page_ext.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399
  1. #include <linux/mm.h>
  2. #include <linux/mmzone.h>
  3. #include <linux/bootmem.h>
  4. #include <linux/page_ext.h>
  5. #include <linux/memory.h>
  6. #include <linux/vmalloc.h>
  7. #include <linux/kmemleak.h>
  8. /*
  9. * struct page extension
  10. *
  11. * This is the feature to manage memory for extended data per page.
  12. *
  13. * Until now, we must modify struct page itself to store extra data per page.
  14. * This requires rebuilding the kernel and it is really time consuming process.
  15. * And, sometimes, rebuild is impossible due to third party module dependency.
  16. * At last, enlarging struct page could cause un-wanted system behaviour change.
  17. *
  18. * This feature is intended to overcome above mentioned problems. This feature
  19. * allocates memory for extended data per page in certain place rather than
  20. * the struct page itself. This memory can be accessed by the accessor
  21. * functions provided by this code. During the boot process, it checks whether
  22. * allocation of huge chunk of memory is needed or not. If not, it avoids
  23. * allocating memory at all. With this advantage, we can include this feature
  24. * into the kernel in default and can avoid rebuild and solve related problems.
  25. *
  26. * To help these things to work well, there are two callbacks for clients. One
  27. * is the need callback which is mandatory if user wants to avoid useless
  28. * memory allocation at boot-time. The other is optional, init callback, which
  29. * is used to do proper initialization after memory is allocated.
  30. *
  31. * The need callback is used to decide whether extended memory allocation is
  32. * needed or not. Sometimes users want to deactivate some features in this
  33. * boot and extra memory would be unneccessary. In this case, to avoid
  34. * allocating huge chunk of memory, each clients represent their need of
  35. * extra memory through the need callback. If one of the need callbacks
  36. * returns true, it means that someone needs extra memory so that
  37. * page extension core should allocates memory for page extension. If
  38. * none of need callbacks return true, memory isn't needed at all in this boot
  39. * and page extension core can skip to allocate memory. As result,
  40. * none of memory is wasted.
  41. *
  42. * The init callback is used to do proper initialization after page extension
  43. * is completely initialized. In sparse memory system, extra memory is
  44. * allocated some time later than memmap is allocated. In other words, lifetime
  45. * of memory for page extension isn't same with memmap for struct page.
  46. * Therefore, clients can't store extra data until page extension is
  47. * initialized, even if pages are allocated and used freely. This could
  48. * cause inadequate state of extra data per page, so, to prevent it, client
  49. * can utilize this callback to initialize the state of it correctly.
  50. */
  51. static struct page_ext_operations *page_ext_ops[] = {
  52. &debug_guardpage_ops,
  53. #ifdef CONFIG_PAGE_POISONING
  54. &page_poisoning_ops,
  55. #endif
  56. };
  57. static unsigned long total_usage;
  58. static bool __init invoke_need_callbacks(void)
  59. {
  60. int i;
  61. int entries = ARRAY_SIZE(page_ext_ops);
  62. for (i = 0; i < entries; i++) {
  63. if (page_ext_ops[i]->need && page_ext_ops[i]->need())
  64. return true;
  65. }
  66. return false;
  67. }
  68. static void __init invoke_init_callbacks(void)
  69. {
  70. int i;
  71. int entries = ARRAY_SIZE(page_ext_ops);
  72. for (i = 0; i < entries; i++) {
  73. if (page_ext_ops[i]->init)
  74. page_ext_ops[i]->init();
  75. }
  76. }
  77. #if !defined(CONFIG_SPARSEMEM)
  78. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  79. {
  80. pgdat->node_page_ext = NULL;
  81. }
  82. struct page_ext *lookup_page_ext(struct page *page)
  83. {
  84. unsigned long pfn = page_to_pfn(page);
  85. unsigned long offset;
  86. struct page_ext *base;
  87. base = NODE_DATA(page_to_nid(page))->node_page_ext;
  88. #ifdef CONFIG_DEBUG_VM
  89. /*
  90. * The sanity checks the page allocator does upon freeing a
  91. * page can reach here before the page_ext arrays are
  92. * allocated when feeding a range of pages to the allocator
  93. * for the first time during bootup or memory hotplug.
  94. */
  95. if (unlikely(!base))
  96. return NULL;
  97. #endif
  98. offset = pfn - round_down(node_start_pfn(page_to_nid(page)),
  99. MAX_ORDER_NR_PAGES);
  100. return base + offset;
  101. }
  102. static int __init alloc_node_page_ext(int nid)
  103. {
  104. struct page_ext *base;
  105. unsigned long table_size;
  106. unsigned long nr_pages;
  107. nr_pages = NODE_DATA(nid)->node_spanned_pages;
  108. if (!nr_pages)
  109. return 0;
  110. /*
  111. * Need extra space if node range is not aligned with
  112. * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
  113. * checks buddy's status, range could be out of exact node range.
  114. */
  115. if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
  116. !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
  117. nr_pages += MAX_ORDER_NR_PAGES;
  118. table_size = sizeof(struct page_ext) * nr_pages;
  119. base = memblock_virt_alloc_try_nid_nopanic(
  120. table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  121. BOOTMEM_ALLOC_ACCESSIBLE, nid);
  122. if (!base)
  123. return -ENOMEM;
  124. NODE_DATA(nid)->node_page_ext = base;
  125. total_usage += table_size;
  126. return 0;
  127. }
  128. void __init page_ext_init_flatmem(void)
  129. {
  130. int nid, fail;
  131. if (!invoke_need_callbacks())
  132. return;
  133. for_each_online_node(nid) {
  134. fail = alloc_node_page_ext(nid);
  135. if (fail)
  136. goto fail;
  137. }
  138. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  139. invoke_init_callbacks();
  140. return;
  141. fail:
  142. pr_crit("allocation of page_ext failed.\n");
  143. panic("Out of memory");
  144. }
  145. #else /* CONFIG_FLAT_NODE_MEM_MAP */
  146. struct page_ext *lookup_page_ext(struct page *page)
  147. {
  148. unsigned long pfn = page_to_pfn(page);
  149. struct mem_section *section = __pfn_to_section(pfn);
  150. #ifdef CONFIG_DEBUG_VM
  151. /*
  152. * The sanity checks the page allocator does upon freeing a
  153. * page can reach here before the page_ext arrays are
  154. * allocated when feeding a range of pages to the allocator
  155. * for the first time during bootup or memory hotplug.
  156. */
  157. if (!section->page_ext)
  158. return NULL;
  159. #endif
  160. return section->page_ext + pfn;
  161. }
  162. static void *__meminit alloc_page_ext(size_t size, int nid)
  163. {
  164. gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
  165. void *addr = NULL;
  166. addr = alloc_pages_exact_nid(nid, size, flags);
  167. if (addr) {
  168. kmemleak_alloc(addr, size, 1, flags);
  169. return addr;
  170. }
  171. if (node_state(nid, N_HIGH_MEMORY))
  172. addr = vzalloc_node(size, nid);
  173. else
  174. addr = vzalloc(size);
  175. return addr;
  176. }
  177. static int __meminit init_section_page_ext(unsigned long pfn, int nid)
  178. {
  179. struct mem_section *section;
  180. struct page_ext *base;
  181. unsigned long table_size;
  182. section = __pfn_to_section(pfn);
  183. if (section->page_ext)
  184. return 0;
  185. table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
  186. base = alloc_page_ext(table_size, nid);
  187. /*
  188. * The value stored in section->page_ext is (base - pfn)
  189. * and it does not point to the memory block allocated above,
  190. * causing kmemleak false positives.
  191. */
  192. kmemleak_not_leak(base);
  193. if (!base) {
  194. pr_err("page ext allocation failure\n");
  195. return -ENOMEM;
  196. }
  197. /*
  198. * The passed "pfn" may not be aligned to SECTION. For the calculation
  199. * we need to apply a mask.
  200. */
  201. pfn &= PAGE_SECTION_MASK;
  202. section->page_ext = base - pfn;
  203. total_usage += table_size;
  204. return 0;
  205. }
  206. #ifdef CONFIG_MEMORY_HOTPLUG
  207. static void free_page_ext(void *addr)
  208. {
  209. if (is_vmalloc_addr(addr)) {
  210. vfree(addr);
  211. } else {
  212. struct page *page = virt_to_page(addr);
  213. size_t table_size;
  214. table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
  215. BUG_ON(PageReserved(page));
  216. free_pages_exact(addr, table_size);
  217. }
  218. }
  219. static void __free_page_ext(unsigned long pfn)
  220. {
  221. struct mem_section *ms;
  222. struct page_ext *base;
  223. ms = __pfn_to_section(pfn);
  224. if (!ms || !ms->page_ext)
  225. return;
  226. base = ms->page_ext + pfn;
  227. free_page_ext(base);
  228. ms->page_ext = NULL;
  229. }
  230. static int __meminit online_page_ext(unsigned long start_pfn,
  231. unsigned long nr_pages,
  232. int nid)
  233. {
  234. unsigned long start, end, pfn;
  235. int fail = 0;
  236. start = SECTION_ALIGN_DOWN(start_pfn);
  237. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  238. if (nid == -1) {
  239. /*
  240. * In this case, "nid" already exists and contains valid memory.
  241. * "start_pfn" passed to us is a pfn which is an arg for
  242. * online__pages(), and start_pfn should exist.
  243. */
  244. nid = pfn_to_nid(start_pfn);
  245. VM_BUG_ON(!node_state(nid, N_ONLINE));
  246. }
  247. for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
  248. if (!pfn_present(pfn))
  249. continue;
  250. fail = init_section_page_ext(pfn, nid);
  251. }
  252. if (!fail)
  253. return 0;
  254. /* rollback */
  255. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  256. __free_page_ext(pfn);
  257. return -ENOMEM;
  258. }
  259. static int __meminit offline_page_ext(unsigned long start_pfn,
  260. unsigned long nr_pages, int nid)
  261. {
  262. unsigned long start, end, pfn;
  263. start = SECTION_ALIGN_DOWN(start_pfn);
  264. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  265. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  266. __free_page_ext(pfn);
  267. return 0;
  268. }
  269. static int __meminit page_ext_callback(struct notifier_block *self,
  270. unsigned long action, void *arg)
  271. {
  272. struct memory_notify *mn = arg;
  273. int ret = 0;
  274. switch (action) {
  275. case MEM_GOING_ONLINE:
  276. ret = online_page_ext(mn->start_pfn,
  277. mn->nr_pages, mn->status_change_nid);
  278. break;
  279. case MEM_OFFLINE:
  280. offline_page_ext(mn->start_pfn,
  281. mn->nr_pages, mn->status_change_nid);
  282. break;
  283. case MEM_CANCEL_ONLINE:
  284. offline_page_ext(mn->start_pfn,
  285. mn->nr_pages, mn->status_change_nid);
  286. break;
  287. case MEM_GOING_OFFLINE:
  288. break;
  289. case MEM_ONLINE:
  290. case MEM_CANCEL_OFFLINE:
  291. break;
  292. }
  293. return notifier_from_errno(ret);
  294. }
  295. #endif
  296. void __init page_ext_init(void)
  297. {
  298. unsigned long pfn;
  299. int nid;
  300. if (!invoke_need_callbacks())
  301. return;
  302. for_each_node_state(nid, N_MEMORY) {
  303. unsigned long start_pfn, end_pfn;
  304. start_pfn = node_start_pfn(nid);
  305. end_pfn = node_end_pfn(nid);
  306. /*
  307. * start_pfn and end_pfn may not be aligned to SECTION and the
  308. * page->flags of out of node pages are not initialized. So we
  309. * scan [start_pfn, the biggest section's pfn < end_pfn) here.
  310. */
  311. for (pfn = start_pfn; pfn < end_pfn;
  312. pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
  313. if (!pfn_valid(pfn))
  314. continue;
  315. /*
  316. * Nodes's pfns can be overlapping.
  317. * We know some arch can have a nodes layout such as
  318. * -------------pfn-------------->
  319. * N0 | N1 | N2 | N0 | N1 | N2|....
  320. */
  321. if (pfn_to_nid(pfn) != nid)
  322. continue;
  323. if (init_section_page_ext(pfn, nid))
  324. goto oom;
  325. }
  326. }
  327. hotplug_memory_notifier(page_ext_callback, 0);
  328. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  329. invoke_init_callbacks();
  330. return;
  331. oom:
  332. panic("Out of memory");
  333. }
  334. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  335. {
  336. }
  337. #endif