core.c 193 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327
  1. /*
  2. * Performance events core code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/idr.h>
  16. #include <linux/file.h>
  17. #include <linux/poll.h>
  18. #include <linux/slab.h>
  19. #include <linux/hash.h>
  20. #include <linux/tick.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/dcache.h>
  23. #include <linux/percpu.h>
  24. #include <linux/ptrace.h>
  25. #include <linux/reboot.h>
  26. #include <linux/vmstat.h>
  27. #include <linux/device.h>
  28. #include <linux/export.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/hardirq.h>
  31. #include <linux/rculist.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/anon_inodes.h>
  35. #include <linux/kernel_stat.h>
  36. #include <linux/perf_event.h>
  37. #include <linux/ftrace_event.h>
  38. #include <linux/hw_breakpoint.h>
  39. #include <linux/mm_types.h>
  40. #include <linux/cgroup.h>
  41. #include <linux/module.h>
  42. #include <linux/mman.h>
  43. #include <linux/compat.h>
  44. #include "internal.h"
  45. #include <asm/irq_regs.h>
  46. static struct workqueue_struct *perf_wq;
  47. struct remote_function_call {
  48. struct task_struct *p;
  49. int (*func)(void *info);
  50. void *info;
  51. int ret;
  52. };
  53. static void remote_function(void *data)
  54. {
  55. struct remote_function_call *tfc = data;
  56. struct task_struct *p = tfc->p;
  57. if (p) {
  58. tfc->ret = -EAGAIN;
  59. if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  60. return;
  61. }
  62. tfc->ret = tfc->func(tfc->info);
  63. }
  64. /**
  65. * task_function_call - call a function on the cpu on which a task runs
  66. * @p: the task to evaluate
  67. * @func: the function to be called
  68. * @info: the function call argument
  69. *
  70. * Calls the function @func when the task is currently running. This might
  71. * be on the current CPU, which just calls the function directly
  72. *
  73. * returns: @func return value, or
  74. * -ESRCH - when the process isn't running
  75. * -EAGAIN - when the process moved away
  76. */
  77. static int
  78. task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  79. {
  80. struct remote_function_call data = {
  81. .p = p,
  82. .func = func,
  83. .info = info,
  84. .ret = -ESRCH, /* No such (running) process */
  85. };
  86. if (task_curr(p))
  87. smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  88. return data.ret;
  89. }
  90. /**
  91. * cpu_function_call - call a function on the cpu
  92. * @func: the function to be called
  93. * @info: the function call argument
  94. *
  95. * Calls the function @func on the remote cpu.
  96. *
  97. * returns: @func return value or -ENXIO when the cpu is offline
  98. */
  99. static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
  100. {
  101. struct remote_function_call data = {
  102. .p = NULL,
  103. .func = func,
  104. .info = info,
  105. .ret = -ENXIO, /* No such CPU */
  106. };
  107. smp_call_function_single(cpu, remote_function, &data, 1);
  108. return data.ret;
  109. }
  110. #define EVENT_OWNER_KERNEL ((void *) -1)
  111. static bool is_kernel_event(struct perf_event *event)
  112. {
  113. return event->owner == EVENT_OWNER_KERNEL;
  114. }
  115. #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
  116. PERF_FLAG_FD_OUTPUT |\
  117. PERF_FLAG_PID_CGROUP |\
  118. PERF_FLAG_FD_CLOEXEC)
  119. /*
  120. * branch priv levels that need permission checks
  121. */
  122. #define PERF_SAMPLE_BRANCH_PERM_PLM \
  123. (PERF_SAMPLE_BRANCH_KERNEL |\
  124. PERF_SAMPLE_BRANCH_HV)
  125. enum event_type_t {
  126. EVENT_FLEXIBLE = 0x1,
  127. EVENT_PINNED = 0x2,
  128. EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
  129. };
  130. /*
  131. * perf_sched_events : >0 events exist
  132. * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
  133. */
  134. struct static_key_deferred perf_sched_events __read_mostly;
  135. static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
  136. static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
  137. static atomic_t nr_mmap_events __read_mostly;
  138. static atomic_t nr_comm_events __read_mostly;
  139. static atomic_t nr_task_events __read_mostly;
  140. static atomic_t nr_freq_events __read_mostly;
  141. static LIST_HEAD(pmus);
  142. static DEFINE_MUTEX(pmus_lock);
  143. static struct srcu_struct pmus_srcu;
  144. /*
  145. * perf event paranoia level:
  146. * -1 - not paranoid at all
  147. * 0 - disallow raw tracepoint access for unpriv
  148. * 1 - disallow cpu events for unpriv
  149. * 2 - disallow kernel profiling for unpriv
  150. */
  151. int sysctl_perf_event_paranoid __read_mostly = 1;
  152. /* Minimum for 512 kiB + 1 user control page */
  153. int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
  154. /*
  155. * max perf event sample rate
  156. */
  157. #define DEFAULT_MAX_SAMPLE_RATE 100000
  158. #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
  159. #define DEFAULT_CPU_TIME_MAX_PERCENT 25
  160. int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
  161. static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
  162. static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
  163. static int perf_sample_allowed_ns __read_mostly =
  164. DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
  165. void update_perf_cpu_limits(void)
  166. {
  167. u64 tmp = perf_sample_period_ns;
  168. tmp *= sysctl_perf_cpu_time_max_percent;
  169. do_div(tmp, 100);
  170. ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
  171. }
  172. static int perf_rotate_context(struct perf_cpu_context *cpuctx);
  173. int perf_proc_update_handler(struct ctl_table *table, int write,
  174. void __user *buffer, size_t *lenp,
  175. loff_t *ppos)
  176. {
  177. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  178. if (ret || !write)
  179. return ret;
  180. max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
  181. perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
  182. update_perf_cpu_limits();
  183. return 0;
  184. }
  185. int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
  186. int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
  187. void __user *buffer, size_t *lenp,
  188. loff_t *ppos)
  189. {
  190. int ret = proc_dointvec(table, write, buffer, lenp, ppos);
  191. if (ret || !write)
  192. return ret;
  193. update_perf_cpu_limits();
  194. return 0;
  195. }
  196. /*
  197. * perf samples are done in some very critical code paths (NMIs).
  198. * If they take too much CPU time, the system can lock up and not
  199. * get any real work done. This will drop the sample rate when
  200. * we detect that events are taking too long.
  201. */
  202. #define NR_ACCUMULATED_SAMPLES 128
  203. static DEFINE_PER_CPU(u64, running_sample_length);
  204. static void perf_duration_warn(struct irq_work *w)
  205. {
  206. u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
  207. u64 avg_local_sample_len;
  208. u64 local_samples_len;
  209. local_samples_len = __this_cpu_read(running_sample_length);
  210. avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
  211. printk_ratelimited(KERN_WARNING
  212. "perf interrupt took too long (%lld > %lld), lowering "
  213. "kernel.perf_event_max_sample_rate to %d\n",
  214. avg_local_sample_len, allowed_ns >> 1,
  215. sysctl_perf_event_sample_rate);
  216. }
  217. static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
  218. void perf_sample_event_took(u64 sample_len_ns)
  219. {
  220. u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
  221. u64 avg_local_sample_len;
  222. u64 local_samples_len;
  223. if (allowed_ns == 0)
  224. return;
  225. /* decay the counter by 1 average sample */
  226. local_samples_len = __this_cpu_read(running_sample_length);
  227. local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
  228. local_samples_len += sample_len_ns;
  229. __this_cpu_write(running_sample_length, local_samples_len);
  230. /*
  231. * note: this will be biased artifically low until we have
  232. * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
  233. * from having to maintain a count.
  234. */
  235. avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
  236. if (avg_local_sample_len <= allowed_ns)
  237. return;
  238. if (max_samples_per_tick <= 1)
  239. return;
  240. max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
  241. sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
  242. perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
  243. update_perf_cpu_limits();
  244. if (!irq_work_queue(&perf_duration_work)) {
  245. early_printk("perf interrupt took too long (%lld > %lld), lowering "
  246. "kernel.perf_event_max_sample_rate to %d\n",
  247. avg_local_sample_len, allowed_ns >> 1,
  248. sysctl_perf_event_sample_rate);
  249. }
  250. }
  251. static atomic64_t perf_event_id;
  252. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  253. enum event_type_t event_type);
  254. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  255. enum event_type_t event_type,
  256. struct task_struct *task);
  257. static void update_context_time(struct perf_event_context *ctx);
  258. static u64 perf_event_time(struct perf_event *event);
  259. void __weak perf_event_print_debug(void) { }
  260. extern __weak const char *perf_pmu_name(void)
  261. {
  262. return "pmu";
  263. }
  264. static inline u64 perf_clock(void)
  265. {
  266. return local_clock();
  267. }
  268. static inline struct perf_cpu_context *
  269. __get_cpu_context(struct perf_event_context *ctx)
  270. {
  271. return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
  272. }
  273. static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
  274. struct perf_event_context *ctx)
  275. {
  276. raw_spin_lock(&cpuctx->ctx.lock);
  277. if (ctx)
  278. raw_spin_lock(&ctx->lock);
  279. }
  280. static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
  281. struct perf_event_context *ctx)
  282. {
  283. if (ctx)
  284. raw_spin_unlock(&ctx->lock);
  285. raw_spin_unlock(&cpuctx->ctx.lock);
  286. }
  287. #ifdef CONFIG_CGROUP_PERF
  288. /*
  289. * perf_cgroup_info keeps track of time_enabled for a cgroup.
  290. * This is a per-cpu dynamically allocated data structure.
  291. */
  292. struct perf_cgroup_info {
  293. u64 time;
  294. u64 timestamp;
  295. };
  296. struct perf_cgroup {
  297. struct cgroup_subsys_state css;
  298. struct perf_cgroup_info __percpu *info;
  299. };
  300. /*
  301. * Must ensure cgroup is pinned (css_get) before calling
  302. * this function. In other words, we cannot call this function
  303. * if there is no cgroup event for the current CPU context.
  304. */
  305. static inline struct perf_cgroup *
  306. perf_cgroup_from_task(struct task_struct *task)
  307. {
  308. return container_of(task_css(task, perf_event_cgrp_id),
  309. struct perf_cgroup, css);
  310. }
  311. static inline bool
  312. perf_cgroup_match(struct perf_event *event)
  313. {
  314. struct perf_event_context *ctx = event->ctx;
  315. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  316. /* @event doesn't care about cgroup */
  317. if (!event->cgrp)
  318. return true;
  319. /* wants specific cgroup scope but @cpuctx isn't associated with any */
  320. if (!cpuctx->cgrp)
  321. return false;
  322. /*
  323. * Cgroup scoping is recursive. An event enabled for a cgroup is
  324. * also enabled for all its descendant cgroups. If @cpuctx's
  325. * cgroup is a descendant of @event's (the test covers identity
  326. * case), it's a match.
  327. */
  328. return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
  329. event->cgrp->css.cgroup);
  330. }
  331. static inline void perf_detach_cgroup(struct perf_event *event)
  332. {
  333. css_put(&event->cgrp->css);
  334. event->cgrp = NULL;
  335. }
  336. static inline int is_cgroup_event(struct perf_event *event)
  337. {
  338. return event->cgrp != NULL;
  339. }
  340. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  341. {
  342. struct perf_cgroup_info *t;
  343. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  344. return t->time;
  345. }
  346. static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
  347. {
  348. struct perf_cgroup_info *info;
  349. u64 now;
  350. now = perf_clock();
  351. info = this_cpu_ptr(cgrp->info);
  352. info->time += now - info->timestamp;
  353. info->timestamp = now;
  354. }
  355. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  356. {
  357. struct perf_cgroup *cgrp_out = cpuctx->cgrp;
  358. if (cgrp_out)
  359. __update_cgrp_time(cgrp_out);
  360. }
  361. static inline void update_cgrp_time_from_event(struct perf_event *event)
  362. {
  363. struct perf_cgroup *cgrp;
  364. /*
  365. * ensure we access cgroup data only when needed and
  366. * when we know the cgroup is pinned (css_get)
  367. */
  368. if (!is_cgroup_event(event))
  369. return;
  370. cgrp = perf_cgroup_from_task(current);
  371. /*
  372. * Do not update time when cgroup is not active
  373. */
  374. if (cgrp == event->cgrp)
  375. __update_cgrp_time(event->cgrp);
  376. }
  377. static inline void
  378. perf_cgroup_set_timestamp(struct task_struct *task,
  379. struct perf_event_context *ctx)
  380. {
  381. struct perf_cgroup *cgrp;
  382. struct perf_cgroup_info *info;
  383. /*
  384. * ctx->lock held by caller
  385. * ensure we do not access cgroup data
  386. * unless we have the cgroup pinned (css_get)
  387. */
  388. if (!task || !ctx->nr_cgroups)
  389. return;
  390. cgrp = perf_cgroup_from_task(task);
  391. info = this_cpu_ptr(cgrp->info);
  392. info->timestamp = ctx->timestamp;
  393. }
  394. #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
  395. #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
  396. /*
  397. * reschedule events based on the cgroup constraint of task.
  398. *
  399. * mode SWOUT : schedule out everything
  400. * mode SWIN : schedule in based on cgroup for next
  401. */
  402. void perf_cgroup_switch(struct task_struct *task, int mode)
  403. {
  404. struct perf_cpu_context *cpuctx;
  405. struct pmu *pmu;
  406. unsigned long flags;
  407. /*
  408. * disable interrupts to avoid geting nr_cgroup
  409. * changes via __perf_event_disable(). Also
  410. * avoids preemption.
  411. */
  412. local_irq_save(flags);
  413. /*
  414. * we reschedule only in the presence of cgroup
  415. * constrained events.
  416. */
  417. rcu_read_lock();
  418. list_for_each_entry_rcu(pmu, &pmus, entry) {
  419. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  420. if (cpuctx->unique_pmu != pmu)
  421. continue; /* ensure we process each cpuctx once */
  422. /*
  423. * perf_cgroup_events says at least one
  424. * context on this CPU has cgroup events.
  425. *
  426. * ctx->nr_cgroups reports the number of cgroup
  427. * events for a context.
  428. */
  429. if (cpuctx->ctx.nr_cgroups > 0) {
  430. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  431. perf_pmu_disable(cpuctx->ctx.pmu);
  432. if (mode & PERF_CGROUP_SWOUT) {
  433. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  434. /*
  435. * must not be done before ctxswout due
  436. * to event_filter_match() in event_sched_out()
  437. */
  438. cpuctx->cgrp = NULL;
  439. }
  440. if (mode & PERF_CGROUP_SWIN) {
  441. WARN_ON_ONCE(cpuctx->cgrp);
  442. /*
  443. * set cgrp before ctxsw in to allow
  444. * event_filter_match() to not have to pass
  445. * task around
  446. */
  447. cpuctx->cgrp = perf_cgroup_from_task(task);
  448. cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
  449. }
  450. perf_pmu_enable(cpuctx->ctx.pmu);
  451. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  452. }
  453. }
  454. rcu_read_unlock();
  455. local_irq_restore(flags);
  456. }
  457. static inline void perf_cgroup_sched_out(struct task_struct *task,
  458. struct task_struct *next)
  459. {
  460. struct perf_cgroup *cgrp1;
  461. struct perf_cgroup *cgrp2 = NULL;
  462. /*
  463. * we come here when we know perf_cgroup_events > 0
  464. */
  465. cgrp1 = perf_cgroup_from_task(task);
  466. /*
  467. * next is NULL when called from perf_event_enable_on_exec()
  468. * that will systematically cause a cgroup_switch()
  469. */
  470. if (next)
  471. cgrp2 = perf_cgroup_from_task(next);
  472. /*
  473. * only schedule out current cgroup events if we know
  474. * that we are switching to a different cgroup. Otherwise,
  475. * do no touch the cgroup events.
  476. */
  477. if (cgrp1 != cgrp2)
  478. perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
  479. }
  480. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  481. struct task_struct *task)
  482. {
  483. struct perf_cgroup *cgrp1;
  484. struct perf_cgroup *cgrp2 = NULL;
  485. /*
  486. * we come here when we know perf_cgroup_events > 0
  487. */
  488. cgrp1 = perf_cgroup_from_task(task);
  489. /* prev can never be NULL */
  490. cgrp2 = perf_cgroup_from_task(prev);
  491. /*
  492. * only need to schedule in cgroup events if we are changing
  493. * cgroup during ctxsw. Cgroup events were not scheduled
  494. * out of ctxsw out if that was not the case.
  495. */
  496. if (cgrp1 != cgrp2)
  497. perf_cgroup_switch(task, PERF_CGROUP_SWIN);
  498. }
  499. static inline int perf_cgroup_connect(int fd, struct perf_event *event,
  500. struct perf_event_attr *attr,
  501. struct perf_event *group_leader)
  502. {
  503. struct perf_cgroup *cgrp;
  504. struct cgroup_subsys_state *css;
  505. struct fd f = fdget(fd);
  506. int ret = 0;
  507. if (!f.file)
  508. return -EBADF;
  509. css = css_tryget_online_from_dir(f.file->f_dentry,
  510. &perf_event_cgrp_subsys);
  511. if (IS_ERR(css)) {
  512. ret = PTR_ERR(css);
  513. goto out;
  514. }
  515. cgrp = container_of(css, struct perf_cgroup, css);
  516. event->cgrp = cgrp;
  517. /*
  518. * all events in a group must monitor
  519. * the same cgroup because a task belongs
  520. * to only one perf cgroup at a time
  521. */
  522. if (group_leader && group_leader->cgrp != cgrp) {
  523. perf_detach_cgroup(event);
  524. ret = -EINVAL;
  525. }
  526. out:
  527. fdput(f);
  528. return ret;
  529. }
  530. static inline void
  531. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  532. {
  533. struct perf_cgroup_info *t;
  534. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  535. event->shadow_ctx_time = now - t->timestamp;
  536. }
  537. static inline void
  538. perf_cgroup_defer_enabled(struct perf_event *event)
  539. {
  540. /*
  541. * when the current task's perf cgroup does not match
  542. * the event's, we need to remember to call the
  543. * perf_mark_enable() function the first time a task with
  544. * a matching perf cgroup is scheduled in.
  545. */
  546. if (is_cgroup_event(event) && !perf_cgroup_match(event))
  547. event->cgrp_defer_enabled = 1;
  548. }
  549. static inline void
  550. perf_cgroup_mark_enabled(struct perf_event *event,
  551. struct perf_event_context *ctx)
  552. {
  553. struct perf_event *sub;
  554. u64 tstamp = perf_event_time(event);
  555. if (!event->cgrp_defer_enabled)
  556. return;
  557. event->cgrp_defer_enabled = 0;
  558. event->tstamp_enabled = tstamp - event->total_time_enabled;
  559. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  560. if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
  561. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  562. sub->cgrp_defer_enabled = 0;
  563. }
  564. }
  565. }
  566. #else /* !CONFIG_CGROUP_PERF */
  567. static inline bool
  568. perf_cgroup_match(struct perf_event *event)
  569. {
  570. return true;
  571. }
  572. static inline void perf_detach_cgroup(struct perf_event *event)
  573. {}
  574. static inline int is_cgroup_event(struct perf_event *event)
  575. {
  576. return 0;
  577. }
  578. static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
  579. {
  580. return 0;
  581. }
  582. static inline void update_cgrp_time_from_event(struct perf_event *event)
  583. {
  584. }
  585. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  586. {
  587. }
  588. static inline void perf_cgroup_sched_out(struct task_struct *task,
  589. struct task_struct *next)
  590. {
  591. }
  592. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  593. struct task_struct *task)
  594. {
  595. }
  596. static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
  597. struct perf_event_attr *attr,
  598. struct perf_event *group_leader)
  599. {
  600. return -EINVAL;
  601. }
  602. static inline void
  603. perf_cgroup_set_timestamp(struct task_struct *task,
  604. struct perf_event_context *ctx)
  605. {
  606. }
  607. void
  608. perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
  609. {
  610. }
  611. static inline void
  612. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  613. {
  614. }
  615. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  616. {
  617. return 0;
  618. }
  619. static inline void
  620. perf_cgroup_defer_enabled(struct perf_event *event)
  621. {
  622. }
  623. static inline void
  624. perf_cgroup_mark_enabled(struct perf_event *event,
  625. struct perf_event_context *ctx)
  626. {
  627. }
  628. #endif
  629. /*
  630. * set default to be dependent on timer tick just
  631. * like original code
  632. */
  633. #define PERF_CPU_HRTIMER (1000 / HZ)
  634. /*
  635. * function must be called with interrupts disbled
  636. */
  637. static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
  638. {
  639. struct perf_cpu_context *cpuctx;
  640. enum hrtimer_restart ret = HRTIMER_NORESTART;
  641. int rotations = 0;
  642. WARN_ON(!irqs_disabled());
  643. cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
  644. rotations = perf_rotate_context(cpuctx);
  645. /*
  646. * arm timer if needed
  647. */
  648. if (rotations) {
  649. hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
  650. ret = HRTIMER_RESTART;
  651. }
  652. return ret;
  653. }
  654. /* CPU is going down */
  655. void perf_cpu_hrtimer_cancel(int cpu)
  656. {
  657. struct perf_cpu_context *cpuctx;
  658. struct pmu *pmu;
  659. unsigned long flags;
  660. if (WARN_ON(cpu != smp_processor_id()))
  661. return;
  662. local_irq_save(flags);
  663. rcu_read_lock();
  664. list_for_each_entry_rcu(pmu, &pmus, entry) {
  665. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  666. if (pmu->task_ctx_nr == perf_sw_context)
  667. continue;
  668. hrtimer_cancel(&cpuctx->hrtimer);
  669. }
  670. rcu_read_unlock();
  671. local_irq_restore(flags);
  672. }
  673. static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
  674. {
  675. struct hrtimer *hr = &cpuctx->hrtimer;
  676. struct pmu *pmu = cpuctx->ctx.pmu;
  677. int timer;
  678. /* no multiplexing needed for SW PMU */
  679. if (pmu->task_ctx_nr == perf_sw_context)
  680. return;
  681. /*
  682. * check default is sane, if not set then force to
  683. * default interval (1/tick)
  684. */
  685. timer = pmu->hrtimer_interval_ms;
  686. if (timer < 1)
  687. timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
  688. cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
  689. hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
  690. hr->function = perf_cpu_hrtimer_handler;
  691. }
  692. static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
  693. {
  694. struct hrtimer *hr = &cpuctx->hrtimer;
  695. struct pmu *pmu = cpuctx->ctx.pmu;
  696. /* not for SW PMU */
  697. if (pmu->task_ctx_nr == perf_sw_context)
  698. return;
  699. if (hrtimer_active(hr))
  700. return;
  701. if (!hrtimer_callback_running(hr))
  702. __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
  703. 0, HRTIMER_MODE_REL_PINNED, 0);
  704. }
  705. void perf_pmu_disable(struct pmu *pmu)
  706. {
  707. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  708. if (!(*count)++)
  709. pmu->pmu_disable(pmu);
  710. }
  711. void perf_pmu_enable(struct pmu *pmu)
  712. {
  713. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  714. if (!--(*count))
  715. pmu->pmu_enable(pmu);
  716. }
  717. static DEFINE_PER_CPU(struct list_head, rotation_list);
  718. /*
  719. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  720. * because they're strictly cpu affine and rotate_start is called with IRQs
  721. * disabled, while rotate_context is called from IRQ context.
  722. */
  723. static void perf_pmu_rotate_start(struct pmu *pmu)
  724. {
  725. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  726. struct list_head *head = this_cpu_ptr(&rotation_list);
  727. WARN_ON(!irqs_disabled());
  728. if (list_empty(&cpuctx->rotation_list))
  729. list_add(&cpuctx->rotation_list, head);
  730. }
  731. static void get_ctx(struct perf_event_context *ctx)
  732. {
  733. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  734. }
  735. static void put_ctx(struct perf_event_context *ctx)
  736. {
  737. if (atomic_dec_and_test(&ctx->refcount)) {
  738. if (ctx->parent_ctx)
  739. put_ctx(ctx->parent_ctx);
  740. if (ctx->task)
  741. put_task_struct(ctx->task);
  742. kfree_rcu(ctx, rcu_head);
  743. }
  744. }
  745. /*
  746. * This must be done under the ctx->lock, such as to serialize against
  747. * context_equiv(), therefore we cannot call put_ctx() since that might end up
  748. * calling scheduler related locks and ctx->lock nests inside those.
  749. */
  750. static __must_check struct perf_event_context *
  751. unclone_ctx(struct perf_event_context *ctx)
  752. {
  753. struct perf_event_context *parent_ctx = ctx->parent_ctx;
  754. lockdep_assert_held(&ctx->lock);
  755. if (parent_ctx)
  756. ctx->parent_ctx = NULL;
  757. ctx->generation++;
  758. return parent_ctx;
  759. }
  760. static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
  761. {
  762. /*
  763. * only top level events have the pid namespace they were created in
  764. */
  765. if (event->parent)
  766. event = event->parent;
  767. return task_tgid_nr_ns(p, event->ns);
  768. }
  769. static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
  770. {
  771. /*
  772. * only top level events have the pid namespace they were created in
  773. */
  774. if (event->parent)
  775. event = event->parent;
  776. return task_pid_nr_ns(p, event->ns);
  777. }
  778. /*
  779. * If we inherit events we want to return the parent event id
  780. * to userspace.
  781. */
  782. static u64 primary_event_id(struct perf_event *event)
  783. {
  784. u64 id = event->id;
  785. if (event->parent)
  786. id = event->parent->id;
  787. return id;
  788. }
  789. /*
  790. * Get the perf_event_context for a task and lock it.
  791. * This has to cope with with the fact that until it is locked,
  792. * the context could get moved to another task.
  793. */
  794. static struct perf_event_context *
  795. perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
  796. {
  797. struct perf_event_context *ctx;
  798. retry:
  799. /*
  800. * One of the few rules of preemptible RCU is that one cannot do
  801. * rcu_read_unlock() while holding a scheduler (or nested) lock when
  802. * part of the read side critical section was preemptible -- see
  803. * rcu_read_unlock_special().
  804. *
  805. * Since ctx->lock nests under rq->lock we must ensure the entire read
  806. * side critical section is non-preemptible.
  807. */
  808. preempt_disable();
  809. rcu_read_lock();
  810. ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
  811. if (ctx) {
  812. /*
  813. * If this context is a clone of another, it might
  814. * get swapped for another underneath us by
  815. * perf_event_task_sched_out, though the
  816. * rcu_read_lock() protects us from any context
  817. * getting freed. Lock the context and check if it
  818. * got swapped before we could get the lock, and retry
  819. * if so. If we locked the right context, then it
  820. * can't get swapped on us any more.
  821. */
  822. raw_spin_lock_irqsave(&ctx->lock, *flags);
  823. if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
  824. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  825. rcu_read_unlock();
  826. preempt_enable();
  827. goto retry;
  828. }
  829. if (!atomic_inc_not_zero(&ctx->refcount)) {
  830. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  831. ctx = NULL;
  832. }
  833. }
  834. rcu_read_unlock();
  835. preempt_enable();
  836. return ctx;
  837. }
  838. /*
  839. * Get the context for a task and increment its pin_count so it
  840. * can't get swapped to another task. This also increments its
  841. * reference count so that the context can't get freed.
  842. */
  843. static struct perf_event_context *
  844. perf_pin_task_context(struct task_struct *task, int ctxn)
  845. {
  846. struct perf_event_context *ctx;
  847. unsigned long flags;
  848. ctx = perf_lock_task_context(task, ctxn, &flags);
  849. if (ctx) {
  850. ++ctx->pin_count;
  851. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  852. }
  853. return ctx;
  854. }
  855. static void perf_unpin_context(struct perf_event_context *ctx)
  856. {
  857. unsigned long flags;
  858. raw_spin_lock_irqsave(&ctx->lock, flags);
  859. --ctx->pin_count;
  860. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  861. }
  862. /*
  863. * Update the record of the current time in a context.
  864. */
  865. static void update_context_time(struct perf_event_context *ctx)
  866. {
  867. u64 now = perf_clock();
  868. ctx->time += now - ctx->timestamp;
  869. ctx->timestamp = now;
  870. }
  871. static u64 perf_event_time(struct perf_event *event)
  872. {
  873. struct perf_event_context *ctx = event->ctx;
  874. if (is_cgroup_event(event))
  875. return perf_cgroup_event_time(event);
  876. return ctx ? ctx->time : 0;
  877. }
  878. /*
  879. * Update the total_time_enabled and total_time_running fields for a event.
  880. * The caller of this function needs to hold the ctx->lock.
  881. */
  882. static void update_event_times(struct perf_event *event)
  883. {
  884. struct perf_event_context *ctx = event->ctx;
  885. u64 run_end;
  886. if (event->state < PERF_EVENT_STATE_INACTIVE ||
  887. event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
  888. return;
  889. /*
  890. * in cgroup mode, time_enabled represents
  891. * the time the event was enabled AND active
  892. * tasks were in the monitored cgroup. This is
  893. * independent of the activity of the context as
  894. * there may be a mix of cgroup and non-cgroup events.
  895. *
  896. * That is why we treat cgroup events differently
  897. * here.
  898. */
  899. if (is_cgroup_event(event))
  900. run_end = perf_cgroup_event_time(event);
  901. else if (ctx->is_active)
  902. run_end = ctx->time;
  903. else
  904. run_end = event->tstamp_stopped;
  905. event->total_time_enabled = run_end - event->tstamp_enabled;
  906. if (event->state == PERF_EVENT_STATE_INACTIVE)
  907. run_end = event->tstamp_stopped;
  908. else
  909. run_end = perf_event_time(event);
  910. event->total_time_running = run_end - event->tstamp_running;
  911. }
  912. /*
  913. * Update total_time_enabled and total_time_running for all events in a group.
  914. */
  915. static void update_group_times(struct perf_event *leader)
  916. {
  917. struct perf_event *event;
  918. update_event_times(leader);
  919. list_for_each_entry(event, &leader->sibling_list, group_entry)
  920. update_event_times(event);
  921. }
  922. static struct list_head *
  923. ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
  924. {
  925. if (event->attr.pinned)
  926. return &ctx->pinned_groups;
  927. else
  928. return &ctx->flexible_groups;
  929. }
  930. /*
  931. * Add a event from the lists for its context.
  932. * Must be called with ctx->mutex and ctx->lock held.
  933. */
  934. static void
  935. list_add_event(struct perf_event *event, struct perf_event_context *ctx)
  936. {
  937. WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
  938. event->attach_state |= PERF_ATTACH_CONTEXT;
  939. /*
  940. * If we're a stand alone event or group leader, we go to the context
  941. * list, group events are kept attached to the group so that
  942. * perf_group_detach can, at all times, locate all siblings.
  943. */
  944. if (event->group_leader == event) {
  945. struct list_head *list;
  946. if (is_software_event(event))
  947. event->group_flags |= PERF_GROUP_SOFTWARE;
  948. list = ctx_group_list(event, ctx);
  949. list_add_tail(&event->group_entry, list);
  950. }
  951. if (is_cgroup_event(event))
  952. ctx->nr_cgroups++;
  953. if (has_branch_stack(event))
  954. ctx->nr_branch_stack++;
  955. list_add_rcu(&event->event_entry, &ctx->event_list);
  956. if (!ctx->nr_events)
  957. perf_pmu_rotate_start(ctx->pmu);
  958. ctx->nr_events++;
  959. if (event->attr.inherit_stat)
  960. ctx->nr_stat++;
  961. ctx->generation++;
  962. }
  963. /*
  964. * Initialize event state based on the perf_event_attr::disabled.
  965. */
  966. static inline void perf_event__state_init(struct perf_event *event)
  967. {
  968. event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
  969. PERF_EVENT_STATE_INACTIVE;
  970. }
  971. /*
  972. * Called at perf_event creation and when events are attached/detached from a
  973. * group.
  974. */
  975. static void perf_event__read_size(struct perf_event *event)
  976. {
  977. int entry = sizeof(u64); /* value */
  978. int size = 0;
  979. int nr = 1;
  980. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  981. size += sizeof(u64);
  982. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  983. size += sizeof(u64);
  984. if (event->attr.read_format & PERF_FORMAT_ID)
  985. entry += sizeof(u64);
  986. if (event->attr.read_format & PERF_FORMAT_GROUP) {
  987. nr += event->group_leader->nr_siblings;
  988. size += sizeof(u64);
  989. }
  990. size += entry * nr;
  991. event->read_size = size;
  992. }
  993. static void perf_event__header_size(struct perf_event *event)
  994. {
  995. struct perf_sample_data *data;
  996. u64 sample_type = event->attr.sample_type;
  997. u16 size = 0;
  998. perf_event__read_size(event);
  999. if (sample_type & PERF_SAMPLE_IP)
  1000. size += sizeof(data->ip);
  1001. if (sample_type & PERF_SAMPLE_ADDR)
  1002. size += sizeof(data->addr);
  1003. if (sample_type & PERF_SAMPLE_PERIOD)
  1004. size += sizeof(data->period);
  1005. if (sample_type & PERF_SAMPLE_WEIGHT)
  1006. size += sizeof(data->weight);
  1007. if (sample_type & PERF_SAMPLE_READ)
  1008. size += event->read_size;
  1009. if (sample_type & PERF_SAMPLE_DATA_SRC)
  1010. size += sizeof(data->data_src.val);
  1011. if (sample_type & PERF_SAMPLE_TRANSACTION)
  1012. size += sizeof(data->txn);
  1013. event->header_size = size;
  1014. }
  1015. static void perf_event__id_header_size(struct perf_event *event)
  1016. {
  1017. struct perf_sample_data *data;
  1018. u64 sample_type = event->attr.sample_type;
  1019. u16 size = 0;
  1020. if (sample_type & PERF_SAMPLE_TID)
  1021. size += sizeof(data->tid_entry);
  1022. if (sample_type & PERF_SAMPLE_TIME)
  1023. size += sizeof(data->time);
  1024. if (sample_type & PERF_SAMPLE_IDENTIFIER)
  1025. size += sizeof(data->id);
  1026. if (sample_type & PERF_SAMPLE_ID)
  1027. size += sizeof(data->id);
  1028. if (sample_type & PERF_SAMPLE_STREAM_ID)
  1029. size += sizeof(data->stream_id);
  1030. if (sample_type & PERF_SAMPLE_CPU)
  1031. size += sizeof(data->cpu_entry);
  1032. event->id_header_size = size;
  1033. }
  1034. static void perf_group_attach(struct perf_event *event)
  1035. {
  1036. struct perf_event *group_leader = event->group_leader, *pos;
  1037. /*
  1038. * We can have double attach due to group movement in perf_event_open.
  1039. */
  1040. if (event->attach_state & PERF_ATTACH_GROUP)
  1041. return;
  1042. event->attach_state |= PERF_ATTACH_GROUP;
  1043. if (group_leader == event)
  1044. return;
  1045. if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
  1046. !is_software_event(event))
  1047. group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
  1048. list_add_tail(&event->group_entry, &group_leader->sibling_list);
  1049. group_leader->nr_siblings++;
  1050. perf_event__header_size(group_leader);
  1051. list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
  1052. perf_event__header_size(pos);
  1053. }
  1054. /*
  1055. * Remove a event from the lists for its context.
  1056. * Must be called with ctx->mutex and ctx->lock held.
  1057. */
  1058. static void
  1059. list_del_event(struct perf_event *event, struct perf_event_context *ctx)
  1060. {
  1061. struct perf_cpu_context *cpuctx;
  1062. /*
  1063. * We can have double detach due to exit/hot-unplug + close.
  1064. */
  1065. if (!(event->attach_state & PERF_ATTACH_CONTEXT))
  1066. return;
  1067. event->attach_state &= ~PERF_ATTACH_CONTEXT;
  1068. if (is_cgroup_event(event)) {
  1069. ctx->nr_cgroups--;
  1070. cpuctx = __get_cpu_context(ctx);
  1071. /*
  1072. * if there are no more cgroup events
  1073. * then cler cgrp to avoid stale pointer
  1074. * in update_cgrp_time_from_cpuctx()
  1075. */
  1076. if (!ctx->nr_cgroups)
  1077. cpuctx->cgrp = NULL;
  1078. }
  1079. if (has_branch_stack(event))
  1080. ctx->nr_branch_stack--;
  1081. ctx->nr_events--;
  1082. if (event->attr.inherit_stat)
  1083. ctx->nr_stat--;
  1084. list_del_rcu(&event->event_entry);
  1085. if (event->group_leader == event)
  1086. list_del_init(&event->group_entry);
  1087. update_group_times(event);
  1088. /*
  1089. * If event was in error state, then keep it
  1090. * that way, otherwise bogus counts will be
  1091. * returned on read(). The only way to get out
  1092. * of error state is by explicit re-enabling
  1093. * of the event
  1094. */
  1095. if (event->state > PERF_EVENT_STATE_OFF)
  1096. event->state = PERF_EVENT_STATE_OFF;
  1097. ctx->generation++;
  1098. }
  1099. static void perf_group_detach(struct perf_event *event)
  1100. {
  1101. struct perf_event *sibling, *tmp;
  1102. struct list_head *list = NULL;
  1103. /*
  1104. * We can have double detach due to exit/hot-unplug + close.
  1105. */
  1106. if (!(event->attach_state & PERF_ATTACH_GROUP))
  1107. return;
  1108. event->attach_state &= ~PERF_ATTACH_GROUP;
  1109. /*
  1110. * If this is a sibling, remove it from its group.
  1111. */
  1112. if (event->group_leader != event) {
  1113. list_del_init(&event->group_entry);
  1114. event->group_leader->nr_siblings--;
  1115. goto out;
  1116. }
  1117. if (!list_empty(&event->group_entry))
  1118. list = &event->group_entry;
  1119. /*
  1120. * If this was a group event with sibling events then
  1121. * upgrade the siblings to singleton events by adding them
  1122. * to whatever list we are on.
  1123. */
  1124. list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
  1125. if (list)
  1126. list_move_tail(&sibling->group_entry, list);
  1127. sibling->group_leader = sibling;
  1128. /* Inherit group flags from the previous leader */
  1129. sibling->group_flags = event->group_flags;
  1130. }
  1131. out:
  1132. perf_event__header_size(event->group_leader);
  1133. list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
  1134. perf_event__header_size(tmp);
  1135. }
  1136. /*
  1137. * User event without the task.
  1138. */
  1139. static bool is_orphaned_event(struct perf_event *event)
  1140. {
  1141. return event && !is_kernel_event(event) && !event->owner;
  1142. }
  1143. /*
  1144. * Event has a parent but parent's task finished and it's
  1145. * alive only because of children holding refference.
  1146. */
  1147. static bool is_orphaned_child(struct perf_event *event)
  1148. {
  1149. return is_orphaned_event(event->parent);
  1150. }
  1151. static void orphans_remove_work(struct work_struct *work);
  1152. static void schedule_orphans_remove(struct perf_event_context *ctx)
  1153. {
  1154. if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
  1155. return;
  1156. if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
  1157. get_ctx(ctx);
  1158. ctx->orphans_remove_sched = true;
  1159. }
  1160. }
  1161. static int __init perf_workqueue_init(void)
  1162. {
  1163. perf_wq = create_singlethread_workqueue("perf");
  1164. WARN(!perf_wq, "failed to create perf workqueue\n");
  1165. return perf_wq ? 0 : -1;
  1166. }
  1167. core_initcall(perf_workqueue_init);
  1168. static inline int
  1169. event_filter_match(struct perf_event *event)
  1170. {
  1171. return (event->cpu == -1 || event->cpu == smp_processor_id())
  1172. && perf_cgroup_match(event);
  1173. }
  1174. static void
  1175. event_sched_out(struct perf_event *event,
  1176. struct perf_cpu_context *cpuctx,
  1177. struct perf_event_context *ctx)
  1178. {
  1179. u64 tstamp = perf_event_time(event);
  1180. u64 delta;
  1181. /*
  1182. * An event which could not be activated because of
  1183. * filter mismatch still needs to have its timings
  1184. * maintained, otherwise bogus information is return
  1185. * via read() for time_enabled, time_running:
  1186. */
  1187. if (event->state == PERF_EVENT_STATE_INACTIVE
  1188. && !event_filter_match(event)) {
  1189. delta = tstamp - event->tstamp_stopped;
  1190. event->tstamp_running += delta;
  1191. event->tstamp_stopped = tstamp;
  1192. }
  1193. if (event->state != PERF_EVENT_STATE_ACTIVE)
  1194. return;
  1195. perf_pmu_disable(event->pmu);
  1196. event->state = PERF_EVENT_STATE_INACTIVE;
  1197. if (event->pending_disable) {
  1198. event->pending_disable = 0;
  1199. event->state = PERF_EVENT_STATE_OFF;
  1200. }
  1201. event->tstamp_stopped = tstamp;
  1202. event->pmu->del(event, 0);
  1203. event->oncpu = -1;
  1204. if (!is_software_event(event))
  1205. cpuctx->active_oncpu--;
  1206. ctx->nr_active--;
  1207. if (event->attr.freq && event->attr.sample_freq)
  1208. ctx->nr_freq--;
  1209. if (event->attr.exclusive || !cpuctx->active_oncpu)
  1210. cpuctx->exclusive = 0;
  1211. if (is_orphaned_child(event))
  1212. schedule_orphans_remove(ctx);
  1213. perf_pmu_enable(event->pmu);
  1214. }
  1215. static void
  1216. group_sched_out(struct perf_event *group_event,
  1217. struct perf_cpu_context *cpuctx,
  1218. struct perf_event_context *ctx)
  1219. {
  1220. struct perf_event *event;
  1221. int state = group_event->state;
  1222. event_sched_out(group_event, cpuctx, ctx);
  1223. /*
  1224. * Schedule out siblings (if any):
  1225. */
  1226. list_for_each_entry(event, &group_event->sibling_list, group_entry)
  1227. event_sched_out(event, cpuctx, ctx);
  1228. if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
  1229. cpuctx->exclusive = 0;
  1230. }
  1231. struct remove_event {
  1232. struct perf_event *event;
  1233. bool detach_group;
  1234. };
  1235. /*
  1236. * Cross CPU call to remove a performance event
  1237. *
  1238. * We disable the event on the hardware level first. After that we
  1239. * remove it from the context list.
  1240. */
  1241. static int __perf_remove_from_context(void *info)
  1242. {
  1243. struct remove_event *re = info;
  1244. struct perf_event *event = re->event;
  1245. struct perf_event_context *ctx = event->ctx;
  1246. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1247. raw_spin_lock(&ctx->lock);
  1248. event_sched_out(event, cpuctx, ctx);
  1249. if (re->detach_group)
  1250. perf_group_detach(event);
  1251. list_del_event(event, ctx);
  1252. if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
  1253. ctx->is_active = 0;
  1254. cpuctx->task_ctx = NULL;
  1255. }
  1256. raw_spin_unlock(&ctx->lock);
  1257. return 0;
  1258. }
  1259. /*
  1260. * Remove the event from a task's (or a CPU's) list of events.
  1261. *
  1262. * CPU events are removed with a smp call. For task events we only
  1263. * call when the task is on a CPU.
  1264. *
  1265. * If event->ctx is a cloned context, callers must make sure that
  1266. * every task struct that event->ctx->task could possibly point to
  1267. * remains valid. This is OK when called from perf_release since
  1268. * that only calls us on the top-level context, which can't be a clone.
  1269. * When called from perf_event_exit_task, it's OK because the
  1270. * context has been detached from its task.
  1271. */
  1272. static void perf_remove_from_context(struct perf_event *event, bool detach_group)
  1273. {
  1274. struct perf_event_context *ctx = event->ctx;
  1275. struct task_struct *task = ctx->task;
  1276. struct remove_event re = {
  1277. .event = event,
  1278. .detach_group = detach_group,
  1279. };
  1280. lockdep_assert_held(&ctx->mutex);
  1281. if (!task) {
  1282. /*
  1283. * Per cpu events are removed via an smp call and
  1284. * the removal is always successful.
  1285. */
  1286. cpu_function_call(event->cpu, __perf_remove_from_context, &re);
  1287. return;
  1288. }
  1289. retry:
  1290. if (!task_function_call(task, __perf_remove_from_context, &re))
  1291. return;
  1292. raw_spin_lock_irq(&ctx->lock);
  1293. /*
  1294. * If we failed to find a running task, but find the context active now
  1295. * that we've acquired the ctx->lock, retry.
  1296. */
  1297. if (ctx->is_active) {
  1298. raw_spin_unlock_irq(&ctx->lock);
  1299. /*
  1300. * Reload the task pointer, it might have been changed by
  1301. * a concurrent perf_event_context_sched_out().
  1302. */
  1303. task = ctx->task;
  1304. goto retry;
  1305. }
  1306. /*
  1307. * Since the task isn't running, its safe to remove the event, us
  1308. * holding the ctx->lock ensures the task won't get scheduled in.
  1309. */
  1310. if (detach_group)
  1311. perf_group_detach(event);
  1312. list_del_event(event, ctx);
  1313. raw_spin_unlock_irq(&ctx->lock);
  1314. }
  1315. /*
  1316. * Cross CPU call to disable a performance event
  1317. */
  1318. int __perf_event_disable(void *info)
  1319. {
  1320. struct perf_event *event = info;
  1321. struct perf_event_context *ctx = event->ctx;
  1322. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1323. /*
  1324. * If this is a per-task event, need to check whether this
  1325. * event's task is the current task on this cpu.
  1326. *
  1327. * Can trigger due to concurrent perf_event_context_sched_out()
  1328. * flipping contexts around.
  1329. */
  1330. if (ctx->task && cpuctx->task_ctx != ctx)
  1331. return -EINVAL;
  1332. raw_spin_lock(&ctx->lock);
  1333. /*
  1334. * If the event is on, turn it off.
  1335. * If it is in error state, leave it in error state.
  1336. */
  1337. if (event->state >= PERF_EVENT_STATE_INACTIVE) {
  1338. update_context_time(ctx);
  1339. update_cgrp_time_from_event(event);
  1340. update_group_times(event);
  1341. if (event == event->group_leader)
  1342. group_sched_out(event, cpuctx, ctx);
  1343. else
  1344. event_sched_out(event, cpuctx, ctx);
  1345. event->state = PERF_EVENT_STATE_OFF;
  1346. }
  1347. raw_spin_unlock(&ctx->lock);
  1348. return 0;
  1349. }
  1350. /*
  1351. * Disable a event.
  1352. *
  1353. * If event->ctx is a cloned context, callers must make sure that
  1354. * every task struct that event->ctx->task could possibly point to
  1355. * remains valid. This condition is satisifed when called through
  1356. * perf_event_for_each_child or perf_event_for_each because they
  1357. * hold the top-level event's child_mutex, so any descendant that
  1358. * goes to exit will block in sync_child_event.
  1359. * When called from perf_pending_event it's OK because event->ctx
  1360. * is the current context on this CPU and preemption is disabled,
  1361. * hence we can't get into perf_event_task_sched_out for this context.
  1362. */
  1363. void perf_event_disable(struct perf_event *event)
  1364. {
  1365. struct perf_event_context *ctx = event->ctx;
  1366. struct task_struct *task = ctx->task;
  1367. if (!task) {
  1368. /*
  1369. * Disable the event on the cpu that it's on
  1370. */
  1371. cpu_function_call(event->cpu, __perf_event_disable, event);
  1372. return;
  1373. }
  1374. retry:
  1375. if (!task_function_call(task, __perf_event_disable, event))
  1376. return;
  1377. raw_spin_lock_irq(&ctx->lock);
  1378. /*
  1379. * If the event is still active, we need to retry the cross-call.
  1380. */
  1381. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  1382. raw_spin_unlock_irq(&ctx->lock);
  1383. /*
  1384. * Reload the task pointer, it might have been changed by
  1385. * a concurrent perf_event_context_sched_out().
  1386. */
  1387. task = ctx->task;
  1388. goto retry;
  1389. }
  1390. /*
  1391. * Since we have the lock this context can't be scheduled
  1392. * in, so we can change the state safely.
  1393. */
  1394. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1395. update_group_times(event);
  1396. event->state = PERF_EVENT_STATE_OFF;
  1397. }
  1398. raw_spin_unlock_irq(&ctx->lock);
  1399. }
  1400. EXPORT_SYMBOL_GPL(perf_event_disable);
  1401. static void perf_set_shadow_time(struct perf_event *event,
  1402. struct perf_event_context *ctx,
  1403. u64 tstamp)
  1404. {
  1405. /*
  1406. * use the correct time source for the time snapshot
  1407. *
  1408. * We could get by without this by leveraging the
  1409. * fact that to get to this function, the caller
  1410. * has most likely already called update_context_time()
  1411. * and update_cgrp_time_xx() and thus both timestamp
  1412. * are identical (or very close). Given that tstamp is,
  1413. * already adjusted for cgroup, we could say that:
  1414. * tstamp - ctx->timestamp
  1415. * is equivalent to
  1416. * tstamp - cgrp->timestamp.
  1417. *
  1418. * Then, in perf_output_read(), the calculation would
  1419. * work with no changes because:
  1420. * - event is guaranteed scheduled in
  1421. * - no scheduled out in between
  1422. * - thus the timestamp would be the same
  1423. *
  1424. * But this is a bit hairy.
  1425. *
  1426. * So instead, we have an explicit cgroup call to remain
  1427. * within the time time source all along. We believe it
  1428. * is cleaner and simpler to understand.
  1429. */
  1430. if (is_cgroup_event(event))
  1431. perf_cgroup_set_shadow_time(event, tstamp);
  1432. else
  1433. event->shadow_ctx_time = tstamp - ctx->timestamp;
  1434. }
  1435. #define MAX_INTERRUPTS (~0ULL)
  1436. static void perf_log_throttle(struct perf_event *event, int enable);
  1437. static int
  1438. event_sched_in(struct perf_event *event,
  1439. struct perf_cpu_context *cpuctx,
  1440. struct perf_event_context *ctx)
  1441. {
  1442. u64 tstamp = perf_event_time(event);
  1443. int ret = 0;
  1444. lockdep_assert_held(&ctx->lock);
  1445. if (event->state <= PERF_EVENT_STATE_OFF)
  1446. return 0;
  1447. event->state = PERF_EVENT_STATE_ACTIVE;
  1448. event->oncpu = smp_processor_id();
  1449. /*
  1450. * Unthrottle events, since we scheduled we might have missed several
  1451. * ticks already, also for a heavily scheduling task there is little
  1452. * guarantee it'll get a tick in a timely manner.
  1453. */
  1454. if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
  1455. perf_log_throttle(event, 1);
  1456. event->hw.interrupts = 0;
  1457. }
  1458. /*
  1459. * The new state must be visible before we turn it on in the hardware:
  1460. */
  1461. smp_wmb();
  1462. perf_pmu_disable(event->pmu);
  1463. if (event->pmu->add(event, PERF_EF_START)) {
  1464. event->state = PERF_EVENT_STATE_INACTIVE;
  1465. event->oncpu = -1;
  1466. ret = -EAGAIN;
  1467. goto out;
  1468. }
  1469. event->tstamp_running += tstamp - event->tstamp_stopped;
  1470. perf_set_shadow_time(event, ctx, tstamp);
  1471. if (!is_software_event(event))
  1472. cpuctx->active_oncpu++;
  1473. ctx->nr_active++;
  1474. if (event->attr.freq && event->attr.sample_freq)
  1475. ctx->nr_freq++;
  1476. if (event->attr.exclusive)
  1477. cpuctx->exclusive = 1;
  1478. if (is_orphaned_child(event))
  1479. schedule_orphans_remove(ctx);
  1480. out:
  1481. perf_pmu_enable(event->pmu);
  1482. return ret;
  1483. }
  1484. static int
  1485. group_sched_in(struct perf_event *group_event,
  1486. struct perf_cpu_context *cpuctx,
  1487. struct perf_event_context *ctx)
  1488. {
  1489. struct perf_event *event, *partial_group = NULL;
  1490. struct pmu *pmu = ctx->pmu;
  1491. u64 now = ctx->time;
  1492. bool simulate = false;
  1493. if (group_event->state == PERF_EVENT_STATE_OFF)
  1494. return 0;
  1495. pmu->start_txn(pmu);
  1496. if (event_sched_in(group_event, cpuctx, ctx)) {
  1497. pmu->cancel_txn(pmu);
  1498. perf_cpu_hrtimer_restart(cpuctx);
  1499. return -EAGAIN;
  1500. }
  1501. /*
  1502. * Schedule in siblings as one group (if any):
  1503. */
  1504. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1505. if (event_sched_in(event, cpuctx, ctx)) {
  1506. partial_group = event;
  1507. goto group_error;
  1508. }
  1509. }
  1510. if (!pmu->commit_txn(pmu))
  1511. return 0;
  1512. group_error:
  1513. /*
  1514. * Groups can be scheduled in as one unit only, so undo any
  1515. * partial group before returning:
  1516. * The events up to the failed event are scheduled out normally,
  1517. * tstamp_stopped will be updated.
  1518. *
  1519. * The failed events and the remaining siblings need to have
  1520. * their timings updated as if they had gone thru event_sched_in()
  1521. * and event_sched_out(). This is required to get consistent timings
  1522. * across the group. This also takes care of the case where the group
  1523. * could never be scheduled by ensuring tstamp_stopped is set to mark
  1524. * the time the event was actually stopped, such that time delta
  1525. * calculation in update_event_times() is correct.
  1526. */
  1527. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1528. if (event == partial_group)
  1529. simulate = true;
  1530. if (simulate) {
  1531. event->tstamp_running += now - event->tstamp_stopped;
  1532. event->tstamp_stopped = now;
  1533. } else {
  1534. event_sched_out(event, cpuctx, ctx);
  1535. }
  1536. }
  1537. event_sched_out(group_event, cpuctx, ctx);
  1538. pmu->cancel_txn(pmu);
  1539. perf_cpu_hrtimer_restart(cpuctx);
  1540. return -EAGAIN;
  1541. }
  1542. /*
  1543. * Work out whether we can put this event group on the CPU now.
  1544. */
  1545. static int group_can_go_on(struct perf_event *event,
  1546. struct perf_cpu_context *cpuctx,
  1547. int can_add_hw)
  1548. {
  1549. /*
  1550. * Groups consisting entirely of software events can always go on.
  1551. */
  1552. if (event->group_flags & PERF_GROUP_SOFTWARE)
  1553. return 1;
  1554. /*
  1555. * If an exclusive group is already on, no other hardware
  1556. * events can go on.
  1557. */
  1558. if (cpuctx->exclusive)
  1559. return 0;
  1560. /*
  1561. * If this group is exclusive and there are already
  1562. * events on the CPU, it can't go on.
  1563. */
  1564. if (event->attr.exclusive && cpuctx->active_oncpu)
  1565. return 0;
  1566. /*
  1567. * Otherwise, try to add it if all previous groups were able
  1568. * to go on.
  1569. */
  1570. return can_add_hw;
  1571. }
  1572. static void add_event_to_ctx(struct perf_event *event,
  1573. struct perf_event_context *ctx)
  1574. {
  1575. u64 tstamp = perf_event_time(event);
  1576. list_add_event(event, ctx);
  1577. perf_group_attach(event);
  1578. event->tstamp_enabled = tstamp;
  1579. event->tstamp_running = tstamp;
  1580. event->tstamp_stopped = tstamp;
  1581. }
  1582. static void task_ctx_sched_out(struct perf_event_context *ctx);
  1583. static void
  1584. ctx_sched_in(struct perf_event_context *ctx,
  1585. struct perf_cpu_context *cpuctx,
  1586. enum event_type_t event_type,
  1587. struct task_struct *task);
  1588. static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
  1589. struct perf_event_context *ctx,
  1590. struct task_struct *task)
  1591. {
  1592. cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
  1593. if (ctx)
  1594. ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
  1595. cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
  1596. if (ctx)
  1597. ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
  1598. }
  1599. /*
  1600. * Cross CPU call to install and enable a performance event
  1601. *
  1602. * Must be called with ctx->mutex held
  1603. */
  1604. static int __perf_install_in_context(void *info)
  1605. {
  1606. struct perf_event *event = info;
  1607. struct perf_event_context *ctx = event->ctx;
  1608. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1609. struct perf_event_context *task_ctx = cpuctx->task_ctx;
  1610. struct task_struct *task = current;
  1611. perf_ctx_lock(cpuctx, task_ctx);
  1612. perf_pmu_disable(cpuctx->ctx.pmu);
  1613. /*
  1614. * If there was an active task_ctx schedule it out.
  1615. */
  1616. if (task_ctx)
  1617. task_ctx_sched_out(task_ctx);
  1618. /*
  1619. * If the context we're installing events in is not the
  1620. * active task_ctx, flip them.
  1621. */
  1622. if (ctx->task && task_ctx != ctx) {
  1623. if (task_ctx)
  1624. raw_spin_unlock(&task_ctx->lock);
  1625. raw_spin_lock(&ctx->lock);
  1626. task_ctx = ctx;
  1627. }
  1628. if (task_ctx) {
  1629. cpuctx->task_ctx = task_ctx;
  1630. task = task_ctx->task;
  1631. }
  1632. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  1633. update_context_time(ctx);
  1634. /*
  1635. * update cgrp time only if current cgrp
  1636. * matches event->cgrp. Must be done before
  1637. * calling add_event_to_ctx()
  1638. */
  1639. update_cgrp_time_from_event(event);
  1640. add_event_to_ctx(event, ctx);
  1641. /*
  1642. * Schedule everything back in
  1643. */
  1644. perf_event_sched_in(cpuctx, task_ctx, task);
  1645. perf_pmu_enable(cpuctx->ctx.pmu);
  1646. perf_ctx_unlock(cpuctx, task_ctx);
  1647. return 0;
  1648. }
  1649. /*
  1650. * Attach a performance event to a context
  1651. *
  1652. * First we add the event to the list with the hardware enable bit
  1653. * in event->hw_config cleared.
  1654. *
  1655. * If the event is attached to a task which is on a CPU we use a smp
  1656. * call to enable it in the task context. The task might have been
  1657. * scheduled away, but we check this in the smp call again.
  1658. */
  1659. static void
  1660. perf_install_in_context(struct perf_event_context *ctx,
  1661. struct perf_event *event,
  1662. int cpu)
  1663. {
  1664. struct task_struct *task = ctx->task;
  1665. lockdep_assert_held(&ctx->mutex);
  1666. event->ctx = ctx;
  1667. if (event->cpu != -1)
  1668. event->cpu = cpu;
  1669. if (!task) {
  1670. /*
  1671. * Per cpu events are installed via an smp call and
  1672. * the install is always successful.
  1673. */
  1674. cpu_function_call(cpu, __perf_install_in_context, event);
  1675. return;
  1676. }
  1677. retry:
  1678. if (!task_function_call(task, __perf_install_in_context, event))
  1679. return;
  1680. raw_spin_lock_irq(&ctx->lock);
  1681. /*
  1682. * If we failed to find a running task, but find the context active now
  1683. * that we've acquired the ctx->lock, retry.
  1684. */
  1685. if (ctx->is_active) {
  1686. raw_spin_unlock_irq(&ctx->lock);
  1687. /*
  1688. * Reload the task pointer, it might have been changed by
  1689. * a concurrent perf_event_context_sched_out().
  1690. */
  1691. task = ctx->task;
  1692. goto retry;
  1693. }
  1694. /*
  1695. * Since the task isn't running, its safe to add the event, us holding
  1696. * the ctx->lock ensures the task won't get scheduled in.
  1697. */
  1698. add_event_to_ctx(event, ctx);
  1699. raw_spin_unlock_irq(&ctx->lock);
  1700. }
  1701. /*
  1702. * Put a event into inactive state and update time fields.
  1703. * Enabling the leader of a group effectively enables all
  1704. * the group members that aren't explicitly disabled, so we
  1705. * have to update their ->tstamp_enabled also.
  1706. * Note: this works for group members as well as group leaders
  1707. * since the non-leader members' sibling_lists will be empty.
  1708. */
  1709. static void __perf_event_mark_enabled(struct perf_event *event)
  1710. {
  1711. struct perf_event *sub;
  1712. u64 tstamp = perf_event_time(event);
  1713. event->state = PERF_EVENT_STATE_INACTIVE;
  1714. event->tstamp_enabled = tstamp - event->total_time_enabled;
  1715. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  1716. if (sub->state >= PERF_EVENT_STATE_INACTIVE)
  1717. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  1718. }
  1719. }
  1720. /*
  1721. * Cross CPU call to enable a performance event
  1722. */
  1723. static int __perf_event_enable(void *info)
  1724. {
  1725. struct perf_event *event = info;
  1726. struct perf_event_context *ctx = event->ctx;
  1727. struct perf_event *leader = event->group_leader;
  1728. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1729. int err;
  1730. /*
  1731. * There's a time window between 'ctx->is_active' check
  1732. * in perf_event_enable function and this place having:
  1733. * - IRQs on
  1734. * - ctx->lock unlocked
  1735. *
  1736. * where the task could be killed and 'ctx' deactivated
  1737. * by perf_event_exit_task.
  1738. */
  1739. if (!ctx->is_active)
  1740. return -EINVAL;
  1741. raw_spin_lock(&ctx->lock);
  1742. update_context_time(ctx);
  1743. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1744. goto unlock;
  1745. /*
  1746. * set current task's cgroup time reference point
  1747. */
  1748. perf_cgroup_set_timestamp(current, ctx);
  1749. __perf_event_mark_enabled(event);
  1750. if (!event_filter_match(event)) {
  1751. if (is_cgroup_event(event))
  1752. perf_cgroup_defer_enabled(event);
  1753. goto unlock;
  1754. }
  1755. /*
  1756. * If the event is in a group and isn't the group leader,
  1757. * then don't put it on unless the group is on.
  1758. */
  1759. if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
  1760. goto unlock;
  1761. if (!group_can_go_on(event, cpuctx, 1)) {
  1762. err = -EEXIST;
  1763. } else {
  1764. if (event == leader)
  1765. err = group_sched_in(event, cpuctx, ctx);
  1766. else
  1767. err = event_sched_in(event, cpuctx, ctx);
  1768. }
  1769. if (err) {
  1770. /*
  1771. * If this event can't go on and it's part of a
  1772. * group, then the whole group has to come off.
  1773. */
  1774. if (leader != event) {
  1775. group_sched_out(leader, cpuctx, ctx);
  1776. perf_cpu_hrtimer_restart(cpuctx);
  1777. }
  1778. if (leader->attr.pinned) {
  1779. update_group_times(leader);
  1780. leader->state = PERF_EVENT_STATE_ERROR;
  1781. }
  1782. }
  1783. unlock:
  1784. raw_spin_unlock(&ctx->lock);
  1785. return 0;
  1786. }
  1787. /*
  1788. * Enable a event.
  1789. *
  1790. * If event->ctx is a cloned context, callers must make sure that
  1791. * every task struct that event->ctx->task could possibly point to
  1792. * remains valid. This condition is satisfied when called through
  1793. * perf_event_for_each_child or perf_event_for_each as described
  1794. * for perf_event_disable.
  1795. */
  1796. void perf_event_enable(struct perf_event *event)
  1797. {
  1798. struct perf_event_context *ctx = event->ctx;
  1799. struct task_struct *task = ctx->task;
  1800. if (!task) {
  1801. /*
  1802. * Enable the event on the cpu that it's on
  1803. */
  1804. cpu_function_call(event->cpu, __perf_event_enable, event);
  1805. return;
  1806. }
  1807. raw_spin_lock_irq(&ctx->lock);
  1808. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1809. goto out;
  1810. /*
  1811. * If the event is in error state, clear that first.
  1812. * That way, if we see the event in error state below, we
  1813. * know that it has gone back into error state, as distinct
  1814. * from the task having been scheduled away before the
  1815. * cross-call arrived.
  1816. */
  1817. if (event->state == PERF_EVENT_STATE_ERROR)
  1818. event->state = PERF_EVENT_STATE_OFF;
  1819. retry:
  1820. if (!ctx->is_active) {
  1821. __perf_event_mark_enabled(event);
  1822. goto out;
  1823. }
  1824. raw_spin_unlock_irq(&ctx->lock);
  1825. if (!task_function_call(task, __perf_event_enable, event))
  1826. return;
  1827. raw_spin_lock_irq(&ctx->lock);
  1828. /*
  1829. * If the context is active and the event is still off,
  1830. * we need to retry the cross-call.
  1831. */
  1832. if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
  1833. /*
  1834. * task could have been flipped by a concurrent
  1835. * perf_event_context_sched_out()
  1836. */
  1837. task = ctx->task;
  1838. goto retry;
  1839. }
  1840. out:
  1841. raw_spin_unlock_irq(&ctx->lock);
  1842. }
  1843. EXPORT_SYMBOL_GPL(perf_event_enable);
  1844. int perf_event_refresh(struct perf_event *event, int refresh)
  1845. {
  1846. /*
  1847. * not supported on inherited events
  1848. */
  1849. if (event->attr.inherit || !is_sampling_event(event))
  1850. return -EINVAL;
  1851. atomic_add(refresh, &event->event_limit);
  1852. perf_event_enable(event);
  1853. return 0;
  1854. }
  1855. EXPORT_SYMBOL_GPL(perf_event_refresh);
  1856. static void ctx_sched_out(struct perf_event_context *ctx,
  1857. struct perf_cpu_context *cpuctx,
  1858. enum event_type_t event_type)
  1859. {
  1860. struct perf_event *event;
  1861. int is_active = ctx->is_active;
  1862. ctx->is_active &= ~event_type;
  1863. if (likely(!ctx->nr_events))
  1864. return;
  1865. update_context_time(ctx);
  1866. update_cgrp_time_from_cpuctx(cpuctx);
  1867. if (!ctx->nr_active)
  1868. return;
  1869. perf_pmu_disable(ctx->pmu);
  1870. if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
  1871. list_for_each_entry(event, &ctx->pinned_groups, group_entry)
  1872. group_sched_out(event, cpuctx, ctx);
  1873. }
  1874. if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
  1875. list_for_each_entry(event, &ctx->flexible_groups, group_entry)
  1876. group_sched_out(event, cpuctx, ctx);
  1877. }
  1878. perf_pmu_enable(ctx->pmu);
  1879. }
  1880. /*
  1881. * Test whether two contexts are equivalent, i.e. whether they have both been
  1882. * cloned from the same version of the same context.
  1883. *
  1884. * Equivalence is measured using a generation number in the context that is
  1885. * incremented on each modification to it; see unclone_ctx(), list_add_event()
  1886. * and list_del_event().
  1887. */
  1888. static int context_equiv(struct perf_event_context *ctx1,
  1889. struct perf_event_context *ctx2)
  1890. {
  1891. lockdep_assert_held(&ctx1->lock);
  1892. lockdep_assert_held(&ctx2->lock);
  1893. /* Pinning disables the swap optimization */
  1894. if (ctx1->pin_count || ctx2->pin_count)
  1895. return 0;
  1896. /* If ctx1 is the parent of ctx2 */
  1897. if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
  1898. return 1;
  1899. /* If ctx2 is the parent of ctx1 */
  1900. if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
  1901. return 1;
  1902. /*
  1903. * If ctx1 and ctx2 have the same parent; we flatten the parent
  1904. * hierarchy, see perf_event_init_context().
  1905. */
  1906. if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
  1907. ctx1->parent_gen == ctx2->parent_gen)
  1908. return 1;
  1909. /* Unmatched */
  1910. return 0;
  1911. }
  1912. static void __perf_event_sync_stat(struct perf_event *event,
  1913. struct perf_event *next_event)
  1914. {
  1915. u64 value;
  1916. if (!event->attr.inherit_stat)
  1917. return;
  1918. /*
  1919. * Update the event value, we cannot use perf_event_read()
  1920. * because we're in the middle of a context switch and have IRQs
  1921. * disabled, which upsets smp_call_function_single(), however
  1922. * we know the event must be on the current CPU, therefore we
  1923. * don't need to use it.
  1924. */
  1925. switch (event->state) {
  1926. case PERF_EVENT_STATE_ACTIVE:
  1927. event->pmu->read(event);
  1928. /* fall-through */
  1929. case PERF_EVENT_STATE_INACTIVE:
  1930. update_event_times(event);
  1931. break;
  1932. default:
  1933. break;
  1934. }
  1935. /*
  1936. * In order to keep per-task stats reliable we need to flip the event
  1937. * values when we flip the contexts.
  1938. */
  1939. value = local64_read(&next_event->count);
  1940. value = local64_xchg(&event->count, value);
  1941. local64_set(&next_event->count, value);
  1942. swap(event->total_time_enabled, next_event->total_time_enabled);
  1943. swap(event->total_time_running, next_event->total_time_running);
  1944. /*
  1945. * Since we swizzled the values, update the user visible data too.
  1946. */
  1947. perf_event_update_userpage(event);
  1948. perf_event_update_userpage(next_event);
  1949. }
  1950. static void perf_event_sync_stat(struct perf_event_context *ctx,
  1951. struct perf_event_context *next_ctx)
  1952. {
  1953. struct perf_event *event, *next_event;
  1954. if (!ctx->nr_stat)
  1955. return;
  1956. update_context_time(ctx);
  1957. event = list_first_entry(&ctx->event_list,
  1958. struct perf_event, event_entry);
  1959. next_event = list_first_entry(&next_ctx->event_list,
  1960. struct perf_event, event_entry);
  1961. while (&event->event_entry != &ctx->event_list &&
  1962. &next_event->event_entry != &next_ctx->event_list) {
  1963. __perf_event_sync_stat(event, next_event);
  1964. event = list_next_entry(event, event_entry);
  1965. next_event = list_next_entry(next_event, event_entry);
  1966. }
  1967. }
  1968. static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
  1969. struct task_struct *next)
  1970. {
  1971. struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
  1972. struct perf_event_context *next_ctx;
  1973. struct perf_event_context *parent, *next_parent;
  1974. struct perf_cpu_context *cpuctx;
  1975. int do_switch = 1;
  1976. if (likely(!ctx))
  1977. return;
  1978. cpuctx = __get_cpu_context(ctx);
  1979. if (!cpuctx->task_ctx)
  1980. return;
  1981. rcu_read_lock();
  1982. next_ctx = next->perf_event_ctxp[ctxn];
  1983. if (!next_ctx)
  1984. goto unlock;
  1985. parent = rcu_dereference(ctx->parent_ctx);
  1986. next_parent = rcu_dereference(next_ctx->parent_ctx);
  1987. /* If neither context have a parent context; they cannot be clones. */
  1988. if (!parent && !next_parent)
  1989. goto unlock;
  1990. if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
  1991. /*
  1992. * Looks like the two contexts are clones, so we might be
  1993. * able to optimize the context switch. We lock both
  1994. * contexts and check that they are clones under the
  1995. * lock (including re-checking that neither has been
  1996. * uncloned in the meantime). It doesn't matter which
  1997. * order we take the locks because no other cpu could
  1998. * be trying to lock both of these tasks.
  1999. */
  2000. raw_spin_lock(&ctx->lock);
  2001. raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  2002. if (context_equiv(ctx, next_ctx)) {
  2003. /*
  2004. * XXX do we need a memory barrier of sorts
  2005. * wrt to rcu_dereference() of perf_event_ctxp
  2006. */
  2007. task->perf_event_ctxp[ctxn] = next_ctx;
  2008. next->perf_event_ctxp[ctxn] = ctx;
  2009. ctx->task = next;
  2010. next_ctx->task = task;
  2011. do_switch = 0;
  2012. perf_event_sync_stat(ctx, next_ctx);
  2013. }
  2014. raw_spin_unlock(&next_ctx->lock);
  2015. raw_spin_unlock(&ctx->lock);
  2016. }
  2017. unlock:
  2018. rcu_read_unlock();
  2019. if (do_switch) {
  2020. raw_spin_lock(&ctx->lock);
  2021. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  2022. cpuctx->task_ctx = NULL;
  2023. raw_spin_unlock(&ctx->lock);
  2024. }
  2025. }
  2026. #define for_each_task_context_nr(ctxn) \
  2027. for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
  2028. /*
  2029. * Called from scheduler to remove the events of the current task,
  2030. * with interrupts disabled.
  2031. *
  2032. * We stop each event and update the event value in event->count.
  2033. *
  2034. * This does not protect us against NMI, but disable()
  2035. * sets the disabled bit in the control field of event _before_
  2036. * accessing the event control register. If a NMI hits, then it will
  2037. * not restart the event.
  2038. */
  2039. void __perf_event_task_sched_out(struct task_struct *task,
  2040. struct task_struct *next)
  2041. {
  2042. int ctxn;
  2043. for_each_task_context_nr(ctxn)
  2044. perf_event_context_sched_out(task, ctxn, next);
  2045. /*
  2046. * if cgroup events exist on this CPU, then we need
  2047. * to check if we have to switch out PMU state.
  2048. * cgroup event are system-wide mode only
  2049. */
  2050. if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
  2051. perf_cgroup_sched_out(task, next);
  2052. }
  2053. static void task_ctx_sched_out(struct perf_event_context *ctx)
  2054. {
  2055. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  2056. if (!cpuctx->task_ctx)
  2057. return;
  2058. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  2059. return;
  2060. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  2061. cpuctx->task_ctx = NULL;
  2062. }
  2063. /*
  2064. * Called with IRQs disabled
  2065. */
  2066. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  2067. enum event_type_t event_type)
  2068. {
  2069. ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
  2070. }
  2071. static void
  2072. ctx_pinned_sched_in(struct perf_event_context *ctx,
  2073. struct perf_cpu_context *cpuctx)
  2074. {
  2075. struct perf_event *event;
  2076. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  2077. if (event->state <= PERF_EVENT_STATE_OFF)
  2078. continue;
  2079. if (!event_filter_match(event))
  2080. continue;
  2081. /* may need to reset tstamp_enabled */
  2082. if (is_cgroup_event(event))
  2083. perf_cgroup_mark_enabled(event, ctx);
  2084. if (group_can_go_on(event, cpuctx, 1))
  2085. group_sched_in(event, cpuctx, ctx);
  2086. /*
  2087. * If this pinned group hasn't been scheduled,
  2088. * put it in error state.
  2089. */
  2090. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  2091. update_group_times(event);
  2092. event->state = PERF_EVENT_STATE_ERROR;
  2093. }
  2094. }
  2095. }
  2096. static void
  2097. ctx_flexible_sched_in(struct perf_event_context *ctx,
  2098. struct perf_cpu_context *cpuctx)
  2099. {
  2100. struct perf_event *event;
  2101. int can_add_hw = 1;
  2102. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  2103. /* Ignore events in OFF or ERROR state */
  2104. if (event->state <= PERF_EVENT_STATE_OFF)
  2105. continue;
  2106. /*
  2107. * Listen to the 'cpu' scheduling filter constraint
  2108. * of events:
  2109. */
  2110. if (!event_filter_match(event))
  2111. continue;
  2112. /* may need to reset tstamp_enabled */
  2113. if (is_cgroup_event(event))
  2114. perf_cgroup_mark_enabled(event, ctx);
  2115. if (group_can_go_on(event, cpuctx, can_add_hw)) {
  2116. if (group_sched_in(event, cpuctx, ctx))
  2117. can_add_hw = 0;
  2118. }
  2119. }
  2120. }
  2121. static void
  2122. ctx_sched_in(struct perf_event_context *ctx,
  2123. struct perf_cpu_context *cpuctx,
  2124. enum event_type_t event_type,
  2125. struct task_struct *task)
  2126. {
  2127. u64 now;
  2128. int is_active = ctx->is_active;
  2129. ctx->is_active |= event_type;
  2130. if (likely(!ctx->nr_events))
  2131. return;
  2132. now = perf_clock();
  2133. ctx->timestamp = now;
  2134. perf_cgroup_set_timestamp(task, ctx);
  2135. /*
  2136. * First go through the list and put on any pinned groups
  2137. * in order to give them the best chance of going on.
  2138. */
  2139. if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
  2140. ctx_pinned_sched_in(ctx, cpuctx);
  2141. /* Then walk through the lower prio flexible groups */
  2142. if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
  2143. ctx_flexible_sched_in(ctx, cpuctx);
  2144. }
  2145. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  2146. enum event_type_t event_type,
  2147. struct task_struct *task)
  2148. {
  2149. struct perf_event_context *ctx = &cpuctx->ctx;
  2150. ctx_sched_in(ctx, cpuctx, event_type, task);
  2151. }
  2152. static void perf_event_context_sched_in(struct perf_event_context *ctx,
  2153. struct task_struct *task)
  2154. {
  2155. struct perf_cpu_context *cpuctx;
  2156. cpuctx = __get_cpu_context(ctx);
  2157. if (cpuctx->task_ctx == ctx)
  2158. return;
  2159. perf_ctx_lock(cpuctx, ctx);
  2160. perf_pmu_disable(ctx->pmu);
  2161. /*
  2162. * We want to keep the following priority order:
  2163. * cpu pinned (that don't need to move), task pinned,
  2164. * cpu flexible, task flexible.
  2165. */
  2166. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  2167. if (ctx->nr_events)
  2168. cpuctx->task_ctx = ctx;
  2169. perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
  2170. perf_pmu_enable(ctx->pmu);
  2171. perf_ctx_unlock(cpuctx, ctx);
  2172. /*
  2173. * Since these rotations are per-cpu, we need to ensure the
  2174. * cpu-context we got scheduled on is actually rotating.
  2175. */
  2176. perf_pmu_rotate_start(ctx->pmu);
  2177. }
  2178. /*
  2179. * When sampling the branck stack in system-wide, it may be necessary
  2180. * to flush the stack on context switch. This happens when the branch
  2181. * stack does not tag its entries with the pid of the current task.
  2182. * Otherwise it becomes impossible to associate a branch entry with a
  2183. * task. This ambiguity is more likely to appear when the branch stack
  2184. * supports priv level filtering and the user sets it to monitor only
  2185. * at the user level (which could be a useful measurement in system-wide
  2186. * mode). In that case, the risk is high of having a branch stack with
  2187. * branch from multiple tasks. Flushing may mean dropping the existing
  2188. * entries or stashing them somewhere in the PMU specific code layer.
  2189. *
  2190. * This function provides the context switch callback to the lower code
  2191. * layer. It is invoked ONLY when there is at least one system-wide context
  2192. * with at least one active event using taken branch sampling.
  2193. */
  2194. static void perf_branch_stack_sched_in(struct task_struct *prev,
  2195. struct task_struct *task)
  2196. {
  2197. struct perf_cpu_context *cpuctx;
  2198. struct pmu *pmu;
  2199. unsigned long flags;
  2200. /* no need to flush branch stack if not changing task */
  2201. if (prev == task)
  2202. return;
  2203. local_irq_save(flags);
  2204. rcu_read_lock();
  2205. list_for_each_entry_rcu(pmu, &pmus, entry) {
  2206. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  2207. /*
  2208. * check if the context has at least one
  2209. * event using PERF_SAMPLE_BRANCH_STACK
  2210. */
  2211. if (cpuctx->ctx.nr_branch_stack > 0
  2212. && pmu->flush_branch_stack) {
  2213. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  2214. perf_pmu_disable(pmu);
  2215. pmu->flush_branch_stack();
  2216. perf_pmu_enable(pmu);
  2217. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  2218. }
  2219. }
  2220. rcu_read_unlock();
  2221. local_irq_restore(flags);
  2222. }
  2223. /*
  2224. * Called from scheduler to add the events of the current task
  2225. * with interrupts disabled.
  2226. *
  2227. * We restore the event value and then enable it.
  2228. *
  2229. * This does not protect us against NMI, but enable()
  2230. * sets the enabled bit in the control field of event _before_
  2231. * accessing the event control register. If a NMI hits, then it will
  2232. * keep the event running.
  2233. */
  2234. void __perf_event_task_sched_in(struct task_struct *prev,
  2235. struct task_struct *task)
  2236. {
  2237. struct perf_event_context *ctx;
  2238. int ctxn;
  2239. for_each_task_context_nr(ctxn) {
  2240. ctx = task->perf_event_ctxp[ctxn];
  2241. if (likely(!ctx))
  2242. continue;
  2243. perf_event_context_sched_in(ctx, task);
  2244. }
  2245. /*
  2246. * if cgroup events exist on this CPU, then we need
  2247. * to check if we have to switch in PMU state.
  2248. * cgroup event are system-wide mode only
  2249. */
  2250. if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
  2251. perf_cgroup_sched_in(prev, task);
  2252. /* check for system-wide branch_stack events */
  2253. if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
  2254. perf_branch_stack_sched_in(prev, task);
  2255. }
  2256. static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
  2257. {
  2258. u64 frequency = event->attr.sample_freq;
  2259. u64 sec = NSEC_PER_SEC;
  2260. u64 divisor, dividend;
  2261. int count_fls, nsec_fls, frequency_fls, sec_fls;
  2262. count_fls = fls64(count);
  2263. nsec_fls = fls64(nsec);
  2264. frequency_fls = fls64(frequency);
  2265. sec_fls = 30;
  2266. /*
  2267. * We got @count in @nsec, with a target of sample_freq HZ
  2268. * the target period becomes:
  2269. *
  2270. * @count * 10^9
  2271. * period = -------------------
  2272. * @nsec * sample_freq
  2273. *
  2274. */
  2275. /*
  2276. * Reduce accuracy by one bit such that @a and @b converge
  2277. * to a similar magnitude.
  2278. */
  2279. #define REDUCE_FLS(a, b) \
  2280. do { \
  2281. if (a##_fls > b##_fls) { \
  2282. a >>= 1; \
  2283. a##_fls--; \
  2284. } else { \
  2285. b >>= 1; \
  2286. b##_fls--; \
  2287. } \
  2288. } while (0)
  2289. /*
  2290. * Reduce accuracy until either term fits in a u64, then proceed with
  2291. * the other, so that finally we can do a u64/u64 division.
  2292. */
  2293. while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
  2294. REDUCE_FLS(nsec, frequency);
  2295. REDUCE_FLS(sec, count);
  2296. }
  2297. if (count_fls + sec_fls > 64) {
  2298. divisor = nsec * frequency;
  2299. while (count_fls + sec_fls > 64) {
  2300. REDUCE_FLS(count, sec);
  2301. divisor >>= 1;
  2302. }
  2303. dividend = count * sec;
  2304. } else {
  2305. dividend = count * sec;
  2306. while (nsec_fls + frequency_fls > 64) {
  2307. REDUCE_FLS(nsec, frequency);
  2308. dividend >>= 1;
  2309. }
  2310. divisor = nsec * frequency;
  2311. }
  2312. if (!divisor)
  2313. return dividend;
  2314. return div64_u64(dividend, divisor);
  2315. }
  2316. static DEFINE_PER_CPU(int, perf_throttled_count);
  2317. static DEFINE_PER_CPU(u64, perf_throttled_seq);
  2318. static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
  2319. {
  2320. struct hw_perf_event *hwc = &event->hw;
  2321. s64 period, sample_period;
  2322. s64 delta;
  2323. period = perf_calculate_period(event, nsec, count);
  2324. delta = (s64)(period - hwc->sample_period);
  2325. delta = (delta + 7) / 8; /* low pass filter */
  2326. sample_period = hwc->sample_period + delta;
  2327. if (!sample_period)
  2328. sample_period = 1;
  2329. hwc->sample_period = sample_period;
  2330. if (local64_read(&hwc->period_left) > 8*sample_period) {
  2331. if (disable)
  2332. event->pmu->stop(event, PERF_EF_UPDATE);
  2333. local64_set(&hwc->period_left, 0);
  2334. if (disable)
  2335. event->pmu->start(event, PERF_EF_RELOAD);
  2336. }
  2337. }
  2338. /*
  2339. * combine freq adjustment with unthrottling to avoid two passes over the
  2340. * events. At the same time, make sure, having freq events does not change
  2341. * the rate of unthrottling as that would introduce bias.
  2342. */
  2343. static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
  2344. int needs_unthr)
  2345. {
  2346. struct perf_event *event;
  2347. struct hw_perf_event *hwc;
  2348. u64 now, period = TICK_NSEC;
  2349. s64 delta;
  2350. /*
  2351. * only need to iterate over all events iff:
  2352. * - context have events in frequency mode (needs freq adjust)
  2353. * - there are events to unthrottle on this cpu
  2354. */
  2355. if (!(ctx->nr_freq || needs_unthr))
  2356. return;
  2357. raw_spin_lock(&ctx->lock);
  2358. perf_pmu_disable(ctx->pmu);
  2359. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2360. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2361. continue;
  2362. if (!event_filter_match(event))
  2363. continue;
  2364. perf_pmu_disable(event->pmu);
  2365. hwc = &event->hw;
  2366. if (hwc->interrupts == MAX_INTERRUPTS) {
  2367. hwc->interrupts = 0;
  2368. perf_log_throttle(event, 1);
  2369. event->pmu->start(event, 0);
  2370. }
  2371. if (!event->attr.freq || !event->attr.sample_freq)
  2372. goto next;
  2373. /*
  2374. * stop the event and update event->count
  2375. */
  2376. event->pmu->stop(event, PERF_EF_UPDATE);
  2377. now = local64_read(&event->count);
  2378. delta = now - hwc->freq_count_stamp;
  2379. hwc->freq_count_stamp = now;
  2380. /*
  2381. * restart the event
  2382. * reload only if value has changed
  2383. * we have stopped the event so tell that
  2384. * to perf_adjust_period() to avoid stopping it
  2385. * twice.
  2386. */
  2387. if (delta > 0)
  2388. perf_adjust_period(event, period, delta, false);
  2389. event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
  2390. next:
  2391. perf_pmu_enable(event->pmu);
  2392. }
  2393. perf_pmu_enable(ctx->pmu);
  2394. raw_spin_unlock(&ctx->lock);
  2395. }
  2396. /*
  2397. * Round-robin a context's events:
  2398. */
  2399. static void rotate_ctx(struct perf_event_context *ctx)
  2400. {
  2401. /*
  2402. * Rotate the first entry last of non-pinned groups. Rotation might be
  2403. * disabled by the inheritance code.
  2404. */
  2405. if (!ctx->rotate_disable)
  2406. list_rotate_left(&ctx->flexible_groups);
  2407. }
  2408. /*
  2409. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  2410. * because they're strictly cpu affine and rotate_start is called with IRQs
  2411. * disabled, while rotate_context is called from IRQ context.
  2412. */
  2413. static int perf_rotate_context(struct perf_cpu_context *cpuctx)
  2414. {
  2415. struct perf_event_context *ctx = NULL;
  2416. int rotate = 0, remove = 1;
  2417. if (cpuctx->ctx.nr_events) {
  2418. remove = 0;
  2419. if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
  2420. rotate = 1;
  2421. }
  2422. ctx = cpuctx->task_ctx;
  2423. if (ctx && ctx->nr_events) {
  2424. remove = 0;
  2425. if (ctx->nr_events != ctx->nr_active)
  2426. rotate = 1;
  2427. }
  2428. if (!rotate)
  2429. goto done;
  2430. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  2431. perf_pmu_disable(cpuctx->ctx.pmu);
  2432. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  2433. if (ctx)
  2434. ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
  2435. rotate_ctx(&cpuctx->ctx);
  2436. if (ctx)
  2437. rotate_ctx(ctx);
  2438. perf_event_sched_in(cpuctx, ctx, current);
  2439. perf_pmu_enable(cpuctx->ctx.pmu);
  2440. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  2441. done:
  2442. if (remove)
  2443. list_del_init(&cpuctx->rotation_list);
  2444. return rotate;
  2445. }
  2446. #ifdef CONFIG_NO_HZ_FULL
  2447. bool perf_event_can_stop_tick(void)
  2448. {
  2449. if (atomic_read(&nr_freq_events) ||
  2450. __this_cpu_read(perf_throttled_count))
  2451. return false;
  2452. else
  2453. return true;
  2454. }
  2455. #endif
  2456. void perf_event_task_tick(void)
  2457. {
  2458. struct list_head *head = this_cpu_ptr(&rotation_list);
  2459. struct perf_cpu_context *cpuctx, *tmp;
  2460. struct perf_event_context *ctx;
  2461. int throttled;
  2462. WARN_ON(!irqs_disabled());
  2463. __this_cpu_inc(perf_throttled_seq);
  2464. throttled = __this_cpu_xchg(perf_throttled_count, 0);
  2465. list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
  2466. ctx = &cpuctx->ctx;
  2467. perf_adjust_freq_unthr_context(ctx, throttled);
  2468. ctx = cpuctx->task_ctx;
  2469. if (ctx)
  2470. perf_adjust_freq_unthr_context(ctx, throttled);
  2471. }
  2472. }
  2473. static int event_enable_on_exec(struct perf_event *event,
  2474. struct perf_event_context *ctx)
  2475. {
  2476. if (!event->attr.enable_on_exec)
  2477. return 0;
  2478. event->attr.enable_on_exec = 0;
  2479. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  2480. return 0;
  2481. __perf_event_mark_enabled(event);
  2482. return 1;
  2483. }
  2484. /*
  2485. * Enable all of a task's events that have been marked enable-on-exec.
  2486. * This expects task == current.
  2487. */
  2488. static void perf_event_enable_on_exec(struct perf_event_context *ctx)
  2489. {
  2490. struct perf_event_context *clone_ctx = NULL;
  2491. struct perf_event *event;
  2492. unsigned long flags;
  2493. int enabled = 0;
  2494. int ret;
  2495. local_irq_save(flags);
  2496. if (!ctx || !ctx->nr_events)
  2497. goto out;
  2498. /*
  2499. * We must ctxsw out cgroup events to avoid conflict
  2500. * when invoking perf_task_event_sched_in() later on
  2501. * in this function. Otherwise we end up trying to
  2502. * ctxswin cgroup events which are already scheduled
  2503. * in.
  2504. */
  2505. perf_cgroup_sched_out(current, NULL);
  2506. raw_spin_lock(&ctx->lock);
  2507. task_ctx_sched_out(ctx);
  2508. list_for_each_entry(event, &ctx->event_list, event_entry) {
  2509. ret = event_enable_on_exec(event, ctx);
  2510. if (ret)
  2511. enabled = 1;
  2512. }
  2513. /*
  2514. * Unclone this context if we enabled any event.
  2515. */
  2516. if (enabled)
  2517. clone_ctx = unclone_ctx(ctx);
  2518. raw_spin_unlock(&ctx->lock);
  2519. /*
  2520. * Also calls ctxswin for cgroup events, if any:
  2521. */
  2522. perf_event_context_sched_in(ctx, ctx->task);
  2523. out:
  2524. local_irq_restore(flags);
  2525. if (clone_ctx)
  2526. put_ctx(clone_ctx);
  2527. }
  2528. void perf_event_exec(void)
  2529. {
  2530. struct perf_event_context *ctx;
  2531. int ctxn;
  2532. rcu_read_lock();
  2533. for_each_task_context_nr(ctxn) {
  2534. ctx = current->perf_event_ctxp[ctxn];
  2535. if (!ctx)
  2536. continue;
  2537. perf_event_enable_on_exec(ctx);
  2538. }
  2539. rcu_read_unlock();
  2540. }
  2541. /*
  2542. * Cross CPU call to read the hardware event
  2543. */
  2544. static void __perf_event_read(void *info)
  2545. {
  2546. struct perf_event *event = info;
  2547. struct perf_event_context *ctx = event->ctx;
  2548. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  2549. /*
  2550. * If this is a task context, we need to check whether it is
  2551. * the current task context of this cpu. If not it has been
  2552. * scheduled out before the smp call arrived. In that case
  2553. * event->count would have been updated to a recent sample
  2554. * when the event was scheduled out.
  2555. */
  2556. if (ctx->task && cpuctx->task_ctx != ctx)
  2557. return;
  2558. raw_spin_lock(&ctx->lock);
  2559. if (ctx->is_active) {
  2560. update_context_time(ctx);
  2561. update_cgrp_time_from_event(event);
  2562. }
  2563. update_event_times(event);
  2564. if (event->state == PERF_EVENT_STATE_ACTIVE)
  2565. event->pmu->read(event);
  2566. raw_spin_unlock(&ctx->lock);
  2567. }
  2568. static inline u64 perf_event_count(struct perf_event *event)
  2569. {
  2570. return local64_read(&event->count) + atomic64_read(&event->child_count);
  2571. }
  2572. static u64 perf_event_read(struct perf_event *event)
  2573. {
  2574. /*
  2575. * If event is enabled and currently active on a CPU, update the
  2576. * value in the event structure:
  2577. */
  2578. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  2579. smp_call_function_single(event->oncpu,
  2580. __perf_event_read, event, 1);
  2581. } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
  2582. struct perf_event_context *ctx = event->ctx;
  2583. unsigned long flags;
  2584. raw_spin_lock_irqsave(&ctx->lock, flags);
  2585. /*
  2586. * may read while context is not active
  2587. * (e.g., thread is blocked), in that case
  2588. * we cannot update context time
  2589. */
  2590. if (ctx->is_active) {
  2591. update_context_time(ctx);
  2592. update_cgrp_time_from_event(event);
  2593. }
  2594. update_event_times(event);
  2595. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2596. }
  2597. return perf_event_count(event);
  2598. }
  2599. /*
  2600. * Initialize the perf_event context in a task_struct:
  2601. */
  2602. static void __perf_event_init_context(struct perf_event_context *ctx)
  2603. {
  2604. raw_spin_lock_init(&ctx->lock);
  2605. mutex_init(&ctx->mutex);
  2606. INIT_LIST_HEAD(&ctx->pinned_groups);
  2607. INIT_LIST_HEAD(&ctx->flexible_groups);
  2608. INIT_LIST_HEAD(&ctx->event_list);
  2609. atomic_set(&ctx->refcount, 1);
  2610. INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
  2611. }
  2612. static struct perf_event_context *
  2613. alloc_perf_context(struct pmu *pmu, struct task_struct *task)
  2614. {
  2615. struct perf_event_context *ctx;
  2616. ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  2617. if (!ctx)
  2618. return NULL;
  2619. __perf_event_init_context(ctx);
  2620. if (task) {
  2621. ctx->task = task;
  2622. get_task_struct(task);
  2623. }
  2624. ctx->pmu = pmu;
  2625. return ctx;
  2626. }
  2627. static struct task_struct *
  2628. find_lively_task_by_vpid(pid_t vpid)
  2629. {
  2630. struct task_struct *task;
  2631. int err;
  2632. rcu_read_lock();
  2633. if (!vpid)
  2634. task = current;
  2635. else
  2636. task = find_task_by_vpid(vpid);
  2637. if (task)
  2638. get_task_struct(task);
  2639. rcu_read_unlock();
  2640. if (!task)
  2641. return ERR_PTR(-ESRCH);
  2642. /* Reuse ptrace permission checks for now. */
  2643. err = -EACCES;
  2644. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  2645. goto errout;
  2646. return task;
  2647. errout:
  2648. put_task_struct(task);
  2649. return ERR_PTR(err);
  2650. }
  2651. /*
  2652. * Returns a matching context with refcount and pincount.
  2653. */
  2654. static struct perf_event_context *
  2655. find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
  2656. {
  2657. struct perf_event_context *ctx, *clone_ctx = NULL;
  2658. struct perf_cpu_context *cpuctx;
  2659. unsigned long flags;
  2660. int ctxn, err;
  2661. if (!task) {
  2662. /* Must be root to operate on a CPU event: */
  2663. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  2664. return ERR_PTR(-EACCES);
  2665. /*
  2666. * We could be clever and allow to attach a event to an
  2667. * offline CPU and activate it when the CPU comes up, but
  2668. * that's for later.
  2669. */
  2670. if (!cpu_online(cpu))
  2671. return ERR_PTR(-ENODEV);
  2672. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  2673. ctx = &cpuctx->ctx;
  2674. get_ctx(ctx);
  2675. ++ctx->pin_count;
  2676. return ctx;
  2677. }
  2678. err = -EINVAL;
  2679. ctxn = pmu->task_ctx_nr;
  2680. if (ctxn < 0)
  2681. goto errout;
  2682. retry:
  2683. ctx = perf_lock_task_context(task, ctxn, &flags);
  2684. if (ctx) {
  2685. clone_ctx = unclone_ctx(ctx);
  2686. ++ctx->pin_count;
  2687. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2688. if (clone_ctx)
  2689. put_ctx(clone_ctx);
  2690. } else {
  2691. ctx = alloc_perf_context(pmu, task);
  2692. err = -ENOMEM;
  2693. if (!ctx)
  2694. goto errout;
  2695. err = 0;
  2696. mutex_lock(&task->perf_event_mutex);
  2697. /*
  2698. * If it has already passed perf_event_exit_task().
  2699. * we must see PF_EXITING, it takes this mutex too.
  2700. */
  2701. if (task->flags & PF_EXITING)
  2702. err = -ESRCH;
  2703. else if (task->perf_event_ctxp[ctxn])
  2704. err = -EAGAIN;
  2705. else {
  2706. get_ctx(ctx);
  2707. ++ctx->pin_count;
  2708. rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
  2709. }
  2710. mutex_unlock(&task->perf_event_mutex);
  2711. if (unlikely(err)) {
  2712. put_ctx(ctx);
  2713. if (err == -EAGAIN)
  2714. goto retry;
  2715. goto errout;
  2716. }
  2717. }
  2718. return ctx;
  2719. errout:
  2720. return ERR_PTR(err);
  2721. }
  2722. static void perf_event_free_filter(struct perf_event *event);
  2723. static void free_event_rcu(struct rcu_head *head)
  2724. {
  2725. struct perf_event *event;
  2726. event = container_of(head, struct perf_event, rcu_head);
  2727. if (event->ns)
  2728. put_pid_ns(event->ns);
  2729. perf_event_free_filter(event);
  2730. kfree(event);
  2731. }
  2732. static void ring_buffer_put(struct ring_buffer *rb);
  2733. static void ring_buffer_attach(struct perf_event *event,
  2734. struct ring_buffer *rb);
  2735. static void unaccount_event_cpu(struct perf_event *event, int cpu)
  2736. {
  2737. if (event->parent)
  2738. return;
  2739. if (has_branch_stack(event)) {
  2740. if (!(event->attach_state & PERF_ATTACH_TASK))
  2741. atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
  2742. }
  2743. if (is_cgroup_event(event))
  2744. atomic_dec(&per_cpu(perf_cgroup_events, cpu));
  2745. }
  2746. static void unaccount_event(struct perf_event *event)
  2747. {
  2748. if (event->parent)
  2749. return;
  2750. if (event->attach_state & PERF_ATTACH_TASK)
  2751. static_key_slow_dec_deferred(&perf_sched_events);
  2752. if (event->attr.mmap || event->attr.mmap_data)
  2753. atomic_dec(&nr_mmap_events);
  2754. if (event->attr.comm)
  2755. atomic_dec(&nr_comm_events);
  2756. if (event->attr.task)
  2757. atomic_dec(&nr_task_events);
  2758. if (event->attr.freq)
  2759. atomic_dec(&nr_freq_events);
  2760. if (is_cgroup_event(event))
  2761. static_key_slow_dec_deferred(&perf_sched_events);
  2762. if (has_branch_stack(event))
  2763. static_key_slow_dec_deferred(&perf_sched_events);
  2764. unaccount_event_cpu(event, event->cpu);
  2765. }
  2766. static void __free_event(struct perf_event *event)
  2767. {
  2768. if (!event->parent) {
  2769. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
  2770. put_callchain_buffers();
  2771. }
  2772. if (event->destroy)
  2773. event->destroy(event);
  2774. if (event->ctx)
  2775. put_ctx(event->ctx);
  2776. if (event->pmu)
  2777. module_put(event->pmu->module);
  2778. call_rcu(&event->rcu_head, free_event_rcu);
  2779. }
  2780. static void _free_event(struct perf_event *event)
  2781. {
  2782. irq_work_sync(&event->pending);
  2783. unaccount_event(event);
  2784. if (event->rb) {
  2785. /*
  2786. * Can happen when we close an event with re-directed output.
  2787. *
  2788. * Since we have a 0 refcount, perf_mmap_close() will skip
  2789. * over us; possibly making our ring_buffer_put() the last.
  2790. */
  2791. mutex_lock(&event->mmap_mutex);
  2792. ring_buffer_attach(event, NULL);
  2793. mutex_unlock(&event->mmap_mutex);
  2794. }
  2795. if (is_cgroup_event(event))
  2796. perf_detach_cgroup(event);
  2797. __free_event(event);
  2798. }
  2799. /*
  2800. * Used to free events which have a known refcount of 1, such as in error paths
  2801. * where the event isn't exposed yet and inherited events.
  2802. */
  2803. static void free_event(struct perf_event *event)
  2804. {
  2805. if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
  2806. "unexpected event refcount: %ld; ptr=%p\n",
  2807. atomic_long_read(&event->refcount), event)) {
  2808. /* leak to avoid use-after-free */
  2809. return;
  2810. }
  2811. _free_event(event);
  2812. }
  2813. /*
  2814. * Remove user event from the owner task.
  2815. */
  2816. static void perf_remove_from_owner(struct perf_event *event)
  2817. {
  2818. struct task_struct *owner;
  2819. rcu_read_lock();
  2820. owner = ACCESS_ONCE(event->owner);
  2821. /*
  2822. * Matches the smp_wmb() in perf_event_exit_task(). If we observe
  2823. * !owner it means the list deletion is complete and we can indeed
  2824. * free this event, otherwise we need to serialize on
  2825. * owner->perf_event_mutex.
  2826. */
  2827. smp_read_barrier_depends();
  2828. if (owner) {
  2829. /*
  2830. * Since delayed_put_task_struct() also drops the last
  2831. * task reference we can safely take a new reference
  2832. * while holding the rcu_read_lock().
  2833. */
  2834. get_task_struct(owner);
  2835. }
  2836. rcu_read_unlock();
  2837. if (owner) {
  2838. mutex_lock(&owner->perf_event_mutex);
  2839. /*
  2840. * We have to re-check the event->owner field, if it is cleared
  2841. * we raced with perf_event_exit_task(), acquiring the mutex
  2842. * ensured they're done, and we can proceed with freeing the
  2843. * event.
  2844. */
  2845. if (event->owner)
  2846. list_del_init(&event->owner_entry);
  2847. mutex_unlock(&owner->perf_event_mutex);
  2848. put_task_struct(owner);
  2849. }
  2850. }
  2851. /*
  2852. * Called when the last reference to the file is gone.
  2853. */
  2854. static void put_event(struct perf_event *event)
  2855. {
  2856. struct perf_event_context *ctx = event->ctx;
  2857. if (!atomic_long_dec_and_test(&event->refcount))
  2858. return;
  2859. if (!is_kernel_event(event))
  2860. perf_remove_from_owner(event);
  2861. WARN_ON_ONCE(ctx->parent_ctx);
  2862. /*
  2863. * There are two ways this annotation is useful:
  2864. *
  2865. * 1) there is a lock recursion from perf_event_exit_task
  2866. * see the comment there.
  2867. *
  2868. * 2) there is a lock-inversion with mmap_sem through
  2869. * perf_event_read_group(), which takes faults while
  2870. * holding ctx->mutex, however this is called after
  2871. * the last filedesc died, so there is no possibility
  2872. * to trigger the AB-BA case.
  2873. */
  2874. mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
  2875. perf_remove_from_context(event, true);
  2876. mutex_unlock(&ctx->mutex);
  2877. _free_event(event);
  2878. }
  2879. int perf_event_release_kernel(struct perf_event *event)
  2880. {
  2881. put_event(event);
  2882. return 0;
  2883. }
  2884. EXPORT_SYMBOL_GPL(perf_event_release_kernel);
  2885. static int perf_release(struct inode *inode, struct file *file)
  2886. {
  2887. put_event(file->private_data);
  2888. return 0;
  2889. }
  2890. /*
  2891. * Remove all orphanes events from the context.
  2892. */
  2893. static void orphans_remove_work(struct work_struct *work)
  2894. {
  2895. struct perf_event_context *ctx;
  2896. struct perf_event *event, *tmp;
  2897. ctx = container_of(work, struct perf_event_context,
  2898. orphans_remove.work);
  2899. mutex_lock(&ctx->mutex);
  2900. list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
  2901. struct perf_event *parent_event = event->parent;
  2902. if (!is_orphaned_child(event))
  2903. continue;
  2904. perf_remove_from_context(event, true);
  2905. mutex_lock(&parent_event->child_mutex);
  2906. list_del_init(&event->child_list);
  2907. mutex_unlock(&parent_event->child_mutex);
  2908. free_event(event);
  2909. put_event(parent_event);
  2910. }
  2911. raw_spin_lock_irq(&ctx->lock);
  2912. ctx->orphans_remove_sched = false;
  2913. raw_spin_unlock_irq(&ctx->lock);
  2914. mutex_unlock(&ctx->mutex);
  2915. put_ctx(ctx);
  2916. }
  2917. u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
  2918. {
  2919. struct perf_event *child;
  2920. u64 total = 0;
  2921. *enabled = 0;
  2922. *running = 0;
  2923. mutex_lock(&event->child_mutex);
  2924. total += perf_event_read(event);
  2925. *enabled += event->total_time_enabled +
  2926. atomic64_read(&event->child_total_time_enabled);
  2927. *running += event->total_time_running +
  2928. atomic64_read(&event->child_total_time_running);
  2929. list_for_each_entry(child, &event->child_list, child_list) {
  2930. total += perf_event_read(child);
  2931. *enabled += child->total_time_enabled;
  2932. *running += child->total_time_running;
  2933. }
  2934. mutex_unlock(&event->child_mutex);
  2935. return total;
  2936. }
  2937. EXPORT_SYMBOL_GPL(perf_event_read_value);
  2938. static int perf_event_read_group(struct perf_event *event,
  2939. u64 read_format, char __user *buf)
  2940. {
  2941. struct perf_event *leader = event->group_leader, *sub;
  2942. int n = 0, size = 0, ret = -EFAULT;
  2943. struct perf_event_context *ctx = leader->ctx;
  2944. u64 values[5];
  2945. u64 count, enabled, running;
  2946. mutex_lock(&ctx->mutex);
  2947. count = perf_event_read_value(leader, &enabled, &running);
  2948. values[n++] = 1 + leader->nr_siblings;
  2949. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2950. values[n++] = enabled;
  2951. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2952. values[n++] = running;
  2953. values[n++] = count;
  2954. if (read_format & PERF_FORMAT_ID)
  2955. values[n++] = primary_event_id(leader);
  2956. size = n * sizeof(u64);
  2957. if (copy_to_user(buf, values, size))
  2958. goto unlock;
  2959. ret = size;
  2960. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  2961. n = 0;
  2962. values[n++] = perf_event_read_value(sub, &enabled, &running);
  2963. if (read_format & PERF_FORMAT_ID)
  2964. values[n++] = primary_event_id(sub);
  2965. size = n * sizeof(u64);
  2966. if (copy_to_user(buf + ret, values, size)) {
  2967. ret = -EFAULT;
  2968. goto unlock;
  2969. }
  2970. ret += size;
  2971. }
  2972. unlock:
  2973. mutex_unlock(&ctx->mutex);
  2974. return ret;
  2975. }
  2976. static int perf_event_read_one(struct perf_event *event,
  2977. u64 read_format, char __user *buf)
  2978. {
  2979. u64 enabled, running;
  2980. u64 values[4];
  2981. int n = 0;
  2982. values[n++] = perf_event_read_value(event, &enabled, &running);
  2983. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2984. values[n++] = enabled;
  2985. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2986. values[n++] = running;
  2987. if (read_format & PERF_FORMAT_ID)
  2988. values[n++] = primary_event_id(event);
  2989. if (copy_to_user(buf, values, n * sizeof(u64)))
  2990. return -EFAULT;
  2991. return n * sizeof(u64);
  2992. }
  2993. static bool is_event_hup(struct perf_event *event)
  2994. {
  2995. bool no_children;
  2996. if (event->state != PERF_EVENT_STATE_EXIT)
  2997. return false;
  2998. mutex_lock(&event->child_mutex);
  2999. no_children = list_empty(&event->child_list);
  3000. mutex_unlock(&event->child_mutex);
  3001. return no_children;
  3002. }
  3003. /*
  3004. * Read the performance event - simple non blocking version for now
  3005. */
  3006. static ssize_t
  3007. perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
  3008. {
  3009. u64 read_format = event->attr.read_format;
  3010. int ret;
  3011. /*
  3012. * Return end-of-file for a read on a event that is in
  3013. * error state (i.e. because it was pinned but it couldn't be
  3014. * scheduled on to the CPU at some point).
  3015. */
  3016. if (event->state == PERF_EVENT_STATE_ERROR)
  3017. return 0;
  3018. if (count < event->read_size)
  3019. return -ENOSPC;
  3020. WARN_ON_ONCE(event->ctx->parent_ctx);
  3021. if (read_format & PERF_FORMAT_GROUP)
  3022. ret = perf_event_read_group(event, read_format, buf);
  3023. else
  3024. ret = perf_event_read_one(event, read_format, buf);
  3025. return ret;
  3026. }
  3027. static ssize_t
  3028. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  3029. {
  3030. struct perf_event *event = file->private_data;
  3031. return perf_read_hw(event, buf, count);
  3032. }
  3033. static unsigned int perf_poll(struct file *file, poll_table *wait)
  3034. {
  3035. struct perf_event *event = file->private_data;
  3036. struct ring_buffer *rb;
  3037. unsigned int events = POLLHUP;
  3038. poll_wait(file, &event->waitq, wait);
  3039. if (is_event_hup(event))
  3040. return events;
  3041. /*
  3042. * Pin the event->rb by taking event->mmap_mutex; otherwise
  3043. * perf_event_set_output() can swizzle our rb and make us miss wakeups.
  3044. */
  3045. mutex_lock(&event->mmap_mutex);
  3046. rb = event->rb;
  3047. if (rb)
  3048. events = atomic_xchg(&rb->poll, 0);
  3049. mutex_unlock(&event->mmap_mutex);
  3050. return events;
  3051. }
  3052. static void perf_event_reset(struct perf_event *event)
  3053. {
  3054. (void)perf_event_read(event);
  3055. local64_set(&event->count, 0);
  3056. perf_event_update_userpage(event);
  3057. }
  3058. /*
  3059. * Holding the top-level event's child_mutex means that any
  3060. * descendant process that has inherited this event will block
  3061. * in sync_child_event if it goes to exit, thus satisfying the
  3062. * task existence requirements of perf_event_enable/disable.
  3063. */
  3064. static void perf_event_for_each_child(struct perf_event *event,
  3065. void (*func)(struct perf_event *))
  3066. {
  3067. struct perf_event *child;
  3068. WARN_ON_ONCE(event->ctx->parent_ctx);
  3069. mutex_lock(&event->child_mutex);
  3070. func(event);
  3071. list_for_each_entry(child, &event->child_list, child_list)
  3072. func(child);
  3073. mutex_unlock(&event->child_mutex);
  3074. }
  3075. static void perf_event_for_each(struct perf_event *event,
  3076. void (*func)(struct perf_event *))
  3077. {
  3078. struct perf_event_context *ctx = event->ctx;
  3079. struct perf_event *sibling;
  3080. WARN_ON_ONCE(ctx->parent_ctx);
  3081. mutex_lock(&ctx->mutex);
  3082. event = event->group_leader;
  3083. perf_event_for_each_child(event, func);
  3084. list_for_each_entry(sibling, &event->sibling_list, group_entry)
  3085. perf_event_for_each_child(sibling, func);
  3086. mutex_unlock(&ctx->mutex);
  3087. }
  3088. static int perf_event_period(struct perf_event *event, u64 __user *arg)
  3089. {
  3090. struct perf_event_context *ctx = event->ctx;
  3091. int ret = 0, active;
  3092. u64 value;
  3093. if (!is_sampling_event(event))
  3094. return -EINVAL;
  3095. if (copy_from_user(&value, arg, sizeof(value)))
  3096. return -EFAULT;
  3097. if (!value)
  3098. return -EINVAL;
  3099. raw_spin_lock_irq(&ctx->lock);
  3100. if (event->attr.freq) {
  3101. if (value > sysctl_perf_event_sample_rate) {
  3102. ret = -EINVAL;
  3103. goto unlock;
  3104. }
  3105. event->attr.sample_freq = value;
  3106. } else {
  3107. event->attr.sample_period = value;
  3108. event->hw.sample_period = value;
  3109. }
  3110. active = (event->state == PERF_EVENT_STATE_ACTIVE);
  3111. if (active) {
  3112. perf_pmu_disable(ctx->pmu);
  3113. event->pmu->stop(event, PERF_EF_UPDATE);
  3114. }
  3115. local64_set(&event->hw.period_left, 0);
  3116. if (active) {
  3117. event->pmu->start(event, PERF_EF_RELOAD);
  3118. perf_pmu_enable(ctx->pmu);
  3119. }
  3120. unlock:
  3121. raw_spin_unlock_irq(&ctx->lock);
  3122. return ret;
  3123. }
  3124. static const struct file_operations perf_fops;
  3125. static inline int perf_fget_light(int fd, struct fd *p)
  3126. {
  3127. struct fd f = fdget(fd);
  3128. if (!f.file)
  3129. return -EBADF;
  3130. if (f.file->f_op != &perf_fops) {
  3131. fdput(f);
  3132. return -EBADF;
  3133. }
  3134. *p = f;
  3135. return 0;
  3136. }
  3137. static int perf_event_set_output(struct perf_event *event,
  3138. struct perf_event *output_event);
  3139. static int perf_event_set_filter(struct perf_event *event, void __user *arg);
  3140. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  3141. {
  3142. struct perf_event *event = file->private_data;
  3143. void (*func)(struct perf_event *);
  3144. u32 flags = arg;
  3145. switch (cmd) {
  3146. case PERF_EVENT_IOC_ENABLE:
  3147. func = perf_event_enable;
  3148. break;
  3149. case PERF_EVENT_IOC_DISABLE:
  3150. func = perf_event_disable;
  3151. break;
  3152. case PERF_EVENT_IOC_RESET:
  3153. func = perf_event_reset;
  3154. break;
  3155. case PERF_EVENT_IOC_REFRESH:
  3156. return perf_event_refresh(event, arg);
  3157. case PERF_EVENT_IOC_PERIOD:
  3158. return perf_event_period(event, (u64 __user *)arg);
  3159. case PERF_EVENT_IOC_ID:
  3160. {
  3161. u64 id = primary_event_id(event);
  3162. if (copy_to_user((void __user *)arg, &id, sizeof(id)))
  3163. return -EFAULT;
  3164. return 0;
  3165. }
  3166. case PERF_EVENT_IOC_SET_OUTPUT:
  3167. {
  3168. int ret;
  3169. if (arg != -1) {
  3170. struct perf_event *output_event;
  3171. struct fd output;
  3172. ret = perf_fget_light(arg, &output);
  3173. if (ret)
  3174. return ret;
  3175. output_event = output.file->private_data;
  3176. ret = perf_event_set_output(event, output_event);
  3177. fdput(output);
  3178. } else {
  3179. ret = perf_event_set_output(event, NULL);
  3180. }
  3181. return ret;
  3182. }
  3183. case PERF_EVENT_IOC_SET_FILTER:
  3184. return perf_event_set_filter(event, (void __user *)arg);
  3185. default:
  3186. return -ENOTTY;
  3187. }
  3188. if (flags & PERF_IOC_FLAG_GROUP)
  3189. perf_event_for_each(event, func);
  3190. else
  3191. perf_event_for_each_child(event, func);
  3192. return 0;
  3193. }
  3194. #ifdef CONFIG_COMPAT
  3195. static long perf_compat_ioctl(struct file *file, unsigned int cmd,
  3196. unsigned long arg)
  3197. {
  3198. switch (_IOC_NR(cmd)) {
  3199. case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
  3200. case _IOC_NR(PERF_EVENT_IOC_ID):
  3201. /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
  3202. if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
  3203. cmd &= ~IOCSIZE_MASK;
  3204. cmd |= sizeof(void *) << IOCSIZE_SHIFT;
  3205. }
  3206. break;
  3207. }
  3208. return perf_ioctl(file, cmd, arg);
  3209. }
  3210. #else
  3211. # define perf_compat_ioctl NULL
  3212. #endif
  3213. int perf_event_task_enable(void)
  3214. {
  3215. struct perf_event *event;
  3216. mutex_lock(&current->perf_event_mutex);
  3217. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  3218. perf_event_for_each_child(event, perf_event_enable);
  3219. mutex_unlock(&current->perf_event_mutex);
  3220. return 0;
  3221. }
  3222. int perf_event_task_disable(void)
  3223. {
  3224. struct perf_event *event;
  3225. mutex_lock(&current->perf_event_mutex);
  3226. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  3227. perf_event_for_each_child(event, perf_event_disable);
  3228. mutex_unlock(&current->perf_event_mutex);
  3229. return 0;
  3230. }
  3231. static int perf_event_index(struct perf_event *event)
  3232. {
  3233. if (event->hw.state & PERF_HES_STOPPED)
  3234. return 0;
  3235. if (event->state != PERF_EVENT_STATE_ACTIVE)
  3236. return 0;
  3237. return event->pmu->event_idx(event);
  3238. }
  3239. static void calc_timer_values(struct perf_event *event,
  3240. u64 *now,
  3241. u64 *enabled,
  3242. u64 *running)
  3243. {
  3244. u64 ctx_time;
  3245. *now = perf_clock();
  3246. ctx_time = event->shadow_ctx_time + *now;
  3247. *enabled = ctx_time - event->tstamp_enabled;
  3248. *running = ctx_time - event->tstamp_running;
  3249. }
  3250. static void perf_event_init_userpage(struct perf_event *event)
  3251. {
  3252. struct perf_event_mmap_page *userpg;
  3253. struct ring_buffer *rb;
  3254. rcu_read_lock();
  3255. rb = rcu_dereference(event->rb);
  3256. if (!rb)
  3257. goto unlock;
  3258. userpg = rb->user_page;
  3259. /* Allow new userspace to detect that bit 0 is deprecated */
  3260. userpg->cap_bit0_is_deprecated = 1;
  3261. userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
  3262. unlock:
  3263. rcu_read_unlock();
  3264. }
  3265. void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
  3266. {
  3267. }
  3268. /*
  3269. * Callers need to ensure there can be no nesting of this function, otherwise
  3270. * the seqlock logic goes bad. We can not serialize this because the arch
  3271. * code calls this from NMI context.
  3272. */
  3273. void perf_event_update_userpage(struct perf_event *event)
  3274. {
  3275. struct perf_event_mmap_page *userpg;
  3276. struct ring_buffer *rb;
  3277. u64 enabled, running, now;
  3278. rcu_read_lock();
  3279. rb = rcu_dereference(event->rb);
  3280. if (!rb)
  3281. goto unlock;
  3282. /*
  3283. * compute total_time_enabled, total_time_running
  3284. * based on snapshot values taken when the event
  3285. * was last scheduled in.
  3286. *
  3287. * we cannot simply called update_context_time()
  3288. * because of locking issue as we can be called in
  3289. * NMI context
  3290. */
  3291. calc_timer_values(event, &now, &enabled, &running);
  3292. userpg = rb->user_page;
  3293. /*
  3294. * Disable preemption so as to not let the corresponding user-space
  3295. * spin too long if we get preempted.
  3296. */
  3297. preempt_disable();
  3298. ++userpg->lock;
  3299. barrier();
  3300. userpg->index = perf_event_index(event);
  3301. userpg->offset = perf_event_count(event);
  3302. if (userpg->index)
  3303. userpg->offset -= local64_read(&event->hw.prev_count);
  3304. userpg->time_enabled = enabled +
  3305. atomic64_read(&event->child_total_time_enabled);
  3306. userpg->time_running = running +
  3307. atomic64_read(&event->child_total_time_running);
  3308. arch_perf_update_userpage(userpg, now);
  3309. barrier();
  3310. ++userpg->lock;
  3311. preempt_enable();
  3312. unlock:
  3313. rcu_read_unlock();
  3314. }
  3315. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  3316. {
  3317. struct perf_event *event = vma->vm_file->private_data;
  3318. struct ring_buffer *rb;
  3319. int ret = VM_FAULT_SIGBUS;
  3320. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  3321. if (vmf->pgoff == 0)
  3322. ret = 0;
  3323. return ret;
  3324. }
  3325. rcu_read_lock();
  3326. rb = rcu_dereference(event->rb);
  3327. if (!rb)
  3328. goto unlock;
  3329. if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
  3330. goto unlock;
  3331. vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
  3332. if (!vmf->page)
  3333. goto unlock;
  3334. get_page(vmf->page);
  3335. vmf->page->mapping = vma->vm_file->f_mapping;
  3336. vmf->page->index = vmf->pgoff;
  3337. ret = 0;
  3338. unlock:
  3339. rcu_read_unlock();
  3340. return ret;
  3341. }
  3342. static void ring_buffer_attach(struct perf_event *event,
  3343. struct ring_buffer *rb)
  3344. {
  3345. struct ring_buffer *old_rb = NULL;
  3346. unsigned long flags;
  3347. if (event->rb) {
  3348. /*
  3349. * Should be impossible, we set this when removing
  3350. * event->rb_entry and wait/clear when adding event->rb_entry.
  3351. */
  3352. WARN_ON_ONCE(event->rcu_pending);
  3353. old_rb = event->rb;
  3354. event->rcu_batches = get_state_synchronize_rcu();
  3355. event->rcu_pending = 1;
  3356. spin_lock_irqsave(&old_rb->event_lock, flags);
  3357. list_del_rcu(&event->rb_entry);
  3358. spin_unlock_irqrestore(&old_rb->event_lock, flags);
  3359. }
  3360. if (event->rcu_pending && rb) {
  3361. cond_synchronize_rcu(event->rcu_batches);
  3362. event->rcu_pending = 0;
  3363. }
  3364. if (rb) {
  3365. spin_lock_irqsave(&rb->event_lock, flags);
  3366. list_add_rcu(&event->rb_entry, &rb->event_list);
  3367. spin_unlock_irqrestore(&rb->event_lock, flags);
  3368. }
  3369. rcu_assign_pointer(event->rb, rb);
  3370. if (old_rb) {
  3371. ring_buffer_put(old_rb);
  3372. /*
  3373. * Since we detached before setting the new rb, so that we
  3374. * could attach the new rb, we could have missed a wakeup.
  3375. * Provide it now.
  3376. */
  3377. wake_up_all(&event->waitq);
  3378. }
  3379. }
  3380. static void ring_buffer_wakeup(struct perf_event *event)
  3381. {
  3382. struct ring_buffer *rb;
  3383. rcu_read_lock();
  3384. rb = rcu_dereference(event->rb);
  3385. if (rb) {
  3386. list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
  3387. wake_up_all(&event->waitq);
  3388. }
  3389. rcu_read_unlock();
  3390. }
  3391. static void rb_free_rcu(struct rcu_head *rcu_head)
  3392. {
  3393. struct ring_buffer *rb;
  3394. rb = container_of(rcu_head, struct ring_buffer, rcu_head);
  3395. rb_free(rb);
  3396. }
  3397. static struct ring_buffer *ring_buffer_get(struct perf_event *event)
  3398. {
  3399. struct ring_buffer *rb;
  3400. rcu_read_lock();
  3401. rb = rcu_dereference(event->rb);
  3402. if (rb) {
  3403. if (!atomic_inc_not_zero(&rb->refcount))
  3404. rb = NULL;
  3405. }
  3406. rcu_read_unlock();
  3407. return rb;
  3408. }
  3409. static void ring_buffer_put(struct ring_buffer *rb)
  3410. {
  3411. if (!atomic_dec_and_test(&rb->refcount))
  3412. return;
  3413. WARN_ON_ONCE(!list_empty(&rb->event_list));
  3414. call_rcu(&rb->rcu_head, rb_free_rcu);
  3415. }
  3416. static void perf_mmap_open(struct vm_area_struct *vma)
  3417. {
  3418. struct perf_event *event = vma->vm_file->private_data;
  3419. atomic_inc(&event->mmap_count);
  3420. atomic_inc(&event->rb->mmap_count);
  3421. }
  3422. /*
  3423. * A buffer can be mmap()ed multiple times; either directly through the same
  3424. * event, or through other events by use of perf_event_set_output().
  3425. *
  3426. * In order to undo the VM accounting done by perf_mmap() we need to destroy
  3427. * the buffer here, where we still have a VM context. This means we need
  3428. * to detach all events redirecting to us.
  3429. */
  3430. static void perf_mmap_close(struct vm_area_struct *vma)
  3431. {
  3432. struct perf_event *event = vma->vm_file->private_data;
  3433. struct ring_buffer *rb = ring_buffer_get(event);
  3434. struct user_struct *mmap_user = rb->mmap_user;
  3435. int mmap_locked = rb->mmap_locked;
  3436. unsigned long size = perf_data_size(rb);
  3437. atomic_dec(&rb->mmap_count);
  3438. if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
  3439. goto out_put;
  3440. ring_buffer_attach(event, NULL);
  3441. mutex_unlock(&event->mmap_mutex);
  3442. /* If there's still other mmap()s of this buffer, we're done. */
  3443. if (atomic_read(&rb->mmap_count))
  3444. goto out_put;
  3445. /*
  3446. * No other mmap()s, detach from all other events that might redirect
  3447. * into the now unreachable buffer. Somewhat complicated by the
  3448. * fact that rb::event_lock otherwise nests inside mmap_mutex.
  3449. */
  3450. again:
  3451. rcu_read_lock();
  3452. list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
  3453. if (!atomic_long_inc_not_zero(&event->refcount)) {
  3454. /*
  3455. * This event is en-route to free_event() which will
  3456. * detach it and remove it from the list.
  3457. */
  3458. continue;
  3459. }
  3460. rcu_read_unlock();
  3461. mutex_lock(&event->mmap_mutex);
  3462. /*
  3463. * Check we didn't race with perf_event_set_output() which can
  3464. * swizzle the rb from under us while we were waiting to
  3465. * acquire mmap_mutex.
  3466. *
  3467. * If we find a different rb; ignore this event, a next
  3468. * iteration will no longer find it on the list. We have to
  3469. * still restart the iteration to make sure we're not now
  3470. * iterating the wrong list.
  3471. */
  3472. if (event->rb == rb)
  3473. ring_buffer_attach(event, NULL);
  3474. mutex_unlock(&event->mmap_mutex);
  3475. put_event(event);
  3476. /*
  3477. * Restart the iteration; either we're on the wrong list or
  3478. * destroyed its integrity by doing a deletion.
  3479. */
  3480. goto again;
  3481. }
  3482. rcu_read_unlock();
  3483. /*
  3484. * It could be there's still a few 0-ref events on the list; they'll
  3485. * get cleaned up by free_event() -- they'll also still have their
  3486. * ref on the rb and will free it whenever they are done with it.
  3487. *
  3488. * Aside from that, this buffer is 'fully' detached and unmapped,
  3489. * undo the VM accounting.
  3490. */
  3491. atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
  3492. vma->vm_mm->pinned_vm -= mmap_locked;
  3493. free_uid(mmap_user);
  3494. out_put:
  3495. ring_buffer_put(rb); /* could be last */
  3496. }
  3497. static const struct vm_operations_struct perf_mmap_vmops = {
  3498. .open = perf_mmap_open,
  3499. .close = perf_mmap_close,
  3500. .fault = perf_mmap_fault,
  3501. .page_mkwrite = perf_mmap_fault,
  3502. };
  3503. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  3504. {
  3505. struct perf_event *event = file->private_data;
  3506. unsigned long user_locked, user_lock_limit;
  3507. struct user_struct *user = current_user();
  3508. unsigned long locked, lock_limit;
  3509. struct ring_buffer *rb;
  3510. unsigned long vma_size;
  3511. unsigned long nr_pages;
  3512. long user_extra, extra;
  3513. int ret = 0, flags = 0;
  3514. /*
  3515. * Don't allow mmap() of inherited per-task counters. This would
  3516. * create a performance issue due to all children writing to the
  3517. * same rb.
  3518. */
  3519. if (event->cpu == -1 && event->attr.inherit)
  3520. return -EINVAL;
  3521. if (!(vma->vm_flags & VM_SHARED))
  3522. return -EINVAL;
  3523. vma_size = vma->vm_end - vma->vm_start;
  3524. nr_pages = (vma_size / PAGE_SIZE) - 1;
  3525. /*
  3526. * If we have rb pages ensure they're a power-of-two number, so we
  3527. * can do bitmasks instead of modulo.
  3528. */
  3529. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  3530. return -EINVAL;
  3531. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  3532. return -EINVAL;
  3533. if (vma->vm_pgoff != 0)
  3534. return -EINVAL;
  3535. WARN_ON_ONCE(event->ctx->parent_ctx);
  3536. again:
  3537. mutex_lock(&event->mmap_mutex);
  3538. if (event->rb) {
  3539. if (event->rb->nr_pages != nr_pages) {
  3540. ret = -EINVAL;
  3541. goto unlock;
  3542. }
  3543. if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
  3544. /*
  3545. * Raced against perf_mmap_close() through
  3546. * perf_event_set_output(). Try again, hope for better
  3547. * luck.
  3548. */
  3549. mutex_unlock(&event->mmap_mutex);
  3550. goto again;
  3551. }
  3552. goto unlock;
  3553. }
  3554. user_extra = nr_pages + 1;
  3555. user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
  3556. /*
  3557. * Increase the limit linearly with more CPUs:
  3558. */
  3559. user_lock_limit *= num_online_cpus();
  3560. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  3561. extra = 0;
  3562. if (user_locked > user_lock_limit)
  3563. extra = user_locked - user_lock_limit;
  3564. lock_limit = rlimit(RLIMIT_MEMLOCK);
  3565. lock_limit >>= PAGE_SHIFT;
  3566. locked = vma->vm_mm->pinned_vm + extra;
  3567. if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
  3568. !capable(CAP_IPC_LOCK)) {
  3569. ret = -EPERM;
  3570. goto unlock;
  3571. }
  3572. WARN_ON(event->rb);
  3573. if (vma->vm_flags & VM_WRITE)
  3574. flags |= RING_BUFFER_WRITABLE;
  3575. rb = rb_alloc(nr_pages,
  3576. event->attr.watermark ? event->attr.wakeup_watermark : 0,
  3577. event->cpu, flags);
  3578. if (!rb) {
  3579. ret = -ENOMEM;
  3580. goto unlock;
  3581. }
  3582. atomic_set(&rb->mmap_count, 1);
  3583. rb->mmap_locked = extra;
  3584. rb->mmap_user = get_current_user();
  3585. atomic_long_add(user_extra, &user->locked_vm);
  3586. vma->vm_mm->pinned_vm += extra;
  3587. ring_buffer_attach(event, rb);
  3588. perf_event_init_userpage(event);
  3589. perf_event_update_userpage(event);
  3590. unlock:
  3591. if (!ret)
  3592. atomic_inc(&event->mmap_count);
  3593. mutex_unlock(&event->mmap_mutex);
  3594. /*
  3595. * Since pinned accounting is per vm we cannot allow fork() to copy our
  3596. * vma.
  3597. */
  3598. vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
  3599. vma->vm_ops = &perf_mmap_vmops;
  3600. return ret;
  3601. }
  3602. static int perf_fasync(int fd, struct file *filp, int on)
  3603. {
  3604. struct inode *inode = file_inode(filp);
  3605. struct perf_event *event = filp->private_data;
  3606. int retval;
  3607. mutex_lock(&inode->i_mutex);
  3608. retval = fasync_helper(fd, filp, on, &event->fasync);
  3609. mutex_unlock(&inode->i_mutex);
  3610. if (retval < 0)
  3611. return retval;
  3612. return 0;
  3613. }
  3614. static const struct file_operations perf_fops = {
  3615. .llseek = no_llseek,
  3616. .release = perf_release,
  3617. .read = perf_read,
  3618. .poll = perf_poll,
  3619. .unlocked_ioctl = perf_ioctl,
  3620. .compat_ioctl = perf_compat_ioctl,
  3621. .mmap = perf_mmap,
  3622. .fasync = perf_fasync,
  3623. };
  3624. /*
  3625. * Perf event wakeup
  3626. *
  3627. * If there's data, ensure we set the poll() state and publish everything
  3628. * to user-space before waking everybody up.
  3629. */
  3630. void perf_event_wakeup(struct perf_event *event)
  3631. {
  3632. ring_buffer_wakeup(event);
  3633. if (event->pending_kill) {
  3634. kill_fasync(&event->fasync, SIGIO, event->pending_kill);
  3635. event->pending_kill = 0;
  3636. }
  3637. }
  3638. static void perf_pending_event(struct irq_work *entry)
  3639. {
  3640. struct perf_event *event = container_of(entry,
  3641. struct perf_event, pending);
  3642. if (event->pending_disable) {
  3643. event->pending_disable = 0;
  3644. __perf_event_disable(event);
  3645. }
  3646. if (event->pending_wakeup) {
  3647. event->pending_wakeup = 0;
  3648. perf_event_wakeup(event);
  3649. }
  3650. }
  3651. /*
  3652. * We assume there is only KVM supporting the callbacks.
  3653. * Later on, we might change it to a list if there is
  3654. * another virtualization implementation supporting the callbacks.
  3655. */
  3656. struct perf_guest_info_callbacks *perf_guest_cbs;
  3657. int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3658. {
  3659. perf_guest_cbs = cbs;
  3660. return 0;
  3661. }
  3662. EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
  3663. int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3664. {
  3665. perf_guest_cbs = NULL;
  3666. return 0;
  3667. }
  3668. EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
  3669. static void
  3670. perf_output_sample_regs(struct perf_output_handle *handle,
  3671. struct pt_regs *regs, u64 mask)
  3672. {
  3673. int bit;
  3674. for_each_set_bit(bit, (const unsigned long *) &mask,
  3675. sizeof(mask) * BITS_PER_BYTE) {
  3676. u64 val;
  3677. val = perf_reg_value(regs, bit);
  3678. perf_output_put(handle, val);
  3679. }
  3680. }
  3681. static void perf_sample_regs_user(struct perf_regs_user *regs_user,
  3682. struct pt_regs *regs)
  3683. {
  3684. if (!user_mode(regs)) {
  3685. if (current->mm)
  3686. regs = task_pt_regs(current);
  3687. else
  3688. regs = NULL;
  3689. }
  3690. if (regs) {
  3691. regs_user->regs = regs;
  3692. regs_user->abi = perf_reg_abi(current);
  3693. }
  3694. }
  3695. /*
  3696. * Get remaining task size from user stack pointer.
  3697. *
  3698. * It'd be better to take stack vma map and limit this more
  3699. * precisly, but there's no way to get it safely under interrupt,
  3700. * so using TASK_SIZE as limit.
  3701. */
  3702. static u64 perf_ustack_task_size(struct pt_regs *regs)
  3703. {
  3704. unsigned long addr = perf_user_stack_pointer(regs);
  3705. if (!addr || addr >= TASK_SIZE)
  3706. return 0;
  3707. return TASK_SIZE - addr;
  3708. }
  3709. static u16
  3710. perf_sample_ustack_size(u16 stack_size, u16 header_size,
  3711. struct pt_regs *regs)
  3712. {
  3713. u64 task_size;
  3714. /* No regs, no stack pointer, no dump. */
  3715. if (!regs)
  3716. return 0;
  3717. /*
  3718. * Check if we fit in with the requested stack size into the:
  3719. * - TASK_SIZE
  3720. * If we don't, we limit the size to the TASK_SIZE.
  3721. *
  3722. * - remaining sample size
  3723. * If we don't, we customize the stack size to
  3724. * fit in to the remaining sample size.
  3725. */
  3726. task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
  3727. stack_size = min(stack_size, (u16) task_size);
  3728. /* Current header size plus static size and dynamic size. */
  3729. header_size += 2 * sizeof(u64);
  3730. /* Do we fit in with the current stack dump size? */
  3731. if ((u16) (header_size + stack_size) < header_size) {
  3732. /*
  3733. * If we overflow the maximum size for the sample,
  3734. * we customize the stack dump size to fit in.
  3735. */
  3736. stack_size = USHRT_MAX - header_size - sizeof(u64);
  3737. stack_size = round_up(stack_size, sizeof(u64));
  3738. }
  3739. return stack_size;
  3740. }
  3741. static void
  3742. perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
  3743. struct pt_regs *regs)
  3744. {
  3745. /* Case of a kernel thread, nothing to dump */
  3746. if (!regs) {
  3747. u64 size = 0;
  3748. perf_output_put(handle, size);
  3749. } else {
  3750. unsigned long sp;
  3751. unsigned int rem;
  3752. u64 dyn_size;
  3753. /*
  3754. * We dump:
  3755. * static size
  3756. * - the size requested by user or the best one we can fit
  3757. * in to the sample max size
  3758. * data
  3759. * - user stack dump data
  3760. * dynamic size
  3761. * - the actual dumped size
  3762. */
  3763. /* Static size. */
  3764. perf_output_put(handle, dump_size);
  3765. /* Data. */
  3766. sp = perf_user_stack_pointer(regs);
  3767. rem = __output_copy_user(handle, (void *) sp, dump_size);
  3768. dyn_size = dump_size - rem;
  3769. perf_output_skip(handle, rem);
  3770. /* Dynamic size. */
  3771. perf_output_put(handle, dyn_size);
  3772. }
  3773. }
  3774. static void __perf_event_header__init_id(struct perf_event_header *header,
  3775. struct perf_sample_data *data,
  3776. struct perf_event *event)
  3777. {
  3778. u64 sample_type = event->attr.sample_type;
  3779. data->type = sample_type;
  3780. header->size += event->id_header_size;
  3781. if (sample_type & PERF_SAMPLE_TID) {
  3782. /* namespace issues */
  3783. data->tid_entry.pid = perf_event_pid(event, current);
  3784. data->tid_entry.tid = perf_event_tid(event, current);
  3785. }
  3786. if (sample_type & PERF_SAMPLE_TIME)
  3787. data->time = perf_clock();
  3788. if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
  3789. data->id = primary_event_id(event);
  3790. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3791. data->stream_id = event->id;
  3792. if (sample_type & PERF_SAMPLE_CPU) {
  3793. data->cpu_entry.cpu = raw_smp_processor_id();
  3794. data->cpu_entry.reserved = 0;
  3795. }
  3796. }
  3797. void perf_event_header__init_id(struct perf_event_header *header,
  3798. struct perf_sample_data *data,
  3799. struct perf_event *event)
  3800. {
  3801. if (event->attr.sample_id_all)
  3802. __perf_event_header__init_id(header, data, event);
  3803. }
  3804. static void __perf_event__output_id_sample(struct perf_output_handle *handle,
  3805. struct perf_sample_data *data)
  3806. {
  3807. u64 sample_type = data->type;
  3808. if (sample_type & PERF_SAMPLE_TID)
  3809. perf_output_put(handle, data->tid_entry);
  3810. if (sample_type & PERF_SAMPLE_TIME)
  3811. perf_output_put(handle, data->time);
  3812. if (sample_type & PERF_SAMPLE_ID)
  3813. perf_output_put(handle, data->id);
  3814. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3815. perf_output_put(handle, data->stream_id);
  3816. if (sample_type & PERF_SAMPLE_CPU)
  3817. perf_output_put(handle, data->cpu_entry);
  3818. if (sample_type & PERF_SAMPLE_IDENTIFIER)
  3819. perf_output_put(handle, data->id);
  3820. }
  3821. void perf_event__output_id_sample(struct perf_event *event,
  3822. struct perf_output_handle *handle,
  3823. struct perf_sample_data *sample)
  3824. {
  3825. if (event->attr.sample_id_all)
  3826. __perf_event__output_id_sample(handle, sample);
  3827. }
  3828. static void perf_output_read_one(struct perf_output_handle *handle,
  3829. struct perf_event *event,
  3830. u64 enabled, u64 running)
  3831. {
  3832. u64 read_format = event->attr.read_format;
  3833. u64 values[4];
  3834. int n = 0;
  3835. values[n++] = perf_event_count(event);
  3836. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  3837. values[n++] = enabled +
  3838. atomic64_read(&event->child_total_time_enabled);
  3839. }
  3840. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  3841. values[n++] = running +
  3842. atomic64_read(&event->child_total_time_running);
  3843. }
  3844. if (read_format & PERF_FORMAT_ID)
  3845. values[n++] = primary_event_id(event);
  3846. __output_copy(handle, values, n * sizeof(u64));
  3847. }
  3848. /*
  3849. * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
  3850. */
  3851. static void perf_output_read_group(struct perf_output_handle *handle,
  3852. struct perf_event *event,
  3853. u64 enabled, u64 running)
  3854. {
  3855. struct perf_event *leader = event->group_leader, *sub;
  3856. u64 read_format = event->attr.read_format;
  3857. u64 values[5];
  3858. int n = 0;
  3859. values[n++] = 1 + leader->nr_siblings;
  3860. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  3861. values[n++] = enabled;
  3862. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  3863. values[n++] = running;
  3864. if (leader != event)
  3865. leader->pmu->read(leader);
  3866. values[n++] = perf_event_count(leader);
  3867. if (read_format & PERF_FORMAT_ID)
  3868. values[n++] = primary_event_id(leader);
  3869. __output_copy(handle, values, n * sizeof(u64));
  3870. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  3871. n = 0;
  3872. if ((sub != event) &&
  3873. (sub->state == PERF_EVENT_STATE_ACTIVE))
  3874. sub->pmu->read(sub);
  3875. values[n++] = perf_event_count(sub);
  3876. if (read_format & PERF_FORMAT_ID)
  3877. values[n++] = primary_event_id(sub);
  3878. __output_copy(handle, values, n * sizeof(u64));
  3879. }
  3880. }
  3881. #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
  3882. PERF_FORMAT_TOTAL_TIME_RUNNING)
  3883. static void perf_output_read(struct perf_output_handle *handle,
  3884. struct perf_event *event)
  3885. {
  3886. u64 enabled = 0, running = 0, now;
  3887. u64 read_format = event->attr.read_format;
  3888. /*
  3889. * compute total_time_enabled, total_time_running
  3890. * based on snapshot values taken when the event
  3891. * was last scheduled in.
  3892. *
  3893. * we cannot simply called update_context_time()
  3894. * because of locking issue as we are called in
  3895. * NMI context
  3896. */
  3897. if (read_format & PERF_FORMAT_TOTAL_TIMES)
  3898. calc_timer_values(event, &now, &enabled, &running);
  3899. if (event->attr.read_format & PERF_FORMAT_GROUP)
  3900. perf_output_read_group(handle, event, enabled, running);
  3901. else
  3902. perf_output_read_one(handle, event, enabled, running);
  3903. }
  3904. void perf_output_sample(struct perf_output_handle *handle,
  3905. struct perf_event_header *header,
  3906. struct perf_sample_data *data,
  3907. struct perf_event *event)
  3908. {
  3909. u64 sample_type = data->type;
  3910. perf_output_put(handle, *header);
  3911. if (sample_type & PERF_SAMPLE_IDENTIFIER)
  3912. perf_output_put(handle, data->id);
  3913. if (sample_type & PERF_SAMPLE_IP)
  3914. perf_output_put(handle, data->ip);
  3915. if (sample_type & PERF_SAMPLE_TID)
  3916. perf_output_put(handle, data->tid_entry);
  3917. if (sample_type & PERF_SAMPLE_TIME)
  3918. perf_output_put(handle, data->time);
  3919. if (sample_type & PERF_SAMPLE_ADDR)
  3920. perf_output_put(handle, data->addr);
  3921. if (sample_type & PERF_SAMPLE_ID)
  3922. perf_output_put(handle, data->id);
  3923. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3924. perf_output_put(handle, data->stream_id);
  3925. if (sample_type & PERF_SAMPLE_CPU)
  3926. perf_output_put(handle, data->cpu_entry);
  3927. if (sample_type & PERF_SAMPLE_PERIOD)
  3928. perf_output_put(handle, data->period);
  3929. if (sample_type & PERF_SAMPLE_READ)
  3930. perf_output_read(handle, event);
  3931. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3932. if (data->callchain) {
  3933. int size = 1;
  3934. if (data->callchain)
  3935. size += data->callchain->nr;
  3936. size *= sizeof(u64);
  3937. __output_copy(handle, data->callchain, size);
  3938. } else {
  3939. u64 nr = 0;
  3940. perf_output_put(handle, nr);
  3941. }
  3942. }
  3943. if (sample_type & PERF_SAMPLE_RAW) {
  3944. if (data->raw) {
  3945. perf_output_put(handle, data->raw->size);
  3946. __output_copy(handle, data->raw->data,
  3947. data->raw->size);
  3948. } else {
  3949. struct {
  3950. u32 size;
  3951. u32 data;
  3952. } raw = {
  3953. .size = sizeof(u32),
  3954. .data = 0,
  3955. };
  3956. perf_output_put(handle, raw);
  3957. }
  3958. }
  3959. if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
  3960. if (data->br_stack) {
  3961. size_t size;
  3962. size = data->br_stack->nr
  3963. * sizeof(struct perf_branch_entry);
  3964. perf_output_put(handle, data->br_stack->nr);
  3965. perf_output_copy(handle, data->br_stack->entries, size);
  3966. } else {
  3967. /*
  3968. * we always store at least the value of nr
  3969. */
  3970. u64 nr = 0;
  3971. perf_output_put(handle, nr);
  3972. }
  3973. }
  3974. if (sample_type & PERF_SAMPLE_REGS_USER) {
  3975. u64 abi = data->regs_user.abi;
  3976. /*
  3977. * If there are no regs to dump, notice it through
  3978. * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
  3979. */
  3980. perf_output_put(handle, abi);
  3981. if (abi) {
  3982. u64 mask = event->attr.sample_regs_user;
  3983. perf_output_sample_regs(handle,
  3984. data->regs_user.regs,
  3985. mask);
  3986. }
  3987. }
  3988. if (sample_type & PERF_SAMPLE_STACK_USER) {
  3989. perf_output_sample_ustack(handle,
  3990. data->stack_user_size,
  3991. data->regs_user.regs);
  3992. }
  3993. if (sample_type & PERF_SAMPLE_WEIGHT)
  3994. perf_output_put(handle, data->weight);
  3995. if (sample_type & PERF_SAMPLE_DATA_SRC)
  3996. perf_output_put(handle, data->data_src.val);
  3997. if (sample_type & PERF_SAMPLE_TRANSACTION)
  3998. perf_output_put(handle, data->txn);
  3999. if (!event->attr.watermark) {
  4000. int wakeup_events = event->attr.wakeup_events;
  4001. if (wakeup_events) {
  4002. struct ring_buffer *rb = handle->rb;
  4003. int events = local_inc_return(&rb->events);
  4004. if (events >= wakeup_events) {
  4005. local_sub(wakeup_events, &rb->events);
  4006. local_inc(&rb->wakeup);
  4007. }
  4008. }
  4009. }
  4010. }
  4011. void perf_prepare_sample(struct perf_event_header *header,
  4012. struct perf_sample_data *data,
  4013. struct perf_event *event,
  4014. struct pt_regs *regs)
  4015. {
  4016. u64 sample_type = event->attr.sample_type;
  4017. header->type = PERF_RECORD_SAMPLE;
  4018. header->size = sizeof(*header) + event->header_size;
  4019. header->misc = 0;
  4020. header->misc |= perf_misc_flags(regs);
  4021. __perf_event_header__init_id(header, data, event);
  4022. if (sample_type & PERF_SAMPLE_IP)
  4023. data->ip = perf_instruction_pointer(regs);
  4024. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  4025. int size = 1;
  4026. data->callchain = perf_callchain(event, regs);
  4027. if (data->callchain)
  4028. size += data->callchain->nr;
  4029. header->size += size * sizeof(u64);
  4030. }
  4031. if (sample_type & PERF_SAMPLE_RAW) {
  4032. int size = sizeof(u32);
  4033. if (data->raw)
  4034. size += data->raw->size;
  4035. else
  4036. size += sizeof(u32);
  4037. WARN_ON_ONCE(size & (sizeof(u64)-1));
  4038. header->size += size;
  4039. }
  4040. if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
  4041. int size = sizeof(u64); /* nr */
  4042. if (data->br_stack) {
  4043. size += data->br_stack->nr
  4044. * sizeof(struct perf_branch_entry);
  4045. }
  4046. header->size += size;
  4047. }
  4048. if (sample_type & PERF_SAMPLE_REGS_USER) {
  4049. /* regs dump ABI info */
  4050. int size = sizeof(u64);
  4051. perf_sample_regs_user(&data->regs_user, regs);
  4052. if (data->regs_user.regs) {
  4053. u64 mask = event->attr.sample_regs_user;
  4054. size += hweight64(mask) * sizeof(u64);
  4055. }
  4056. header->size += size;
  4057. }
  4058. if (sample_type & PERF_SAMPLE_STACK_USER) {
  4059. /*
  4060. * Either we need PERF_SAMPLE_STACK_USER bit to be allways
  4061. * processed as the last one or have additional check added
  4062. * in case new sample type is added, because we could eat
  4063. * up the rest of the sample size.
  4064. */
  4065. struct perf_regs_user *uregs = &data->regs_user;
  4066. u16 stack_size = event->attr.sample_stack_user;
  4067. u16 size = sizeof(u64);
  4068. if (!uregs->abi)
  4069. perf_sample_regs_user(uregs, regs);
  4070. stack_size = perf_sample_ustack_size(stack_size, header->size,
  4071. uregs->regs);
  4072. /*
  4073. * If there is something to dump, add space for the dump
  4074. * itself and for the field that tells the dynamic size,
  4075. * which is how many have been actually dumped.
  4076. */
  4077. if (stack_size)
  4078. size += sizeof(u64) + stack_size;
  4079. data->stack_user_size = stack_size;
  4080. header->size += size;
  4081. }
  4082. }
  4083. static void perf_event_output(struct perf_event *event,
  4084. struct perf_sample_data *data,
  4085. struct pt_regs *regs)
  4086. {
  4087. struct perf_output_handle handle;
  4088. struct perf_event_header header;
  4089. /* protect the callchain buffers */
  4090. rcu_read_lock();
  4091. perf_prepare_sample(&header, data, event, regs);
  4092. if (perf_output_begin(&handle, event, header.size))
  4093. goto exit;
  4094. perf_output_sample(&handle, &header, data, event);
  4095. perf_output_end(&handle);
  4096. exit:
  4097. rcu_read_unlock();
  4098. }
  4099. /*
  4100. * read event_id
  4101. */
  4102. struct perf_read_event {
  4103. struct perf_event_header header;
  4104. u32 pid;
  4105. u32 tid;
  4106. };
  4107. static void
  4108. perf_event_read_event(struct perf_event *event,
  4109. struct task_struct *task)
  4110. {
  4111. struct perf_output_handle handle;
  4112. struct perf_sample_data sample;
  4113. struct perf_read_event read_event = {
  4114. .header = {
  4115. .type = PERF_RECORD_READ,
  4116. .misc = 0,
  4117. .size = sizeof(read_event) + event->read_size,
  4118. },
  4119. .pid = perf_event_pid(event, task),
  4120. .tid = perf_event_tid(event, task),
  4121. };
  4122. int ret;
  4123. perf_event_header__init_id(&read_event.header, &sample, event);
  4124. ret = perf_output_begin(&handle, event, read_event.header.size);
  4125. if (ret)
  4126. return;
  4127. perf_output_put(&handle, read_event);
  4128. perf_output_read(&handle, event);
  4129. perf_event__output_id_sample(event, &handle, &sample);
  4130. perf_output_end(&handle);
  4131. }
  4132. typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
  4133. static void
  4134. perf_event_aux_ctx(struct perf_event_context *ctx,
  4135. perf_event_aux_output_cb output,
  4136. void *data)
  4137. {
  4138. struct perf_event *event;
  4139. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  4140. if (event->state < PERF_EVENT_STATE_INACTIVE)
  4141. continue;
  4142. if (!event_filter_match(event))
  4143. continue;
  4144. output(event, data);
  4145. }
  4146. }
  4147. static void
  4148. perf_event_aux(perf_event_aux_output_cb output, void *data,
  4149. struct perf_event_context *task_ctx)
  4150. {
  4151. struct perf_cpu_context *cpuctx;
  4152. struct perf_event_context *ctx;
  4153. struct pmu *pmu;
  4154. int ctxn;
  4155. rcu_read_lock();
  4156. list_for_each_entry_rcu(pmu, &pmus, entry) {
  4157. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  4158. if (cpuctx->unique_pmu != pmu)
  4159. goto next;
  4160. perf_event_aux_ctx(&cpuctx->ctx, output, data);
  4161. if (task_ctx)
  4162. goto next;
  4163. ctxn = pmu->task_ctx_nr;
  4164. if (ctxn < 0)
  4165. goto next;
  4166. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  4167. if (ctx)
  4168. perf_event_aux_ctx(ctx, output, data);
  4169. next:
  4170. put_cpu_ptr(pmu->pmu_cpu_context);
  4171. }
  4172. if (task_ctx) {
  4173. preempt_disable();
  4174. perf_event_aux_ctx(task_ctx, output, data);
  4175. preempt_enable();
  4176. }
  4177. rcu_read_unlock();
  4178. }
  4179. /*
  4180. * task tracking -- fork/exit
  4181. *
  4182. * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
  4183. */
  4184. struct perf_task_event {
  4185. struct task_struct *task;
  4186. struct perf_event_context *task_ctx;
  4187. struct {
  4188. struct perf_event_header header;
  4189. u32 pid;
  4190. u32 ppid;
  4191. u32 tid;
  4192. u32 ptid;
  4193. u64 time;
  4194. } event_id;
  4195. };
  4196. static int perf_event_task_match(struct perf_event *event)
  4197. {
  4198. return event->attr.comm || event->attr.mmap ||
  4199. event->attr.mmap2 || event->attr.mmap_data ||
  4200. event->attr.task;
  4201. }
  4202. static void perf_event_task_output(struct perf_event *event,
  4203. void *data)
  4204. {
  4205. struct perf_task_event *task_event = data;
  4206. struct perf_output_handle handle;
  4207. struct perf_sample_data sample;
  4208. struct task_struct *task = task_event->task;
  4209. int ret, size = task_event->event_id.header.size;
  4210. if (!perf_event_task_match(event))
  4211. return;
  4212. perf_event_header__init_id(&task_event->event_id.header, &sample, event);
  4213. ret = perf_output_begin(&handle, event,
  4214. task_event->event_id.header.size);
  4215. if (ret)
  4216. goto out;
  4217. task_event->event_id.pid = perf_event_pid(event, task);
  4218. task_event->event_id.ppid = perf_event_pid(event, current);
  4219. task_event->event_id.tid = perf_event_tid(event, task);
  4220. task_event->event_id.ptid = perf_event_tid(event, current);
  4221. perf_output_put(&handle, task_event->event_id);
  4222. perf_event__output_id_sample(event, &handle, &sample);
  4223. perf_output_end(&handle);
  4224. out:
  4225. task_event->event_id.header.size = size;
  4226. }
  4227. static void perf_event_task(struct task_struct *task,
  4228. struct perf_event_context *task_ctx,
  4229. int new)
  4230. {
  4231. struct perf_task_event task_event;
  4232. if (!atomic_read(&nr_comm_events) &&
  4233. !atomic_read(&nr_mmap_events) &&
  4234. !atomic_read(&nr_task_events))
  4235. return;
  4236. task_event = (struct perf_task_event){
  4237. .task = task,
  4238. .task_ctx = task_ctx,
  4239. .event_id = {
  4240. .header = {
  4241. .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
  4242. .misc = 0,
  4243. .size = sizeof(task_event.event_id),
  4244. },
  4245. /* .pid */
  4246. /* .ppid */
  4247. /* .tid */
  4248. /* .ptid */
  4249. .time = perf_clock(),
  4250. },
  4251. };
  4252. perf_event_aux(perf_event_task_output,
  4253. &task_event,
  4254. task_ctx);
  4255. }
  4256. void perf_event_fork(struct task_struct *task)
  4257. {
  4258. perf_event_task(task, NULL, 1);
  4259. }
  4260. /*
  4261. * comm tracking
  4262. */
  4263. struct perf_comm_event {
  4264. struct task_struct *task;
  4265. char *comm;
  4266. int comm_size;
  4267. struct {
  4268. struct perf_event_header header;
  4269. u32 pid;
  4270. u32 tid;
  4271. } event_id;
  4272. };
  4273. static int perf_event_comm_match(struct perf_event *event)
  4274. {
  4275. return event->attr.comm;
  4276. }
  4277. static void perf_event_comm_output(struct perf_event *event,
  4278. void *data)
  4279. {
  4280. struct perf_comm_event *comm_event = data;
  4281. struct perf_output_handle handle;
  4282. struct perf_sample_data sample;
  4283. int size = comm_event->event_id.header.size;
  4284. int ret;
  4285. if (!perf_event_comm_match(event))
  4286. return;
  4287. perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
  4288. ret = perf_output_begin(&handle, event,
  4289. comm_event->event_id.header.size);
  4290. if (ret)
  4291. goto out;
  4292. comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
  4293. comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
  4294. perf_output_put(&handle, comm_event->event_id);
  4295. __output_copy(&handle, comm_event->comm,
  4296. comm_event->comm_size);
  4297. perf_event__output_id_sample(event, &handle, &sample);
  4298. perf_output_end(&handle);
  4299. out:
  4300. comm_event->event_id.header.size = size;
  4301. }
  4302. static void perf_event_comm_event(struct perf_comm_event *comm_event)
  4303. {
  4304. char comm[TASK_COMM_LEN];
  4305. unsigned int size;
  4306. memset(comm, 0, sizeof(comm));
  4307. strlcpy(comm, comm_event->task->comm, sizeof(comm));
  4308. size = ALIGN(strlen(comm)+1, sizeof(u64));
  4309. comm_event->comm = comm;
  4310. comm_event->comm_size = size;
  4311. comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
  4312. perf_event_aux(perf_event_comm_output,
  4313. comm_event,
  4314. NULL);
  4315. }
  4316. void perf_event_comm(struct task_struct *task, bool exec)
  4317. {
  4318. struct perf_comm_event comm_event;
  4319. if (!atomic_read(&nr_comm_events))
  4320. return;
  4321. comm_event = (struct perf_comm_event){
  4322. .task = task,
  4323. /* .comm */
  4324. /* .comm_size */
  4325. .event_id = {
  4326. .header = {
  4327. .type = PERF_RECORD_COMM,
  4328. .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
  4329. /* .size */
  4330. },
  4331. /* .pid */
  4332. /* .tid */
  4333. },
  4334. };
  4335. perf_event_comm_event(&comm_event);
  4336. }
  4337. /*
  4338. * mmap tracking
  4339. */
  4340. struct perf_mmap_event {
  4341. struct vm_area_struct *vma;
  4342. const char *file_name;
  4343. int file_size;
  4344. int maj, min;
  4345. u64 ino;
  4346. u64 ino_generation;
  4347. u32 prot, flags;
  4348. struct {
  4349. struct perf_event_header header;
  4350. u32 pid;
  4351. u32 tid;
  4352. u64 start;
  4353. u64 len;
  4354. u64 pgoff;
  4355. } event_id;
  4356. };
  4357. static int perf_event_mmap_match(struct perf_event *event,
  4358. void *data)
  4359. {
  4360. struct perf_mmap_event *mmap_event = data;
  4361. struct vm_area_struct *vma = mmap_event->vma;
  4362. int executable = vma->vm_flags & VM_EXEC;
  4363. return (!executable && event->attr.mmap_data) ||
  4364. (executable && (event->attr.mmap || event->attr.mmap2));
  4365. }
  4366. static void perf_event_mmap_output(struct perf_event *event,
  4367. void *data)
  4368. {
  4369. struct perf_mmap_event *mmap_event = data;
  4370. struct perf_output_handle handle;
  4371. struct perf_sample_data sample;
  4372. int size = mmap_event->event_id.header.size;
  4373. int ret;
  4374. if (!perf_event_mmap_match(event, data))
  4375. return;
  4376. if (event->attr.mmap2) {
  4377. mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
  4378. mmap_event->event_id.header.size += sizeof(mmap_event->maj);
  4379. mmap_event->event_id.header.size += sizeof(mmap_event->min);
  4380. mmap_event->event_id.header.size += sizeof(mmap_event->ino);
  4381. mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
  4382. mmap_event->event_id.header.size += sizeof(mmap_event->prot);
  4383. mmap_event->event_id.header.size += sizeof(mmap_event->flags);
  4384. }
  4385. perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
  4386. ret = perf_output_begin(&handle, event,
  4387. mmap_event->event_id.header.size);
  4388. if (ret)
  4389. goto out;
  4390. mmap_event->event_id.pid = perf_event_pid(event, current);
  4391. mmap_event->event_id.tid = perf_event_tid(event, current);
  4392. perf_output_put(&handle, mmap_event->event_id);
  4393. if (event->attr.mmap2) {
  4394. perf_output_put(&handle, mmap_event->maj);
  4395. perf_output_put(&handle, mmap_event->min);
  4396. perf_output_put(&handle, mmap_event->ino);
  4397. perf_output_put(&handle, mmap_event->ino_generation);
  4398. perf_output_put(&handle, mmap_event->prot);
  4399. perf_output_put(&handle, mmap_event->flags);
  4400. }
  4401. __output_copy(&handle, mmap_event->file_name,
  4402. mmap_event->file_size);
  4403. perf_event__output_id_sample(event, &handle, &sample);
  4404. perf_output_end(&handle);
  4405. out:
  4406. mmap_event->event_id.header.size = size;
  4407. }
  4408. static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
  4409. {
  4410. struct vm_area_struct *vma = mmap_event->vma;
  4411. struct file *file = vma->vm_file;
  4412. int maj = 0, min = 0;
  4413. u64 ino = 0, gen = 0;
  4414. u32 prot = 0, flags = 0;
  4415. unsigned int size;
  4416. char tmp[16];
  4417. char *buf = NULL;
  4418. char *name;
  4419. if (file) {
  4420. struct inode *inode;
  4421. dev_t dev;
  4422. buf = kmalloc(PATH_MAX, GFP_KERNEL);
  4423. if (!buf) {
  4424. name = "//enomem";
  4425. goto cpy_name;
  4426. }
  4427. /*
  4428. * d_path() works from the end of the rb backwards, so we
  4429. * need to add enough zero bytes after the string to handle
  4430. * the 64bit alignment we do later.
  4431. */
  4432. name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
  4433. if (IS_ERR(name)) {
  4434. name = "//toolong";
  4435. goto cpy_name;
  4436. }
  4437. inode = file_inode(vma->vm_file);
  4438. dev = inode->i_sb->s_dev;
  4439. ino = inode->i_ino;
  4440. gen = inode->i_generation;
  4441. maj = MAJOR(dev);
  4442. min = MINOR(dev);
  4443. if (vma->vm_flags & VM_READ)
  4444. prot |= PROT_READ;
  4445. if (vma->vm_flags & VM_WRITE)
  4446. prot |= PROT_WRITE;
  4447. if (vma->vm_flags & VM_EXEC)
  4448. prot |= PROT_EXEC;
  4449. if (vma->vm_flags & VM_MAYSHARE)
  4450. flags = MAP_SHARED;
  4451. else
  4452. flags = MAP_PRIVATE;
  4453. if (vma->vm_flags & VM_DENYWRITE)
  4454. flags |= MAP_DENYWRITE;
  4455. if (vma->vm_flags & VM_MAYEXEC)
  4456. flags |= MAP_EXECUTABLE;
  4457. if (vma->vm_flags & VM_LOCKED)
  4458. flags |= MAP_LOCKED;
  4459. if (vma->vm_flags & VM_HUGETLB)
  4460. flags |= MAP_HUGETLB;
  4461. goto got_name;
  4462. } else {
  4463. if (vma->vm_ops && vma->vm_ops->name) {
  4464. name = (char *) vma->vm_ops->name(vma);
  4465. if (name)
  4466. goto cpy_name;
  4467. }
  4468. name = (char *)arch_vma_name(vma);
  4469. if (name)
  4470. goto cpy_name;
  4471. if (vma->vm_start <= vma->vm_mm->start_brk &&
  4472. vma->vm_end >= vma->vm_mm->brk) {
  4473. name = "[heap]";
  4474. goto cpy_name;
  4475. }
  4476. if (vma->vm_start <= vma->vm_mm->start_stack &&
  4477. vma->vm_end >= vma->vm_mm->start_stack) {
  4478. name = "[stack]";
  4479. goto cpy_name;
  4480. }
  4481. name = "//anon";
  4482. goto cpy_name;
  4483. }
  4484. cpy_name:
  4485. strlcpy(tmp, name, sizeof(tmp));
  4486. name = tmp;
  4487. got_name:
  4488. /*
  4489. * Since our buffer works in 8 byte units we need to align our string
  4490. * size to a multiple of 8. However, we must guarantee the tail end is
  4491. * zero'd out to avoid leaking random bits to userspace.
  4492. */
  4493. size = strlen(name)+1;
  4494. while (!IS_ALIGNED(size, sizeof(u64)))
  4495. name[size++] = '\0';
  4496. mmap_event->file_name = name;
  4497. mmap_event->file_size = size;
  4498. mmap_event->maj = maj;
  4499. mmap_event->min = min;
  4500. mmap_event->ino = ino;
  4501. mmap_event->ino_generation = gen;
  4502. mmap_event->prot = prot;
  4503. mmap_event->flags = flags;
  4504. if (!(vma->vm_flags & VM_EXEC))
  4505. mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
  4506. mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
  4507. perf_event_aux(perf_event_mmap_output,
  4508. mmap_event,
  4509. NULL);
  4510. kfree(buf);
  4511. }
  4512. void perf_event_mmap(struct vm_area_struct *vma)
  4513. {
  4514. struct perf_mmap_event mmap_event;
  4515. if (!atomic_read(&nr_mmap_events))
  4516. return;
  4517. mmap_event = (struct perf_mmap_event){
  4518. .vma = vma,
  4519. /* .file_name */
  4520. /* .file_size */
  4521. .event_id = {
  4522. .header = {
  4523. .type = PERF_RECORD_MMAP,
  4524. .misc = PERF_RECORD_MISC_USER,
  4525. /* .size */
  4526. },
  4527. /* .pid */
  4528. /* .tid */
  4529. .start = vma->vm_start,
  4530. .len = vma->vm_end - vma->vm_start,
  4531. .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
  4532. },
  4533. /* .maj (attr_mmap2 only) */
  4534. /* .min (attr_mmap2 only) */
  4535. /* .ino (attr_mmap2 only) */
  4536. /* .ino_generation (attr_mmap2 only) */
  4537. /* .prot (attr_mmap2 only) */
  4538. /* .flags (attr_mmap2 only) */
  4539. };
  4540. perf_event_mmap_event(&mmap_event);
  4541. }
  4542. /*
  4543. * IRQ throttle logging
  4544. */
  4545. static void perf_log_throttle(struct perf_event *event, int enable)
  4546. {
  4547. struct perf_output_handle handle;
  4548. struct perf_sample_data sample;
  4549. int ret;
  4550. struct {
  4551. struct perf_event_header header;
  4552. u64 time;
  4553. u64 id;
  4554. u64 stream_id;
  4555. } throttle_event = {
  4556. .header = {
  4557. .type = PERF_RECORD_THROTTLE,
  4558. .misc = 0,
  4559. .size = sizeof(throttle_event),
  4560. },
  4561. .time = perf_clock(),
  4562. .id = primary_event_id(event),
  4563. .stream_id = event->id,
  4564. };
  4565. if (enable)
  4566. throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
  4567. perf_event_header__init_id(&throttle_event.header, &sample, event);
  4568. ret = perf_output_begin(&handle, event,
  4569. throttle_event.header.size);
  4570. if (ret)
  4571. return;
  4572. perf_output_put(&handle, throttle_event);
  4573. perf_event__output_id_sample(event, &handle, &sample);
  4574. perf_output_end(&handle);
  4575. }
  4576. /*
  4577. * Generic event overflow handling, sampling.
  4578. */
  4579. static int __perf_event_overflow(struct perf_event *event,
  4580. int throttle, struct perf_sample_data *data,
  4581. struct pt_regs *regs)
  4582. {
  4583. int events = atomic_read(&event->event_limit);
  4584. struct hw_perf_event *hwc = &event->hw;
  4585. u64 seq;
  4586. int ret = 0;
  4587. /*
  4588. * Non-sampling counters might still use the PMI to fold short
  4589. * hardware counters, ignore those.
  4590. */
  4591. if (unlikely(!is_sampling_event(event)))
  4592. return 0;
  4593. seq = __this_cpu_read(perf_throttled_seq);
  4594. if (seq != hwc->interrupts_seq) {
  4595. hwc->interrupts_seq = seq;
  4596. hwc->interrupts = 1;
  4597. } else {
  4598. hwc->interrupts++;
  4599. if (unlikely(throttle
  4600. && hwc->interrupts >= max_samples_per_tick)) {
  4601. __this_cpu_inc(perf_throttled_count);
  4602. hwc->interrupts = MAX_INTERRUPTS;
  4603. perf_log_throttle(event, 0);
  4604. tick_nohz_full_kick();
  4605. ret = 1;
  4606. }
  4607. }
  4608. if (event->attr.freq) {
  4609. u64 now = perf_clock();
  4610. s64 delta = now - hwc->freq_time_stamp;
  4611. hwc->freq_time_stamp = now;
  4612. if (delta > 0 && delta < 2*TICK_NSEC)
  4613. perf_adjust_period(event, delta, hwc->last_period, true);
  4614. }
  4615. /*
  4616. * XXX event_limit might not quite work as expected on inherited
  4617. * events
  4618. */
  4619. event->pending_kill = POLL_IN;
  4620. if (events && atomic_dec_and_test(&event->event_limit)) {
  4621. ret = 1;
  4622. event->pending_kill = POLL_HUP;
  4623. event->pending_disable = 1;
  4624. irq_work_queue(&event->pending);
  4625. }
  4626. if (event->overflow_handler)
  4627. event->overflow_handler(event, data, regs);
  4628. else
  4629. perf_event_output(event, data, regs);
  4630. if (event->fasync && event->pending_kill) {
  4631. event->pending_wakeup = 1;
  4632. irq_work_queue(&event->pending);
  4633. }
  4634. return ret;
  4635. }
  4636. int perf_event_overflow(struct perf_event *event,
  4637. struct perf_sample_data *data,
  4638. struct pt_regs *regs)
  4639. {
  4640. return __perf_event_overflow(event, 1, data, regs);
  4641. }
  4642. /*
  4643. * Generic software event infrastructure
  4644. */
  4645. struct swevent_htable {
  4646. struct swevent_hlist *swevent_hlist;
  4647. struct mutex hlist_mutex;
  4648. int hlist_refcount;
  4649. /* Recursion avoidance in each contexts */
  4650. int recursion[PERF_NR_CONTEXTS];
  4651. /* Keeps track of cpu being initialized/exited */
  4652. bool online;
  4653. };
  4654. static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
  4655. /*
  4656. * We directly increment event->count and keep a second value in
  4657. * event->hw.period_left to count intervals. This period event
  4658. * is kept in the range [-sample_period, 0] so that we can use the
  4659. * sign as trigger.
  4660. */
  4661. u64 perf_swevent_set_period(struct perf_event *event)
  4662. {
  4663. struct hw_perf_event *hwc = &event->hw;
  4664. u64 period = hwc->last_period;
  4665. u64 nr, offset;
  4666. s64 old, val;
  4667. hwc->last_period = hwc->sample_period;
  4668. again:
  4669. old = val = local64_read(&hwc->period_left);
  4670. if (val < 0)
  4671. return 0;
  4672. nr = div64_u64(period + val, period);
  4673. offset = nr * period;
  4674. val -= offset;
  4675. if (local64_cmpxchg(&hwc->period_left, old, val) != old)
  4676. goto again;
  4677. return nr;
  4678. }
  4679. static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
  4680. struct perf_sample_data *data,
  4681. struct pt_regs *regs)
  4682. {
  4683. struct hw_perf_event *hwc = &event->hw;
  4684. int throttle = 0;
  4685. if (!overflow)
  4686. overflow = perf_swevent_set_period(event);
  4687. if (hwc->interrupts == MAX_INTERRUPTS)
  4688. return;
  4689. for (; overflow; overflow--) {
  4690. if (__perf_event_overflow(event, throttle,
  4691. data, regs)) {
  4692. /*
  4693. * We inhibit the overflow from happening when
  4694. * hwc->interrupts == MAX_INTERRUPTS.
  4695. */
  4696. break;
  4697. }
  4698. throttle = 1;
  4699. }
  4700. }
  4701. static void perf_swevent_event(struct perf_event *event, u64 nr,
  4702. struct perf_sample_data *data,
  4703. struct pt_regs *regs)
  4704. {
  4705. struct hw_perf_event *hwc = &event->hw;
  4706. local64_add(nr, &event->count);
  4707. if (!regs)
  4708. return;
  4709. if (!is_sampling_event(event))
  4710. return;
  4711. if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
  4712. data->period = nr;
  4713. return perf_swevent_overflow(event, 1, data, regs);
  4714. } else
  4715. data->period = event->hw.last_period;
  4716. if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
  4717. return perf_swevent_overflow(event, 1, data, regs);
  4718. if (local64_add_negative(nr, &hwc->period_left))
  4719. return;
  4720. perf_swevent_overflow(event, 0, data, regs);
  4721. }
  4722. static int perf_exclude_event(struct perf_event *event,
  4723. struct pt_regs *regs)
  4724. {
  4725. if (event->hw.state & PERF_HES_STOPPED)
  4726. return 1;
  4727. if (regs) {
  4728. if (event->attr.exclude_user && user_mode(regs))
  4729. return 1;
  4730. if (event->attr.exclude_kernel && !user_mode(regs))
  4731. return 1;
  4732. }
  4733. return 0;
  4734. }
  4735. static int perf_swevent_match(struct perf_event *event,
  4736. enum perf_type_id type,
  4737. u32 event_id,
  4738. struct perf_sample_data *data,
  4739. struct pt_regs *regs)
  4740. {
  4741. if (event->attr.type != type)
  4742. return 0;
  4743. if (event->attr.config != event_id)
  4744. return 0;
  4745. if (perf_exclude_event(event, regs))
  4746. return 0;
  4747. return 1;
  4748. }
  4749. static inline u64 swevent_hash(u64 type, u32 event_id)
  4750. {
  4751. u64 val = event_id | (type << 32);
  4752. return hash_64(val, SWEVENT_HLIST_BITS);
  4753. }
  4754. static inline struct hlist_head *
  4755. __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
  4756. {
  4757. u64 hash = swevent_hash(type, event_id);
  4758. return &hlist->heads[hash];
  4759. }
  4760. /* For the read side: events when they trigger */
  4761. static inline struct hlist_head *
  4762. find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
  4763. {
  4764. struct swevent_hlist *hlist;
  4765. hlist = rcu_dereference(swhash->swevent_hlist);
  4766. if (!hlist)
  4767. return NULL;
  4768. return __find_swevent_head(hlist, type, event_id);
  4769. }
  4770. /* For the event head insertion and removal in the hlist */
  4771. static inline struct hlist_head *
  4772. find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
  4773. {
  4774. struct swevent_hlist *hlist;
  4775. u32 event_id = event->attr.config;
  4776. u64 type = event->attr.type;
  4777. /*
  4778. * Event scheduling is always serialized against hlist allocation
  4779. * and release. Which makes the protected version suitable here.
  4780. * The context lock guarantees that.
  4781. */
  4782. hlist = rcu_dereference_protected(swhash->swevent_hlist,
  4783. lockdep_is_held(&event->ctx->lock));
  4784. if (!hlist)
  4785. return NULL;
  4786. return __find_swevent_head(hlist, type, event_id);
  4787. }
  4788. static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
  4789. u64 nr,
  4790. struct perf_sample_data *data,
  4791. struct pt_regs *regs)
  4792. {
  4793. struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
  4794. struct perf_event *event;
  4795. struct hlist_head *head;
  4796. rcu_read_lock();
  4797. head = find_swevent_head_rcu(swhash, type, event_id);
  4798. if (!head)
  4799. goto end;
  4800. hlist_for_each_entry_rcu(event, head, hlist_entry) {
  4801. if (perf_swevent_match(event, type, event_id, data, regs))
  4802. perf_swevent_event(event, nr, data, regs);
  4803. }
  4804. end:
  4805. rcu_read_unlock();
  4806. }
  4807. int perf_swevent_get_recursion_context(void)
  4808. {
  4809. struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
  4810. return get_recursion_context(swhash->recursion);
  4811. }
  4812. EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
  4813. inline void perf_swevent_put_recursion_context(int rctx)
  4814. {
  4815. struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
  4816. put_recursion_context(swhash->recursion, rctx);
  4817. }
  4818. void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
  4819. {
  4820. struct perf_sample_data data;
  4821. int rctx;
  4822. preempt_disable_notrace();
  4823. rctx = perf_swevent_get_recursion_context();
  4824. if (rctx < 0)
  4825. return;
  4826. perf_sample_data_init(&data, addr, 0);
  4827. do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
  4828. perf_swevent_put_recursion_context(rctx);
  4829. preempt_enable_notrace();
  4830. }
  4831. static void perf_swevent_read(struct perf_event *event)
  4832. {
  4833. }
  4834. static int perf_swevent_add(struct perf_event *event, int flags)
  4835. {
  4836. struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
  4837. struct hw_perf_event *hwc = &event->hw;
  4838. struct hlist_head *head;
  4839. if (is_sampling_event(event)) {
  4840. hwc->last_period = hwc->sample_period;
  4841. perf_swevent_set_period(event);
  4842. }
  4843. hwc->state = !(flags & PERF_EF_START);
  4844. head = find_swevent_head(swhash, event);
  4845. if (!head) {
  4846. /*
  4847. * We can race with cpu hotplug code. Do not
  4848. * WARN if the cpu just got unplugged.
  4849. */
  4850. WARN_ON_ONCE(swhash->online);
  4851. return -EINVAL;
  4852. }
  4853. hlist_add_head_rcu(&event->hlist_entry, head);
  4854. return 0;
  4855. }
  4856. static void perf_swevent_del(struct perf_event *event, int flags)
  4857. {
  4858. hlist_del_rcu(&event->hlist_entry);
  4859. }
  4860. static void perf_swevent_start(struct perf_event *event, int flags)
  4861. {
  4862. event->hw.state = 0;
  4863. }
  4864. static void perf_swevent_stop(struct perf_event *event, int flags)
  4865. {
  4866. event->hw.state = PERF_HES_STOPPED;
  4867. }
  4868. /* Deref the hlist from the update side */
  4869. static inline struct swevent_hlist *
  4870. swevent_hlist_deref(struct swevent_htable *swhash)
  4871. {
  4872. return rcu_dereference_protected(swhash->swevent_hlist,
  4873. lockdep_is_held(&swhash->hlist_mutex));
  4874. }
  4875. static void swevent_hlist_release(struct swevent_htable *swhash)
  4876. {
  4877. struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
  4878. if (!hlist)
  4879. return;
  4880. RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
  4881. kfree_rcu(hlist, rcu_head);
  4882. }
  4883. static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
  4884. {
  4885. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4886. mutex_lock(&swhash->hlist_mutex);
  4887. if (!--swhash->hlist_refcount)
  4888. swevent_hlist_release(swhash);
  4889. mutex_unlock(&swhash->hlist_mutex);
  4890. }
  4891. static void swevent_hlist_put(struct perf_event *event)
  4892. {
  4893. int cpu;
  4894. for_each_possible_cpu(cpu)
  4895. swevent_hlist_put_cpu(event, cpu);
  4896. }
  4897. static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
  4898. {
  4899. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4900. int err = 0;
  4901. mutex_lock(&swhash->hlist_mutex);
  4902. if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
  4903. struct swevent_hlist *hlist;
  4904. hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
  4905. if (!hlist) {
  4906. err = -ENOMEM;
  4907. goto exit;
  4908. }
  4909. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  4910. }
  4911. swhash->hlist_refcount++;
  4912. exit:
  4913. mutex_unlock(&swhash->hlist_mutex);
  4914. return err;
  4915. }
  4916. static int swevent_hlist_get(struct perf_event *event)
  4917. {
  4918. int err;
  4919. int cpu, failed_cpu;
  4920. get_online_cpus();
  4921. for_each_possible_cpu(cpu) {
  4922. err = swevent_hlist_get_cpu(event, cpu);
  4923. if (err) {
  4924. failed_cpu = cpu;
  4925. goto fail;
  4926. }
  4927. }
  4928. put_online_cpus();
  4929. return 0;
  4930. fail:
  4931. for_each_possible_cpu(cpu) {
  4932. if (cpu == failed_cpu)
  4933. break;
  4934. swevent_hlist_put_cpu(event, cpu);
  4935. }
  4936. put_online_cpus();
  4937. return err;
  4938. }
  4939. struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
  4940. static void sw_perf_event_destroy(struct perf_event *event)
  4941. {
  4942. u64 event_id = event->attr.config;
  4943. WARN_ON(event->parent);
  4944. static_key_slow_dec(&perf_swevent_enabled[event_id]);
  4945. swevent_hlist_put(event);
  4946. }
  4947. static int perf_swevent_init(struct perf_event *event)
  4948. {
  4949. u64 event_id = event->attr.config;
  4950. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4951. return -ENOENT;
  4952. /*
  4953. * no branch sampling for software events
  4954. */
  4955. if (has_branch_stack(event))
  4956. return -EOPNOTSUPP;
  4957. switch (event_id) {
  4958. case PERF_COUNT_SW_CPU_CLOCK:
  4959. case PERF_COUNT_SW_TASK_CLOCK:
  4960. return -ENOENT;
  4961. default:
  4962. break;
  4963. }
  4964. if (event_id >= PERF_COUNT_SW_MAX)
  4965. return -ENOENT;
  4966. if (!event->parent) {
  4967. int err;
  4968. err = swevent_hlist_get(event);
  4969. if (err)
  4970. return err;
  4971. static_key_slow_inc(&perf_swevent_enabled[event_id]);
  4972. event->destroy = sw_perf_event_destroy;
  4973. }
  4974. return 0;
  4975. }
  4976. static struct pmu perf_swevent = {
  4977. .task_ctx_nr = perf_sw_context,
  4978. .event_init = perf_swevent_init,
  4979. .add = perf_swevent_add,
  4980. .del = perf_swevent_del,
  4981. .start = perf_swevent_start,
  4982. .stop = perf_swevent_stop,
  4983. .read = perf_swevent_read,
  4984. };
  4985. #ifdef CONFIG_EVENT_TRACING
  4986. static int perf_tp_filter_match(struct perf_event *event,
  4987. struct perf_sample_data *data)
  4988. {
  4989. void *record = data->raw->data;
  4990. if (likely(!event->filter) || filter_match_preds(event->filter, record))
  4991. return 1;
  4992. return 0;
  4993. }
  4994. static int perf_tp_event_match(struct perf_event *event,
  4995. struct perf_sample_data *data,
  4996. struct pt_regs *regs)
  4997. {
  4998. if (event->hw.state & PERF_HES_STOPPED)
  4999. return 0;
  5000. /*
  5001. * All tracepoints are from kernel-space.
  5002. */
  5003. if (event->attr.exclude_kernel)
  5004. return 0;
  5005. if (!perf_tp_filter_match(event, data))
  5006. return 0;
  5007. return 1;
  5008. }
  5009. void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
  5010. struct pt_regs *regs, struct hlist_head *head, int rctx,
  5011. struct task_struct *task)
  5012. {
  5013. struct perf_sample_data data;
  5014. struct perf_event *event;
  5015. struct perf_raw_record raw = {
  5016. .size = entry_size,
  5017. .data = record,
  5018. };
  5019. perf_sample_data_init(&data, addr, 0);
  5020. data.raw = &raw;
  5021. hlist_for_each_entry_rcu(event, head, hlist_entry) {
  5022. if (perf_tp_event_match(event, &data, regs))
  5023. perf_swevent_event(event, count, &data, regs);
  5024. }
  5025. /*
  5026. * If we got specified a target task, also iterate its context and
  5027. * deliver this event there too.
  5028. */
  5029. if (task && task != current) {
  5030. struct perf_event_context *ctx;
  5031. struct trace_entry *entry = record;
  5032. rcu_read_lock();
  5033. ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
  5034. if (!ctx)
  5035. goto unlock;
  5036. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  5037. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  5038. continue;
  5039. if (event->attr.config != entry->type)
  5040. continue;
  5041. if (perf_tp_event_match(event, &data, regs))
  5042. perf_swevent_event(event, count, &data, regs);
  5043. }
  5044. unlock:
  5045. rcu_read_unlock();
  5046. }
  5047. perf_swevent_put_recursion_context(rctx);
  5048. }
  5049. EXPORT_SYMBOL_GPL(perf_tp_event);
  5050. static void tp_perf_event_destroy(struct perf_event *event)
  5051. {
  5052. perf_trace_destroy(event);
  5053. }
  5054. static int perf_tp_event_init(struct perf_event *event)
  5055. {
  5056. int err;
  5057. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  5058. return -ENOENT;
  5059. /*
  5060. * no branch sampling for tracepoint events
  5061. */
  5062. if (has_branch_stack(event))
  5063. return -EOPNOTSUPP;
  5064. err = perf_trace_init(event);
  5065. if (err)
  5066. return err;
  5067. event->destroy = tp_perf_event_destroy;
  5068. return 0;
  5069. }
  5070. static struct pmu perf_tracepoint = {
  5071. .task_ctx_nr = perf_sw_context,
  5072. .event_init = perf_tp_event_init,
  5073. .add = perf_trace_add,
  5074. .del = perf_trace_del,
  5075. .start = perf_swevent_start,
  5076. .stop = perf_swevent_stop,
  5077. .read = perf_swevent_read,
  5078. };
  5079. static inline void perf_tp_register(void)
  5080. {
  5081. perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
  5082. }
  5083. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  5084. {
  5085. char *filter_str;
  5086. int ret;
  5087. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  5088. return -EINVAL;
  5089. filter_str = strndup_user(arg, PAGE_SIZE);
  5090. if (IS_ERR(filter_str))
  5091. return PTR_ERR(filter_str);
  5092. ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
  5093. kfree(filter_str);
  5094. return ret;
  5095. }
  5096. static void perf_event_free_filter(struct perf_event *event)
  5097. {
  5098. ftrace_profile_free_filter(event);
  5099. }
  5100. #else
  5101. static inline void perf_tp_register(void)
  5102. {
  5103. }
  5104. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  5105. {
  5106. return -ENOENT;
  5107. }
  5108. static void perf_event_free_filter(struct perf_event *event)
  5109. {
  5110. }
  5111. #endif /* CONFIG_EVENT_TRACING */
  5112. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  5113. void perf_bp_event(struct perf_event *bp, void *data)
  5114. {
  5115. struct perf_sample_data sample;
  5116. struct pt_regs *regs = data;
  5117. perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
  5118. if (!bp->hw.state && !perf_exclude_event(bp, regs))
  5119. perf_swevent_event(bp, 1, &sample, regs);
  5120. }
  5121. #endif
  5122. /*
  5123. * hrtimer based swevent callback
  5124. */
  5125. static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
  5126. {
  5127. enum hrtimer_restart ret = HRTIMER_RESTART;
  5128. struct perf_sample_data data;
  5129. struct pt_regs *regs;
  5130. struct perf_event *event;
  5131. u64 period;
  5132. event = container_of(hrtimer, struct perf_event, hw.hrtimer);
  5133. if (event->state != PERF_EVENT_STATE_ACTIVE)
  5134. return HRTIMER_NORESTART;
  5135. event->pmu->read(event);
  5136. perf_sample_data_init(&data, 0, event->hw.last_period);
  5137. regs = get_irq_regs();
  5138. if (regs && !perf_exclude_event(event, regs)) {
  5139. if (!(event->attr.exclude_idle && is_idle_task(current)))
  5140. if (__perf_event_overflow(event, 1, &data, regs))
  5141. ret = HRTIMER_NORESTART;
  5142. }
  5143. period = max_t(u64, 10000, event->hw.sample_period);
  5144. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  5145. return ret;
  5146. }
  5147. static void perf_swevent_start_hrtimer(struct perf_event *event)
  5148. {
  5149. struct hw_perf_event *hwc = &event->hw;
  5150. s64 period;
  5151. if (!is_sampling_event(event))
  5152. return;
  5153. period = local64_read(&hwc->period_left);
  5154. if (period) {
  5155. if (period < 0)
  5156. period = 10000;
  5157. local64_set(&hwc->period_left, 0);
  5158. } else {
  5159. period = max_t(u64, 10000, hwc->sample_period);
  5160. }
  5161. __hrtimer_start_range_ns(&hwc->hrtimer,
  5162. ns_to_ktime(period), 0,
  5163. HRTIMER_MODE_REL_PINNED, 0);
  5164. }
  5165. static void perf_swevent_cancel_hrtimer(struct perf_event *event)
  5166. {
  5167. struct hw_perf_event *hwc = &event->hw;
  5168. if (is_sampling_event(event)) {
  5169. ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
  5170. local64_set(&hwc->period_left, ktime_to_ns(remaining));
  5171. hrtimer_cancel(&hwc->hrtimer);
  5172. }
  5173. }
  5174. static void perf_swevent_init_hrtimer(struct perf_event *event)
  5175. {
  5176. struct hw_perf_event *hwc = &event->hw;
  5177. if (!is_sampling_event(event))
  5178. return;
  5179. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  5180. hwc->hrtimer.function = perf_swevent_hrtimer;
  5181. /*
  5182. * Since hrtimers have a fixed rate, we can do a static freq->period
  5183. * mapping and avoid the whole period adjust feedback stuff.
  5184. */
  5185. if (event->attr.freq) {
  5186. long freq = event->attr.sample_freq;
  5187. event->attr.sample_period = NSEC_PER_SEC / freq;
  5188. hwc->sample_period = event->attr.sample_period;
  5189. local64_set(&hwc->period_left, hwc->sample_period);
  5190. hwc->last_period = hwc->sample_period;
  5191. event->attr.freq = 0;
  5192. }
  5193. }
  5194. /*
  5195. * Software event: cpu wall time clock
  5196. */
  5197. static void cpu_clock_event_update(struct perf_event *event)
  5198. {
  5199. s64 prev;
  5200. u64 now;
  5201. now = local_clock();
  5202. prev = local64_xchg(&event->hw.prev_count, now);
  5203. local64_add(now - prev, &event->count);
  5204. }
  5205. static void cpu_clock_event_start(struct perf_event *event, int flags)
  5206. {
  5207. local64_set(&event->hw.prev_count, local_clock());
  5208. perf_swevent_start_hrtimer(event);
  5209. }
  5210. static void cpu_clock_event_stop(struct perf_event *event, int flags)
  5211. {
  5212. perf_swevent_cancel_hrtimer(event);
  5213. cpu_clock_event_update(event);
  5214. }
  5215. static int cpu_clock_event_add(struct perf_event *event, int flags)
  5216. {
  5217. if (flags & PERF_EF_START)
  5218. cpu_clock_event_start(event, flags);
  5219. return 0;
  5220. }
  5221. static void cpu_clock_event_del(struct perf_event *event, int flags)
  5222. {
  5223. cpu_clock_event_stop(event, flags);
  5224. }
  5225. static void cpu_clock_event_read(struct perf_event *event)
  5226. {
  5227. cpu_clock_event_update(event);
  5228. }
  5229. static int cpu_clock_event_init(struct perf_event *event)
  5230. {
  5231. if (event->attr.type != PERF_TYPE_SOFTWARE)
  5232. return -ENOENT;
  5233. if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
  5234. return -ENOENT;
  5235. /*
  5236. * no branch sampling for software events
  5237. */
  5238. if (has_branch_stack(event))
  5239. return -EOPNOTSUPP;
  5240. perf_swevent_init_hrtimer(event);
  5241. return 0;
  5242. }
  5243. static struct pmu perf_cpu_clock = {
  5244. .task_ctx_nr = perf_sw_context,
  5245. .event_init = cpu_clock_event_init,
  5246. .add = cpu_clock_event_add,
  5247. .del = cpu_clock_event_del,
  5248. .start = cpu_clock_event_start,
  5249. .stop = cpu_clock_event_stop,
  5250. .read = cpu_clock_event_read,
  5251. };
  5252. /*
  5253. * Software event: task time clock
  5254. */
  5255. static void task_clock_event_update(struct perf_event *event, u64 now)
  5256. {
  5257. u64 prev;
  5258. s64 delta;
  5259. prev = local64_xchg(&event->hw.prev_count, now);
  5260. delta = now - prev;
  5261. local64_add(delta, &event->count);
  5262. }
  5263. static void task_clock_event_start(struct perf_event *event, int flags)
  5264. {
  5265. local64_set(&event->hw.prev_count, event->ctx->time);
  5266. perf_swevent_start_hrtimer(event);
  5267. }
  5268. static void task_clock_event_stop(struct perf_event *event, int flags)
  5269. {
  5270. perf_swevent_cancel_hrtimer(event);
  5271. task_clock_event_update(event, event->ctx->time);
  5272. }
  5273. static int task_clock_event_add(struct perf_event *event, int flags)
  5274. {
  5275. if (flags & PERF_EF_START)
  5276. task_clock_event_start(event, flags);
  5277. return 0;
  5278. }
  5279. static void task_clock_event_del(struct perf_event *event, int flags)
  5280. {
  5281. task_clock_event_stop(event, PERF_EF_UPDATE);
  5282. }
  5283. static void task_clock_event_read(struct perf_event *event)
  5284. {
  5285. u64 now = perf_clock();
  5286. u64 delta = now - event->ctx->timestamp;
  5287. u64 time = event->ctx->time + delta;
  5288. task_clock_event_update(event, time);
  5289. }
  5290. static int task_clock_event_init(struct perf_event *event)
  5291. {
  5292. if (event->attr.type != PERF_TYPE_SOFTWARE)
  5293. return -ENOENT;
  5294. if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
  5295. return -ENOENT;
  5296. /*
  5297. * no branch sampling for software events
  5298. */
  5299. if (has_branch_stack(event))
  5300. return -EOPNOTSUPP;
  5301. perf_swevent_init_hrtimer(event);
  5302. return 0;
  5303. }
  5304. static struct pmu perf_task_clock = {
  5305. .task_ctx_nr = perf_sw_context,
  5306. .event_init = task_clock_event_init,
  5307. .add = task_clock_event_add,
  5308. .del = task_clock_event_del,
  5309. .start = task_clock_event_start,
  5310. .stop = task_clock_event_stop,
  5311. .read = task_clock_event_read,
  5312. };
  5313. static void perf_pmu_nop_void(struct pmu *pmu)
  5314. {
  5315. }
  5316. static int perf_pmu_nop_int(struct pmu *pmu)
  5317. {
  5318. return 0;
  5319. }
  5320. static void perf_pmu_start_txn(struct pmu *pmu)
  5321. {
  5322. perf_pmu_disable(pmu);
  5323. }
  5324. static int perf_pmu_commit_txn(struct pmu *pmu)
  5325. {
  5326. perf_pmu_enable(pmu);
  5327. return 0;
  5328. }
  5329. static void perf_pmu_cancel_txn(struct pmu *pmu)
  5330. {
  5331. perf_pmu_enable(pmu);
  5332. }
  5333. static int perf_event_idx_default(struct perf_event *event)
  5334. {
  5335. return 0;
  5336. }
  5337. /*
  5338. * Ensures all contexts with the same task_ctx_nr have the same
  5339. * pmu_cpu_context too.
  5340. */
  5341. static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
  5342. {
  5343. struct pmu *pmu;
  5344. if (ctxn < 0)
  5345. return NULL;
  5346. list_for_each_entry(pmu, &pmus, entry) {
  5347. if (pmu->task_ctx_nr == ctxn)
  5348. return pmu->pmu_cpu_context;
  5349. }
  5350. return NULL;
  5351. }
  5352. static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
  5353. {
  5354. int cpu;
  5355. for_each_possible_cpu(cpu) {
  5356. struct perf_cpu_context *cpuctx;
  5357. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  5358. if (cpuctx->unique_pmu == old_pmu)
  5359. cpuctx->unique_pmu = pmu;
  5360. }
  5361. }
  5362. static void free_pmu_context(struct pmu *pmu)
  5363. {
  5364. struct pmu *i;
  5365. mutex_lock(&pmus_lock);
  5366. /*
  5367. * Like a real lame refcount.
  5368. */
  5369. list_for_each_entry(i, &pmus, entry) {
  5370. if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
  5371. update_pmu_context(i, pmu);
  5372. goto out;
  5373. }
  5374. }
  5375. free_percpu(pmu->pmu_cpu_context);
  5376. out:
  5377. mutex_unlock(&pmus_lock);
  5378. }
  5379. static struct idr pmu_idr;
  5380. static ssize_t
  5381. type_show(struct device *dev, struct device_attribute *attr, char *page)
  5382. {
  5383. struct pmu *pmu = dev_get_drvdata(dev);
  5384. return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
  5385. }
  5386. static DEVICE_ATTR_RO(type);
  5387. static ssize_t
  5388. perf_event_mux_interval_ms_show(struct device *dev,
  5389. struct device_attribute *attr,
  5390. char *page)
  5391. {
  5392. struct pmu *pmu = dev_get_drvdata(dev);
  5393. return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
  5394. }
  5395. static ssize_t
  5396. perf_event_mux_interval_ms_store(struct device *dev,
  5397. struct device_attribute *attr,
  5398. const char *buf, size_t count)
  5399. {
  5400. struct pmu *pmu = dev_get_drvdata(dev);
  5401. int timer, cpu, ret;
  5402. ret = kstrtoint(buf, 0, &timer);
  5403. if (ret)
  5404. return ret;
  5405. if (timer < 1)
  5406. return -EINVAL;
  5407. /* same value, noting to do */
  5408. if (timer == pmu->hrtimer_interval_ms)
  5409. return count;
  5410. pmu->hrtimer_interval_ms = timer;
  5411. /* update all cpuctx for this PMU */
  5412. for_each_possible_cpu(cpu) {
  5413. struct perf_cpu_context *cpuctx;
  5414. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  5415. cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
  5416. if (hrtimer_active(&cpuctx->hrtimer))
  5417. hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
  5418. }
  5419. return count;
  5420. }
  5421. static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
  5422. static struct attribute *pmu_dev_attrs[] = {
  5423. &dev_attr_type.attr,
  5424. &dev_attr_perf_event_mux_interval_ms.attr,
  5425. NULL,
  5426. };
  5427. ATTRIBUTE_GROUPS(pmu_dev);
  5428. static int pmu_bus_running;
  5429. static struct bus_type pmu_bus = {
  5430. .name = "event_source",
  5431. .dev_groups = pmu_dev_groups,
  5432. };
  5433. static void pmu_dev_release(struct device *dev)
  5434. {
  5435. kfree(dev);
  5436. }
  5437. static int pmu_dev_alloc(struct pmu *pmu)
  5438. {
  5439. int ret = -ENOMEM;
  5440. pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  5441. if (!pmu->dev)
  5442. goto out;
  5443. pmu->dev->groups = pmu->attr_groups;
  5444. device_initialize(pmu->dev);
  5445. ret = dev_set_name(pmu->dev, "%s", pmu->name);
  5446. if (ret)
  5447. goto free_dev;
  5448. dev_set_drvdata(pmu->dev, pmu);
  5449. pmu->dev->bus = &pmu_bus;
  5450. pmu->dev->release = pmu_dev_release;
  5451. ret = device_add(pmu->dev);
  5452. if (ret)
  5453. goto free_dev;
  5454. out:
  5455. return ret;
  5456. free_dev:
  5457. put_device(pmu->dev);
  5458. goto out;
  5459. }
  5460. static struct lock_class_key cpuctx_mutex;
  5461. static struct lock_class_key cpuctx_lock;
  5462. int perf_pmu_register(struct pmu *pmu, const char *name, int type)
  5463. {
  5464. int cpu, ret;
  5465. mutex_lock(&pmus_lock);
  5466. ret = -ENOMEM;
  5467. pmu->pmu_disable_count = alloc_percpu(int);
  5468. if (!pmu->pmu_disable_count)
  5469. goto unlock;
  5470. pmu->type = -1;
  5471. if (!name)
  5472. goto skip_type;
  5473. pmu->name = name;
  5474. if (type < 0) {
  5475. type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
  5476. if (type < 0) {
  5477. ret = type;
  5478. goto free_pdc;
  5479. }
  5480. }
  5481. pmu->type = type;
  5482. if (pmu_bus_running) {
  5483. ret = pmu_dev_alloc(pmu);
  5484. if (ret)
  5485. goto free_idr;
  5486. }
  5487. skip_type:
  5488. pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
  5489. if (pmu->pmu_cpu_context)
  5490. goto got_cpu_context;
  5491. ret = -ENOMEM;
  5492. pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
  5493. if (!pmu->pmu_cpu_context)
  5494. goto free_dev;
  5495. for_each_possible_cpu(cpu) {
  5496. struct perf_cpu_context *cpuctx;
  5497. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  5498. __perf_event_init_context(&cpuctx->ctx);
  5499. lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
  5500. lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
  5501. cpuctx->ctx.type = cpu_context;
  5502. cpuctx->ctx.pmu = pmu;
  5503. __perf_cpu_hrtimer_init(cpuctx, cpu);
  5504. INIT_LIST_HEAD(&cpuctx->rotation_list);
  5505. cpuctx->unique_pmu = pmu;
  5506. }
  5507. got_cpu_context:
  5508. if (!pmu->start_txn) {
  5509. if (pmu->pmu_enable) {
  5510. /*
  5511. * If we have pmu_enable/pmu_disable calls, install
  5512. * transaction stubs that use that to try and batch
  5513. * hardware accesses.
  5514. */
  5515. pmu->start_txn = perf_pmu_start_txn;
  5516. pmu->commit_txn = perf_pmu_commit_txn;
  5517. pmu->cancel_txn = perf_pmu_cancel_txn;
  5518. } else {
  5519. pmu->start_txn = perf_pmu_nop_void;
  5520. pmu->commit_txn = perf_pmu_nop_int;
  5521. pmu->cancel_txn = perf_pmu_nop_void;
  5522. }
  5523. }
  5524. if (!pmu->pmu_enable) {
  5525. pmu->pmu_enable = perf_pmu_nop_void;
  5526. pmu->pmu_disable = perf_pmu_nop_void;
  5527. }
  5528. if (!pmu->event_idx)
  5529. pmu->event_idx = perf_event_idx_default;
  5530. list_add_rcu(&pmu->entry, &pmus);
  5531. ret = 0;
  5532. unlock:
  5533. mutex_unlock(&pmus_lock);
  5534. return ret;
  5535. free_dev:
  5536. device_del(pmu->dev);
  5537. put_device(pmu->dev);
  5538. free_idr:
  5539. if (pmu->type >= PERF_TYPE_MAX)
  5540. idr_remove(&pmu_idr, pmu->type);
  5541. free_pdc:
  5542. free_percpu(pmu->pmu_disable_count);
  5543. goto unlock;
  5544. }
  5545. EXPORT_SYMBOL_GPL(perf_pmu_register);
  5546. void perf_pmu_unregister(struct pmu *pmu)
  5547. {
  5548. mutex_lock(&pmus_lock);
  5549. list_del_rcu(&pmu->entry);
  5550. mutex_unlock(&pmus_lock);
  5551. /*
  5552. * We dereference the pmu list under both SRCU and regular RCU, so
  5553. * synchronize against both of those.
  5554. */
  5555. synchronize_srcu(&pmus_srcu);
  5556. synchronize_rcu();
  5557. free_percpu(pmu->pmu_disable_count);
  5558. if (pmu->type >= PERF_TYPE_MAX)
  5559. idr_remove(&pmu_idr, pmu->type);
  5560. device_del(pmu->dev);
  5561. put_device(pmu->dev);
  5562. free_pmu_context(pmu);
  5563. }
  5564. EXPORT_SYMBOL_GPL(perf_pmu_unregister);
  5565. struct pmu *perf_init_event(struct perf_event *event)
  5566. {
  5567. struct pmu *pmu = NULL;
  5568. int idx;
  5569. int ret;
  5570. idx = srcu_read_lock(&pmus_srcu);
  5571. rcu_read_lock();
  5572. pmu = idr_find(&pmu_idr, event->attr.type);
  5573. rcu_read_unlock();
  5574. if (pmu) {
  5575. if (!try_module_get(pmu->module)) {
  5576. pmu = ERR_PTR(-ENODEV);
  5577. goto unlock;
  5578. }
  5579. event->pmu = pmu;
  5580. ret = pmu->event_init(event);
  5581. if (ret)
  5582. pmu = ERR_PTR(ret);
  5583. goto unlock;
  5584. }
  5585. list_for_each_entry_rcu(pmu, &pmus, entry) {
  5586. if (!try_module_get(pmu->module)) {
  5587. pmu = ERR_PTR(-ENODEV);
  5588. goto unlock;
  5589. }
  5590. event->pmu = pmu;
  5591. ret = pmu->event_init(event);
  5592. if (!ret)
  5593. goto unlock;
  5594. if (ret != -ENOENT) {
  5595. pmu = ERR_PTR(ret);
  5596. goto unlock;
  5597. }
  5598. }
  5599. pmu = ERR_PTR(-ENOENT);
  5600. unlock:
  5601. srcu_read_unlock(&pmus_srcu, idx);
  5602. return pmu;
  5603. }
  5604. static void account_event_cpu(struct perf_event *event, int cpu)
  5605. {
  5606. if (event->parent)
  5607. return;
  5608. if (has_branch_stack(event)) {
  5609. if (!(event->attach_state & PERF_ATTACH_TASK))
  5610. atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
  5611. }
  5612. if (is_cgroup_event(event))
  5613. atomic_inc(&per_cpu(perf_cgroup_events, cpu));
  5614. }
  5615. static void account_event(struct perf_event *event)
  5616. {
  5617. if (event->parent)
  5618. return;
  5619. if (event->attach_state & PERF_ATTACH_TASK)
  5620. static_key_slow_inc(&perf_sched_events.key);
  5621. if (event->attr.mmap || event->attr.mmap_data)
  5622. atomic_inc(&nr_mmap_events);
  5623. if (event->attr.comm)
  5624. atomic_inc(&nr_comm_events);
  5625. if (event->attr.task)
  5626. atomic_inc(&nr_task_events);
  5627. if (event->attr.freq) {
  5628. if (atomic_inc_return(&nr_freq_events) == 1)
  5629. tick_nohz_full_kick_all();
  5630. }
  5631. if (has_branch_stack(event))
  5632. static_key_slow_inc(&perf_sched_events.key);
  5633. if (is_cgroup_event(event))
  5634. static_key_slow_inc(&perf_sched_events.key);
  5635. account_event_cpu(event, event->cpu);
  5636. }
  5637. /*
  5638. * Allocate and initialize a event structure
  5639. */
  5640. static struct perf_event *
  5641. perf_event_alloc(struct perf_event_attr *attr, int cpu,
  5642. struct task_struct *task,
  5643. struct perf_event *group_leader,
  5644. struct perf_event *parent_event,
  5645. perf_overflow_handler_t overflow_handler,
  5646. void *context)
  5647. {
  5648. struct pmu *pmu;
  5649. struct perf_event *event;
  5650. struct hw_perf_event *hwc;
  5651. long err = -EINVAL;
  5652. if ((unsigned)cpu >= nr_cpu_ids) {
  5653. if (!task || cpu != -1)
  5654. return ERR_PTR(-EINVAL);
  5655. }
  5656. event = kzalloc(sizeof(*event), GFP_KERNEL);
  5657. if (!event)
  5658. return ERR_PTR(-ENOMEM);
  5659. /*
  5660. * Single events are their own group leaders, with an
  5661. * empty sibling list:
  5662. */
  5663. if (!group_leader)
  5664. group_leader = event;
  5665. mutex_init(&event->child_mutex);
  5666. INIT_LIST_HEAD(&event->child_list);
  5667. INIT_LIST_HEAD(&event->group_entry);
  5668. INIT_LIST_HEAD(&event->event_entry);
  5669. INIT_LIST_HEAD(&event->sibling_list);
  5670. INIT_LIST_HEAD(&event->rb_entry);
  5671. INIT_LIST_HEAD(&event->active_entry);
  5672. INIT_HLIST_NODE(&event->hlist_entry);
  5673. init_waitqueue_head(&event->waitq);
  5674. init_irq_work(&event->pending, perf_pending_event);
  5675. mutex_init(&event->mmap_mutex);
  5676. atomic_long_set(&event->refcount, 1);
  5677. event->cpu = cpu;
  5678. event->attr = *attr;
  5679. event->group_leader = group_leader;
  5680. event->pmu = NULL;
  5681. event->oncpu = -1;
  5682. event->parent = parent_event;
  5683. event->ns = get_pid_ns(task_active_pid_ns(current));
  5684. event->id = atomic64_inc_return(&perf_event_id);
  5685. event->state = PERF_EVENT_STATE_INACTIVE;
  5686. if (task) {
  5687. event->attach_state = PERF_ATTACH_TASK;
  5688. if (attr->type == PERF_TYPE_TRACEPOINT)
  5689. event->hw.tp_target = task;
  5690. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  5691. /*
  5692. * hw_breakpoint is a bit difficult here..
  5693. */
  5694. else if (attr->type == PERF_TYPE_BREAKPOINT)
  5695. event->hw.bp_target = task;
  5696. #endif
  5697. }
  5698. if (!overflow_handler && parent_event) {
  5699. overflow_handler = parent_event->overflow_handler;
  5700. context = parent_event->overflow_handler_context;
  5701. }
  5702. event->overflow_handler = overflow_handler;
  5703. event->overflow_handler_context = context;
  5704. perf_event__state_init(event);
  5705. pmu = NULL;
  5706. hwc = &event->hw;
  5707. hwc->sample_period = attr->sample_period;
  5708. if (attr->freq && attr->sample_freq)
  5709. hwc->sample_period = 1;
  5710. hwc->last_period = hwc->sample_period;
  5711. local64_set(&hwc->period_left, hwc->sample_period);
  5712. /*
  5713. * we currently do not support PERF_FORMAT_GROUP on inherited events
  5714. */
  5715. if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
  5716. goto err_ns;
  5717. pmu = perf_init_event(event);
  5718. if (!pmu)
  5719. goto err_ns;
  5720. else if (IS_ERR(pmu)) {
  5721. err = PTR_ERR(pmu);
  5722. goto err_ns;
  5723. }
  5724. if (!event->parent) {
  5725. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
  5726. err = get_callchain_buffers();
  5727. if (err)
  5728. goto err_pmu;
  5729. }
  5730. }
  5731. return event;
  5732. err_pmu:
  5733. if (event->destroy)
  5734. event->destroy(event);
  5735. module_put(pmu->module);
  5736. err_ns:
  5737. if (event->ns)
  5738. put_pid_ns(event->ns);
  5739. kfree(event);
  5740. return ERR_PTR(err);
  5741. }
  5742. static int perf_copy_attr(struct perf_event_attr __user *uattr,
  5743. struct perf_event_attr *attr)
  5744. {
  5745. u32 size;
  5746. int ret;
  5747. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  5748. return -EFAULT;
  5749. /*
  5750. * zero the full structure, so that a short copy will be nice.
  5751. */
  5752. memset(attr, 0, sizeof(*attr));
  5753. ret = get_user(size, &uattr->size);
  5754. if (ret)
  5755. return ret;
  5756. if (size > PAGE_SIZE) /* silly large */
  5757. goto err_size;
  5758. if (!size) /* abi compat */
  5759. size = PERF_ATTR_SIZE_VER0;
  5760. if (size < PERF_ATTR_SIZE_VER0)
  5761. goto err_size;
  5762. /*
  5763. * If we're handed a bigger struct than we know of,
  5764. * ensure all the unknown bits are 0 - i.e. new
  5765. * user-space does not rely on any kernel feature
  5766. * extensions we dont know about yet.
  5767. */
  5768. if (size > sizeof(*attr)) {
  5769. unsigned char __user *addr;
  5770. unsigned char __user *end;
  5771. unsigned char val;
  5772. addr = (void __user *)uattr + sizeof(*attr);
  5773. end = (void __user *)uattr + size;
  5774. for (; addr < end; addr++) {
  5775. ret = get_user(val, addr);
  5776. if (ret)
  5777. return ret;
  5778. if (val)
  5779. goto err_size;
  5780. }
  5781. size = sizeof(*attr);
  5782. }
  5783. ret = copy_from_user(attr, uattr, size);
  5784. if (ret)
  5785. return -EFAULT;
  5786. if (attr->__reserved_1)
  5787. return -EINVAL;
  5788. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  5789. return -EINVAL;
  5790. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  5791. return -EINVAL;
  5792. if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
  5793. u64 mask = attr->branch_sample_type;
  5794. /* only using defined bits */
  5795. if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
  5796. return -EINVAL;
  5797. /* at least one branch bit must be set */
  5798. if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
  5799. return -EINVAL;
  5800. /* propagate priv level, when not set for branch */
  5801. if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
  5802. /* exclude_kernel checked on syscall entry */
  5803. if (!attr->exclude_kernel)
  5804. mask |= PERF_SAMPLE_BRANCH_KERNEL;
  5805. if (!attr->exclude_user)
  5806. mask |= PERF_SAMPLE_BRANCH_USER;
  5807. if (!attr->exclude_hv)
  5808. mask |= PERF_SAMPLE_BRANCH_HV;
  5809. /*
  5810. * adjust user setting (for HW filter setup)
  5811. */
  5812. attr->branch_sample_type = mask;
  5813. }
  5814. /* privileged levels capture (kernel, hv): check permissions */
  5815. if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
  5816. && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  5817. return -EACCES;
  5818. }
  5819. if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
  5820. ret = perf_reg_validate(attr->sample_regs_user);
  5821. if (ret)
  5822. return ret;
  5823. }
  5824. if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
  5825. if (!arch_perf_have_user_stack_dump())
  5826. return -ENOSYS;
  5827. /*
  5828. * We have __u32 type for the size, but so far
  5829. * we can only use __u16 as maximum due to the
  5830. * __u16 sample size limit.
  5831. */
  5832. if (attr->sample_stack_user >= USHRT_MAX)
  5833. ret = -EINVAL;
  5834. else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
  5835. ret = -EINVAL;
  5836. }
  5837. out:
  5838. return ret;
  5839. err_size:
  5840. put_user(sizeof(*attr), &uattr->size);
  5841. ret = -E2BIG;
  5842. goto out;
  5843. }
  5844. static int
  5845. perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
  5846. {
  5847. struct ring_buffer *rb = NULL;
  5848. int ret = -EINVAL;
  5849. if (!output_event)
  5850. goto set;
  5851. /* don't allow circular references */
  5852. if (event == output_event)
  5853. goto out;
  5854. /*
  5855. * Don't allow cross-cpu buffers
  5856. */
  5857. if (output_event->cpu != event->cpu)
  5858. goto out;
  5859. /*
  5860. * If its not a per-cpu rb, it must be the same task.
  5861. */
  5862. if (output_event->cpu == -1 && output_event->ctx != event->ctx)
  5863. goto out;
  5864. set:
  5865. mutex_lock(&event->mmap_mutex);
  5866. /* Can't redirect output if we've got an active mmap() */
  5867. if (atomic_read(&event->mmap_count))
  5868. goto unlock;
  5869. if (output_event) {
  5870. /* get the rb we want to redirect to */
  5871. rb = ring_buffer_get(output_event);
  5872. if (!rb)
  5873. goto unlock;
  5874. }
  5875. ring_buffer_attach(event, rb);
  5876. ret = 0;
  5877. unlock:
  5878. mutex_unlock(&event->mmap_mutex);
  5879. out:
  5880. return ret;
  5881. }
  5882. /**
  5883. * sys_perf_event_open - open a performance event, associate it to a task/cpu
  5884. *
  5885. * @attr_uptr: event_id type attributes for monitoring/sampling
  5886. * @pid: target pid
  5887. * @cpu: target cpu
  5888. * @group_fd: group leader event fd
  5889. */
  5890. SYSCALL_DEFINE5(perf_event_open,
  5891. struct perf_event_attr __user *, attr_uptr,
  5892. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  5893. {
  5894. struct perf_event *group_leader = NULL, *output_event = NULL;
  5895. struct perf_event *event, *sibling;
  5896. struct perf_event_attr attr;
  5897. struct perf_event_context *ctx;
  5898. struct file *event_file = NULL;
  5899. struct fd group = {NULL, 0};
  5900. struct task_struct *task = NULL;
  5901. struct pmu *pmu;
  5902. int event_fd;
  5903. int move_group = 0;
  5904. int err;
  5905. int f_flags = O_RDWR;
  5906. /* for future expandability... */
  5907. if (flags & ~PERF_FLAG_ALL)
  5908. return -EINVAL;
  5909. err = perf_copy_attr(attr_uptr, &attr);
  5910. if (err)
  5911. return err;
  5912. if (!attr.exclude_kernel) {
  5913. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  5914. return -EACCES;
  5915. }
  5916. if (attr.freq) {
  5917. if (attr.sample_freq > sysctl_perf_event_sample_rate)
  5918. return -EINVAL;
  5919. } else {
  5920. if (attr.sample_period & (1ULL << 63))
  5921. return -EINVAL;
  5922. }
  5923. /*
  5924. * In cgroup mode, the pid argument is used to pass the fd
  5925. * opened to the cgroup directory in cgroupfs. The cpu argument
  5926. * designates the cpu on which to monitor threads from that
  5927. * cgroup.
  5928. */
  5929. if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
  5930. return -EINVAL;
  5931. if (flags & PERF_FLAG_FD_CLOEXEC)
  5932. f_flags |= O_CLOEXEC;
  5933. event_fd = get_unused_fd_flags(f_flags);
  5934. if (event_fd < 0)
  5935. return event_fd;
  5936. if (group_fd != -1) {
  5937. err = perf_fget_light(group_fd, &group);
  5938. if (err)
  5939. goto err_fd;
  5940. group_leader = group.file->private_data;
  5941. if (flags & PERF_FLAG_FD_OUTPUT)
  5942. output_event = group_leader;
  5943. if (flags & PERF_FLAG_FD_NO_GROUP)
  5944. group_leader = NULL;
  5945. }
  5946. if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
  5947. task = find_lively_task_by_vpid(pid);
  5948. if (IS_ERR(task)) {
  5949. err = PTR_ERR(task);
  5950. goto err_group_fd;
  5951. }
  5952. }
  5953. if (task && group_leader &&
  5954. group_leader->attr.inherit != attr.inherit) {
  5955. err = -EINVAL;
  5956. goto err_task;
  5957. }
  5958. get_online_cpus();
  5959. event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
  5960. NULL, NULL);
  5961. if (IS_ERR(event)) {
  5962. err = PTR_ERR(event);
  5963. goto err_cpus;
  5964. }
  5965. if (flags & PERF_FLAG_PID_CGROUP) {
  5966. err = perf_cgroup_connect(pid, event, &attr, group_leader);
  5967. if (err) {
  5968. __free_event(event);
  5969. goto err_cpus;
  5970. }
  5971. }
  5972. if (is_sampling_event(event)) {
  5973. if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
  5974. err = -ENOTSUPP;
  5975. goto err_alloc;
  5976. }
  5977. }
  5978. account_event(event);
  5979. /*
  5980. * Special case software events and allow them to be part of
  5981. * any hardware group.
  5982. */
  5983. pmu = event->pmu;
  5984. if (group_leader &&
  5985. (is_software_event(event) != is_software_event(group_leader))) {
  5986. if (is_software_event(event)) {
  5987. /*
  5988. * If event and group_leader are not both a software
  5989. * event, and event is, then group leader is not.
  5990. *
  5991. * Allow the addition of software events to !software
  5992. * groups, this is safe because software events never
  5993. * fail to schedule.
  5994. */
  5995. pmu = group_leader->pmu;
  5996. } else if (is_software_event(group_leader) &&
  5997. (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
  5998. /*
  5999. * In case the group is a pure software group, and we
  6000. * try to add a hardware event, move the whole group to
  6001. * the hardware context.
  6002. */
  6003. move_group = 1;
  6004. }
  6005. }
  6006. /*
  6007. * Get the target context (task or percpu):
  6008. */
  6009. ctx = find_get_context(pmu, task, event->cpu);
  6010. if (IS_ERR(ctx)) {
  6011. err = PTR_ERR(ctx);
  6012. goto err_alloc;
  6013. }
  6014. if (task) {
  6015. put_task_struct(task);
  6016. task = NULL;
  6017. }
  6018. /*
  6019. * Look up the group leader (we will attach this event to it):
  6020. */
  6021. if (group_leader) {
  6022. err = -EINVAL;
  6023. /*
  6024. * Do not allow a recursive hierarchy (this new sibling
  6025. * becoming part of another group-sibling):
  6026. */
  6027. if (group_leader->group_leader != group_leader)
  6028. goto err_context;
  6029. /*
  6030. * Do not allow to attach to a group in a different
  6031. * task or CPU context:
  6032. */
  6033. if (move_group) {
  6034. if (group_leader->ctx->type != ctx->type)
  6035. goto err_context;
  6036. } else {
  6037. if (group_leader->ctx != ctx)
  6038. goto err_context;
  6039. }
  6040. /*
  6041. * Only a group leader can be exclusive or pinned
  6042. */
  6043. if (attr.exclusive || attr.pinned)
  6044. goto err_context;
  6045. }
  6046. if (output_event) {
  6047. err = perf_event_set_output(event, output_event);
  6048. if (err)
  6049. goto err_context;
  6050. }
  6051. event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
  6052. f_flags);
  6053. if (IS_ERR(event_file)) {
  6054. err = PTR_ERR(event_file);
  6055. goto err_context;
  6056. }
  6057. if (move_group) {
  6058. struct perf_event_context *gctx = group_leader->ctx;
  6059. mutex_lock(&gctx->mutex);
  6060. perf_remove_from_context(group_leader, false);
  6061. /*
  6062. * Removing from the context ends up with disabled
  6063. * event. What we want here is event in the initial
  6064. * startup state, ready to be add into new context.
  6065. */
  6066. perf_event__state_init(group_leader);
  6067. list_for_each_entry(sibling, &group_leader->sibling_list,
  6068. group_entry) {
  6069. perf_remove_from_context(sibling, false);
  6070. perf_event__state_init(sibling);
  6071. put_ctx(gctx);
  6072. }
  6073. mutex_unlock(&gctx->mutex);
  6074. put_ctx(gctx);
  6075. }
  6076. WARN_ON_ONCE(ctx->parent_ctx);
  6077. mutex_lock(&ctx->mutex);
  6078. if (move_group) {
  6079. synchronize_rcu();
  6080. perf_install_in_context(ctx, group_leader, event->cpu);
  6081. get_ctx(ctx);
  6082. list_for_each_entry(sibling, &group_leader->sibling_list,
  6083. group_entry) {
  6084. perf_install_in_context(ctx, sibling, event->cpu);
  6085. get_ctx(ctx);
  6086. }
  6087. }
  6088. perf_install_in_context(ctx, event, event->cpu);
  6089. perf_unpin_context(ctx);
  6090. mutex_unlock(&ctx->mutex);
  6091. put_online_cpus();
  6092. event->owner = current;
  6093. mutex_lock(&current->perf_event_mutex);
  6094. list_add_tail(&event->owner_entry, &current->perf_event_list);
  6095. mutex_unlock(&current->perf_event_mutex);
  6096. /*
  6097. * Precalculate sample_data sizes
  6098. */
  6099. perf_event__header_size(event);
  6100. perf_event__id_header_size(event);
  6101. /*
  6102. * Drop the reference on the group_event after placing the
  6103. * new event on the sibling_list. This ensures destruction
  6104. * of the group leader will find the pointer to itself in
  6105. * perf_group_detach().
  6106. */
  6107. fdput(group);
  6108. fd_install(event_fd, event_file);
  6109. return event_fd;
  6110. err_context:
  6111. perf_unpin_context(ctx);
  6112. put_ctx(ctx);
  6113. err_alloc:
  6114. free_event(event);
  6115. err_cpus:
  6116. put_online_cpus();
  6117. err_task:
  6118. if (task)
  6119. put_task_struct(task);
  6120. err_group_fd:
  6121. fdput(group);
  6122. err_fd:
  6123. put_unused_fd(event_fd);
  6124. return err;
  6125. }
  6126. /**
  6127. * perf_event_create_kernel_counter
  6128. *
  6129. * @attr: attributes of the counter to create
  6130. * @cpu: cpu in which the counter is bound
  6131. * @task: task to profile (NULL for percpu)
  6132. */
  6133. struct perf_event *
  6134. perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
  6135. struct task_struct *task,
  6136. perf_overflow_handler_t overflow_handler,
  6137. void *context)
  6138. {
  6139. struct perf_event_context *ctx;
  6140. struct perf_event *event;
  6141. int err;
  6142. /*
  6143. * Get the target context (task or percpu):
  6144. */
  6145. event = perf_event_alloc(attr, cpu, task, NULL, NULL,
  6146. overflow_handler, context);
  6147. if (IS_ERR(event)) {
  6148. err = PTR_ERR(event);
  6149. goto err;
  6150. }
  6151. /* Mark owner so we could distinguish it from user events. */
  6152. event->owner = EVENT_OWNER_KERNEL;
  6153. account_event(event);
  6154. ctx = find_get_context(event->pmu, task, cpu);
  6155. if (IS_ERR(ctx)) {
  6156. err = PTR_ERR(ctx);
  6157. goto err_free;
  6158. }
  6159. WARN_ON_ONCE(ctx->parent_ctx);
  6160. mutex_lock(&ctx->mutex);
  6161. perf_install_in_context(ctx, event, cpu);
  6162. perf_unpin_context(ctx);
  6163. mutex_unlock(&ctx->mutex);
  6164. return event;
  6165. err_free:
  6166. free_event(event);
  6167. err:
  6168. return ERR_PTR(err);
  6169. }
  6170. EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
  6171. void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
  6172. {
  6173. struct perf_event_context *src_ctx;
  6174. struct perf_event_context *dst_ctx;
  6175. struct perf_event *event, *tmp;
  6176. LIST_HEAD(events);
  6177. src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
  6178. dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
  6179. mutex_lock(&src_ctx->mutex);
  6180. list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
  6181. event_entry) {
  6182. perf_remove_from_context(event, false);
  6183. unaccount_event_cpu(event, src_cpu);
  6184. put_ctx(src_ctx);
  6185. list_add(&event->migrate_entry, &events);
  6186. }
  6187. mutex_unlock(&src_ctx->mutex);
  6188. synchronize_rcu();
  6189. mutex_lock(&dst_ctx->mutex);
  6190. list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
  6191. list_del(&event->migrate_entry);
  6192. if (event->state >= PERF_EVENT_STATE_OFF)
  6193. event->state = PERF_EVENT_STATE_INACTIVE;
  6194. account_event_cpu(event, dst_cpu);
  6195. perf_install_in_context(dst_ctx, event, dst_cpu);
  6196. get_ctx(dst_ctx);
  6197. }
  6198. mutex_unlock(&dst_ctx->mutex);
  6199. }
  6200. EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
  6201. static void sync_child_event(struct perf_event *child_event,
  6202. struct task_struct *child)
  6203. {
  6204. struct perf_event *parent_event = child_event->parent;
  6205. u64 child_val;
  6206. if (child_event->attr.inherit_stat)
  6207. perf_event_read_event(child_event, child);
  6208. child_val = perf_event_count(child_event);
  6209. /*
  6210. * Add back the child's count to the parent's count:
  6211. */
  6212. atomic64_add(child_val, &parent_event->child_count);
  6213. atomic64_add(child_event->total_time_enabled,
  6214. &parent_event->child_total_time_enabled);
  6215. atomic64_add(child_event->total_time_running,
  6216. &parent_event->child_total_time_running);
  6217. /*
  6218. * Remove this event from the parent's list
  6219. */
  6220. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  6221. mutex_lock(&parent_event->child_mutex);
  6222. list_del_init(&child_event->child_list);
  6223. mutex_unlock(&parent_event->child_mutex);
  6224. /*
  6225. * Make sure user/parent get notified, that we just
  6226. * lost one event.
  6227. */
  6228. perf_event_wakeup(parent_event);
  6229. /*
  6230. * Release the parent event, if this was the last
  6231. * reference to it.
  6232. */
  6233. put_event(parent_event);
  6234. }
  6235. static void
  6236. __perf_event_exit_task(struct perf_event *child_event,
  6237. struct perf_event_context *child_ctx,
  6238. struct task_struct *child)
  6239. {
  6240. /*
  6241. * Do not destroy the 'original' grouping; because of the context
  6242. * switch optimization the original events could've ended up in a
  6243. * random child task.
  6244. *
  6245. * If we were to destroy the original group, all group related
  6246. * operations would cease to function properly after this random
  6247. * child dies.
  6248. *
  6249. * Do destroy all inherited groups, we don't care about those
  6250. * and being thorough is better.
  6251. */
  6252. perf_remove_from_context(child_event, !!child_event->parent);
  6253. /*
  6254. * It can happen that the parent exits first, and has events
  6255. * that are still around due to the child reference. These
  6256. * events need to be zapped.
  6257. */
  6258. if (child_event->parent) {
  6259. sync_child_event(child_event, child);
  6260. free_event(child_event);
  6261. } else {
  6262. child_event->state = PERF_EVENT_STATE_EXIT;
  6263. perf_event_wakeup(child_event);
  6264. }
  6265. }
  6266. static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
  6267. {
  6268. struct perf_event *child_event, *next;
  6269. struct perf_event_context *child_ctx, *clone_ctx = NULL;
  6270. unsigned long flags;
  6271. if (likely(!child->perf_event_ctxp[ctxn])) {
  6272. perf_event_task(child, NULL, 0);
  6273. return;
  6274. }
  6275. local_irq_save(flags);
  6276. /*
  6277. * We can't reschedule here because interrupts are disabled,
  6278. * and either child is current or it is a task that can't be
  6279. * scheduled, so we are now safe from rescheduling changing
  6280. * our context.
  6281. */
  6282. child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
  6283. /*
  6284. * Take the context lock here so that if find_get_context is
  6285. * reading child->perf_event_ctxp, we wait until it has
  6286. * incremented the context's refcount before we do put_ctx below.
  6287. */
  6288. raw_spin_lock(&child_ctx->lock);
  6289. task_ctx_sched_out(child_ctx);
  6290. child->perf_event_ctxp[ctxn] = NULL;
  6291. /*
  6292. * If this context is a clone; unclone it so it can't get
  6293. * swapped to another process while we're removing all
  6294. * the events from it.
  6295. */
  6296. clone_ctx = unclone_ctx(child_ctx);
  6297. update_context_time(child_ctx);
  6298. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  6299. if (clone_ctx)
  6300. put_ctx(clone_ctx);
  6301. /*
  6302. * Report the task dead after unscheduling the events so that we
  6303. * won't get any samples after PERF_RECORD_EXIT. We can however still
  6304. * get a few PERF_RECORD_READ events.
  6305. */
  6306. perf_event_task(child, child_ctx, 0);
  6307. /*
  6308. * We can recurse on the same lock type through:
  6309. *
  6310. * __perf_event_exit_task()
  6311. * sync_child_event()
  6312. * put_event()
  6313. * mutex_lock(&ctx->mutex)
  6314. *
  6315. * But since its the parent context it won't be the same instance.
  6316. */
  6317. mutex_lock(&child_ctx->mutex);
  6318. list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
  6319. __perf_event_exit_task(child_event, child_ctx, child);
  6320. mutex_unlock(&child_ctx->mutex);
  6321. put_ctx(child_ctx);
  6322. }
  6323. /*
  6324. * When a child task exits, feed back event values to parent events.
  6325. */
  6326. void perf_event_exit_task(struct task_struct *child)
  6327. {
  6328. struct perf_event *event, *tmp;
  6329. int ctxn;
  6330. mutex_lock(&child->perf_event_mutex);
  6331. list_for_each_entry_safe(event, tmp, &child->perf_event_list,
  6332. owner_entry) {
  6333. list_del_init(&event->owner_entry);
  6334. /*
  6335. * Ensure the list deletion is visible before we clear
  6336. * the owner, closes a race against perf_release() where
  6337. * we need to serialize on the owner->perf_event_mutex.
  6338. */
  6339. smp_wmb();
  6340. event->owner = NULL;
  6341. }
  6342. mutex_unlock(&child->perf_event_mutex);
  6343. for_each_task_context_nr(ctxn)
  6344. perf_event_exit_task_context(child, ctxn);
  6345. }
  6346. static void perf_free_event(struct perf_event *event,
  6347. struct perf_event_context *ctx)
  6348. {
  6349. struct perf_event *parent = event->parent;
  6350. if (WARN_ON_ONCE(!parent))
  6351. return;
  6352. mutex_lock(&parent->child_mutex);
  6353. list_del_init(&event->child_list);
  6354. mutex_unlock(&parent->child_mutex);
  6355. put_event(parent);
  6356. perf_group_detach(event);
  6357. list_del_event(event, ctx);
  6358. free_event(event);
  6359. }
  6360. /*
  6361. * free an unexposed, unused context as created by inheritance by
  6362. * perf_event_init_task below, used by fork() in case of fail.
  6363. */
  6364. void perf_event_free_task(struct task_struct *task)
  6365. {
  6366. struct perf_event_context *ctx;
  6367. struct perf_event *event, *tmp;
  6368. int ctxn;
  6369. for_each_task_context_nr(ctxn) {
  6370. ctx = task->perf_event_ctxp[ctxn];
  6371. if (!ctx)
  6372. continue;
  6373. mutex_lock(&ctx->mutex);
  6374. again:
  6375. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
  6376. group_entry)
  6377. perf_free_event(event, ctx);
  6378. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
  6379. group_entry)
  6380. perf_free_event(event, ctx);
  6381. if (!list_empty(&ctx->pinned_groups) ||
  6382. !list_empty(&ctx->flexible_groups))
  6383. goto again;
  6384. mutex_unlock(&ctx->mutex);
  6385. put_ctx(ctx);
  6386. }
  6387. }
  6388. void perf_event_delayed_put(struct task_struct *task)
  6389. {
  6390. int ctxn;
  6391. for_each_task_context_nr(ctxn)
  6392. WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
  6393. }
  6394. /*
  6395. * inherit a event from parent task to child task:
  6396. */
  6397. static struct perf_event *
  6398. inherit_event(struct perf_event *parent_event,
  6399. struct task_struct *parent,
  6400. struct perf_event_context *parent_ctx,
  6401. struct task_struct *child,
  6402. struct perf_event *group_leader,
  6403. struct perf_event_context *child_ctx)
  6404. {
  6405. enum perf_event_active_state parent_state = parent_event->state;
  6406. struct perf_event *child_event;
  6407. unsigned long flags;
  6408. /*
  6409. * Instead of creating recursive hierarchies of events,
  6410. * we link inherited events back to the original parent,
  6411. * which has a filp for sure, which we use as the reference
  6412. * count:
  6413. */
  6414. if (parent_event->parent)
  6415. parent_event = parent_event->parent;
  6416. child_event = perf_event_alloc(&parent_event->attr,
  6417. parent_event->cpu,
  6418. child,
  6419. group_leader, parent_event,
  6420. NULL, NULL);
  6421. if (IS_ERR(child_event))
  6422. return child_event;
  6423. if (is_orphaned_event(parent_event) ||
  6424. !atomic_long_inc_not_zero(&parent_event->refcount)) {
  6425. free_event(child_event);
  6426. return NULL;
  6427. }
  6428. get_ctx(child_ctx);
  6429. /*
  6430. * Make the child state follow the state of the parent event,
  6431. * not its attr.disabled bit. We hold the parent's mutex,
  6432. * so we won't race with perf_event_{en, dis}able_family.
  6433. */
  6434. if (parent_state >= PERF_EVENT_STATE_INACTIVE)
  6435. child_event->state = PERF_EVENT_STATE_INACTIVE;
  6436. else
  6437. child_event->state = PERF_EVENT_STATE_OFF;
  6438. if (parent_event->attr.freq) {
  6439. u64 sample_period = parent_event->hw.sample_period;
  6440. struct hw_perf_event *hwc = &child_event->hw;
  6441. hwc->sample_period = sample_period;
  6442. hwc->last_period = sample_period;
  6443. local64_set(&hwc->period_left, sample_period);
  6444. }
  6445. child_event->ctx = child_ctx;
  6446. child_event->overflow_handler = parent_event->overflow_handler;
  6447. child_event->overflow_handler_context
  6448. = parent_event->overflow_handler_context;
  6449. /*
  6450. * Precalculate sample_data sizes
  6451. */
  6452. perf_event__header_size(child_event);
  6453. perf_event__id_header_size(child_event);
  6454. /*
  6455. * Link it up in the child's context:
  6456. */
  6457. raw_spin_lock_irqsave(&child_ctx->lock, flags);
  6458. add_event_to_ctx(child_event, child_ctx);
  6459. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  6460. /*
  6461. * Link this into the parent event's child list
  6462. */
  6463. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  6464. mutex_lock(&parent_event->child_mutex);
  6465. list_add_tail(&child_event->child_list, &parent_event->child_list);
  6466. mutex_unlock(&parent_event->child_mutex);
  6467. return child_event;
  6468. }
  6469. static int inherit_group(struct perf_event *parent_event,
  6470. struct task_struct *parent,
  6471. struct perf_event_context *parent_ctx,
  6472. struct task_struct *child,
  6473. struct perf_event_context *child_ctx)
  6474. {
  6475. struct perf_event *leader;
  6476. struct perf_event *sub;
  6477. struct perf_event *child_ctr;
  6478. leader = inherit_event(parent_event, parent, parent_ctx,
  6479. child, NULL, child_ctx);
  6480. if (IS_ERR(leader))
  6481. return PTR_ERR(leader);
  6482. list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
  6483. child_ctr = inherit_event(sub, parent, parent_ctx,
  6484. child, leader, child_ctx);
  6485. if (IS_ERR(child_ctr))
  6486. return PTR_ERR(child_ctr);
  6487. }
  6488. return 0;
  6489. }
  6490. static int
  6491. inherit_task_group(struct perf_event *event, struct task_struct *parent,
  6492. struct perf_event_context *parent_ctx,
  6493. struct task_struct *child, int ctxn,
  6494. int *inherited_all)
  6495. {
  6496. int ret;
  6497. struct perf_event_context *child_ctx;
  6498. if (!event->attr.inherit) {
  6499. *inherited_all = 0;
  6500. return 0;
  6501. }
  6502. child_ctx = child->perf_event_ctxp[ctxn];
  6503. if (!child_ctx) {
  6504. /*
  6505. * This is executed from the parent task context, so
  6506. * inherit events that have been marked for cloning.
  6507. * First allocate and initialize a context for the
  6508. * child.
  6509. */
  6510. child_ctx = alloc_perf_context(parent_ctx->pmu, child);
  6511. if (!child_ctx)
  6512. return -ENOMEM;
  6513. child->perf_event_ctxp[ctxn] = child_ctx;
  6514. }
  6515. ret = inherit_group(event, parent, parent_ctx,
  6516. child, child_ctx);
  6517. if (ret)
  6518. *inherited_all = 0;
  6519. return ret;
  6520. }
  6521. /*
  6522. * Initialize the perf_event context in task_struct
  6523. */
  6524. static int perf_event_init_context(struct task_struct *child, int ctxn)
  6525. {
  6526. struct perf_event_context *child_ctx, *parent_ctx;
  6527. struct perf_event_context *cloned_ctx;
  6528. struct perf_event *event;
  6529. struct task_struct *parent = current;
  6530. int inherited_all = 1;
  6531. unsigned long flags;
  6532. int ret = 0;
  6533. if (likely(!parent->perf_event_ctxp[ctxn]))
  6534. return 0;
  6535. /*
  6536. * If the parent's context is a clone, pin it so it won't get
  6537. * swapped under us.
  6538. */
  6539. parent_ctx = perf_pin_task_context(parent, ctxn);
  6540. if (!parent_ctx)
  6541. return 0;
  6542. /*
  6543. * No need to check if parent_ctx != NULL here; since we saw
  6544. * it non-NULL earlier, the only reason for it to become NULL
  6545. * is if we exit, and since we're currently in the middle of
  6546. * a fork we can't be exiting at the same time.
  6547. */
  6548. /*
  6549. * Lock the parent list. No need to lock the child - not PID
  6550. * hashed yet and not running, so nobody can access it.
  6551. */
  6552. mutex_lock(&parent_ctx->mutex);
  6553. /*
  6554. * We dont have to disable NMIs - we are only looking at
  6555. * the list, not manipulating it:
  6556. */
  6557. list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
  6558. ret = inherit_task_group(event, parent, parent_ctx,
  6559. child, ctxn, &inherited_all);
  6560. if (ret)
  6561. break;
  6562. }
  6563. /*
  6564. * We can't hold ctx->lock when iterating the ->flexible_group list due
  6565. * to allocations, but we need to prevent rotation because
  6566. * rotate_ctx() will change the list from interrupt context.
  6567. */
  6568. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  6569. parent_ctx->rotate_disable = 1;
  6570. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  6571. list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
  6572. ret = inherit_task_group(event, parent, parent_ctx,
  6573. child, ctxn, &inherited_all);
  6574. if (ret)
  6575. break;
  6576. }
  6577. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  6578. parent_ctx->rotate_disable = 0;
  6579. child_ctx = child->perf_event_ctxp[ctxn];
  6580. if (child_ctx && inherited_all) {
  6581. /*
  6582. * Mark the child context as a clone of the parent
  6583. * context, or of whatever the parent is a clone of.
  6584. *
  6585. * Note that if the parent is a clone, the holding of
  6586. * parent_ctx->lock avoids it from being uncloned.
  6587. */
  6588. cloned_ctx = parent_ctx->parent_ctx;
  6589. if (cloned_ctx) {
  6590. child_ctx->parent_ctx = cloned_ctx;
  6591. child_ctx->parent_gen = parent_ctx->parent_gen;
  6592. } else {
  6593. child_ctx->parent_ctx = parent_ctx;
  6594. child_ctx->parent_gen = parent_ctx->generation;
  6595. }
  6596. get_ctx(child_ctx->parent_ctx);
  6597. }
  6598. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  6599. mutex_unlock(&parent_ctx->mutex);
  6600. perf_unpin_context(parent_ctx);
  6601. put_ctx(parent_ctx);
  6602. return ret;
  6603. }
  6604. /*
  6605. * Initialize the perf_event context in task_struct
  6606. */
  6607. int perf_event_init_task(struct task_struct *child)
  6608. {
  6609. int ctxn, ret;
  6610. memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
  6611. mutex_init(&child->perf_event_mutex);
  6612. INIT_LIST_HEAD(&child->perf_event_list);
  6613. for_each_task_context_nr(ctxn) {
  6614. ret = perf_event_init_context(child, ctxn);
  6615. if (ret) {
  6616. perf_event_free_task(child);
  6617. return ret;
  6618. }
  6619. }
  6620. return 0;
  6621. }
  6622. static void __init perf_event_init_all_cpus(void)
  6623. {
  6624. struct swevent_htable *swhash;
  6625. int cpu;
  6626. for_each_possible_cpu(cpu) {
  6627. swhash = &per_cpu(swevent_htable, cpu);
  6628. mutex_init(&swhash->hlist_mutex);
  6629. INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
  6630. }
  6631. }
  6632. static void perf_event_init_cpu(int cpu)
  6633. {
  6634. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  6635. mutex_lock(&swhash->hlist_mutex);
  6636. swhash->online = true;
  6637. if (swhash->hlist_refcount > 0) {
  6638. struct swevent_hlist *hlist;
  6639. hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
  6640. WARN_ON(!hlist);
  6641. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  6642. }
  6643. mutex_unlock(&swhash->hlist_mutex);
  6644. }
  6645. #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
  6646. static void perf_pmu_rotate_stop(struct pmu *pmu)
  6647. {
  6648. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  6649. WARN_ON(!irqs_disabled());
  6650. list_del_init(&cpuctx->rotation_list);
  6651. }
  6652. static void __perf_event_exit_context(void *__info)
  6653. {
  6654. struct remove_event re = { .detach_group = false };
  6655. struct perf_event_context *ctx = __info;
  6656. perf_pmu_rotate_stop(ctx->pmu);
  6657. rcu_read_lock();
  6658. list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
  6659. __perf_remove_from_context(&re);
  6660. rcu_read_unlock();
  6661. }
  6662. static void perf_event_exit_cpu_context(int cpu)
  6663. {
  6664. struct perf_event_context *ctx;
  6665. struct pmu *pmu;
  6666. int idx;
  6667. idx = srcu_read_lock(&pmus_srcu);
  6668. list_for_each_entry_rcu(pmu, &pmus, entry) {
  6669. ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
  6670. mutex_lock(&ctx->mutex);
  6671. smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
  6672. mutex_unlock(&ctx->mutex);
  6673. }
  6674. srcu_read_unlock(&pmus_srcu, idx);
  6675. }
  6676. static void perf_event_exit_cpu(int cpu)
  6677. {
  6678. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  6679. perf_event_exit_cpu_context(cpu);
  6680. mutex_lock(&swhash->hlist_mutex);
  6681. swhash->online = false;
  6682. swevent_hlist_release(swhash);
  6683. mutex_unlock(&swhash->hlist_mutex);
  6684. }
  6685. #else
  6686. static inline void perf_event_exit_cpu(int cpu) { }
  6687. #endif
  6688. static int
  6689. perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
  6690. {
  6691. int cpu;
  6692. for_each_online_cpu(cpu)
  6693. perf_event_exit_cpu(cpu);
  6694. return NOTIFY_OK;
  6695. }
  6696. /*
  6697. * Run the perf reboot notifier at the very last possible moment so that
  6698. * the generic watchdog code runs as long as possible.
  6699. */
  6700. static struct notifier_block perf_reboot_notifier = {
  6701. .notifier_call = perf_reboot,
  6702. .priority = INT_MIN,
  6703. };
  6704. static int
  6705. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  6706. {
  6707. unsigned int cpu = (long)hcpu;
  6708. switch (action & ~CPU_TASKS_FROZEN) {
  6709. case CPU_UP_PREPARE:
  6710. case CPU_DOWN_FAILED:
  6711. perf_event_init_cpu(cpu);
  6712. break;
  6713. case CPU_UP_CANCELED:
  6714. case CPU_DOWN_PREPARE:
  6715. perf_event_exit_cpu(cpu);
  6716. break;
  6717. default:
  6718. break;
  6719. }
  6720. return NOTIFY_OK;
  6721. }
  6722. void __init perf_event_init(void)
  6723. {
  6724. int ret;
  6725. idr_init(&pmu_idr);
  6726. perf_event_init_all_cpus();
  6727. init_srcu_struct(&pmus_srcu);
  6728. perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
  6729. perf_pmu_register(&perf_cpu_clock, NULL, -1);
  6730. perf_pmu_register(&perf_task_clock, NULL, -1);
  6731. perf_tp_register();
  6732. perf_cpu_notifier(perf_cpu_notify);
  6733. register_reboot_notifier(&perf_reboot_notifier);
  6734. ret = init_hw_breakpoint();
  6735. WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
  6736. /* do not patch jump label more than once per second */
  6737. jump_label_rate_limit(&perf_sched_events, HZ);
  6738. /*
  6739. * Build time assertion that we keep the data_head at the intended
  6740. * location. IOW, validation we got the __reserved[] size right.
  6741. */
  6742. BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
  6743. != 1024);
  6744. }
  6745. static int __init perf_event_sysfs_init(void)
  6746. {
  6747. struct pmu *pmu;
  6748. int ret;
  6749. mutex_lock(&pmus_lock);
  6750. ret = bus_register(&pmu_bus);
  6751. if (ret)
  6752. goto unlock;
  6753. list_for_each_entry(pmu, &pmus, entry) {
  6754. if (!pmu->name || pmu->type < 0)
  6755. continue;
  6756. ret = pmu_dev_alloc(pmu);
  6757. WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
  6758. }
  6759. pmu_bus_running = 1;
  6760. ret = 0;
  6761. unlock:
  6762. mutex_unlock(&pmus_lock);
  6763. return ret;
  6764. }
  6765. device_initcall(perf_event_sysfs_init);
  6766. #ifdef CONFIG_CGROUP_PERF
  6767. static struct cgroup_subsys_state *
  6768. perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6769. {
  6770. struct perf_cgroup *jc;
  6771. jc = kzalloc(sizeof(*jc), GFP_KERNEL);
  6772. if (!jc)
  6773. return ERR_PTR(-ENOMEM);
  6774. jc->info = alloc_percpu(struct perf_cgroup_info);
  6775. if (!jc->info) {
  6776. kfree(jc);
  6777. return ERR_PTR(-ENOMEM);
  6778. }
  6779. return &jc->css;
  6780. }
  6781. static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
  6782. {
  6783. struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
  6784. free_percpu(jc->info);
  6785. kfree(jc);
  6786. }
  6787. static int __perf_cgroup_move(void *info)
  6788. {
  6789. struct task_struct *task = info;
  6790. perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
  6791. return 0;
  6792. }
  6793. static void perf_cgroup_attach(struct cgroup_subsys_state *css,
  6794. struct cgroup_taskset *tset)
  6795. {
  6796. struct task_struct *task;
  6797. cgroup_taskset_for_each(task, tset)
  6798. task_function_call(task, __perf_cgroup_move, task);
  6799. }
  6800. static void perf_cgroup_exit(struct cgroup_subsys_state *css,
  6801. struct cgroup_subsys_state *old_css,
  6802. struct task_struct *task)
  6803. {
  6804. /*
  6805. * cgroup_exit() is called in the copy_process() failure path.
  6806. * Ignore this case since the task hasn't ran yet, this avoids
  6807. * trying to poke a half freed task state from generic code.
  6808. */
  6809. if (!(task->flags & PF_EXITING))
  6810. return;
  6811. task_function_call(task, __perf_cgroup_move, task);
  6812. }
  6813. struct cgroup_subsys perf_event_cgrp_subsys = {
  6814. .css_alloc = perf_cgroup_css_alloc,
  6815. .css_free = perf_cgroup_css_free,
  6816. .exit = perf_cgroup_exit,
  6817. .attach = perf_cgroup_attach,
  6818. };
  6819. #endif /* CONFIG_CGROUP_PERF */