctx(dev);
  2981. /* If VLV, Forcewake all wells, else re-direct to regular path */
  2982. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  2983. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  2984. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  2985. I915_WRITE(GEN6_RP_UP_EI, 66000);
  2986. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  2987. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2988. I915_WRITE(GEN6_RP_CONTROL,
  2989. GEN6_RP_MEDIA_TURBO |
  2990. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2991. GEN6_RP_MEDIA_IS_GFX |
  2992. GEN6_RP_ENABLE |
  2993. GEN6_RP_UP_BUSY_AVG |
  2994. GEN6_RP_DOWN_IDLE_CONT);
  2995. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  2996. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  2997. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  2998. for_each_ring(ring, dev_priv, i)
  2999. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3000. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  3001. /* allows RC6 residency counter to work */
  3002. I915_WRITE(VLV_COUNTER_CONTROL,
  3003. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3004. VLV_MEDIA_RC6_COUNT_EN |
  3005. VLV_RENDER_RC6_COUNT_EN));
  3006. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3007. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  3008. intel_print_rc6_info(dev, rc6_mode);
  3009. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3010. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3011. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3012. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3013. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  3014. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3015. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
  3016. dev_priv->rps.cur_delay);
  3017. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  3018. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  3019. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3020. vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
  3021. dev_priv->rps.max_delay);
  3022. dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
  3023. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3024. vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
  3025. dev_priv->rps.rpe_delay);
  3026. dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
  3027. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3028. vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
  3029. dev_priv->rps.min_delay);
  3030. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3031. vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
  3032. dev_priv->rps.rpe_delay);
  3033. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  3034. gen6_enable_rps_interrupts(dev);
  3035. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3036. }
  3037. void ironlake_teardown_rc6(struct drm_device *dev)
  3038. {
  3039. struct drm_i915_private *dev_priv = dev->dev_private;
  3040. if (dev_priv->ips.renderctx) {
  3041. i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
  3042. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3043. dev_priv->ips.renderctx = NULL;
  3044. }
  3045. if (dev_priv->ips.pwrctx) {
  3046. i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
  3047. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3048. dev_priv->ips.pwrctx = NULL;
  3049. }
  3050. }
  3051. static void ironlake_disable_rc6(struct drm_device *dev)
  3052. {
  3053. struct drm_i915_private *dev_priv = dev->dev_private;
  3054. if (I915_READ(PWRCTXA)) {
  3055. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3056. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3057. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3058. 50);
  3059. I915_WRITE(PWRCTXA, 0);
  3060. POSTING_READ(PWRCTXA);
  3061. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3062. POSTING_READ(RSTDBYCTL);
  3063. }
  3064. }
  3065. static int ironlake_setup_rc6(struct drm_device *dev)
  3066. {
  3067. struct drm_i915_private *dev_priv = dev->dev_private;
  3068. if (dev_priv->ips.renderctx == NULL)
  3069. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3070. if (!dev_priv->ips.renderctx)
  3071. return -ENOMEM;
  3072. if (dev_priv->ips.pwrctx == NULL)
  3073. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3074. if (!dev_priv->ips.pwrctx) {
  3075. ironlake_teardown_rc6(dev);
  3076. return -ENOMEM;
  3077. }
  3078. return 0;
  3079. }
  3080. static void ironlake_enable_rc6(struct drm_device *dev)
  3081. {
  3082. struct drm_i915_private *dev_priv = dev->dev_private;
  3083. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  3084. bool was_interruptible;
  3085. int ret;
  3086. /* rc6 disabled by default due to repeated reports of hanging during
  3087. * boot and resume.
  3088. */
  3089. if (!intel_enable_rc6(dev))
  3090. return;
  3091. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3092. ret = ironlake_setup_rc6(dev);
  3093. if (ret)
  3094. return;
  3095. was_interruptible = dev_priv->mm.interruptible;
  3096. dev_priv->mm.interruptible = false;
  3097. /*
  3098. * GPU can automatically power down the render unit if given a page
  3099. * to save state.
  3100. */
  3101. ret = intel_ring_begin(ring, 6);
  3102. if (ret) {
  3103. ironlake_teardown_rc6(dev);
  3104. dev_priv->mm.interruptible = was_interruptible;
  3105. return;
  3106. }
  3107. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3108. intel_ring_emit(ring, MI_SET_CONTEXT);
  3109. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3110. MI_MM_SPACE_GTT |
  3111. MI_SAVE_EXT_STATE_EN |
  3112. MI_RESTORE_EXT_STATE_EN |
  3113. MI_RESTORE_INHIBIT);
  3114. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3115. intel_ring_emit(ring, MI_NOOP);
  3116. intel_ring_emit(ring, MI_FLUSH);
  3117. intel_ring_advance(ring);
  3118. /*
  3119. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3120. * does an implicit flush, combined with MI_FLUSH above, it should be
  3121. * safe to assume that renderctx is valid
  3122. */
  3123. ret = intel_ring_idle(ring);
  3124. dev_priv->mm.interruptible = was_interruptible;
  3125. if (ret) {
  3126. DRM_ERROR("failed to enable ironlake power savings\n");
  3127. ironlake_teardown_rc6(dev);
  3128. return;
  3129. }
  3130. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3131. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3132. intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
  3133. }
  3134. static unsigned long intel_pxfreq(u32 vidfreq)
  3135. {
  3136. unsigned long freq;
  3137. int div = (vidfreq & 0x3f0000) >> 16;
  3138. int post = (vidfreq & 0x3000) >> 12;
  3139. int pre = (vidfreq & 0x7);
  3140. if (!pre)
  3141. return 0;
  3142. freq = ((div * 133333) / ((1<<post) * pre));
  3143. return freq;
  3144. }
  3145. static const struct cparams {
  3146. u16 i;
  3147. u16 t;
  3148. u16 m;
  3149. u16 c;
  3150. } cparams[] = {
  3151. { 1, 1333, 301, 28664 },
  3152. { 1, 1066, 294, 24460 },
  3153. { 1, 800, 294, 25192 },
  3154. { 0, 1333, 276, 27605 },
  3155. { 0, 1066, 276, 27605 },
  3156. { 0, 800, 231, 23784 },
  3157. };
  3158. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3159. {
  3160. u64 total_count, diff, ret;
  3161. u32 count1, count2, count3, m = 0, c = 0;
  3162. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3163. int i;
  3164. assert_spin_locked(&mchdev_lock);
  3165. diff1 = now - dev_priv->ips.last_time1;
  3166. /* Prevent division-by-zero if we are asking too fast.
  3167. * Also, we don't get interesting results if we are polling
  3168. * faster than once in 10ms, so just return the saved value
  3169. * in such cases.
  3170. */
  3171. if (diff1 <= 10)
  3172. return dev_priv->ips.chipset_power;
  3173. count1 = I915_READ(DMIEC);
  3174. count2 = I915_READ(DDREC);
  3175. count3 = I915_READ(CSIEC);
  3176. total_count = count1 + count2 + count3;
  3177. /* FIXME: handle per-counter overflow */
  3178. if (total_count < dev_priv->ips.last_count1) {
  3179. diff = ~0UL - dev_priv->ips.last_count1;
  3180. diff += total_count;
  3181. } else {
  3182. diff = total_count - dev_priv->ips.last_count1;
  3183. }
  3184. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3185. if (cparams[i].i == dev_priv->ips.c_m &&
  3186. cparams[i].t == dev_priv->ips.r_t) {
  3187. m = cparams[i].m;
  3188. c = cparams[i].c;
  3189. break;
  3190. }
  3191. }
  3192. diff = div_u64(diff, diff1);
  3193. ret = ((m * diff) + c);
  3194. ret = div_u64(ret, 10);
  3195. dev_priv->ips.last_count1 = total_count;
  3196. dev_priv->ips.last_time1 = now;
  3197. dev_priv->ips.chipset_power = ret;
  3198. return ret;
  3199. }
  3200. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3201. {
  3202. unsigned long val;
  3203. if (dev_priv->info->gen != 5)
  3204. return 0;
  3205. spin_lock_irq(&mchdev_lock);
  3206. val = __i915_chipset_val(dev_priv);
  3207. spin_unlock_irq(&mchdev_lock);
  3208. return val;
  3209. }
  3210. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3211. {
  3212. unsigned long m, x, b;
  3213. u32 tsfs;
  3214. tsfs = I915_READ(TSFS);
  3215. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3216. x = I915_READ8(TR1);
  3217. b = tsfs & TSFS_INTR_MASK;
  3218. return ((m * x) / 127) - b;
  3219. }
  3220. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3221. {
  3222. static const struct v_table {
  3223. u16 vd; /* in .1 mil */
  3224. u16 vm; /* in .1 mil */
  3225. } v_table[] = {
  3226. { 0, 0, },
  3227. { 375, 0, },
  3228. { 500, 0, },
  3229. { 625, 0, },
  3230. { 750, 0, },
  3231. { 875, 0, },
  3232. { 1000, 0, },
  3233. { 1125, 0, },
  3234. { 4125, 3000, },
  3235. { 4125, 3000, },
  3236. { 4125, 3000, },
  3237. { 4125, 3000, },
  3238. { 4125, 3000, },
  3239. { 4125, 3000, },
  3240. { 4125, 3000, },
  3241. { 4125, 3000, },
  3242. { 4125, 3000, },
  3243. { 4125, 3000, },
  3244. { 4125, 3000, },
  3245. { 4125, 3000, },
  3246. { 4125, 3000, },
  3247. { 4125, 3000, },
  3248. { 4125, 3000, },
  3249. { 4125, 3000, },
  3250. { 4125, 3000, },
  3251. { 4125, 3000, },
  3252. { 4125, 3000, },
  3253. { 4125, 3000, },
  3254. { 4125, 3000, },
  3255. { 4125, 3000, },
  3256. { 4125, 3000, },
  3257. { 4125, 3000, },
  3258. { 4250, 3125, },
  3259. { 4375, 3250, },
  3260. { 4500, 3375, },
  3261. { 4625, 3500, },
  3262. { 4750, 3625, },
  3263. { 4875, 3750, },
  3264. { 5000, 3875, },
  3265. { 5125, 4000, },
  3266. { 5250, 4125, },
  3267. { 5375, 4250, },
  3268. { 5500, 4375, },
  3269. { 5625, 4500, },
  3270. { 5750, 4625, },
  3271. { 5875, 4750, },
  3272. { 6000, 4875, },
  3273. { 6125, 5000, },
  3274. { 6250, 5125, },
  3275. { 6375, 5250, },
  3276. { 6500, 5375, },
  3277. { 6625, 5500, },
  3278. { 6750, 5625, },
  3279. { 6875, 5750, },
  3280. { 7000, 5875, },
  3281. { 7125, 6000, },
  3282. { 7250, 6125, },
  3283. { 7375, 6250, },
  3284. { 7500, 6375, },
  3285. { 7625, 6500, },
  3286. { 7750, 6625, },
  3287. { 7875, 6750, },
  3288. { 8000, 6875, },
  3289. { 8125, 7000, },
  3290. { 8250, 7125, },
  3291. { 8375, 7250, },
  3292. { 8500, 7375, },
  3293. { 8625, 7500, },
  3294. { 8750, 7625, },
  3295. { 8875, 7750, },
  3296. { 9000, 7875, },
  3297. { 9125, 8000, },
  3298. { 9250, 8125, },
  3299. { 9375, 8250, },
  3300. { 9500, 8375, },
  3301. { 9625, 8500, },
  3302. { 9750, 8625, },
  3303. { 9875, 8750, },
  3304. { 10000, 8875, },
  3305. { 10125, 9000, },
  3306. { 10250, 9125, },
  3307. { 10375, 9250, },
  3308. { 10500, 9375, },
  3309. { 10625, 9500, },
  3310. { 10750, 9625, },
  3311. { 10875, 9750, },
  3312. { 11000, 9875, },
  3313. { 11125, 10000, },
  3314. { 11250, 10125, },
  3315. { 11375, 10250, },
  3316. { 11500, 10375, },
  3317. { 11625, 10500, },
  3318. { 11750, 10625, },
  3319. { 11875, 10750, },
  3320. { 12000, 10875, },
  3321. { 12125, 11000, },
  3322. { 12250, 11125, },
  3323. { 12375, 11250, },
  3324. { 12500, 11375, },
  3325. { 12625, 11500, },
  3326. { 12750, 11625, },
  3327. { 12875, 11750, },
  3328. { 13000, 11875, },
  3329. { 13125, 12000, },
  3330. { 13250, 12125, },
  3331. { 13375, 12250, },
  3332. { 13500, 12375, },
  3333. { 13625, 12500, },
  3334. { 13750, 12625, },
  3335. { 13875, 12750, },
  3336. { 14000, 12875, },
  3337. { 14125, 13000, },
  3338. { 14250, 13125, },
  3339. { 14375, 13250, },
  3340. { 14500, 13375, },
  3341. { 14625, 13500, },
  3342. { 14750, 13625, },
  3343. { 14875, 13750, },
  3344. { 15000, 13875, },
  3345. { 15125, 14000, },
  3346. { 15250, 14125, },
  3347. { 15375, 14250, },
  3348. { 15500, 14375, },
  3349. { 15625, 14500, },
  3350. { 15750, 14625, },
  3351. { 15875, 14750, },
  3352. { 16000, 14875, },
  3353. { 16125, 15000, },
  3354. };
  3355. if (dev_priv->info->is_mobile)
  3356. return v_table[pxvid].vm;
  3357. else
  3358. return v_table[pxvid].vd;
  3359. }
  3360. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3361. {
  3362. struct timespec now, diff1;
  3363. u64 diff;
  3364. unsigned long diffms;
  3365. u32 count;
  3366. assert_spin_locked(&mchdev_lock);
  3367. getrawmonotonic(&now);
  3368. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3369. /* Don't divide by 0 */
  3370. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3371. if (!diffms)
  3372. return;
  3373. count = I915_READ(GFXEC);
  3374. if (count < dev_priv->ips.last_count2) {
  3375. diff = ~0UL - dev_priv->ips.last_count2;
  3376. diff += count;
  3377. } else {
  3378. diff = count - dev_priv->ips.last_count2;
  3379. }
  3380. dev_priv->ips.last_count2 = count;
  3381. dev_priv->ips.last_time2 = now;
  3382. /* More magic constants... */
  3383. diff = diff * 1181;
  3384. diff = div_u64(diff, diffms * 10);
  3385. dev_priv->ips.gfx_power = diff;
  3386. }
  3387. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3388. {
  3389. if (dev_priv->info->gen != 5)
  3390. return;
  3391. spin_lock_irq(&mchdev_lock);
  3392. __i915_update_gfx_val(dev_priv);
  3393. spin_unlock_irq(&mchdev_lock);
  3394. }
  3395. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3396. {
  3397. unsigned long t, corr, state1, corr2, state2;
  3398. u32 pxvid, ext_v;
  3399. assert_spin_locked(&mchdev_lock);
  3400. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  3401. pxvid = (pxvid >> 24) & 0x7f;
  3402. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3403. state1 = ext_v;
  3404. t = i915_mch_val(dev_priv);
  3405. /* Revel in the empirically derived constants */
  3406. /* Correction factor in 1/100000 units */
  3407. if (t > 80)
  3408. corr = ((t * 2349) + 135940);
  3409. else if (t >= 50)
  3410. corr = ((t * 964) + 29317);
  3411. else /* < 50 */
  3412. corr = ((t * 301) + 1004);
  3413. corr = corr * ((150142 * state1) / 10000 - 78642);
  3414. corr /= 100000;
  3415. corr2 = (corr * dev_priv->ips.corr);
  3416. state2 = (corr2 * state1) / 10000;
  3417. state2 /= 100; /* convert to mW */
  3418. __i915_update_gfx_val(dev_priv);
  3419. return dev_priv->ips.gfx_power + state2;
  3420. }
  3421. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3422. {
  3423. unsigned long val;
  3424. if (dev_priv->info->gen != 5)
  3425. return 0;
  3426. spin_lock_irq(&mchdev_lock);
  3427. val = __i915_gfx_val(dev_priv);
  3428. spin_unlock_irq(&mchdev_lock);
  3429. return val;
  3430. }
  3431. /**
  3432. * i915_read_mch_val - return value for IPS use
  3433. *
  3434. * Calculate and return a value for the IPS driver to use when deciding whether
  3435. * we have thermal and power headroom to increase CPU or GPU power budget.
  3436. */
  3437. unsigned long i915_read_mch_val(void)
  3438. {
  3439. struct drm_i915_private *dev_priv;
  3440. unsigned long chipset_val, graphics_val, ret = 0;
  3441. spin_lock_irq(&mchdev_lock);
  3442. if (!i915_mch_dev)
  3443. goto out_unlock;
  3444. dev_priv = i915_mch_dev;
  3445. chipset_val = __i915_chipset_val(dev_priv);
  3446. graphics_val = __i915_gfx_val(dev_priv);
  3447. ret = chipset_val + graphics_val;
  3448. out_unlock:
  3449. spin_unlock_irq(&mchdev_lock);
  3450. return ret;
  3451. }
  3452. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3453. /**
  3454. * i915_gpu_raise - raise GPU frequency limit
  3455. *
  3456. * Raise the limit; IPS indicates we have thermal headroom.
  3457. */
  3458. bool i915_gpu_raise(void)
  3459. {
  3460. struct drm_i915_private *dev_priv;
  3461. bool ret = true;
  3462. spin_lock_irq(&mchdev_lock);
  3463. if (!i915_mch_dev) {
  3464. ret = false;
  3465. goto out_unlock;
  3466. }
  3467. dev_priv = i915_mch_dev;
  3468. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3469. dev_priv->ips.max_delay--;
  3470. out_unlock:
  3471. spin_unlock_irq(&mchdev_lock);
  3472. return ret;
  3473. }
  3474. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3475. /**
  3476. * i915_gpu_lower - lower GPU frequency limit
  3477. *
  3478. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3479. * frequency maximum.
  3480. */
  3481. bool i915_gpu_lower(void)
  3482. {
  3483. struct drm_i915_private *dev_priv;
  3484. bool ret = true;
  3485. spin_lock_irq(&mchdev_lock);
  3486. if (!i915_mch_dev) {
  3487. ret = false;
  3488. goto out_unlock;
  3489. }
  3490. dev_priv = i915_mch_dev;
  3491. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  3492. dev_priv->ips.max_delay++;
  3493. out_unlock:
  3494. spin_unlock_irq(&mchdev_lock);
  3495. return ret;
  3496. }
  3497. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  3498. /**
  3499. * i915_gpu_busy - indicate GPU business to IPS
  3500. *
  3501. * Tell the IPS driver whether or not the GPU is busy.
  3502. */
  3503. bool i915_gpu_busy(void)
  3504. {
  3505. struct drm_i915_private *dev_priv;
  3506. struct intel_ring_buffer *ring;
  3507. bool ret = false;
  3508. int i;
  3509. spin_lock_irq(&mchdev_lock);
  3510. if (!i915_mch_dev)
  3511. goto out_unlock;
  3512. dev_priv = i915_mch_dev;
  3513. for_each_ring(ring, dev_priv, i)
  3514. ret |= !list_empty(&ring->request_list);
  3515. out_unlock:
  3516. spin_unlock_irq(&mchdev_lock);
  3517. return ret;
  3518. }
  3519. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  3520. /**
  3521. * i915_gpu_turbo_disable - disable graphics turbo
  3522. *
  3523. * Disable graphics turbo by resetting the max frequency and setting the
  3524. * current frequency to the default.
  3525. */
  3526. bool i915_gpu_turbo_disable(void)
  3527. {
  3528. struct drm_i915_private *dev_priv;
  3529. bool ret = true;
  3530. spin_lock_irq(&mchdev_lock);
  3531. if (!i915_mch_dev) {
  3532. ret = false;
  3533. goto out_unlock;
  3534. }
  3535. dev_priv = i915_mch_dev;
  3536. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3537. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  3538. ret = false;
  3539. out_unlock:
  3540. spin_unlock_irq(&mchdev_lock);
  3541. return ret;
  3542. }
  3543. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  3544. /**
  3545. * Tells the intel_ips driver that the i915 driver is now loaded, if
  3546. * IPS got loaded first.
  3547. *
  3548. * This awkward dance is so that neither module has to depend on the
  3549. * other in order for IPS to do the appropriate communication of
  3550. * GPU turbo limits to i915.
  3551. */
  3552. static void
  3553. ips_ping_for_i915_load(void)
  3554. {
  3555. void (*link)(void);
  3556. link = symbol_get(ips_link_to_i915_driver);
  3557. if (link) {
  3558. link();
  3559. symbol_put(ips_link_to_i915_driver);
  3560. }
  3561. }
  3562. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  3563. {
  3564. /* We only register the i915 ips part with intel-ips once everything is
  3565. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  3566. spin_lock_irq(&mchdev_lock);
  3567. i915_mch_dev = dev_priv;
  3568. spin_unlock_irq(&mchdev_lock);
  3569. ips_ping_for_i915_load();
  3570. }
  3571. void intel_gpu_ips_teardown(void)
  3572. {
  3573. spin_lock_irq(&mchdev_lock);
  3574. i915_mch_dev = NULL;
  3575. spin_unlock_irq(&mchdev_lock);
  3576. }
  3577. static void intel_init_emon(struct drm_device *dev)
  3578. {
  3579. struct drm_i915_private *dev_priv = dev->dev_private;
  3580. u32 lcfuse;
  3581. u8 pxw[16];
  3582. int i;
  3583. /* Disable to program */
  3584. I915_WRITE(ECR, 0);
  3585. POSTING_READ(ECR);
  3586. /* Program energy weights for various events */
  3587. I915_WRITE(SDEW, 0x15040d00);
  3588. I915_WRITE(CSIEW0, 0x007f0000);
  3589. I915_WRITE(CSIEW1, 0x1e220004);
  3590. I915_WRITE(CSIEW2, 0x04000004);
  3591. for (i = 0; i < 5; i++)
  3592. I915_WRITE(PEW + (i * 4), 0);
  3593. for (i = 0; i < 3; i++)
  3594. I915_WRITE(DEW + (i * 4), 0);
  3595. /* Program P-state weights to account for frequency power adjustment */
  3596. for (i = 0; i < 16; i++) {
  3597. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  3598. unsigned long freq = intel_pxfreq(pxvidfreq);
  3599. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  3600. PXVFREQ_PX_SHIFT;
  3601. unsigned long val;
  3602. val = vid * vid;
  3603. val *= (freq / 1000);
  3604. val *= 255;
  3605. val /= (127*127*900);
  3606. if (val > 0xff)
  3607. DRM_ERROR("bad pxval: %ld\n", val);
  3608. pxw[i] = val;
  3609. }
  3610. /* Render standby states get 0 weight */
  3611. pxw[14] = 0;
  3612. pxw[15] = 0;
  3613. for (i = 0; i < 4; i++) {
  3614. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  3615. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  3616. I915_WRITE(PXW + (i * 4), val);
  3617. }
  3618. /* Adjust magic regs to magic values (more experimental results) */
  3619. I915_WRITE(OGW0, 0);
  3620. I915_WRITE(OGW1, 0);
  3621. I915_WRITE(EG0, 0x00007f00);
  3622. I915_WRITE(EG1, 0x0000000e);
  3623. I915_WRITE(EG2, 0x000e0000);
  3624. I915_WRITE(EG3, 0x68000300);
  3625. I915_WRITE(EG4, 0x42000000);
  3626. I915_WRITE(EG5, 0x00140031);
  3627. I915_WRITE(EG6, 0);
  3628. I915_WRITE(EG7, 0);
  3629. for (i = 0; i < 8; i++)
  3630. I915_WRITE(PXWL + (i * 4), 0);
  3631. /* Enable PMON + select events */
  3632. I915_WRITE(ECR, 0x80000019);
  3633. lcfuse = I915_READ(LCFUSE02);
  3634. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  3635. }
  3636. void intel_disable_gt_powersave(struct drm_device *dev)
  3637. {
  3638. struct drm_i915_private *dev_priv = dev->dev_private;
  3639. /* Interrupts should be disabled already to avoid re-arming. */
  3640. WARN_ON(dev->irq_enabled);
  3641. if (IS_IRONLAKE_M(dev)) {
  3642. ironlake_disable_drps(dev);
  3643. ironlake_disable_rc6(dev);
  3644. } else if (INTEL_INFO(dev)->gen >= 6) {
  3645. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  3646. cancel_work_sync(&dev_priv->rps.work);
  3647. mutex_lock(&dev_priv->rps.hw_lock);
  3648. if (IS_VALLEYVIEW(dev))
  3649. valleyview_disable_rps(dev);
  3650. else
  3651. gen6_disable_rps(dev);
  3652. dev_priv->rps.enabled = false;
  3653. mutex_unlock(&dev_priv->rps.hw_lock);
  3654. }
  3655. }
  3656. static void intel_gen6_powersave_work(struct work_struct *work)
  3657. {
  3658. struct drm_i915_private *dev_priv =
  3659. container_of(work, struct drm_i915_private,
  3660. rps.delayed_resume_work.work);
  3661. struct drm_device *dev = dev_priv->dev;
  3662. mutex_lock(&dev_priv->rps.hw_lock);
  3663. if (IS_VALLEYVIEW(dev)) {
  3664. valleyview_enable_rps(dev);
  3665. } else if (IS_BROADWELL(dev)) {
  3666. gen8_enable_rps(dev);
  3667. gen6_update_ring_freq(dev);
  3668. } else {
  3669. gen6_enable_rps(dev);
  3670. gen6_update_ring_freq(dev);
  3671. }
  3672. dev_priv->rps.enabled = true;
  3673. mutex_unlock(&dev_priv->rps.hw_lock);
  3674. }
  3675. void intel_enable_gt_powersave(struct drm_device *dev)
  3676. {
  3677. struct drm_i915_private *dev_priv = dev->dev_private;
  3678. if (IS_IRONLAKE_M(dev)) {
  3679. ironlake_enable_drps(dev);
  3680. ironlake_enable_rc6(dev);
  3681. intel_init_emon(dev);
  3682. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  3683. /*
  3684. * PCU communication is slow and this doesn't need to be
  3685. * done at any specific time, so do this out of our fast path
  3686. * to make resume and init faster.
  3687. */
  3688. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  3689. round_jiffies_up_relative(HZ));
  3690. }
  3691. }
  3692. static void ibx_init_clock_gating(struct drm_device *dev)
  3693. {
  3694. struct drm_i915_private *dev_priv = dev->dev_private;
  3695. /*
  3696. * On Ibex Peak and Cougar Point, we need to disable clock
  3697. * gating for the panel power sequencer or it will fail to
  3698. * start up when no ports are active.
  3699. */
  3700. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  3701. }
  3702. static void g4x_disable_trickle_feed(struct drm_device *dev)
  3703. {
  3704. struct drm_i915_private *dev_priv = dev->dev_private;
  3705. int pipe;
  3706. for_each_pipe(pipe) {
  3707. I915_WRITE(DSPCNTR(pipe),
  3708. I915_READ(DSPCNTR(pipe)) |
  3709. DISPPLANE_TRICKLE_FEED_DISABLE);
  3710. intel_flush_primary_plane(dev_priv, pipe);
  3711. }
  3712. }
  3713. static void ilk_init_lp_watermarks(struct drm_device *dev)
  3714. {
  3715. struct drm_i915_private *dev_priv = dev->dev_private;
  3716. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  3717. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  3718. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  3719. /*
  3720. * Don't touch WM1S_LP_EN here.
  3721. * Doing so could cause underruns.
  3722. */
  3723. }
  3724. static void ironlake_init_clock_gating(struct drm_device *dev)
  3725. {
  3726. struct drm_i915_private *dev_priv = dev->dev_private;
  3727. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  3728. /*
  3729. * Required for FBC
  3730. * WaFbcDisableDpfcClockGating:ilk
  3731. */
  3732. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  3733. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  3734. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  3735. I915_WRITE(PCH_3DCGDIS0,
  3736. MARIUNIT_CLOCK_GATE_DISABLE |
  3737. SVSMUNIT_CLOCK_GATE_DISABLE);
  3738. I915_WRITE(PCH_3DCGDIS1,
  3739. VFMUNIT_CLOCK_GATE_DISABLE);
  3740. /*
  3741. * According to the spec the following bits should be set in
  3742. * order to enable memory self-refresh
  3743. * The bit 22/21 of 0x42004
  3744. * The bit 5 of 0x42020
  3745. * The bit 15 of 0x45000
  3746. */
  3747. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3748. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  3749. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  3750. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  3751. I915_WRITE(DISP_ARB_CTL,
  3752. (I915_READ(DISP_ARB_CTL) |
  3753. DISP_FBC_WM_DIS));
  3754. ilk_init_lp_watermarks(dev);
  3755. /*
  3756. * Based on the document from hardware guys the following bits
  3757. * should be set unconditionally in order to enable FBC.
  3758. * The bit 22 of 0x42000
  3759. * The bit 22 of 0x42004
  3760. * The bit 7,8,9 of 0x42020.
  3761. */
  3762. if (IS_IRONLAKE_M(dev)) {
  3763. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  3764. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  3765. I915_READ(ILK_DISPLAY_CHICKEN1) |
  3766. ILK_FBCQ_DIS);
  3767. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3768. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3769. ILK_DPARB_GATE);
  3770. }
  3771. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  3772. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3773. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3774. ILK_ELPIN_409_SELECT);
  3775. I915_WRITE(_3D_CHICKEN2,
  3776. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  3777. _3D_CHICKEN2_WM_READ_PIPELINED);
  3778. /* WaDisableRenderCachePipelinedFlush:ilk */
  3779. I915_WRITE(CACHE_MODE_0,
  3780. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  3781. g4x_disable_trickle_feed(dev);
  3782. ibx_init_clock_gating(dev);
  3783. }
  3784. static void cpt_init_clock_gating(struct drm_device *dev)
  3785. {
  3786. struct drm_i915_private *dev_priv = dev->dev_private;
  3787. int pipe;
  3788. uint32_t val;
  3789. /*
  3790. * On Ibex Peak and Cougar Point, we need to disable clock
  3791. * gating for the panel power sequencer or it will fail to
  3792. * start up when no ports are active.
  3793. */
  3794. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  3795. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  3796. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  3797. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  3798. DPLS_EDP_PPS_FIX_DIS);
  3799. /* The below fixes the weird display corruption, a few pixels shifted
  3800. * downward, on (only) LVDS of some HP laptops with IVY.
  3801. */
  3802. for_each_pipe(pipe) {
  3803. val = I915_READ(TRANS_CHICKEN2(pipe));
  3804. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  3805. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  3806. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  3807. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  3808. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  3809. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  3810. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  3811. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  3812. }
  3813. /* WADP0ClockGatingDisable */
  3814. for_each_pipe(pipe) {
  3815. I915_WRITE(TRANS_CHICKEN1(pipe),
  3816. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  3817. }
  3818. }
  3819. static void gen6_check_mch_setup(struct drm_device *dev)
  3820. {
  3821. struct drm_i915_private *dev_priv = dev->dev_private;
  3822. uint32_t tmp;
  3823. tmp = I915_READ(MCH_SSKPD);
  3824. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  3825. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  3826. DRM_INFO("This can cause pipe underruns and display issues.\n");
  3827. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  3828. }
  3829. }
  3830. static void gen6_init_clock_gating(struct drm_device *dev)
  3831. {
  3832. struct drm_i915_private *dev_priv = dev->dev_private;
  3833. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  3834. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  3835. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3836. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3837. ILK_ELPIN_409_SELECT);
  3838. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  3839. I915_WRITE(_3D_CHICKEN,
  3840. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  3841. /* WaSetupGtModeTdRowDispatch:snb */
  3842. if (IS_SNB_GT1(dev))
  3843. I915_WRITE(GEN6_GT_MODE,
  3844. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  3845. ilk_init_lp_watermarks(dev);
  3846. I915_WRITE(CACHE_MODE_0,
  3847. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  3848. I915_WRITE(GEN6_UCGCTL1,
  3849. I915_READ(GEN6_UCGCTL1) |
  3850. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  3851. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  3852. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3853. * gating disable must be set. Failure to set it results in
  3854. * flickering pixels due to Z write ordering failures after
  3855. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3856. * Sanctuary and Tropics, and apparently anything else with
  3857. * alpha test or pixel discard.
  3858. *
  3859. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3860. * but we didn't debug actual testcases to find it out.
  3861. *
  3862. * WaDisableRCCUnitClockGating:snb
  3863. * WaDisableRCPBUnitClockGating:snb
  3864. */
  3865. I915_WRITE(GEN6_UCGCTL2,
  3866. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  3867. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3868. /* Bspec says we need to always set all mask bits. */
  3869. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  3870. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  3871. /*
  3872. * According to the spec the following bits should be
  3873. * set in order to enable memory self-refresh and fbc:
  3874. * The bit21 and bit22 of 0x42000
  3875. * The bit21 and bit22 of 0x42004
  3876. * The bit5 and bit7 of 0x42020
  3877. * The bit14 of 0x70180
  3878. * The bit14 of 0x71180
  3879. *
  3880. * WaFbcAsynchFlipDisableFbcQueue:snb
  3881. */
  3882. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  3883. I915_READ(ILK_DISPLAY_CHICKEN1) |
  3884. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  3885. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3886. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3887. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  3888. I915_WRITE(ILK_DSPCLK_GATE_D,
  3889. I915_READ(ILK_DSPCLK_GATE_D) |
  3890. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  3891. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  3892. g4x_disable_trickle_feed(dev);
  3893. /* The default value should be 0x200 according to docs, but the two
  3894. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  3895. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  3896. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  3897. cpt_init_clock_gating(dev);
  3898. gen6_check_mch_setup(dev);
  3899. }
  3900. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  3901. {
  3902. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  3903. /*
  3904. * WaVSThreadDispatchOverride:ivb
  3905. *
  3906. * This actually overrides the dispatch
  3907. * mode for all thread types.
  3908. */
  3909. reg &= ~GEN7_FF_SCHED_MASK;
  3910. reg |= GEN7_FF_TS_SCHED_HW;
  3911. reg |= GEN7_FF_VS_SCHED_HW;
  3912. reg |= GEN7_FF_DS_SCHED_HW;
  3913. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  3914. }
  3915. static void lpt_init_clock_gating(struct drm_device *dev)
  3916. {
  3917. struct drm_i915_private *dev_priv = dev->dev_private;
  3918. /*
  3919. * TODO: this bit should only be enabled when really needed, then
  3920. * disabled when not needed anymore in order to save power.
  3921. */
  3922. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  3923. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  3924. I915_READ(SOUTH_DSPCLK_GATE_D) |
  3925. PCH_LP_PARTITION_LEVEL_DISABLE);
  3926. /* WADPOClockGatingDisable:hsw */
  3927. I915_WRITE(_TRANSA_CHICKEN1,
  3928. I915_READ(_TRANSA_CHICKEN1) |
  3929. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  3930. }
  3931. static void lpt_suspend_hw(struct drm_device *dev)
  3932. {
  3933. struct drm_i915_private *dev_priv = dev->dev_private;
  3934. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  3935. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  3936. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  3937. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  3938. }
  3939. }
  3940. static void gen8_init_clock_gating(struct drm_device *dev)
  3941. {
  3942. struct drm_i915_private *dev_priv = dev->dev_private;
  3943. enum pipe i;
  3944. I915_WRITE(WM3_LP_ILK, 0);
  3945. I915_WRITE(WM2_LP_ILK, 0);
  3946. I915_WRITE(WM1_LP_ILK, 0);
  3947. /* FIXME(BDW): Check all the w/a, some might only apply to
  3948. * pre-production hw. */
  3949. /*
  3950. * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
  3951. * pre-production hardware
  3952. */
  3953. I915_WRITE(HALF_SLICE_CHICKEN3,
  3954. _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
  3955. I915_WRITE(HALF_SLICE_CHICKEN3,
  3956. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  3957. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
  3958. I915_WRITE(_3D_CHICKEN3,
  3959. _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
  3960. I915_WRITE(COMMON_SLICE_CHICKEN2,
  3961. _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
  3962. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  3963. _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
  3964. /* WaSwitchSolVfFArbitrationPriority:bdw */
  3965. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  3966. /* WaPsrDPAMaskVBlankInSRD:bdw */
  3967. I915_WRITE(CHICKEN_PAR1_1,
  3968. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  3969. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  3970. for_each_pipe(i) {
  3971. I915_WRITE(CHICKEN_PIPESL_1(i),
  3972. I915_READ(CHICKEN_PIPESL_1(i) |
  3973. DPRS_MASK_VBLANK_SRD));
  3974. }
  3975. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  3976. * workaround for for a possible hang in the unlikely event a TLB
  3977. * invalidation occurs during a PSD flush.
  3978. */
  3979. I915_WRITE(HDC_CHICKEN0,
  3980. I915_READ(HDC_CHICKEN0) |
  3981. _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
  3982. /* WaVSRefCountFullforceMissDisable:bdw */
  3983. /* WaDSRefCountFullforceMissDisable:bdw */
  3984. I915_WRITE(GEN7_FF_THREAD_MODE,
  3985. I915_READ(GEN7_FF_THREAD_MODE) &
  3986. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  3987. }
  3988. static void haswell_init_clock_gating(struct drm_device *dev)
  3989. {
  3990. struct drm_i915_private *dev_priv = dev->dev_private;
  3991. ilk_init_lp_watermarks(dev);
  3992. /* L3 caching of data atomics doesn't work -- disable it. */
  3993. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  3994. I915_WRITE(HSW_ROW_CHICKEN3,
  3995. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  3996. /* This is required by WaCatErrorRejectionIssue:hsw */
  3997. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3998. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3999. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4000. /* WaVSRefCountFullforceMissDisable:hsw */
  4001. I915_WRITE(GEN7_FF_THREAD_MODE,
  4002. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  4003. /* WaDisable4x2SubspanOptimization:hsw */
  4004. I915_WRITE(CACHE_MODE_1,
  4005. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4006. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4007. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4008. /* WaRsPkgCStateDisplayPMReq:hsw */
  4009. I915_WRITE(CHICKEN_PAR1_1,
  4010. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4011. lpt_init_clock_gating(dev);
  4012. }
  4013. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4014. {
  4015. struct drm_i915_private *dev_priv = dev->dev_private;
  4016. uint32_t snpcr;
  4017. ilk_init_lp_watermarks(dev);
  4018. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4019. /* WaDisableEarlyCull:ivb */
  4020. I915_WRITE(_3D_CHICKEN3,
  4021. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4022. /* WaDisableBackToBackFlipFix:ivb */
  4023. I915_WRITE(IVB_CHICKEN3,
  4024. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4025. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4026. /* WaDisablePSDDualDispatchEnable:ivb */
  4027. if (IS_IVB_GT1(dev))
  4028. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4029. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4030. else
  4031. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  4032. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4033. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4034. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4035. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4036. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4037. I915_WRITE(GEN7_L3CNTLREG1,
  4038. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4039. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4040. GEN7_WA_L3_CHICKEN_MODE);
  4041. if (IS_IVB_GT1(dev))
  4042. I915_WRITE(GEN7_ROW_CHICKEN2,
  4043. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4044. else
  4045. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4046. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4047. /* WaForceL3Serialization:ivb */
  4048. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4049. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4050. /*
  4051. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4052. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4053. */
  4054. I915_WRITE(GEN6_UCGCTL2,
  4055. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4056. /* This is required by WaCatErrorRejectionIssue:ivb */
  4057. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4058. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4059. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4060. g4x_disable_trickle_feed(dev);
  4061. gen7_setup_fixed_func_scheduler(dev_priv);
  4062. /* WaDisable4x2SubspanOptimization:ivb */
  4063. I915_WRITE(CACHE_MODE_1,
  4064. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4065. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4066. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4067. snpcr |= GEN6_MBC_SNPCR_MED;
  4068. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4069. if (!HAS_PCH_NOP(dev))
  4070. cpt_init_clock_gating(dev);
  4071. gen6_check_mch_setup(dev);
  4072. }
  4073. static void valleyview_init_clock_gating(struct drm_device *dev)
  4074. {
  4075. struct drm_i915_private *dev_priv = dev->dev_private;
  4076. u32 val;
  4077. mutex_lock(&dev_priv->rps.hw_lock);
  4078. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4079. mutex_unlock(&dev_priv->rps.hw_lock);
  4080. switch ((val >> 6) & 3) {
  4081. case 0:
  4082. dev_priv->mem_freq = 800;
  4083. break;
  4084. case 1:
  4085. dev_priv->mem_freq = 1066;
  4086. break;
  4087. case 2:
  4088. dev_priv->mem_freq = 1333;
  4089. break;
  4090. case 3:
  4091. dev_priv->mem_freq = 1333;
  4092. break;
  4093. }
  4094. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  4095. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4096. /* WaDisableEarlyCull:vlv */
  4097. I915_WRITE(_3D_CHICKEN3,
  4098. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4099. /* WaDisableBackToBackFlipFix:vlv */
  4100. I915_WRITE(IVB_CHICKEN3,
  4101. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4102. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4103. /* WaPsdDispatchEnable:vlv */
  4104. /* WaDisablePSDDualDispatchEnable:vlv */
  4105. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4106. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4107. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4108. /* WaDisableL3CacheAging:vlv */
  4109. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  4110. /* WaForceL3Serialization:vlv */
  4111. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4112. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4113. /* WaDisableDopClockGating:vlv */
  4114. I915_WRITE(GEN7_ROW_CHICKEN2,
  4115. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4116. /* This is required by WaCatErrorRejectionIssue:vlv */
  4117. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4118. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4119. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4120. /*
  4121. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4122. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4123. */
  4124. I915_WRITE(GEN6_UCGCTL2,
  4125. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4126. /* WaDisableL3Bank2xClockGate:vlv */
  4127. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4128. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4129. I915_WRITE(CACHE_MODE_1,
  4130. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4131. /*
  4132. * WaIncreaseL3CreditsForVLVB0:vlv
  4133. * This is the hardware default actually.
  4134. */
  4135. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  4136. /*
  4137. * WaDisableVLVClockGating_VBIIssue:vlv
  4138. * Disable clock gating on th GCFG unit to prevent a delay
  4139. * in the reporting of vblank events.
  4140. */
  4141. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  4142. /* Conservative clock gating settings for now */
  4143. I915_WRITE(0x9400, 0xffffffff);
  4144. I915_WRITE(0x9404, 0xffffffff);
  4145. I915_WRITE(0x9408, 0xffffffff);
  4146. I915_WRITE(0x940c, 0xffffffff);
  4147. I915_WRITE(0x9410, 0xffffffff);
  4148. I915_WRITE(0x9414, 0xffffffff);
  4149. I915_WRITE(0x9418, 0xffffffff);
  4150. }
  4151. static void g4x_init_clock_gating(struct drm_device *dev)
  4152. {
  4153. struct drm_i915_private *dev_priv = dev->dev_private;
  4154. uint32_t dspclk_gate;
  4155. I915_WRITE(RENCLK_GATE_D1, 0);
  4156. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4157. GS_UNIT_CLOCK_GATE_DISABLE |
  4158. CL_UNIT_CLOCK_GATE_DISABLE);
  4159. I915_WRITE(RAMCLK_GATE_D, 0);
  4160. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4161. OVRUNIT_CLOCK_GATE_DISABLE |
  4162. OVCUNIT_CLOCK_GATE_DISABLE;
  4163. if (IS_GM45(dev))
  4164. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4165. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4166. /* WaDisableRenderCachePipelinedFlush */
  4167. I915_WRITE(CACHE_MODE_0,
  4168. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4169. g4x_disable_trickle_feed(dev);
  4170. }
  4171. static void crestline_init_clock_gating(struct drm_device *dev)
  4172. {
  4173. struct drm_i915_private *dev_priv = dev->dev_private;
  4174. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4175. I915_WRITE(RENCLK_GATE_D2, 0);
  4176. I915_WRITE(DSPCLK_GATE_D, 0);
  4177. I915_WRITE(RAMCLK_GATE_D, 0);
  4178. I915_WRITE16(DEUC, 0);
  4179. I915_WRITE(MI_ARB_STATE,
  4180. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4181. }
  4182. static void broadwater_init_clock_gating(struct drm_device *dev)
  4183. {
  4184. struct drm_i915_private *dev_priv = dev->dev_private;
  4185. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4186. I965_RCC_CLOCK_GATE_DISABLE |
  4187. I965_RCPB_CLOCK_GATE_DISABLE |
  4188. I965_ISC_CLOCK_GATE_DISABLE |
  4189. I965_FBC_CLOCK_GATE_DISABLE);
  4190. I915_WRITE(RENCLK_GATE_D2, 0);
  4191. I915_WRITE(MI_ARB_STATE,
  4192. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4193. }
  4194. static void gen3_init_clock_gating(struct drm_device *dev)
  4195. {
  4196. struct drm_i915_private *dev_priv = dev->dev_private;
  4197. u32 dstate = I915_READ(D_STATE);
  4198. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4199. DSTATE_DOT_CLOCK_GATING;
  4200. I915_WRITE(D_STATE, dstate);
  4201. if (IS_PINEVIEW(dev))
  4202. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4203. /* IIR "flip pending" means done if this bit is set */
  4204. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4205. }
  4206. static void i85x_init_clock_gating(struct drm_device *dev)
  4207. {
  4208. struct drm_i915_private *dev_priv = dev->dev_private;
  4209. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4210. }
  4211. static void i830_init_clock_gating(struct drm_device *dev)
  4212. {
  4213. struct drm_i915_private *dev_priv = dev->dev_private;
  4214. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4215. }
  4216. void intel_init_clock_gating(struct drm_device *dev)
  4217. {
  4218. struct drm_i915_private *dev_priv = dev->dev_private;
  4219. dev_priv->display.init_clock_gating(dev);
  4220. }
  4221. void intel_suspend_hw(struct drm_device *dev)
  4222. {
  4223. if (HAS_PCH_LPT(dev))
  4224. lpt_suspend_hw(dev);
  4225. }
  4226. #define for_each_power_well(i, power_well, domain_mask, power_domains) \
  4227. for (i = 0; \
  4228. i < (power_domains)->power_well_count && \
  4229. ((power_well) = &(power_domains)->power_wells[i]); \
  4230. i++) \
  4231. if ((power_well)->domains & (domain_mask))
  4232. #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
  4233. for (i = (power_domains)->power_well_count - 1; \
  4234. i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
  4235. i--) \
  4236. if ((power_well)->domains & (domain_mask))
  4237. /**
  4238. * We should only use the power well if we explicitly asked the hardware to
  4239. * enable it, so check if it's enabled and also check if we've requested it to
  4240. * be enabled.
  4241. */
  4242. static bool hsw_power_well_enabled(struct drm_device *dev,
  4243. struct i915_power_well *power_well)
  4244. {
  4245. struct drm_i915_private *dev_priv = dev->dev_private;
  4246. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4247. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4248. }
  4249. bool intel_display_power_enabled_sw(struct drm_device *dev,
  4250. enum intel_display_power_domain domain)
  4251. {
  4252. struct drm_i915_private *dev_priv = dev->dev_private;
  4253. struct i915_power_domains *power_domains;
  4254. power_domains = &dev_priv->power_domains;
  4255. return power_domains->domain_use_count[domain];
  4256. }
  4257. bool intel_display_power_enabled(struct drm_device *dev,
  4258. enum intel_display_power_domain domain)
  4259. {
  4260. struct drm_i915_private *dev_priv = dev->dev_private;
  4261. struct i915_power_domains *power_domains;
  4262. struct i915_power_well *power_well;
  4263. bool is_enabled;
  4264. int i;
  4265. power_domains = &dev_priv->power_domains;
  4266. is_enabled = true;
  4267. mutex_lock(&power_domains->lock);
  4268. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  4269. if (power_well->always_on)
  4270. continue;
  4271. if (!power_well->is_enabled(dev, power_well)) {
  4272. is_enabled = false;
  4273. break;
  4274. }
  4275. }
  4276. mutex_unlock(&power_domains->lock);
  4277. return is_enabled;
  4278. }
  4279. static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
  4280. {
  4281. struct drm_device *dev = dev_priv->dev;
  4282. unsigned long irqflags;
  4283. /*
  4284. * After we re-enable the power well, if we touch VGA register 0x3d5
  4285. * we'll get unclaimed register interrupts. This stops after we write
  4286. * anything to the VGA MSR register. The vgacon module uses this
  4287. * register all the time, so if we unbind our driver and, as a
  4288. * consequence, bind vgacon, we'll get stuck in an infinite loop at
  4289. * console_unlock(). So make here we touch the VGA MSR register, making
  4290. * sure vgacon can keep working normally without triggering interrupts
  4291. * and error messages.
  4292. */
  4293. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  4294. outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
  4295. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  4296. if (IS_BROADWELL(dev)) {
  4297. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  4298. I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
  4299. dev_priv->de_irq_mask[PIPE_B]);
  4300. I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
  4301. ~dev_priv->de_irq_mask[PIPE_B] |
  4302. GEN8_PIPE_VBLANK);
  4303. I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
  4304. dev_priv->de_irq_mask[PIPE_C]);
  4305. I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
  4306. ~dev_priv->de_irq_mask[PIPE_C] |
  4307. GEN8_PIPE_VBLANK);
  4308. POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
  4309. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  4310. }
  4311. }
  4312. static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
  4313. {
  4314. struct drm_device *dev = dev_priv->dev;
  4315. enum pipe p;
  4316. unsigned long irqflags;
  4317. /*
  4318. * After this, the registers on the pipes that are part of the power
  4319. * well will become zero, so we have to adjust our counters according to
  4320. * that.
  4321. *
  4322. * FIXME: Should we do this in general in drm_vblank_post_modeset?
  4323. */
  4324. spin_lock_irqsave(&dev->vbl_lock, irqflags);
  4325. for_each_pipe(p)
  4326. if (p != PIPE_A)
  4327. dev->vblank[p].last = 0;
  4328. spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
  4329. }
  4330. static void hsw_set_power_well(struct drm_device *dev,
  4331. struct i915_power_well *power_well, bool enable)
  4332. {
  4333. struct drm_i915_private *dev_priv = dev->dev_private;
  4334. bool is_enabled, enable_requested;
  4335. uint32_t tmp;
  4336. WARN_ON(dev_priv->pc8.enabled);
  4337. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4338. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4339. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4340. if (enable) {
  4341. if (!enable_requested)
  4342. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4343. HSW_PWR_WELL_ENABLE_REQUEST);
  4344. if (!is_enabled) {
  4345. DRM_DEBUG_KMS("Enabling power well\n");
  4346. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4347. HSW_PWR_WELL_STATE_ENABLED), 20))
  4348. DRM_ERROR("Timeout enabling power well\n");
  4349. }
  4350. hsw_power_well_post_enable(dev_priv);
  4351. } else {
  4352. if (enable_requested) {
  4353. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4354. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4355. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4356. hsw_power_well_post_disable(dev_priv);
  4357. }
  4358. }
  4359. }
  4360. static void __intel_power_well_get(struct drm_device *dev,
  4361. struct i915_power_well *power_well)
  4362. {
  4363. struct drm_i915_private *dev_priv = dev->dev_private;
  4364. if (!power_well->count++ && power_well->set) {
  4365. hsw_disable_package_c8(dev_priv);
  4366. power_well->set(dev, power_well, true);
  4367. }
  4368. }
  4369. static void __intel_power_well_put(struct drm_device *dev,
  4370. struct i915_power_well *power_well)
  4371. {
  4372. struct drm_i915_private *dev_priv = dev->dev_private;
  4373. WARN_ON(!power_well->count);
  4374. if (!--power_well->count && power_well->set &&
  4375. i915.disable_power_well) {
  4376. power_well->set(dev, power_well, false);
  4377. hsw_enable_package_c8(dev_priv);
  4378. }
  4379. }
  4380. void intel_display_power_get(struct drm_device *dev,
  4381. enum intel_display_power_domain domain)
  4382. {
  4383. struct drm_i915_private *dev_priv = dev->dev_private;
  4384. struct i915_power_domains *power_domains;
  4385. struct i915_power_well *power_well;
  4386. int i;
  4387. power_domains = &dev_priv->power_domains;
  4388. mutex_lock(&power_domains->lock);
  4389. for_each_power_well(i, power_well, BIT(domain), power_domains)
  4390. __intel_power_well_get(dev, power_well);
  4391. power_domains->domain_use_count[domain]++;
  4392. mutex_unlock(&power_domains->lock);
  4393. }
  4394. void intel_display_power_put(struct drm_device *dev,
  4395. enum intel_display_power_domain domain)
  4396. {
  4397. struct drm_i915_private *dev_priv = dev->dev_private;
  4398. struct i915_power_domains *power_domains;
  4399. struct i915_power_well *power_well;
  4400. int i;
  4401. power_domains = &dev_priv->power_domains;
  4402. mutex_lock(&power_domains->lock);
  4403. WARN_ON(!power_domains->domain_use_count[domain]);
  4404. power_domains->domain_use_count[domain]--;
  4405. for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
  4406. __intel_power_well_put(dev, power_well);
  4407. mutex_unlock(&power_domains->lock);
  4408. }
  4409. static struct i915_power_domains *hsw_pwr;
  4410. /* Display audio driver power well request */
  4411. void i915_request_power_well(void)
  4412. {
  4413. struct drm_i915_private *dev_priv;
  4414. if (WARN_ON(!hsw_pwr))
  4415. return;
  4416. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  4417. power_domains);
  4418. intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
  4419. }
  4420. EXPORT_SYMBOL_GPL(i915_request_power_well);
  4421. /* Display audio driver power well release */
  4422. void i915_release_power_well(void)
  4423. {
  4424. struct drm_i915_private *dev_priv;
  4425. if (WARN_ON(!hsw_pwr))
  4426. return;
  4427. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  4428. power_domains);
  4429. intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
  4430. }
  4431. EXPORT_SYMBOL_GPL(i915_release_power_well);
  4432. static struct i915_power_well i9xx_always_on_power_well[] = {
  4433. {
  4434. .name = "always-on",
  4435. .always_on = 1,
  4436. .domains = POWER_DOMAIN_MASK,
  4437. },
  4438. };
  4439. static struct i915_power_well hsw_power_wells[] = {
  4440. {
  4441. .name = "always-on",
  4442. .always_on = 1,
  4443. .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
  4444. },
  4445. {
  4446. .name = "display",
  4447. .domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
  4448. .is_enabled = hsw_power_well_enabled,
  4449. .set = hsw_set_power_well,
  4450. },
  4451. };
  4452. static struct i915_power_well bdw_power_wells[] = {
  4453. {
  4454. .name = "always-on",
  4455. .always_on = 1,
  4456. .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
  4457. },
  4458. {
  4459. .name = "display",
  4460. .domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
  4461. .is_enabled = hsw_power_well_enabled,
  4462. .set = hsw_set_power_well,
  4463. },
  4464. };
  4465. #define set_power_wells(power_domains, __power_wells) ({ \
  4466. (power_domains)->power_wells = (__power_wells); \
  4467. (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
  4468. })
  4469. int intel_power_domains_init(struct drm_device *dev)
  4470. {
  4471. struct drm_i915_private *dev_priv = dev->dev_private;
  4472. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  4473. mutex_init(&power_domains->lock);
  4474. /*
  4475. * The enabling order will be from lower to higher indexed wells,
  4476. * the disabling order is reversed.
  4477. */
  4478. if (IS_HASWELL(dev)) {
  4479. set_power_wells(power_domains, hsw_power_wells);
  4480. hsw_pwr = power_domains;
  4481. } else if (IS_BROADWELL(dev)) {
  4482. set_power_wells(power_domains, bdw_power_wells);
  4483. hsw_pwr = power_domains;
  4484. } else {
  4485. set_power_wells(power_domains, i9xx_always_on_power_well);
  4486. }
  4487. return 0;
  4488. }
  4489. void intel_power_domains_remove(struct drm_device *dev)
  4490. {
  4491. hsw_pwr = NULL;
  4492. }
  4493. static void intel_power_domains_resume(struct drm_device *dev)
  4494. {
  4495. struct drm_i915_private *dev_priv = dev->dev_private;
  4496. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  4497. struct i915_power_well *power_well;
  4498. int i;
  4499. mutex_lock(&power_domains->lock);
  4500. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
  4501. if (power_well->set)
  4502. power_well->set(dev, power_well, power_well->count > 0);
  4503. }
  4504. mutex_unlock(&power_domains->lock);
  4505. }
  4506. /*
  4507. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  4508. * when not needed anymore. We have 4 registers that can request the power well
  4509. * to be enabled, and it will only be disabled if none of the registers is
  4510. * requesting it to be enabled.
  4511. */
  4512. void intel_power_domains_init_hw(struct drm_device *dev)
  4513. {
  4514. struct drm_i915_private *dev_priv = dev->dev_private;
  4515. /* For now, we need the power well to be always enabled. */
  4516. intel_display_set_init_power(dev, true);
  4517. intel_power_domains_resume(dev);
  4518. if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
  4519. return;
  4520. /* We're taking over the BIOS, so clear any requests made by it since
  4521. * the driver is in charge now. */
  4522. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  4523. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  4524. }
  4525. /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
  4526. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  4527. {
  4528. hsw_disable_package_c8(dev_priv);
  4529. }
  4530. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  4531. {
  4532. hsw_enable_package_c8(dev_priv);
  4533. }
  4534. void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
  4535. {
  4536. struct drm_device *dev = dev_priv->dev;
  4537. struct device *device = &dev->pdev->dev;
  4538. if (!HAS_RUNTIME_PM(dev))
  4539. return;
  4540. pm_runtime_get_sync(device);
  4541. WARN(dev_priv->pm.suspended, "Device still suspended.\n");
  4542. }
  4543. void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
  4544. {
  4545. struct drm_device *dev = dev_priv->dev;
  4546. struct device *device = &dev->pdev->dev;
  4547. if (!HAS_RUNTIME_PM(dev))
  4548. return;
  4549. pm_runtime_mark_last_busy(device);
  4550. pm_runtime_put_autosuspend(device);
  4551. }
  4552. void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
  4553. {
  4554. struct drm_device *dev = dev_priv->dev;
  4555. struct device *device = &dev->pdev->dev;
  4556. dev_priv->pm.suspended = false;
  4557. if (!HAS_RUNTIME_PM(dev))
  4558. return;
  4559. pm_runtime_set_active(device);
  4560. pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
  4561. pm_runtime_mark_last_busy(device);
  4562. pm_runtime_use_autosuspend(device);
  4563. }
  4564. void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
  4565. {
  4566. struct drm_device *dev = dev_priv->dev;
  4567. struct device *device = &dev->pdev->dev;
  4568. if (!HAS_RUNTIME_PM(dev))
  4569. return;
  4570. /* Make sure we're not suspended first. */
  4571. pm_runtime_get_sync(device);
  4572. pm_runtime_disable(device);
  4573. }
  4574. /* Set up chip specific power management-related functions */
  4575. void intel_init_pm(struct drm_device *dev)
  4576. {
  4577. struct drm_i915_private *dev_priv = dev->dev_private;
  4578. if (HAS_FBC(dev)) {
  4579. if (INTEL_INFO(dev)->gen >= 7) {
  4580. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  4581. dev_priv->display.enable_fbc = gen7_enable_fbc;
  4582. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  4583. } else if (INTEL_INFO(dev)->gen >= 5) {
  4584. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  4585. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  4586. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  4587. } else if (IS_GM45(dev)) {
  4588. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4589. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4590. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4591. } else {
  4592. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4593. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4594. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4595. /* This value was pulled out of someone's hat */
  4596. I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
  4597. }
  4598. }
  4599. /* For cxsr */
  4600. if (IS_PINEVIEW(dev))
  4601. i915_pineview_get_mem_freq(dev);
  4602. else if (IS_GEN5(dev))
  4603. i915_ironlake_get_mem_freq(dev);
  4604. /* For FIFO watermark updates */
  4605. if (HAS_PCH_SPLIT(dev)) {
  4606. intel_setup_wm_latency(dev);
  4607. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  4608. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  4609. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  4610. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  4611. dev_priv->display.update_wm = ilk_update_wm;
  4612. dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
  4613. } else {
  4614. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4615. "Disable CxSR\n");
  4616. }
  4617. if (IS_GEN5(dev))
  4618. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  4619. else if (IS_GEN6(dev))
  4620. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  4621. else if (IS_IVYBRIDGE(dev))
  4622. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  4623. else if (IS_HASWELL(dev))
  4624. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  4625. else if (INTEL_INFO(dev)->gen == 8)
  4626. dev_priv->display.init_clock_gating = gen8_init_clock_gating;
  4627. } else if (IS_VALLEYVIEW(dev)) {
  4628. dev_priv->display.update_wm = valleyview_update_wm;
  4629. dev_priv->display.init_clock_gating =
  4630. valleyview_init_clock_gating;
  4631. } else if (IS_PINEVIEW(dev)) {
  4632. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  4633. dev_priv->is_ddr3,
  4634. dev_priv->fsb_freq,
  4635. dev_priv->mem_freq)) {
  4636. DRM_INFO("failed to find known CxSR latency "
  4637. "(found ddr%s fsb freq %d, mem freq %d), "
  4638. "disabling CxSR\n",
  4639. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  4640. dev_priv->fsb_freq, dev_priv->mem_freq);
  4641. /* Disable CxSR and never update its watermark again */
  4642. pineview_disable_cxsr(dev);
  4643. dev_priv->display.update_wm = NULL;
  4644. } else
  4645. dev_priv->display.update_wm = pineview_update_wm;
  4646. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4647. } else if (IS_G4X(dev)) {
  4648. dev_priv->display.update_wm = g4x_update_wm;
  4649. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  4650. } else if (IS_GEN4(dev)) {
  4651. dev_priv->display.update_wm = i965_update_wm;
  4652. if (IS_CRESTLINE(dev))
  4653. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  4654. else if (IS_BROADWATER(dev))
  4655. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  4656. } else if (IS_GEN3(dev)) {
  4657. dev_priv->display.update_wm = i9xx_update_wm;
  4658. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  4659. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4660. } else if (IS_GEN2(dev)) {
  4661. if (INTEL_INFO(dev)->num_pipes == 1) {
  4662. dev_priv->display.update_wm = i845_update_wm;
  4663. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  4664. } else {
  4665. dev_priv->display.update_wm = i9xx_update_wm;
  4666. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4667. }
  4668. if (IS_I85X(dev) || IS_I865G(dev))
  4669. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  4670. else
  4671. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  4672. } else {
  4673. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  4674. }
  4675. }
  4676. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  4677. {
  4678. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4679. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4680. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  4681. return -EAGAIN;
  4682. }
  4683. I915_WRITE(GEN6_PCODE_DATA, *val);
  4684. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4685. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4686. 500)) {
  4687. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  4688. return -ETIMEDOUT;
  4689. }
  4690. *val = I915_READ(GEN6_PCODE_DATA);
  4691. I915_WRITE(GEN6_PCODE_DATA, 0);
  4692. return 0;
  4693. }
  4694. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  4695. {
  4696. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4697. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4698. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  4699. return -EAGAIN;
  4700. }
  4701. I915_WRITE(GEN6_PCODE_DATA, val);
  4702. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4703. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4704. 500)) {
  4705. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  4706. return -ETIMEDOUT;
  4707. }
  4708. I915_WRITE(GEN6_PCODE_DATA, 0);
  4709. return 0;
  4710. }
  4711. int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  4712. {
  4713. int div;
  4714. /* 4 x czclk */
  4715. switch (dev_priv->mem_freq) {
  4716. case 800:
  4717. div = 10;
  4718. break;
  4719. case 1066:
  4720. div = 12;
  4721. break;
  4722. case 1333:
  4723. div = 16;
  4724. break;
  4725. default:
  4726. return -1;
  4727. }
  4728. return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
  4729. }
  4730. int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  4731. {
  4732. int mul;
  4733. /* 4 x czclk */
  4734. switch (dev_priv->mem_freq) {
  4735. case 800:
  4736. mul = 10;
  4737. break;
  4738. case 1066:
  4739. mul = 12;
  4740. break;
  4741. case 1333:
  4742. mul = 16;
  4743. break;
  4744. default:
  4745. return -1;
  4746. }
  4747. return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
  4748. }
  4749. void intel_pm_setup(struct drm_device *dev)
  4750. {
  4751. struct drm_i915_private *dev_priv = dev->dev_private;
  4752. mutex_init(&dev_priv->rps.hw_lock);
  4753. mutex_init(&dev_priv->pc8.lock);
  4754. dev_priv->pc8.requirements_met = false;
  4755. dev_priv->pc8.gpu_idle = false;
  4756. dev_priv->pc8.irqs_disabled = false;
  4757. dev_priv->pc8.enabled = false;
  4758. dev_priv->pc8.disable_count = 2; /* requirements_met + gpu_idle */
  4759. INIT_DELAYED_WORK(&dev_priv->pc8.enable_work, hsw_enable_pc8_work);
  4760. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  4761. intel_gen6_powersave_work);
  4762. }