bcache.h 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _BCACHE_H
  3. #define _BCACHE_H
  4. /*
  5. * SOME HIGH LEVEL CODE DOCUMENTATION:
  6. *
  7. * Bcache mostly works with cache sets, cache devices, and backing devices.
  8. *
  9. * Support for multiple cache devices hasn't quite been finished off yet, but
  10. * it's about 95% plumbed through. A cache set and its cache devices is sort of
  11. * like a md raid array and its component devices. Most of the code doesn't care
  12. * about individual cache devices, the main abstraction is the cache set.
  13. *
  14. * Multiple cache devices is intended to give us the ability to mirror dirty
  15. * cached data and metadata, without mirroring clean cached data.
  16. *
  17. * Backing devices are different, in that they have a lifetime independent of a
  18. * cache set. When you register a newly formatted backing device it'll come up
  19. * in passthrough mode, and then you can attach and detach a backing device from
  20. * a cache set at runtime - while it's mounted and in use. Detaching implicitly
  21. * invalidates any cached data for that backing device.
  22. *
  23. * A cache set can have multiple (many) backing devices attached to it.
  24. *
  25. * There's also flash only volumes - this is the reason for the distinction
  26. * between struct cached_dev and struct bcache_device. A flash only volume
  27. * works much like a bcache device that has a backing device, except the
  28. * "cached" data is always dirty. The end result is that we get thin
  29. * provisioning with very little additional code.
  30. *
  31. * Flash only volumes work but they're not production ready because the moving
  32. * garbage collector needs more work. More on that later.
  33. *
  34. * BUCKETS/ALLOCATION:
  35. *
  36. * Bcache is primarily designed for caching, which means that in normal
  37. * operation all of our available space will be allocated. Thus, we need an
  38. * efficient way of deleting things from the cache so we can write new things to
  39. * it.
  40. *
  41. * To do this, we first divide the cache device up into buckets. A bucket is the
  42. * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
  43. * works efficiently.
  44. *
  45. * Each bucket has a 16 bit priority, and an 8 bit generation associated with
  46. * it. The gens and priorities for all the buckets are stored contiguously and
  47. * packed on disk (in a linked list of buckets - aside from the superblock, all
  48. * of bcache's metadata is stored in buckets).
  49. *
  50. * The priority is used to implement an LRU. We reset a bucket's priority when
  51. * we allocate it or on cache it, and every so often we decrement the priority
  52. * of each bucket. It could be used to implement something more sophisticated,
  53. * if anyone ever gets around to it.
  54. *
  55. * The generation is used for invalidating buckets. Each pointer also has an 8
  56. * bit generation embedded in it; for a pointer to be considered valid, its gen
  57. * must match the gen of the bucket it points into. Thus, to reuse a bucket all
  58. * we have to do is increment its gen (and write its new gen to disk; we batch
  59. * this up).
  60. *
  61. * Bcache is entirely COW - we never write twice to a bucket, even buckets that
  62. * contain metadata (including btree nodes).
  63. *
  64. * THE BTREE:
  65. *
  66. * Bcache is in large part design around the btree.
  67. *
  68. * At a high level, the btree is just an index of key -> ptr tuples.
  69. *
  70. * Keys represent extents, and thus have a size field. Keys also have a variable
  71. * number of pointers attached to them (potentially zero, which is handy for
  72. * invalidating the cache).
  73. *
  74. * The key itself is an inode:offset pair. The inode number corresponds to a
  75. * backing device or a flash only volume. The offset is the ending offset of the
  76. * extent within the inode - not the starting offset; this makes lookups
  77. * slightly more convenient.
  78. *
  79. * Pointers contain the cache device id, the offset on that device, and an 8 bit
  80. * generation number. More on the gen later.
  81. *
  82. * Index lookups are not fully abstracted - cache lookups in particular are
  83. * still somewhat mixed in with the btree code, but things are headed in that
  84. * direction.
  85. *
  86. * Updates are fairly well abstracted, though. There are two different ways of
  87. * updating the btree; insert and replace.
  88. *
  89. * BTREE_INSERT will just take a list of keys and insert them into the btree -
  90. * overwriting (possibly only partially) any extents they overlap with. This is
  91. * used to update the index after a write.
  92. *
  93. * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
  94. * overwriting a key that matches another given key. This is used for inserting
  95. * data into the cache after a cache miss, and for background writeback, and for
  96. * the moving garbage collector.
  97. *
  98. * There is no "delete" operation; deleting things from the index is
  99. * accomplished by either by invalidating pointers (by incrementing a bucket's
  100. * gen) or by inserting a key with 0 pointers - which will overwrite anything
  101. * previously present at that location in the index.
  102. *
  103. * This means that there are always stale/invalid keys in the btree. They're
  104. * filtered out by the code that iterates through a btree node, and removed when
  105. * a btree node is rewritten.
  106. *
  107. * BTREE NODES:
  108. *
  109. * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
  110. * free smaller than a bucket - so, that's how big our btree nodes are.
  111. *
  112. * (If buckets are really big we'll only use part of the bucket for a btree node
  113. * - no less than 1/4th - but a bucket still contains no more than a single
  114. * btree node. I'd actually like to change this, but for now we rely on the
  115. * bucket's gen for deleting btree nodes when we rewrite/split a node.)
  116. *
  117. * Anyways, btree nodes are big - big enough to be inefficient with a textbook
  118. * btree implementation.
  119. *
  120. * The way this is solved is that btree nodes are internally log structured; we
  121. * can append new keys to an existing btree node without rewriting it. This
  122. * means each set of keys we write is sorted, but the node is not.
  123. *
  124. * We maintain this log structure in memory - keeping 1Mb of keys sorted would
  125. * be expensive, and we have to distinguish between the keys we have written and
  126. * the keys we haven't. So to do a lookup in a btree node, we have to search
  127. * each sorted set. But we do merge written sets together lazily, so the cost of
  128. * these extra searches is quite low (normally most of the keys in a btree node
  129. * will be in one big set, and then there'll be one or two sets that are much
  130. * smaller).
  131. *
  132. * This log structure makes bcache's btree more of a hybrid between a
  133. * conventional btree and a compacting data structure, with some of the
  134. * advantages of both.
  135. *
  136. * GARBAGE COLLECTION:
  137. *
  138. * We can't just invalidate any bucket - it might contain dirty data or
  139. * metadata. If it once contained dirty data, other writes might overwrite it
  140. * later, leaving no valid pointers into that bucket in the index.
  141. *
  142. * Thus, the primary purpose of garbage collection is to find buckets to reuse.
  143. * It also counts how much valid data it each bucket currently contains, so that
  144. * allocation can reuse buckets sooner when they've been mostly overwritten.
  145. *
  146. * It also does some things that are really internal to the btree
  147. * implementation. If a btree node contains pointers that are stale by more than
  148. * some threshold, it rewrites the btree node to avoid the bucket's generation
  149. * wrapping around. It also merges adjacent btree nodes if they're empty enough.
  150. *
  151. * THE JOURNAL:
  152. *
  153. * Bcache's journal is not necessary for consistency; we always strictly
  154. * order metadata writes so that the btree and everything else is consistent on
  155. * disk in the event of an unclean shutdown, and in fact bcache had writeback
  156. * caching (with recovery from unclean shutdown) before journalling was
  157. * implemented.
  158. *
  159. * Rather, the journal is purely a performance optimization; we can't complete a
  160. * write until we've updated the index on disk, otherwise the cache would be
  161. * inconsistent in the event of an unclean shutdown. This means that without the
  162. * journal, on random write workloads we constantly have to update all the leaf
  163. * nodes in the btree, and those writes will be mostly empty (appending at most
  164. * a few keys each) - highly inefficient in terms of amount of metadata writes,
  165. * and it puts more strain on the various btree resorting/compacting code.
  166. *
  167. * The journal is just a log of keys we've inserted; on startup we just reinsert
  168. * all the keys in the open journal entries. That means that when we're updating
  169. * a node in the btree, we can wait until a 4k block of keys fills up before
  170. * writing them out.
  171. *
  172. * For simplicity, we only journal updates to leaf nodes; updates to parent
  173. * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
  174. * the complexity to deal with journalling them (in particular, journal replay)
  175. * - updates to non leaf nodes just happen synchronously (see btree_split()).
  176. */
  177. #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
  178. #include <linux/bcache.h>
  179. #include <linux/bio.h>
  180. #include <linux/kobject.h>
  181. #include <linux/list.h>
  182. #include <linux/mutex.h>
  183. #include <linux/rbtree.h>
  184. #include <linux/rwsem.h>
  185. #include <linux/refcount.h>
  186. #include <linux/types.h>
  187. #include <linux/workqueue.h>
  188. #include "bset.h"
  189. #include "util.h"
  190. #include "closure.h"
  191. struct bucket {
  192. atomic_t pin;
  193. uint16_t prio;
  194. uint8_t gen;
  195. uint8_t last_gc; /* Most out of date gen in the btree */
  196. uint16_t gc_mark; /* Bitfield used by GC. See below for field */
  197. };
  198. /*
  199. * I'd use bitfields for these, but I don't trust the compiler not to screw me
  200. * as multiple threads touch struct bucket without locking
  201. */
  202. BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2);
  203. #define GC_MARK_RECLAIMABLE 1
  204. #define GC_MARK_DIRTY 2
  205. #define GC_MARK_METADATA 3
  206. #define GC_SECTORS_USED_SIZE 13
  207. #define MAX_GC_SECTORS_USED (~(~0ULL << GC_SECTORS_USED_SIZE))
  208. BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
  209. BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
  210. #include "journal.h"
  211. #include "stats.h"
  212. struct search;
  213. struct btree;
  214. struct keybuf;
  215. struct keybuf_key {
  216. struct rb_node node;
  217. BKEY_PADDED(key);
  218. void *private;
  219. };
  220. struct keybuf {
  221. struct bkey last_scanned;
  222. spinlock_t lock;
  223. /*
  224. * Beginning and end of range in rb tree - so that we can skip taking
  225. * lock and checking the rb tree when we need to check for overlapping
  226. * keys.
  227. */
  228. struct bkey start;
  229. struct bkey end;
  230. struct rb_root keys;
  231. #define KEYBUF_NR 500
  232. DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
  233. };
  234. struct bcache_device {
  235. struct closure cl;
  236. struct kobject kobj;
  237. struct cache_set *c;
  238. unsigned id;
  239. #define BCACHEDEVNAME_SIZE 12
  240. char name[BCACHEDEVNAME_SIZE];
  241. struct gendisk *disk;
  242. unsigned long flags;
  243. #define BCACHE_DEV_CLOSING 0
  244. #define BCACHE_DEV_DETACHING 1
  245. #define BCACHE_DEV_UNLINK_DONE 2
  246. unsigned nr_stripes;
  247. unsigned stripe_size;
  248. atomic_t *stripe_sectors_dirty;
  249. unsigned long *full_dirty_stripes;
  250. struct bio_set *bio_split;
  251. unsigned data_csum:1;
  252. int (*cache_miss)(struct btree *, struct search *,
  253. struct bio *, unsigned);
  254. int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
  255. };
  256. struct io {
  257. /* Used to track sequential IO so it can be skipped */
  258. struct hlist_node hash;
  259. struct list_head lru;
  260. unsigned long jiffies;
  261. unsigned sequential;
  262. sector_t last;
  263. };
  264. struct cached_dev {
  265. struct list_head list;
  266. struct bcache_device disk;
  267. struct block_device *bdev;
  268. struct cache_sb sb;
  269. struct bio sb_bio;
  270. struct bio_vec sb_bv[1];
  271. struct closure sb_write;
  272. struct semaphore sb_write_mutex;
  273. /* Refcount on the cache set. Always nonzero when we're caching. */
  274. refcount_t count;
  275. struct work_struct detach;
  276. /*
  277. * Device might not be running if it's dirty and the cache set hasn't
  278. * showed up yet.
  279. */
  280. atomic_t running;
  281. /*
  282. * Writes take a shared lock from start to finish; scanning for dirty
  283. * data to refill the rb tree requires an exclusive lock.
  284. */
  285. struct rw_semaphore writeback_lock;
  286. /*
  287. * Nonzero, and writeback has a refcount (d->count), iff there is dirty
  288. * data in the cache. Protected by writeback_lock; must have an
  289. * shared lock to set and exclusive lock to clear.
  290. */
  291. atomic_t has_dirty;
  292. struct bch_ratelimit writeback_rate;
  293. struct delayed_work writeback_rate_update;
  294. /*
  295. * Internal to the writeback code, so read_dirty() can keep track of
  296. * where it's at.
  297. */
  298. sector_t last_read;
  299. /* Limit number of writeback bios in flight */
  300. struct semaphore in_flight;
  301. struct task_struct *writeback_thread;
  302. struct workqueue_struct *writeback_write_wq;
  303. struct keybuf writeback_keys;
  304. /* For tracking sequential IO */
  305. #define RECENT_IO_BITS 7
  306. #define RECENT_IO (1 << RECENT_IO_BITS)
  307. struct io io[RECENT_IO];
  308. struct hlist_head io_hash[RECENT_IO + 1];
  309. struct list_head io_lru;
  310. spinlock_t io_lock;
  311. struct cache_accounting accounting;
  312. /* The rest of this all shows up in sysfs */
  313. unsigned sequential_cutoff;
  314. unsigned readahead;
  315. unsigned verify:1;
  316. unsigned bypass_torture_test:1;
  317. unsigned partial_stripes_expensive:1;
  318. unsigned writeback_metadata:1;
  319. unsigned writeback_running:1;
  320. unsigned char writeback_percent;
  321. unsigned writeback_delay;
  322. uint64_t writeback_rate_target;
  323. int64_t writeback_rate_proportional;
  324. int64_t writeback_rate_integral;
  325. int64_t writeback_rate_integral_scaled;
  326. int32_t writeback_rate_change;
  327. unsigned writeback_rate_update_seconds;
  328. unsigned writeback_rate_i_term_inverse;
  329. unsigned writeback_rate_p_term_inverse;
  330. unsigned writeback_rate_minimum;
  331. };
  332. enum alloc_reserve {
  333. RESERVE_BTREE,
  334. RESERVE_PRIO,
  335. RESERVE_MOVINGGC,
  336. RESERVE_NONE,
  337. RESERVE_NR,
  338. };
  339. struct cache {
  340. struct cache_set *set;
  341. struct cache_sb sb;
  342. struct bio sb_bio;
  343. struct bio_vec sb_bv[1];
  344. struct kobject kobj;
  345. struct block_device *bdev;
  346. struct task_struct *alloc_thread;
  347. struct closure prio;
  348. struct prio_set *disk_buckets;
  349. /*
  350. * When allocating new buckets, prio_write() gets first dibs - since we
  351. * may not be allocate at all without writing priorities and gens.
  352. * prio_buckets[] contains the last buckets we wrote priorities to (so
  353. * gc can mark them as metadata), prio_next[] contains the buckets
  354. * allocated for the next prio write.
  355. */
  356. uint64_t *prio_buckets;
  357. uint64_t *prio_last_buckets;
  358. /*
  359. * free: Buckets that are ready to be used
  360. *
  361. * free_inc: Incoming buckets - these are buckets that currently have
  362. * cached data in them, and we can't reuse them until after we write
  363. * their new gen to disk. After prio_write() finishes writing the new
  364. * gens/prios, they'll be moved to the free list (and possibly discarded
  365. * in the process)
  366. */
  367. DECLARE_FIFO(long, free)[RESERVE_NR];
  368. DECLARE_FIFO(long, free_inc);
  369. size_t fifo_last_bucket;
  370. /* Allocation stuff: */
  371. struct bucket *buckets;
  372. DECLARE_HEAP(struct bucket *, heap);
  373. /*
  374. * If nonzero, we know we aren't going to find any buckets to invalidate
  375. * until a gc finishes - otherwise we could pointlessly burn a ton of
  376. * cpu
  377. */
  378. unsigned invalidate_needs_gc;
  379. bool discard; /* Get rid of? */
  380. struct journal_device journal;
  381. /* The rest of this all shows up in sysfs */
  382. #define IO_ERROR_SHIFT 20
  383. atomic_t io_errors;
  384. atomic_t io_count;
  385. atomic_long_t meta_sectors_written;
  386. atomic_long_t btree_sectors_written;
  387. atomic_long_t sectors_written;
  388. };
  389. struct gc_stat {
  390. size_t nodes;
  391. size_t key_bytes;
  392. size_t nkeys;
  393. uint64_t data; /* sectors */
  394. unsigned in_use; /* percent */
  395. };
  396. /*
  397. * Flag bits, for how the cache set is shutting down, and what phase it's at:
  398. *
  399. * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
  400. * all the backing devices first (their cached data gets invalidated, and they
  401. * won't automatically reattach).
  402. *
  403. * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
  404. * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
  405. * flushing dirty data).
  406. *
  407. * CACHE_SET_RUNNING means all cache devices have been registered and journal
  408. * replay is complete.
  409. */
  410. #define CACHE_SET_UNREGISTERING 0
  411. #define CACHE_SET_STOPPING 1
  412. #define CACHE_SET_RUNNING 2
  413. struct cache_set {
  414. struct closure cl;
  415. struct list_head list;
  416. struct kobject kobj;
  417. struct kobject internal;
  418. struct dentry *debug;
  419. struct cache_accounting accounting;
  420. unsigned long flags;
  421. struct cache_sb sb;
  422. struct cache *cache[MAX_CACHES_PER_SET];
  423. struct cache *cache_by_alloc[MAX_CACHES_PER_SET];
  424. int caches_loaded;
  425. struct bcache_device **devices;
  426. struct list_head cached_devs;
  427. uint64_t cached_dev_sectors;
  428. struct closure caching;
  429. struct closure sb_write;
  430. struct semaphore sb_write_mutex;
  431. mempool_t *search;
  432. mempool_t *bio_meta;
  433. struct bio_set *bio_split;
  434. /* For the btree cache */
  435. struct shrinker shrink;
  436. /* For the btree cache and anything allocation related */
  437. struct mutex bucket_lock;
  438. /* log2(bucket_size), in sectors */
  439. unsigned short bucket_bits;
  440. /* log2(block_size), in sectors */
  441. unsigned short block_bits;
  442. /*
  443. * Default number of pages for a new btree node - may be less than a
  444. * full bucket
  445. */
  446. unsigned btree_pages;
  447. /*
  448. * Lists of struct btrees; lru is the list for structs that have memory
  449. * allocated for actual btree node, freed is for structs that do not.
  450. *
  451. * We never free a struct btree, except on shutdown - we just put it on
  452. * the btree_cache_freed list and reuse it later. This simplifies the
  453. * code, and it doesn't cost us much memory as the memory usage is
  454. * dominated by buffers that hold the actual btree node data and those
  455. * can be freed - and the number of struct btrees allocated is
  456. * effectively bounded.
  457. *
  458. * btree_cache_freeable effectively is a small cache - we use it because
  459. * high order page allocations can be rather expensive, and it's quite
  460. * common to delete and allocate btree nodes in quick succession. It
  461. * should never grow past ~2-3 nodes in practice.
  462. */
  463. struct list_head btree_cache;
  464. struct list_head btree_cache_freeable;
  465. struct list_head btree_cache_freed;
  466. /* Number of elements in btree_cache + btree_cache_freeable lists */
  467. unsigned btree_cache_used;
  468. /*
  469. * If we need to allocate memory for a new btree node and that
  470. * allocation fails, we can cannibalize another node in the btree cache
  471. * to satisfy the allocation - lock to guarantee only one thread does
  472. * this at a time:
  473. */
  474. wait_queue_head_t btree_cache_wait;
  475. struct task_struct *btree_cache_alloc_lock;
  476. /*
  477. * When we free a btree node, we increment the gen of the bucket the
  478. * node is in - but we can't rewrite the prios and gens until we
  479. * finished whatever it is we were doing, otherwise after a crash the
  480. * btree node would be freed but for say a split, we might not have the
  481. * pointers to the new nodes inserted into the btree yet.
  482. *
  483. * This is a refcount that blocks prio_write() until the new keys are
  484. * written.
  485. */
  486. atomic_t prio_blocked;
  487. wait_queue_head_t bucket_wait;
  488. /*
  489. * For any bio we don't skip we subtract the number of sectors from
  490. * rescale; when it hits 0 we rescale all the bucket priorities.
  491. */
  492. atomic_t rescale;
  493. /*
  494. * When we invalidate buckets, we use both the priority and the amount
  495. * of good data to determine which buckets to reuse first - to weight
  496. * those together consistently we keep track of the smallest nonzero
  497. * priority of any bucket.
  498. */
  499. uint16_t min_prio;
  500. /*
  501. * max(gen - last_gc) for all buckets. When it gets too big we have to gc
  502. * to keep gens from wrapping around.
  503. */
  504. uint8_t need_gc;
  505. struct gc_stat gc_stats;
  506. size_t nbuckets;
  507. size_t avail_nbuckets;
  508. struct task_struct *gc_thread;
  509. /* Where in the btree gc currently is */
  510. struct bkey gc_done;
  511. /*
  512. * The allocation code needs gc_mark in struct bucket to be correct, but
  513. * it's not while a gc is in progress. Protected by bucket_lock.
  514. */
  515. int gc_mark_valid;
  516. /* Counts how many sectors bio_insert has added to the cache */
  517. atomic_t sectors_to_gc;
  518. wait_queue_head_t gc_wait;
  519. struct keybuf moving_gc_keys;
  520. /* Number of moving GC bios in flight */
  521. struct semaphore moving_in_flight;
  522. struct workqueue_struct *moving_gc_wq;
  523. struct btree *root;
  524. #ifdef CONFIG_BCACHE_DEBUG
  525. struct btree *verify_data;
  526. struct bset *verify_ondisk;
  527. struct mutex verify_lock;
  528. #endif
  529. unsigned nr_uuids;
  530. struct uuid_entry *uuids;
  531. BKEY_PADDED(uuid_bucket);
  532. struct closure uuid_write;
  533. struct semaphore uuid_write_mutex;
  534. /*
  535. * A btree node on disk could have too many bsets for an iterator to fit
  536. * on the stack - have to dynamically allocate them
  537. */
  538. mempool_t *fill_iter;
  539. struct bset_sort_state sort;
  540. /* List of buckets we're currently writing data to */
  541. struct list_head data_buckets;
  542. spinlock_t data_bucket_lock;
  543. struct journal journal;
  544. #define CONGESTED_MAX 1024
  545. unsigned congested_last_us;
  546. atomic_t congested;
  547. /* The rest of this all shows up in sysfs */
  548. unsigned congested_read_threshold_us;
  549. unsigned congested_write_threshold_us;
  550. struct time_stats btree_gc_time;
  551. struct time_stats btree_split_time;
  552. struct time_stats btree_read_time;
  553. atomic_long_t cache_read_races;
  554. atomic_long_t writeback_keys_done;
  555. atomic_long_t writeback_keys_failed;
  556. enum {
  557. ON_ERROR_UNREGISTER,
  558. ON_ERROR_PANIC,
  559. } on_error;
  560. unsigned error_limit;
  561. unsigned error_decay;
  562. unsigned short journal_delay_ms;
  563. bool expensive_debug_checks;
  564. unsigned verify:1;
  565. unsigned key_merging_disabled:1;
  566. unsigned gc_always_rewrite:1;
  567. unsigned shrinker_disabled:1;
  568. unsigned copy_gc_enabled:1;
  569. #define BUCKET_HASH_BITS 12
  570. struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS];
  571. };
  572. struct bbio {
  573. unsigned submit_time_us;
  574. union {
  575. struct bkey key;
  576. uint64_t _pad[3];
  577. /*
  578. * We only need pad = 3 here because we only ever carry around a
  579. * single pointer - i.e. the pointer we're doing io to/from.
  580. */
  581. };
  582. struct bio bio;
  583. };
  584. #define BTREE_PRIO USHRT_MAX
  585. #define INITIAL_PRIO 32768U
  586. #define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE)
  587. #define btree_blocks(b) \
  588. ((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
  589. #define btree_default_blocks(c) \
  590. ((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
  591. #define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS)
  592. #define bucket_bytes(c) ((c)->sb.bucket_size << 9)
  593. #define block_bytes(c) ((c)->sb.block_size << 9)
  594. #define prios_per_bucket(c) \
  595. ((bucket_bytes(c) - sizeof(struct prio_set)) / \
  596. sizeof(struct bucket_disk))
  597. #define prio_buckets(c) \
  598. DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
  599. static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
  600. {
  601. return s >> c->bucket_bits;
  602. }
  603. static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
  604. {
  605. return ((sector_t) b) << c->bucket_bits;
  606. }
  607. static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
  608. {
  609. return s & (c->sb.bucket_size - 1);
  610. }
  611. static inline struct cache *PTR_CACHE(struct cache_set *c,
  612. const struct bkey *k,
  613. unsigned ptr)
  614. {
  615. return c->cache[PTR_DEV(k, ptr)];
  616. }
  617. static inline size_t PTR_BUCKET_NR(struct cache_set *c,
  618. const struct bkey *k,
  619. unsigned ptr)
  620. {
  621. return sector_to_bucket(c, PTR_OFFSET(k, ptr));
  622. }
  623. static inline struct bucket *PTR_BUCKET(struct cache_set *c,
  624. const struct bkey *k,
  625. unsigned ptr)
  626. {
  627. return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
  628. }
  629. static inline uint8_t gen_after(uint8_t a, uint8_t b)
  630. {
  631. uint8_t r = a - b;
  632. return r > 128U ? 0 : r;
  633. }
  634. static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
  635. unsigned i)
  636. {
  637. return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
  638. }
  639. static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
  640. unsigned i)
  641. {
  642. return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
  643. }
  644. /* Btree key macros */
  645. /*
  646. * This is used for various on disk data structures - cache_sb, prio_set, bset,
  647. * jset: The checksum is _always_ the first 8 bytes of these structs
  648. */
  649. #define csum_set(i) \
  650. bch_crc64(((void *) (i)) + sizeof(uint64_t), \
  651. ((void *) bset_bkey_last(i)) - \
  652. (((void *) (i)) + sizeof(uint64_t)))
  653. /* Error handling macros */
  654. #define btree_bug(b, ...) \
  655. do { \
  656. if (bch_cache_set_error((b)->c, __VA_ARGS__)) \
  657. dump_stack(); \
  658. } while (0)
  659. #define cache_bug(c, ...) \
  660. do { \
  661. if (bch_cache_set_error(c, __VA_ARGS__)) \
  662. dump_stack(); \
  663. } while (0)
  664. #define btree_bug_on(cond, b, ...) \
  665. do { \
  666. if (cond) \
  667. btree_bug(b, __VA_ARGS__); \
  668. } while (0)
  669. #define cache_bug_on(cond, c, ...) \
  670. do { \
  671. if (cond) \
  672. cache_bug(c, __VA_ARGS__); \
  673. } while (0)
  674. #define cache_set_err_on(cond, c, ...) \
  675. do { \
  676. if (cond) \
  677. bch_cache_set_error(c, __VA_ARGS__); \
  678. } while (0)
  679. /* Looping macros */
  680. #define for_each_cache(ca, cs, iter) \
  681. for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
  682. #define for_each_bucket(b, ca) \
  683. for (b = (ca)->buckets + (ca)->sb.first_bucket; \
  684. b < (ca)->buckets + (ca)->sb.nbuckets; b++)
  685. static inline void cached_dev_put(struct cached_dev *dc)
  686. {
  687. if (refcount_dec_and_test(&dc->count))
  688. schedule_work(&dc->detach);
  689. }
  690. static inline bool cached_dev_get(struct cached_dev *dc)
  691. {
  692. if (!refcount_inc_not_zero(&dc->count))
  693. return false;
  694. /* Paired with the mb in cached_dev_attach */
  695. smp_mb__after_atomic();
  696. return true;
  697. }
  698. /*
  699. * bucket_gc_gen() returns the difference between the bucket's current gen and
  700. * the oldest gen of any pointer into that bucket in the btree (last_gc).
  701. */
  702. static inline uint8_t bucket_gc_gen(struct bucket *b)
  703. {
  704. return b->gen - b->last_gc;
  705. }
  706. #define BUCKET_GC_GEN_MAX 96U
  707. #define kobj_attribute_write(n, fn) \
  708. static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
  709. #define kobj_attribute_rw(n, show, store) \
  710. static struct kobj_attribute ksysfs_##n = \
  711. __ATTR(n, S_IWUSR|S_IRUSR, show, store)
  712. static inline void wake_up_allocators(struct cache_set *c)
  713. {
  714. struct cache *ca;
  715. unsigned i;
  716. for_each_cache(ca, c, i)
  717. wake_up_process(ca->alloc_thread);
  718. }
  719. /* Forward declarations */
  720. void bch_count_io_errors(struct cache *, blk_status_t, const char *);
  721. void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
  722. blk_status_t, const char *);
  723. void bch_bbio_endio(struct cache_set *, struct bio *, blk_status_t,
  724. const char *);
  725. void bch_bbio_free(struct bio *, struct cache_set *);
  726. struct bio *bch_bbio_alloc(struct cache_set *);
  727. void __bch_submit_bbio(struct bio *, struct cache_set *);
  728. void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
  729. uint8_t bch_inc_gen(struct cache *, struct bucket *);
  730. void bch_rescale_priorities(struct cache_set *, int);
  731. bool bch_can_invalidate_bucket(struct cache *, struct bucket *);
  732. void __bch_invalidate_one_bucket(struct cache *, struct bucket *);
  733. void __bch_bucket_free(struct cache *, struct bucket *);
  734. void bch_bucket_free(struct cache_set *, struct bkey *);
  735. long bch_bucket_alloc(struct cache *, unsigned, bool);
  736. int __bch_bucket_alloc_set(struct cache_set *, unsigned,
  737. struct bkey *, int, bool);
  738. int bch_bucket_alloc_set(struct cache_set *, unsigned,
  739. struct bkey *, int, bool);
  740. bool bch_alloc_sectors(struct cache_set *, struct bkey *, unsigned,
  741. unsigned, unsigned, bool);
  742. __printf(2, 3)
  743. bool bch_cache_set_error(struct cache_set *, const char *, ...);
  744. void bch_prio_write(struct cache *);
  745. void bch_write_bdev_super(struct cached_dev *, struct closure *);
  746. extern struct workqueue_struct *bcache_wq;
  747. extern const char * const bch_cache_modes[];
  748. extern struct mutex bch_register_lock;
  749. extern struct list_head bch_cache_sets;
  750. extern struct kobj_type bch_cached_dev_ktype;
  751. extern struct kobj_type bch_flash_dev_ktype;
  752. extern struct kobj_type bch_cache_set_ktype;
  753. extern struct kobj_type bch_cache_set_internal_ktype;
  754. extern struct kobj_type bch_cache_ktype;
  755. void bch_cached_dev_release(struct kobject *);
  756. void bch_flash_dev_release(struct kobject *);
  757. void bch_cache_set_release(struct kobject *);
  758. void bch_cache_release(struct kobject *);
  759. int bch_uuid_write(struct cache_set *);
  760. void bcache_write_super(struct cache_set *);
  761. int bch_flash_dev_create(struct cache_set *c, uint64_t size);
  762. int bch_cached_dev_attach(struct cached_dev *, struct cache_set *);
  763. void bch_cached_dev_detach(struct cached_dev *);
  764. void bch_cached_dev_run(struct cached_dev *);
  765. void bcache_device_stop(struct bcache_device *);
  766. void bch_cache_set_unregister(struct cache_set *);
  767. void bch_cache_set_stop(struct cache_set *);
  768. struct cache_set *bch_cache_set_alloc(struct cache_sb *);
  769. void bch_btree_cache_free(struct cache_set *);
  770. int bch_btree_cache_alloc(struct cache_set *);
  771. void bch_moving_init_cache_set(struct cache_set *);
  772. int bch_open_buckets_alloc(struct cache_set *);
  773. void bch_open_buckets_free(struct cache_set *);
  774. int bch_cache_allocator_start(struct cache *ca);
  775. void bch_debug_exit(void);
  776. int bch_debug_init(struct kobject *);
  777. void bch_request_exit(void);
  778. int bch_request_init(void);
  779. #endif /* _BCACHE_H */