huge_memory.c 81 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/sched/coredump.h>
  11. #include <linux/sched/numa_balancing.h>
  12. #include <linux/highmem.h>
  13. #include <linux/hugetlb.h>
  14. #include <linux/mmu_notifier.h>
  15. #include <linux/rmap.h>
  16. #include <linux/swap.h>
  17. #include <linux/shrinker.h>
  18. #include <linux/mm_inline.h>
  19. #include <linux/swapops.h>
  20. #include <linux/dax.h>
  21. #include <linux/khugepaged.h>
  22. #include <linux/freezer.h>
  23. #include <linux/pfn_t.h>
  24. #include <linux/mman.h>
  25. #include <linux/memremap.h>
  26. #include <linux/pagemap.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/migrate.h>
  29. #include <linux/hashtable.h>
  30. #include <linux/userfaultfd_k.h>
  31. #include <linux/page_idle.h>
  32. #include <linux/shmem_fs.h>
  33. #include <linux/oom.h>
  34. #include <asm/tlb.h>
  35. #include <asm/pgalloc.h>
  36. #include "internal.h"
  37. /*
  38. * By default, transparent hugepage support is disabled in order to avoid
  39. * risking an increased memory footprint for applications that are not
  40. * guaranteed to benefit from it. When transparent hugepage support is
  41. * enabled, it is for all mappings, and khugepaged scans all mappings.
  42. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  43. * for all hugepage allocations.
  44. */
  45. unsigned long transparent_hugepage_flags __read_mostly =
  46. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  47. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  48. #endif
  49. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  50. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  51. #endif
  52. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  53. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  54. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  55. static struct shrinker deferred_split_shrinker;
  56. static atomic_t huge_zero_refcount;
  57. struct page *huge_zero_page __read_mostly;
  58. static struct page *get_huge_zero_page(void)
  59. {
  60. struct page *zero_page;
  61. retry:
  62. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  63. return READ_ONCE(huge_zero_page);
  64. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  65. HPAGE_PMD_ORDER);
  66. if (!zero_page) {
  67. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  68. return NULL;
  69. }
  70. count_vm_event(THP_ZERO_PAGE_ALLOC);
  71. preempt_disable();
  72. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  73. preempt_enable();
  74. __free_pages(zero_page, compound_order(zero_page));
  75. goto retry;
  76. }
  77. /* We take additional reference here. It will be put back by shrinker */
  78. atomic_set(&huge_zero_refcount, 2);
  79. preempt_enable();
  80. return READ_ONCE(huge_zero_page);
  81. }
  82. static void put_huge_zero_page(void)
  83. {
  84. /*
  85. * Counter should never go to zero here. Only shrinker can put
  86. * last reference.
  87. */
  88. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  89. }
  90. struct page *mm_get_huge_zero_page(struct mm_struct *mm)
  91. {
  92. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  93. return READ_ONCE(huge_zero_page);
  94. if (!get_huge_zero_page())
  95. return NULL;
  96. if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  97. put_huge_zero_page();
  98. return READ_ONCE(huge_zero_page);
  99. }
  100. void mm_put_huge_zero_page(struct mm_struct *mm)
  101. {
  102. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  103. put_huge_zero_page();
  104. }
  105. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  106. struct shrink_control *sc)
  107. {
  108. /* we can free zero page only if last reference remains */
  109. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  110. }
  111. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  112. struct shrink_control *sc)
  113. {
  114. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  115. struct page *zero_page = xchg(&huge_zero_page, NULL);
  116. BUG_ON(zero_page == NULL);
  117. __free_pages(zero_page, compound_order(zero_page));
  118. return HPAGE_PMD_NR;
  119. }
  120. return 0;
  121. }
  122. static struct shrinker huge_zero_page_shrinker = {
  123. .count_objects = shrink_huge_zero_page_count,
  124. .scan_objects = shrink_huge_zero_page_scan,
  125. .seeks = DEFAULT_SEEKS,
  126. };
  127. #ifdef CONFIG_SYSFS
  128. static ssize_t enabled_show(struct kobject *kobj,
  129. struct kobj_attribute *attr, char *buf)
  130. {
  131. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  132. return sprintf(buf, "[always] madvise never\n");
  133. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  134. return sprintf(buf, "always [madvise] never\n");
  135. else
  136. return sprintf(buf, "always madvise [never]\n");
  137. }
  138. static ssize_t enabled_store(struct kobject *kobj,
  139. struct kobj_attribute *attr,
  140. const char *buf, size_t count)
  141. {
  142. ssize_t ret = count;
  143. if (!memcmp("always", buf,
  144. min(sizeof("always")-1, count))) {
  145. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  146. set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  147. } else if (!memcmp("madvise", buf,
  148. min(sizeof("madvise")-1, count))) {
  149. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  150. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  151. } else if (!memcmp("never", buf,
  152. min(sizeof("never")-1, count))) {
  153. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  154. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  155. } else
  156. ret = -EINVAL;
  157. if (ret > 0) {
  158. int err = start_stop_khugepaged();
  159. if (err)
  160. ret = err;
  161. }
  162. return ret;
  163. }
  164. static struct kobj_attribute enabled_attr =
  165. __ATTR(enabled, 0644, enabled_show, enabled_store);
  166. ssize_t single_hugepage_flag_show(struct kobject *kobj,
  167. struct kobj_attribute *attr, char *buf,
  168. enum transparent_hugepage_flag flag)
  169. {
  170. return sprintf(buf, "%d\n",
  171. !!test_bit(flag, &transparent_hugepage_flags));
  172. }
  173. ssize_t single_hugepage_flag_store(struct kobject *kobj,
  174. struct kobj_attribute *attr,
  175. const char *buf, size_t count,
  176. enum transparent_hugepage_flag flag)
  177. {
  178. unsigned long value;
  179. int ret;
  180. ret = kstrtoul(buf, 10, &value);
  181. if (ret < 0)
  182. return ret;
  183. if (value > 1)
  184. return -EINVAL;
  185. if (value)
  186. set_bit(flag, &transparent_hugepage_flags);
  187. else
  188. clear_bit(flag, &transparent_hugepage_flags);
  189. return count;
  190. }
  191. static ssize_t defrag_show(struct kobject *kobj,
  192. struct kobj_attribute *attr, char *buf)
  193. {
  194. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  195. return sprintf(buf, "[always] defer defer+madvise madvise never\n");
  196. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  197. return sprintf(buf, "always [defer] defer+madvise madvise never\n");
  198. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  199. return sprintf(buf, "always defer [defer+madvise] madvise never\n");
  200. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  201. return sprintf(buf, "always defer defer+madvise [madvise] never\n");
  202. return sprintf(buf, "always defer defer+madvise madvise [never]\n");
  203. }
  204. static ssize_t defrag_store(struct kobject *kobj,
  205. struct kobj_attribute *attr,
  206. const char *buf, size_t count)
  207. {
  208. if (!memcmp("always", buf,
  209. min(sizeof("always")-1, count))) {
  210. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  211. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  212. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  213. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  214. } else if (!memcmp("defer+madvise", buf,
  215. min(sizeof("defer+madvise")-1, count))) {
  216. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  217. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  218. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  219. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  220. } else if (!memcmp("defer", buf,
  221. min(sizeof("defer")-1, count))) {
  222. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  223. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  224. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  225. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  226. } else if (!memcmp("madvise", buf,
  227. min(sizeof("madvise")-1, count))) {
  228. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  229. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  230. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  231. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  232. } else if (!memcmp("never", buf,
  233. min(sizeof("never")-1, count))) {
  234. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  235. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  236. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  237. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  238. } else
  239. return -EINVAL;
  240. return count;
  241. }
  242. static struct kobj_attribute defrag_attr =
  243. __ATTR(defrag, 0644, defrag_show, defrag_store);
  244. static ssize_t use_zero_page_show(struct kobject *kobj,
  245. struct kobj_attribute *attr, char *buf)
  246. {
  247. return single_hugepage_flag_show(kobj, attr, buf,
  248. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  249. }
  250. static ssize_t use_zero_page_store(struct kobject *kobj,
  251. struct kobj_attribute *attr, const char *buf, size_t count)
  252. {
  253. return single_hugepage_flag_store(kobj, attr, buf, count,
  254. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  255. }
  256. static struct kobj_attribute use_zero_page_attr =
  257. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  258. static ssize_t hpage_pmd_size_show(struct kobject *kobj,
  259. struct kobj_attribute *attr, char *buf)
  260. {
  261. return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
  262. }
  263. static struct kobj_attribute hpage_pmd_size_attr =
  264. __ATTR_RO(hpage_pmd_size);
  265. #ifdef CONFIG_DEBUG_VM
  266. static ssize_t debug_cow_show(struct kobject *kobj,
  267. struct kobj_attribute *attr, char *buf)
  268. {
  269. return single_hugepage_flag_show(kobj, attr, buf,
  270. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  271. }
  272. static ssize_t debug_cow_store(struct kobject *kobj,
  273. struct kobj_attribute *attr,
  274. const char *buf, size_t count)
  275. {
  276. return single_hugepage_flag_store(kobj, attr, buf, count,
  277. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  278. }
  279. static struct kobj_attribute debug_cow_attr =
  280. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  281. #endif /* CONFIG_DEBUG_VM */
  282. static struct attribute *hugepage_attr[] = {
  283. &enabled_attr.attr,
  284. &defrag_attr.attr,
  285. &use_zero_page_attr.attr,
  286. &hpage_pmd_size_attr.attr,
  287. #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
  288. &shmem_enabled_attr.attr,
  289. #endif
  290. #ifdef CONFIG_DEBUG_VM
  291. &debug_cow_attr.attr,
  292. #endif
  293. NULL,
  294. };
  295. static const struct attribute_group hugepage_attr_group = {
  296. .attrs = hugepage_attr,
  297. };
  298. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  299. {
  300. int err;
  301. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  302. if (unlikely(!*hugepage_kobj)) {
  303. pr_err("failed to create transparent hugepage kobject\n");
  304. return -ENOMEM;
  305. }
  306. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  307. if (err) {
  308. pr_err("failed to register transparent hugepage group\n");
  309. goto delete_obj;
  310. }
  311. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  312. if (err) {
  313. pr_err("failed to register transparent hugepage group\n");
  314. goto remove_hp_group;
  315. }
  316. return 0;
  317. remove_hp_group:
  318. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  319. delete_obj:
  320. kobject_put(*hugepage_kobj);
  321. return err;
  322. }
  323. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  324. {
  325. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  326. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  327. kobject_put(hugepage_kobj);
  328. }
  329. #else
  330. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  331. {
  332. return 0;
  333. }
  334. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  335. {
  336. }
  337. #endif /* CONFIG_SYSFS */
  338. static int __init hugepage_init(void)
  339. {
  340. int err;
  341. struct kobject *hugepage_kobj;
  342. if (!has_transparent_hugepage()) {
  343. transparent_hugepage_flags = 0;
  344. return -EINVAL;
  345. }
  346. /*
  347. * hugepages can't be allocated by the buddy allocator
  348. */
  349. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  350. /*
  351. * we use page->mapping and page->index in second tail page
  352. * as list_head: assuming THP order >= 2
  353. */
  354. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  355. err = hugepage_init_sysfs(&hugepage_kobj);
  356. if (err)
  357. goto err_sysfs;
  358. err = khugepaged_init();
  359. if (err)
  360. goto err_slab;
  361. err = register_shrinker(&huge_zero_page_shrinker);
  362. if (err)
  363. goto err_hzp_shrinker;
  364. err = register_shrinker(&deferred_split_shrinker);
  365. if (err)
  366. goto err_split_shrinker;
  367. /*
  368. * By default disable transparent hugepages on smaller systems,
  369. * where the extra memory used could hurt more than TLB overhead
  370. * is likely to save. The admin can still enable it through /sys.
  371. */
  372. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  373. transparent_hugepage_flags = 0;
  374. return 0;
  375. }
  376. err = start_stop_khugepaged();
  377. if (err)
  378. goto err_khugepaged;
  379. return 0;
  380. err_khugepaged:
  381. unregister_shrinker(&deferred_split_shrinker);
  382. err_split_shrinker:
  383. unregister_shrinker(&huge_zero_page_shrinker);
  384. err_hzp_shrinker:
  385. khugepaged_destroy();
  386. err_slab:
  387. hugepage_exit_sysfs(hugepage_kobj);
  388. err_sysfs:
  389. return err;
  390. }
  391. subsys_initcall(hugepage_init);
  392. static int __init setup_transparent_hugepage(char *str)
  393. {
  394. int ret = 0;
  395. if (!str)
  396. goto out;
  397. if (!strcmp(str, "always")) {
  398. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  399. &transparent_hugepage_flags);
  400. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  401. &transparent_hugepage_flags);
  402. ret = 1;
  403. } else if (!strcmp(str, "madvise")) {
  404. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  405. &transparent_hugepage_flags);
  406. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  407. &transparent_hugepage_flags);
  408. ret = 1;
  409. } else if (!strcmp(str, "never")) {
  410. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  411. &transparent_hugepage_flags);
  412. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  413. &transparent_hugepage_flags);
  414. ret = 1;
  415. }
  416. out:
  417. if (!ret)
  418. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  419. return ret;
  420. }
  421. __setup("transparent_hugepage=", setup_transparent_hugepage);
  422. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  423. {
  424. if (likely(vma->vm_flags & VM_WRITE))
  425. pmd = pmd_mkwrite(pmd);
  426. return pmd;
  427. }
  428. static inline struct list_head *page_deferred_list(struct page *page)
  429. {
  430. /* ->lru in the tail pages is occupied by compound_head. */
  431. return &page[2].deferred_list;
  432. }
  433. void prep_transhuge_page(struct page *page)
  434. {
  435. /*
  436. * we use page->mapping and page->indexlru in second tail page
  437. * as list_head: assuming THP order >= 2
  438. */
  439. INIT_LIST_HEAD(page_deferred_list(page));
  440. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  441. }
  442. unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
  443. loff_t off, unsigned long flags, unsigned long size)
  444. {
  445. unsigned long addr;
  446. loff_t off_end = off + len;
  447. loff_t off_align = round_up(off, size);
  448. unsigned long len_pad;
  449. if (off_end <= off_align || (off_end - off_align) < size)
  450. return 0;
  451. len_pad = len + size;
  452. if (len_pad < len || (off + len_pad) < off)
  453. return 0;
  454. addr = current->mm->get_unmapped_area(filp, 0, len_pad,
  455. off >> PAGE_SHIFT, flags);
  456. if (IS_ERR_VALUE(addr))
  457. return 0;
  458. addr += (off - addr) & (size - 1);
  459. return addr;
  460. }
  461. unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
  462. unsigned long len, unsigned long pgoff, unsigned long flags)
  463. {
  464. loff_t off = (loff_t)pgoff << PAGE_SHIFT;
  465. if (addr)
  466. goto out;
  467. if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
  468. goto out;
  469. addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
  470. if (addr)
  471. return addr;
  472. out:
  473. return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
  474. }
  475. EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
  476. static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
  477. gfp_t gfp)
  478. {
  479. struct vm_area_struct *vma = vmf->vma;
  480. struct mem_cgroup *memcg;
  481. pgtable_t pgtable;
  482. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  483. int ret = 0;
  484. VM_BUG_ON_PAGE(!PageCompound(page), page);
  485. if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
  486. put_page(page);
  487. count_vm_event(THP_FAULT_FALLBACK);
  488. return VM_FAULT_FALLBACK;
  489. }
  490. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  491. if (unlikely(!pgtable)) {
  492. ret = VM_FAULT_OOM;
  493. goto release;
  494. }
  495. clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
  496. /*
  497. * The memory barrier inside __SetPageUptodate makes sure that
  498. * clear_huge_page writes become visible before the set_pmd_at()
  499. * write.
  500. */
  501. __SetPageUptodate(page);
  502. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  503. if (unlikely(!pmd_none(*vmf->pmd))) {
  504. goto unlock_release;
  505. } else {
  506. pmd_t entry;
  507. ret = check_stable_address_space(vma->vm_mm);
  508. if (ret)
  509. goto unlock_release;
  510. /* Deliver the page fault to userland */
  511. if (userfaultfd_missing(vma)) {
  512. int ret;
  513. spin_unlock(vmf->ptl);
  514. mem_cgroup_cancel_charge(page, memcg, true);
  515. put_page(page);
  516. pte_free(vma->vm_mm, pgtable);
  517. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  518. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  519. return ret;
  520. }
  521. entry = mk_huge_pmd(page, vma->vm_page_prot);
  522. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  523. page_add_new_anon_rmap(page, vma, haddr, true);
  524. mem_cgroup_commit_charge(page, memcg, false, true);
  525. lru_cache_add_active_or_unevictable(page, vma);
  526. pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
  527. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  528. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  529. mm_inc_nr_ptes(vma->vm_mm);
  530. spin_unlock(vmf->ptl);
  531. count_vm_event(THP_FAULT_ALLOC);
  532. }
  533. return 0;
  534. unlock_release:
  535. spin_unlock(vmf->ptl);
  536. release:
  537. if (pgtable)
  538. pte_free(vma->vm_mm, pgtable);
  539. mem_cgroup_cancel_charge(page, memcg, true);
  540. put_page(page);
  541. return ret;
  542. }
  543. /*
  544. * always: directly stall for all thp allocations
  545. * defer: wake kswapd and fail if not immediately available
  546. * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
  547. * fail if not immediately available
  548. * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
  549. * available
  550. * never: never stall for any thp allocation
  551. */
  552. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  553. {
  554. const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
  555. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  556. return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
  557. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  558. return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
  559. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  560. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  561. __GFP_KSWAPD_RECLAIM);
  562. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  563. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  564. 0);
  565. return GFP_TRANSHUGE_LIGHT;
  566. }
  567. /* Caller must hold page table lock. */
  568. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  569. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  570. struct page *zero_page)
  571. {
  572. pmd_t entry;
  573. if (!pmd_none(*pmd))
  574. return false;
  575. entry = mk_pmd(zero_page, vma->vm_page_prot);
  576. entry = pmd_mkhuge(entry);
  577. if (pgtable)
  578. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  579. set_pmd_at(mm, haddr, pmd, entry);
  580. mm_inc_nr_ptes(mm);
  581. return true;
  582. }
  583. int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
  584. {
  585. struct vm_area_struct *vma = vmf->vma;
  586. gfp_t gfp;
  587. struct page *page;
  588. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  589. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  590. return VM_FAULT_FALLBACK;
  591. if (unlikely(anon_vma_prepare(vma)))
  592. return VM_FAULT_OOM;
  593. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  594. return VM_FAULT_OOM;
  595. if (!(vmf->flags & FAULT_FLAG_WRITE) &&
  596. !mm_forbids_zeropage(vma->vm_mm) &&
  597. transparent_hugepage_use_zero_page()) {
  598. pgtable_t pgtable;
  599. struct page *zero_page;
  600. bool set;
  601. int ret;
  602. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  603. if (unlikely(!pgtable))
  604. return VM_FAULT_OOM;
  605. zero_page = mm_get_huge_zero_page(vma->vm_mm);
  606. if (unlikely(!zero_page)) {
  607. pte_free(vma->vm_mm, pgtable);
  608. count_vm_event(THP_FAULT_FALLBACK);
  609. return VM_FAULT_FALLBACK;
  610. }
  611. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  612. ret = 0;
  613. set = false;
  614. if (pmd_none(*vmf->pmd)) {
  615. ret = check_stable_address_space(vma->vm_mm);
  616. if (ret) {
  617. spin_unlock(vmf->ptl);
  618. } else if (userfaultfd_missing(vma)) {
  619. spin_unlock(vmf->ptl);
  620. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  621. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  622. } else {
  623. set_huge_zero_page(pgtable, vma->vm_mm, vma,
  624. haddr, vmf->pmd, zero_page);
  625. spin_unlock(vmf->ptl);
  626. set = true;
  627. }
  628. } else
  629. spin_unlock(vmf->ptl);
  630. if (!set)
  631. pte_free(vma->vm_mm, pgtable);
  632. return ret;
  633. }
  634. gfp = alloc_hugepage_direct_gfpmask(vma);
  635. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  636. if (unlikely(!page)) {
  637. count_vm_event(THP_FAULT_FALLBACK);
  638. return VM_FAULT_FALLBACK;
  639. }
  640. prep_transhuge_page(page);
  641. return __do_huge_pmd_anonymous_page(vmf, page, gfp);
  642. }
  643. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  644. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
  645. pgtable_t pgtable)
  646. {
  647. struct mm_struct *mm = vma->vm_mm;
  648. pmd_t entry;
  649. spinlock_t *ptl;
  650. ptl = pmd_lock(mm, pmd);
  651. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  652. if (pfn_t_devmap(pfn))
  653. entry = pmd_mkdevmap(entry);
  654. if (write) {
  655. entry = pmd_mkyoung(pmd_mkdirty(entry));
  656. entry = maybe_pmd_mkwrite(entry, vma);
  657. }
  658. if (pgtable) {
  659. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  660. mm_inc_nr_ptes(mm);
  661. }
  662. set_pmd_at(mm, addr, pmd, entry);
  663. update_mmu_cache_pmd(vma, addr, pmd);
  664. spin_unlock(ptl);
  665. }
  666. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  667. pmd_t *pmd, pfn_t pfn, bool write)
  668. {
  669. pgprot_t pgprot = vma->vm_page_prot;
  670. pgtable_t pgtable = NULL;
  671. /*
  672. * If we had pmd_special, we could avoid all these restrictions,
  673. * but we need to be consistent with PTEs and architectures that
  674. * can't support a 'special' bit.
  675. */
  676. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
  677. !pfn_t_devmap(pfn));
  678. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  679. (VM_PFNMAP|VM_MIXEDMAP));
  680. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  681. if (addr < vma->vm_start || addr >= vma->vm_end)
  682. return VM_FAULT_SIGBUS;
  683. if (arch_needs_pgtable_deposit()) {
  684. pgtable = pte_alloc_one(vma->vm_mm, addr);
  685. if (!pgtable)
  686. return VM_FAULT_OOM;
  687. }
  688. track_pfn_insert(vma, &pgprot, pfn);
  689. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
  690. return VM_FAULT_NOPAGE;
  691. }
  692. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
  693. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  694. static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
  695. {
  696. if (likely(vma->vm_flags & VM_WRITE))
  697. pud = pud_mkwrite(pud);
  698. return pud;
  699. }
  700. static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
  701. pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
  702. {
  703. struct mm_struct *mm = vma->vm_mm;
  704. pud_t entry;
  705. spinlock_t *ptl;
  706. ptl = pud_lock(mm, pud);
  707. entry = pud_mkhuge(pfn_t_pud(pfn, prot));
  708. if (pfn_t_devmap(pfn))
  709. entry = pud_mkdevmap(entry);
  710. if (write) {
  711. entry = pud_mkyoung(pud_mkdirty(entry));
  712. entry = maybe_pud_mkwrite(entry, vma);
  713. }
  714. set_pud_at(mm, addr, pud, entry);
  715. update_mmu_cache_pud(vma, addr, pud);
  716. spin_unlock(ptl);
  717. }
  718. int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
  719. pud_t *pud, pfn_t pfn, bool write)
  720. {
  721. pgprot_t pgprot = vma->vm_page_prot;
  722. /*
  723. * If we had pud_special, we could avoid all these restrictions,
  724. * but we need to be consistent with PTEs and architectures that
  725. * can't support a 'special' bit.
  726. */
  727. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  728. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  729. (VM_PFNMAP|VM_MIXEDMAP));
  730. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  731. BUG_ON(!pfn_t_devmap(pfn));
  732. if (addr < vma->vm_start || addr >= vma->vm_end)
  733. return VM_FAULT_SIGBUS;
  734. track_pfn_insert(vma, &pgprot, pfn);
  735. insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
  736. return VM_FAULT_NOPAGE;
  737. }
  738. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
  739. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  740. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  741. pmd_t *pmd, int flags)
  742. {
  743. pmd_t _pmd;
  744. _pmd = pmd_mkyoung(*pmd);
  745. if (flags & FOLL_WRITE)
  746. _pmd = pmd_mkdirty(_pmd);
  747. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  748. pmd, _pmd, flags & FOLL_WRITE))
  749. update_mmu_cache_pmd(vma, addr, pmd);
  750. }
  751. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  752. pmd_t *pmd, int flags)
  753. {
  754. unsigned long pfn = pmd_pfn(*pmd);
  755. struct mm_struct *mm = vma->vm_mm;
  756. struct dev_pagemap *pgmap;
  757. struct page *page;
  758. assert_spin_locked(pmd_lockptr(mm, pmd));
  759. /*
  760. * When we COW a devmap PMD entry, we split it into PTEs, so we should
  761. * not be in this function with `flags & FOLL_COW` set.
  762. */
  763. WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
  764. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  765. return NULL;
  766. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  767. /* pass */;
  768. else
  769. return NULL;
  770. if (flags & FOLL_TOUCH)
  771. touch_pmd(vma, addr, pmd, flags);
  772. /*
  773. * device mapped pages can only be returned if the
  774. * caller will manage the page reference count.
  775. */
  776. if (!(flags & FOLL_GET))
  777. return ERR_PTR(-EEXIST);
  778. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  779. pgmap = get_dev_pagemap(pfn, NULL);
  780. if (!pgmap)
  781. return ERR_PTR(-EFAULT);
  782. page = pfn_to_page(pfn);
  783. get_page(page);
  784. put_dev_pagemap(pgmap);
  785. return page;
  786. }
  787. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  788. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  789. struct vm_area_struct *vma)
  790. {
  791. spinlock_t *dst_ptl, *src_ptl;
  792. struct page *src_page;
  793. pmd_t pmd;
  794. pgtable_t pgtable = NULL;
  795. int ret = -ENOMEM;
  796. /* Skip if can be re-fill on fault */
  797. if (!vma_is_anonymous(vma))
  798. return 0;
  799. pgtable = pte_alloc_one(dst_mm, addr);
  800. if (unlikely(!pgtable))
  801. goto out;
  802. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  803. src_ptl = pmd_lockptr(src_mm, src_pmd);
  804. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  805. ret = -EAGAIN;
  806. pmd = *src_pmd;
  807. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  808. if (unlikely(is_swap_pmd(pmd))) {
  809. swp_entry_t entry = pmd_to_swp_entry(pmd);
  810. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  811. if (is_write_migration_entry(entry)) {
  812. make_migration_entry_read(&entry);
  813. pmd = swp_entry_to_pmd(entry);
  814. if (pmd_swp_soft_dirty(*src_pmd))
  815. pmd = pmd_swp_mksoft_dirty(pmd);
  816. set_pmd_at(src_mm, addr, src_pmd, pmd);
  817. }
  818. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  819. mm_inc_nr_ptes(dst_mm);
  820. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  821. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  822. ret = 0;
  823. goto out_unlock;
  824. }
  825. #endif
  826. if (unlikely(!pmd_trans_huge(pmd))) {
  827. pte_free(dst_mm, pgtable);
  828. goto out_unlock;
  829. }
  830. /*
  831. * When page table lock is held, the huge zero pmd should not be
  832. * under splitting since we don't split the page itself, only pmd to
  833. * a page table.
  834. */
  835. if (is_huge_zero_pmd(pmd)) {
  836. struct page *zero_page;
  837. /*
  838. * get_huge_zero_page() will never allocate a new page here,
  839. * since we already have a zero page to copy. It just takes a
  840. * reference.
  841. */
  842. zero_page = mm_get_huge_zero_page(dst_mm);
  843. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  844. zero_page);
  845. ret = 0;
  846. goto out_unlock;
  847. }
  848. src_page = pmd_page(pmd);
  849. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  850. get_page(src_page);
  851. page_dup_rmap(src_page, true);
  852. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  853. mm_inc_nr_ptes(dst_mm);
  854. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  855. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  856. pmd = pmd_mkold(pmd_wrprotect(pmd));
  857. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  858. ret = 0;
  859. out_unlock:
  860. spin_unlock(src_ptl);
  861. spin_unlock(dst_ptl);
  862. out:
  863. return ret;
  864. }
  865. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  866. static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
  867. pud_t *pud, int flags)
  868. {
  869. pud_t _pud;
  870. _pud = pud_mkyoung(*pud);
  871. if (flags & FOLL_WRITE)
  872. _pud = pud_mkdirty(_pud);
  873. if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
  874. pud, _pud, flags & FOLL_WRITE))
  875. update_mmu_cache_pud(vma, addr, pud);
  876. }
  877. struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
  878. pud_t *pud, int flags)
  879. {
  880. unsigned long pfn = pud_pfn(*pud);
  881. struct mm_struct *mm = vma->vm_mm;
  882. struct dev_pagemap *pgmap;
  883. struct page *page;
  884. assert_spin_locked(pud_lockptr(mm, pud));
  885. if (flags & FOLL_WRITE && !pud_write(*pud))
  886. return NULL;
  887. if (pud_present(*pud) && pud_devmap(*pud))
  888. /* pass */;
  889. else
  890. return NULL;
  891. if (flags & FOLL_TOUCH)
  892. touch_pud(vma, addr, pud, flags);
  893. /*
  894. * device mapped pages can only be returned if the
  895. * caller will manage the page reference count.
  896. */
  897. if (!(flags & FOLL_GET))
  898. return ERR_PTR(-EEXIST);
  899. pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
  900. pgmap = get_dev_pagemap(pfn, NULL);
  901. if (!pgmap)
  902. return ERR_PTR(-EFAULT);
  903. page = pfn_to_page(pfn);
  904. get_page(page);
  905. put_dev_pagemap(pgmap);
  906. return page;
  907. }
  908. int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  909. pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
  910. struct vm_area_struct *vma)
  911. {
  912. spinlock_t *dst_ptl, *src_ptl;
  913. pud_t pud;
  914. int ret;
  915. dst_ptl = pud_lock(dst_mm, dst_pud);
  916. src_ptl = pud_lockptr(src_mm, src_pud);
  917. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  918. ret = -EAGAIN;
  919. pud = *src_pud;
  920. if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
  921. goto out_unlock;
  922. /*
  923. * When page table lock is held, the huge zero pud should not be
  924. * under splitting since we don't split the page itself, only pud to
  925. * a page table.
  926. */
  927. if (is_huge_zero_pud(pud)) {
  928. /* No huge zero pud yet */
  929. }
  930. pudp_set_wrprotect(src_mm, addr, src_pud);
  931. pud = pud_mkold(pud_wrprotect(pud));
  932. set_pud_at(dst_mm, addr, dst_pud, pud);
  933. ret = 0;
  934. out_unlock:
  935. spin_unlock(src_ptl);
  936. spin_unlock(dst_ptl);
  937. return ret;
  938. }
  939. void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
  940. {
  941. pud_t entry;
  942. unsigned long haddr;
  943. bool write = vmf->flags & FAULT_FLAG_WRITE;
  944. vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
  945. if (unlikely(!pud_same(*vmf->pud, orig_pud)))
  946. goto unlock;
  947. entry = pud_mkyoung(orig_pud);
  948. if (write)
  949. entry = pud_mkdirty(entry);
  950. haddr = vmf->address & HPAGE_PUD_MASK;
  951. if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
  952. update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
  953. unlock:
  954. spin_unlock(vmf->ptl);
  955. }
  956. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  957. void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
  958. {
  959. pmd_t entry;
  960. unsigned long haddr;
  961. bool write = vmf->flags & FAULT_FLAG_WRITE;
  962. vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
  963. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  964. goto unlock;
  965. entry = pmd_mkyoung(orig_pmd);
  966. if (write)
  967. entry = pmd_mkdirty(entry);
  968. haddr = vmf->address & HPAGE_PMD_MASK;
  969. if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
  970. update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
  971. unlock:
  972. spin_unlock(vmf->ptl);
  973. }
  974. static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
  975. struct page *page)
  976. {
  977. struct vm_area_struct *vma = vmf->vma;
  978. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  979. struct mem_cgroup *memcg;
  980. pgtable_t pgtable;
  981. pmd_t _pmd;
  982. int ret = 0, i;
  983. struct page **pages;
  984. unsigned long mmun_start; /* For mmu_notifiers */
  985. unsigned long mmun_end; /* For mmu_notifiers */
  986. pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
  987. GFP_KERNEL);
  988. if (unlikely(!pages)) {
  989. ret |= VM_FAULT_OOM;
  990. goto out;
  991. }
  992. for (i = 0; i < HPAGE_PMD_NR; i++) {
  993. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
  994. vmf->address, page_to_nid(page));
  995. if (unlikely(!pages[i] ||
  996. mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
  997. GFP_KERNEL, &memcg, false))) {
  998. if (pages[i])
  999. put_page(pages[i]);
  1000. while (--i >= 0) {
  1001. memcg = (void *)page_private(pages[i]);
  1002. set_page_private(pages[i], 0);
  1003. mem_cgroup_cancel_charge(pages[i], memcg,
  1004. false);
  1005. put_page(pages[i]);
  1006. }
  1007. kfree(pages);
  1008. ret |= VM_FAULT_OOM;
  1009. goto out;
  1010. }
  1011. set_page_private(pages[i], (unsigned long)memcg);
  1012. }
  1013. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1014. copy_user_highpage(pages[i], page + i,
  1015. haddr + PAGE_SIZE * i, vma);
  1016. __SetPageUptodate(pages[i]);
  1017. cond_resched();
  1018. }
  1019. mmun_start = haddr;
  1020. mmun_end = haddr + HPAGE_PMD_SIZE;
  1021. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1022. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1023. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1024. goto out_free_pages;
  1025. VM_BUG_ON_PAGE(!PageHead(page), page);
  1026. /*
  1027. * Leave pmd empty until pte is filled note we must notify here as
  1028. * concurrent CPU thread might write to new page before the call to
  1029. * mmu_notifier_invalidate_range_end() happens which can lead to a
  1030. * device seeing memory write in different order than CPU.
  1031. *
  1032. * See Documentation/vm/mmu_notifier.rst
  1033. */
  1034. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  1035. pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
  1036. pmd_populate(vma->vm_mm, &_pmd, pgtable);
  1037. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1038. pte_t entry;
  1039. entry = mk_pte(pages[i], vma->vm_page_prot);
  1040. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1041. memcg = (void *)page_private(pages[i]);
  1042. set_page_private(pages[i], 0);
  1043. page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
  1044. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  1045. lru_cache_add_active_or_unevictable(pages[i], vma);
  1046. vmf->pte = pte_offset_map(&_pmd, haddr);
  1047. VM_BUG_ON(!pte_none(*vmf->pte));
  1048. set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
  1049. pte_unmap(vmf->pte);
  1050. }
  1051. kfree(pages);
  1052. smp_wmb(); /* make pte visible before pmd */
  1053. pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
  1054. page_remove_rmap(page, true);
  1055. spin_unlock(vmf->ptl);
  1056. /*
  1057. * No need to double call mmu_notifier->invalidate_range() callback as
  1058. * the above pmdp_huge_clear_flush_notify() did already call it.
  1059. */
  1060. mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
  1061. mmun_end);
  1062. ret |= VM_FAULT_WRITE;
  1063. put_page(page);
  1064. out:
  1065. return ret;
  1066. out_free_pages:
  1067. spin_unlock(vmf->ptl);
  1068. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1069. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1070. memcg = (void *)page_private(pages[i]);
  1071. set_page_private(pages[i], 0);
  1072. mem_cgroup_cancel_charge(pages[i], memcg, false);
  1073. put_page(pages[i]);
  1074. }
  1075. kfree(pages);
  1076. goto out;
  1077. }
  1078. int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
  1079. {
  1080. struct vm_area_struct *vma = vmf->vma;
  1081. struct page *page = NULL, *new_page;
  1082. struct mem_cgroup *memcg;
  1083. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1084. unsigned long mmun_start; /* For mmu_notifiers */
  1085. unsigned long mmun_end; /* For mmu_notifiers */
  1086. gfp_t huge_gfp; /* for allocation and charge */
  1087. int ret = 0;
  1088. vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
  1089. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1090. if (is_huge_zero_pmd(orig_pmd))
  1091. goto alloc;
  1092. spin_lock(vmf->ptl);
  1093. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1094. goto out_unlock;
  1095. page = pmd_page(orig_pmd);
  1096. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1097. /*
  1098. * We can only reuse the page if nobody else maps the huge page or it's
  1099. * part.
  1100. */
  1101. if (!trylock_page(page)) {
  1102. get_page(page);
  1103. spin_unlock(vmf->ptl);
  1104. lock_page(page);
  1105. spin_lock(vmf->ptl);
  1106. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1107. unlock_page(page);
  1108. put_page(page);
  1109. goto out_unlock;
  1110. }
  1111. put_page(page);
  1112. }
  1113. if (reuse_swap_page(page, NULL)) {
  1114. pmd_t entry;
  1115. entry = pmd_mkyoung(orig_pmd);
  1116. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1117. if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
  1118. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1119. ret |= VM_FAULT_WRITE;
  1120. unlock_page(page);
  1121. goto out_unlock;
  1122. }
  1123. unlock_page(page);
  1124. get_page(page);
  1125. spin_unlock(vmf->ptl);
  1126. alloc:
  1127. if (transparent_hugepage_enabled(vma) &&
  1128. !transparent_hugepage_debug_cow()) {
  1129. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  1130. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1131. } else
  1132. new_page = NULL;
  1133. if (likely(new_page)) {
  1134. prep_transhuge_page(new_page);
  1135. } else {
  1136. if (!page) {
  1137. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1138. ret |= VM_FAULT_FALLBACK;
  1139. } else {
  1140. ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
  1141. if (ret & VM_FAULT_OOM) {
  1142. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1143. ret |= VM_FAULT_FALLBACK;
  1144. }
  1145. put_page(page);
  1146. }
  1147. count_vm_event(THP_FAULT_FALLBACK);
  1148. goto out;
  1149. }
  1150. if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
  1151. huge_gfp, &memcg, true))) {
  1152. put_page(new_page);
  1153. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1154. if (page)
  1155. put_page(page);
  1156. ret |= VM_FAULT_FALLBACK;
  1157. count_vm_event(THP_FAULT_FALLBACK);
  1158. goto out;
  1159. }
  1160. count_vm_event(THP_FAULT_ALLOC);
  1161. if (!page)
  1162. clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
  1163. else
  1164. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1165. __SetPageUptodate(new_page);
  1166. mmun_start = haddr;
  1167. mmun_end = haddr + HPAGE_PMD_SIZE;
  1168. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1169. spin_lock(vmf->ptl);
  1170. if (page)
  1171. put_page(page);
  1172. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1173. spin_unlock(vmf->ptl);
  1174. mem_cgroup_cancel_charge(new_page, memcg, true);
  1175. put_page(new_page);
  1176. goto out_mn;
  1177. } else {
  1178. pmd_t entry;
  1179. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1180. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1181. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  1182. page_add_new_anon_rmap(new_page, vma, haddr, true);
  1183. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1184. lru_cache_add_active_or_unevictable(new_page, vma);
  1185. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  1186. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1187. if (!page) {
  1188. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1189. } else {
  1190. VM_BUG_ON_PAGE(!PageHead(page), page);
  1191. page_remove_rmap(page, true);
  1192. put_page(page);
  1193. }
  1194. ret |= VM_FAULT_WRITE;
  1195. }
  1196. spin_unlock(vmf->ptl);
  1197. out_mn:
  1198. /*
  1199. * No need to double call mmu_notifier->invalidate_range() callback as
  1200. * the above pmdp_huge_clear_flush_notify() did already call it.
  1201. */
  1202. mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
  1203. mmun_end);
  1204. out:
  1205. return ret;
  1206. out_unlock:
  1207. spin_unlock(vmf->ptl);
  1208. return ret;
  1209. }
  1210. /*
  1211. * FOLL_FORCE can write to even unwritable pmd's, but only
  1212. * after we've gone through a COW cycle and they are dirty.
  1213. */
  1214. static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
  1215. {
  1216. return pmd_write(pmd) ||
  1217. ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
  1218. }
  1219. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1220. unsigned long addr,
  1221. pmd_t *pmd,
  1222. unsigned int flags)
  1223. {
  1224. struct mm_struct *mm = vma->vm_mm;
  1225. struct page *page = NULL;
  1226. assert_spin_locked(pmd_lockptr(mm, pmd));
  1227. if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
  1228. goto out;
  1229. /* Avoid dumping huge zero page */
  1230. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1231. return ERR_PTR(-EFAULT);
  1232. /* Full NUMA hinting faults to serialise migration in fault paths */
  1233. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1234. goto out;
  1235. page = pmd_page(*pmd);
  1236. VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
  1237. if (flags & FOLL_TOUCH)
  1238. touch_pmd(vma, addr, pmd, flags);
  1239. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1240. /*
  1241. * We don't mlock() pte-mapped THPs. This way we can avoid
  1242. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1243. *
  1244. * For anon THP:
  1245. *
  1246. * In most cases the pmd is the only mapping of the page as we
  1247. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1248. * writable private mappings in populate_vma_page_range().
  1249. *
  1250. * The only scenario when we have the page shared here is if we
  1251. * mlocking read-only mapping shared over fork(). We skip
  1252. * mlocking such pages.
  1253. *
  1254. * For file THP:
  1255. *
  1256. * We can expect PageDoubleMap() to be stable under page lock:
  1257. * for file pages we set it in page_add_file_rmap(), which
  1258. * requires page to be locked.
  1259. */
  1260. if (PageAnon(page) && compound_mapcount(page) != 1)
  1261. goto skip_mlock;
  1262. if (PageDoubleMap(page) || !page->mapping)
  1263. goto skip_mlock;
  1264. if (!trylock_page(page))
  1265. goto skip_mlock;
  1266. lru_add_drain();
  1267. if (page->mapping && !PageDoubleMap(page))
  1268. mlock_vma_page(page);
  1269. unlock_page(page);
  1270. }
  1271. skip_mlock:
  1272. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1273. VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
  1274. if (flags & FOLL_GET)
  1275. get_page(page);
  1276. out:
  1277. return page;
  1278. }
  1279. /* NUMA hinting page fault entry point for trans huge pmds */
  1280. int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
  1281. {
  1282. struct vm_area_struct *vma = vmf->vma;
  1283. struct anon_vma *anon_vma = NULL;
  1284. struct page *page;
  1285. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1286. int page_nid = -1, this_nid = numa_node_id();
  1287. int target_nid, last_cpupid = -1;
  1288. bool page_locked;
  1289. bool migrated = false;
  1290. bool was_writable;
  1291. int flags = 0;
  1292. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1293. if (unlikely(!pmd_same(pmd, *vmf->pmd)))
  1294. goto out_unlock;
  1295. /*
  1296. * If there are potential migrations, wait for completion and retry
  1297. * without disrupting NUMA hinting information. Do not relock and
  1298. * check_same as the page may no longer be mapped.
  1299. */
  1300. if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
  1301. page = pmd_page(*vmf->pmd);
  1302. if (!get_page_unless_zero(page))
  1303. goto out_unlock;
  1304. spin_unlock(vmf->ptl);
  1305. wait_on_page_locked(page);
  1306. put_page(page);
  1307. goto out;
  1308. }
  1309. page = pmd_page(pmd);
  1310. BUG_ON(is_huge_zero_page(page));
  1311. page_nid = page_to_nid(page);
  1312. last_cpupid = page_cpupid_last(page);
  1313. count_vm_numa_event(NUMA_HINT_FAULTS);
  1314. if (page_nid == this_nid) {
  1315. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1316. flags |= TNF_FAULT_LOCAL;
  1317. }
  1318. /* See similar comment in do_numa_page for explanation */
  1319. if (!pmd_savedwrite(pmd))
  1320. flags |= TNF_NO_GROUP;
  1321. /*
  1322. * Acquire the page lock to serialise THP migrations but avoid dropping
  1323. * page_table_lock if at all possible
  1324. */
  1325. page_locked = trylock_page(page);
  1326. target_nid = mpol_misplaced(page, vma, haddr);
  1327. if (target_nid == -1) {
  1328. /* If the page was locked, there are no parallel migrations */
  1329. if (page_locked)
  1330. goto clear_pmdnuma;
  1331. }
  1332. /* Migration could have started since the pmd_trans_migrating check */
  1333. if (!page_locked) {
  1334. page_nid = -1;
  1335. if (!get_page_unless_zero(page))
  1336. goto out_unlock;
  1337. spin_unlock(vmf->ptl);
  1338. wait_on_page_locked(page);
  1339. put_page(page);
  1340. goto out;
  1341. }
  1342. /*
  1343. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1344. * to serialises splits
  1345. */
  1346. get_page(page);
  1347. spin_unlock(vmf->ptl);
  1348. anon_vma = page_lock_anon_vma_read(page);
  1349. /* Confirm the PMD did not change while page_table_lock was released */
  1350. spin_lock(vmf->ptl);
  1351. if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
  1352. unlock_page(page);
  1353. put_page(page);
  1354. page_nid = -1;
  1355. goto out_unlock;
  1356. }
  1357. /* Bail if we fail to protect against THP splits for any reason */
  1358. if (unlikely(!anon_vma)) {
  1359. put_page(page);
  1360. page_nid = -1;
  1361. goto clear_pmdnuma;
  1362. }
  1363. /*
  1364. * Since we took the NUMA fault, we must have observed the !accessible
  1365. * bit. Make sure all other CPUs agree with that, to avoid them
  1366. * modifying the page we're about to migrate.
  1367. *
  1368. * Must be done under PTL such that we'll observe the relevant
  1369. * inc_tlb_flush_pending().
  1370. *
  1371. * We are not sure a pending tlb flush here is for a huge page
  1372. * mapping or not. Hence use the tlb range variant
  1373. */
  1374. if (mm_tlb_flush_pending(vma->vm_mm))
  1375. flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
  1376. /*
  1377. * Migrate the THP to the requested node, returns with page unlocked
  1378. * and access rights restored.
  1379. */
  1380. spin_unlock(vmf->ptl);
  1381. migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
  1382. vmf->pmd, pmd, vmf->address, page, target_nid);
  1383. if (migrated) {
  1384. flags |= TNF_MIGRATED;
  1385. page_nid = target_nid;
  1386. } else
  1387. flags |= TNF_MIGRATE_FAIL;
  1388. goto out;
  1389. clear_pmdnuma:
  1390. BUG_ON(!PageLocked(page));
  1391. was_writable = pmd_savedwrite(pmd);
  1392. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1393. pmd = pmd_mkyoung(pmd);
  1394. if (was_writable)
  1395. pmd = pmd_mkwrite(pmd);
  1396. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
  1397. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1398. unlock_page(page);
  1399. out_unlock:
  1400. spin_unlock(vmf->ptl);
  1401. out:
  1402. if (anon_vma)
  1403. page_unlock_anon_vma_read(anon_vma);
  1404. if (page_nid != -1)
  1405. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
  1406. flags);
  1407. return 0;
  1408. }
  1409. /*
  1410. * Return true if we do MADV_FREE successfully on entire pmd page.
  1411. * Otherwise, return false.
  1412. */
  1413. bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1414. pmd_t *pmd, unsigned long addr, unsigned long next)
  1415. {
  1416. spinlock_t *ptl;
  1417. pmd_t orig_pmd;
  1418. struct page *page;
  1419. struct mm_struct *mm = tlb->mm;
  1420. bool ret = false;
  1421. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1422. ptl = pmd_trans_huge_lock(pmd, vma);
  1423. if (!ptl)
  1424. goto out_unlocked;
  1425. orig_pmd = *pmd;
  1426. if (is_huge_zero_pmd(orig_pmd))
  1427. goto out;
  1428. if (unlikely(!pmd_present(orig_pmd))) {
  1429. VM_BUG_ON(thp_migration_supported() &&
  1430. !is_pmd_migration_entry(orig_pmd));
  1431. goto out;
  1432. }
  1433. page = pmd_page(orig_pmd);
  1434. /*
  1435. * If other processes are mapping this page, we couldn't discard
  1436. * the page unless they all do MADV_FREE so let's skip the page.
  1437. */
  1438. if (page_mapcount(page) != 1)
  1439. goto out;
  1440. if (!trylock_page(page))
  1441. goto out;
  1442. /*
  1443. * If user want to discard part-pages of THP, split it so MADV_FREE
  1444. * will deactivate only them.
  1445. */
  1446. if (next - addr != HPAGE_PMD_SIZE) {
  1447. get_page(page);
  1448. spin_unlock(ptl);
  1449. split_huge_page(page);
  1450. unlock_page(page);
  1451. put_page(page);
  1452. goto out_unlocked;
  1453. }
  1454. if (PageDirty(page))
  1455. ClearPageDirty(page);
  1456. unlock_page(page);
  1457. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1458. pmdp_invalidate(vma, addr, pmd);
  1459. orig_pmd = pmd_mkold(orig_pmd);
  1460. orig_pmd = pmd_mkclean(orig_pmd);
  1461. set_pmd_at(mm, addr, pmd, orig_pmd);
  1462. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1463. }
  1464. mark_page_lazyfree(page);
  1465. ret = true;
  1466. out:
  1467. spin_unlock(ptl);
  1468. out_unlocked:
  1469. return ret;
  1470. }
  1471. static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
  1472. {
  1473. pgtable_t pgtable;
  1474. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1475. pte_free(mm, pgtable);
  1476. mm_dec_nr_ptes(mm);
  1477. }
  1478. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1479. pmd_t *pmd, unsigned long addr)
  1480. {
  1481. pmd_t orig_pmd;
  1482. spinlock_t *ptl;
  1483. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1484. ptl = __pmd_trans_huge_lock(pmd, vma);
  1485. if (!ptl)
  1486. return 0;
  1487. /*
  1488. * For architectures like ppc64 we look at deposited pgtable
  1489. * when calling pmdp_huge_get_and_clear. So do the
  1490. * pgtable_trans_huge_withdraw after finishing pmdp related
  1491. * operations.
  1492. */
  1493. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1494. tlb->fullmm);
  1495. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1496. if (vma_is_dax(vma)) {
  1497. if (arch_needs_pgtable_deposit())
  1498. zap_deposited_table(tlb->mm, pmd);
  1499. spin_unlock(ptl);
  1500. if (is_huge_zero_pmd(orig_pmd))
  1501. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1502. } else if (is_huge_zero_pmd(orig_pmd)) {
  1503. zap_deposited_table(tlb->mm, pmd);
  1504. spin_unlock(ptl);
  1505. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1506. } else {
  1507. struct page *page = NULL;
  1508. int flush_needed = 1;
  1509. if (pmd_present(orig_pmd)) {
  1510. page = pmd_page(orig_pmd);
  1511. page_remove_rmap(page, true);
  1512. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1513. VM_BUG_ON_PAGE(!PageHead(page), page);
  1514. } else if (thp_migration_supported()) {
  1515. swp_entry_t entry;
  1516. VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
  1517. entry = pmd_to_swp_entry(orig_pmd);
  1518. page = pfn_to_page(swp_offset(entry));
  1519. flush_needed = 0;
  1520. } else
  1521. WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
  1522. if (PageAnon(page)) {
  1523. zap_deposited_table(tlb->mm, pmd);
  1524. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1525. } else {
  1526. if (arch_needs_pgtable_deposit())
  1527. zap_deposited_table(tlb->mm, pmd);
  1528. add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
  1529. }
  1530. spin_unlock(ptl);
  1531. if (flush_needed)
  1532. tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
  1533. }
  1534. return 1;
  1535. }
  1536. #ifndef pmd_move_must_withdraw
  1537. static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
  1538. spinlock_t *old_pmd_ptl,
  1539. struct vm_area_struct *vma)
  1540. {
  1541. /*
  1542. * With split pmd lock we also need to move preallocated
  1543. * PTE page table if new_pmd is on different PMD page table.
  1544. *
  1545. * We also don't deposit and withdraw tables for file pages.
  1546. */
  1547. return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
  1548. }
  1549. #endif
  1550. static pmd_t move_soft_dirty_pmd(pmd_t pmd)
  1551. {
  1552. #ifdef CONFIG_MEM_SOFT_DIRTY
  1553. if (unlikely(is_pmd_migration_entry(pmd)))
  1554. pmd = pmd_swp_mksoft_dirty(pmd);
  1555. else if (pmd_present(pmd))
  1556. pmd = pmd_mksoft_dirty(pmd);
  1557. #endif
  1558. return pmd;
  1559. }
  1560. bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
  1561. unsigned long new_addr, unsigned long old_end,
  1562. pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
  1563. {
  1564. spinlock_t *old_ptl, *new_ptl;
  1565. pmd_t pmd;
  1566. struct mm_struct *mm = vma->vm_mm;
  1567. bool force_flush = false;
  1568. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1569. (new_addr & ~HPAGE_PMD_MASK) ||
  1570. old_end - old_addr < HPAGE_PMD_SIZE)
  1571. return false;
  1572. /*
  1573. * The destination pmd shouldn't be established, free_pgtables()
  1574. * should have release it.
  1575. */
  1576. if (WARN_ON(!pmd_none(*new_pmd))) {
  1577. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1578. return false;
  1579. }
  1580. /*
  1581. * We don't have to worry about the ordering of src and dst
  1582. * ptlocks because exclusive mmap_sem prevents deadlock.
  1583. */
  1584. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1585. if (old_ptl) {
  1586. new_ptl = pmd_lockptr(mm, new_pmd);
  1587. if (new_ptl != old_ptl)
  1588. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1589. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1590. if (pmd_present(pmd) && pmd_dirty(pmd))
  1591. force_flush = true;
  1592. VM_BUG_ON(!pmd_none(*new_pmd));
  1593. if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
  1594. pgtable_t pgtable;
  1595. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1596. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1597. }
  1598. pmd = move_soft_dirty_pmd(pmd);
  1599. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1600. if (new_ptl != old_ptl)
  1601. spin_unlock(new_ptl);
  1602. if (force_flush)
  1603. flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
  1604. else
  1605. *need_flush = true;
  1606. spin_unlock(old_ptl);
  1607. return true;
  1608. }
  1609. return false;
  1610. }
  1611. /*
  1612. * Returns
  1613. * - 0 if PMD could not be locked
  1614. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1615. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1616. */
  1617. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1618. unsigned long addr, pgprot_t newprot, int prot_numa)
  1619. {
  1620. struct mm_struct *mm = vma->vm_mm;
  1621. spinlock_t *ptl;
  1622. pmd_t entry;
  1623. bool preserve_write;
  1624. int ret;
  1625. ptl = __pmd_trans_huge_lock(pmd, vma);
  1626. if (!ptl)
  1627. return 0;
  1628. preserve_write = prot_numa && pmd_write(*pmd);
  1629. ret = 1;
  1630. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1631. if (is_swap_pmd(*pmd)) {
  1632. swp_entry_t entry = pmd_to_swp_entry(*pmd);
  1633. VM_BUG_ON(!is_pmd_migration_entry(*pmd));
  1634. if (is_write_migration_entry(entry)) {
  1635. pmd_t newpmd;
  1636. /*
  1637. * A protection check is difficult so
  1638. * just be safe and disable write
  1639. */
  1640. make_migration_entry_read(&entry);
  1641. newpmd = swp_entry_to_pmd(entry);
  1642. if (pmd_swp_soft_dirty(*pmd))
  1643. newpmd = pmd_swp_mksoft_dirty(newpmd);
  1644. set_pmd_at(mm, addr, pmd, newpmd);
  1645. }
  1646. goto unlock;
  1647. }
  1648. #endif
  1649. /*
  1650. * Avoid trapping faults against the zero page. The read-only
  1651. * data is likely to be read-cached on the local CPU and
  1652. * local/remote hits to the zero page are not interesting.
  1653. */
  1654. if (prot_numa && is_huge_zero_pmd(*pmd))
  1655. goto unlock;
  1656. if (prot_numa && pmd_protnone(*pmd))
  1657. goto unlock;
  1658. /*
  1659. * In case prot_numa, we are under down_read(mmap_sem). It's critical
  1660. * to not clear pmd intermittently to avoid race with MADV_DONTNEED
  1661. * which is also under down_read(mmap_sem):
  1662. *
  1663. * CPU0: CPU1:
  1664. * change_huge_pmd(prot_numa=1)
  1665. * pmdp_huge_get_and_clear_notify()
  1666. * madvise_dontneed()
  1667. * zap_pmd_range()
  1668. * pmd_trans_huge(*pmd) == 0 (without ptl)
  1669. * // skip the pmd
  1670. * set_pmd_at();
  1671. * // pmd is re-established
  1672. *
  1673. * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
  1674. * which may break userspace.
  1675. *
  1676. * pmdp_invalidate() is required to make sure we don't miss
  1677. * dirty/young flags set by hardware.
  1678. */
  1679. entry = pmdp_invalidate(vma, addr, pmd);
  1680. entry = pmd_modify(entry, newprot);
  1681. if (preserve_write)
  1682. entry = pmd_mk_savedwrite(entry);
  1683. ret = HPAGE_PMD_NR;
  1684. set_pmd_at(mm, addr, pmd, entry);
  1685. BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
  1686. unlock:
  1687. spin_unlock(ptl);
  1688. return ret;
  1689. }
  1690. /*
  1691. * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
  1692. *
  1693. * Note that if it returns page table lock pointer, this routine returns without
  1694. * unlocking page table lock. So callers must unlock it.
  1695. */
  1696. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1697. {
  1698. spinlock_t *ptl;
  1699. ptl = pmd_lock(vma->vm_mm, pmd);
  1700. if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
  1701. pmd_devmap(*pmd)))
  1702. return ptl;
  1703. spin_unlock(ptl);
  1704. return NULL;
  1705. }
  1706. /*
  1707. * Returns true if a given pud maps a thp, false otherwise.
  1708. *
  1709. * Note that if it returns true, this routine returns without unlocking page
  1710. * table lock. So callers must unlock it.
  1711. */
  1712. spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
  1713. {
  1714. spinlock_t *ptl;
  1715. ptl = pud_lock(vma->vm_mm, pud);
  1716. if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
  1717. return ptl;
  1718. spin_unlock(ptl);
  1719. return NULL;
  1720. }
  1721. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  1722. int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1723. pud_t *pud, unsigned long addr)
  1724. {
  1725. pud_t orig_pud;
  1726. spinlock_t *ptl;
  1727. ptl = __pud_trans_huge_lock(pud, vma);
  1728. if (!ptl)
  1729. return 0;
  1730. /*
  1731. * For architectures like ppc64 we look at deposited pgtable
  1732. * when calling pudp_huge_get_and_clear. So do the
  1733. * pgtable_trans_huge_withdraw after finishing pudp related
  1734. * operations.
  1735. */
  1736. orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
  1737. tlb->fullmm);
  1738. tlb_remove_pud_tlb_entry(tlb, pud, addr);
  1739. if (vma_is_dax(vma)) {
  1740. spin_unlock(ptl);
  1741. /* No zero page support yet */
  1742. } else {
  1743. /* No support for anonymous PUD pages yet */
  1744. BUG();
  1745. }
  1746. return 1;
  1747. }
  1748. static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
  1749. unsigned long haddr)
  1750. {
  1751. VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
  1752. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1753. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
  1754. VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
  1755. count_vm_event(THP_SPLIT_PUD);
  1756. pudp_huge_clear_flush_notify(vma, haddr, pud);
  1757. }
  1758. void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
  1759. unsigned long address)
  1760. {
  1761. spinlock_t *ptl;
  1762. struct mm_struct *mm = vma->vm_mm;
  1763. unsigned long haddr = address & HPAGE_PUD_MASK;
  1764. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
  1765. ptl = pud_lock(mm, pud);
  1766. if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
  1767. goto out;
  1768. __split_huge_pud_locked(vma, pud, haddr);
  1769. out:
  1770. spin_unlock(ptl);
  1771. /*
  1772. * No need to double call mmu_notifier->invalidate_range() callback as
  1773. * the above pudp_huge_clear_flush_notify() did already call it.
  1774. */
  1775. mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
  1776. HPAGE_PUD_SIZE);
  1777. }
  1778. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  1779. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  1780. unsigned long haddr, pmd_t *pmd)
  1781. {
  1782. struct mm_struct *mm = vma->vm_mm;
  1783. pgtable_t pgtable;
  1784. pmd_t _pmd;
  1785. int i;
  1786. /*
  1787. * Leave pmd empty until pte is filled note that it is fine to delay
  1788. * notification until mmu_notifier_invalidate_range_end() as we are
  1789. * replacing a zero pmd write protected page with a zero pte write
  1790. * protected page.
  1791. *
  1792. * See Documentation/vm/mmu_notifier.rst
  1793. */
  1794. pmdp_huge_clear_flush(vma, haddr, pmd);
  1795. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1796. pmd_populate(mm, &_pmd, pgtable);
  1797. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1798. pte_t *pte, entry;
  1799. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  1800. entry = pte_mkspecial(entry);
  1801. pte = pte_offset_map(&_pmd, haddr);
  1802. VM_BUG_ON(!pte_none(*pte));
  1803. set_pte_at(mm, haddr, pte, entry);
  1804. pte_unmap(pte);
  1805. }
  1806. smp_wmb(); /* make pte visible before pmd */
  1807. pmd_populate(mm, pmd, pgtable);
  1808. }
  1809. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  1810. unsigned long haddr, bool freeze)
  1811. {
  1812. struct mm_struct *mm = vma->vm_mm;
  1813. struct page *page;
  1814. pgtable_t pgtable;
  1815. pmd_t old_pmd, _pmd;
  1816. bool young, write, soft_dirty, pmd_migration = false;
  1817. unsigned long addr;
  1818. int i;
  1819. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  1820. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1821. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  1822. VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
  1823. && !pmd_devmap(*pmd));
  1824. count_vm_event(THP_SPLIT_PMD);
  1825. if (!vma_is_anonymous(vma)) {
  1826. _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1827. /*
  1828. * We are going to unmap this huge page. So
  1829. * just go ahead and zap it
  1830. */
  1831. if (arch_needs_pgtable_deposit())
  1832. zap_deposited_table(mm, pmd);
  1833. if (vma_is_dax(vma))
  1834. return;
  1835. page = pmd_page(_pmd);
  1836. if (!PageDirty(page) && pmd_dirty(_pmd))
  1837. set_page_dirty(page);
  1838. if (!PageReferenced(page) && pmd_young(_pmd))
  1839. SetPageReferenced(page);
  1840. page_remove_rmap(page, true);
  1841. put_page(page);
  1842. add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
  1843. return;
  1844. } else if (is_huge_zero_pmd(*pmd)) {
  1845. /*
  1846. * FIXME: Do we want to invalidate secondary mmu by calling
  1847. * mmu_notifier_invalidate_range() see comments below inside
  1848. * __split_huge_pmd() ?
  1849. *
  1850. * We are going from a zero huge page write protected to zero
  1851. * small page also write protected so it does not seems useful
  1852. * to invalidate secondary mmu at this time.
  1853. */
  1854. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  1855. }
  1856. /*
  1857. * Up to this point the pmd is present and huge and userland has the
  1858. * whole access to the hugepage during the split (which happens in
  1859. * place). If we overwrite the pmd with the not-huge version pointing
  1860. * to the pte here (which of course we could if all CPUs were bug
  1861. * free), userland could trigger a small page size TLB miss on the
  1862. * small sized TLB while the hugepage TLB entry is still established in
  1863. * the huge TLB. Some CPU doesn't like that.
  1864. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  1865. * 383 on page 93. Intel should be safe but is also warns that it's
  1866. * only safe if the permission and cache attributes of the two entries
  1867. * loaded in the two TLB is identical (which should be the case here).
  1868. * But it is generally safer to never allow small and huge TLB entries
  1869. * for the same virtual address to be loaded simultaneously. So instead
  1870. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  1871. * current pmd notpresent (atomically because here the pmd_trans_huge
  1872. * must remain set at all times on the pmd until the split is complete
  1873. * for this pmd), then we flush the SMP TLB and finally we write the
  1874. * non-huge version of the pmd entry with pmd_populate.
  1875. */
  1876. old_pmd = pmdp_invalidate(vma, haddr, pmd);
  1877. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1878. pmd_migration = is_pmd_migration_entry(old_pmd);
  1879. if (pmd_migration) {
  1880. swp_entry_t entry;
  1881. entry = pmd_to_swp_entry(old_pmd);
  1882. page = pfn_to_page(swp_offset(entry));
  1883. } else
  1884. #endif
  1885. page = pmd_page(old_pmd);
  1886. VM_BUG_ON_PAGE(!page_count(page), page);
  1887. page_ref_add(page, HPAGE_PMD_NR - 1);
  1888. if (pmd_dirty(old_pmd))
  1889. SetPageDirty(page);
  1890. write = pmd_write(old_pmd);
  1891. young = pmd_young(old_pmd);
  1892. soft_dirty = pmd_soft_dirty(old_pmd);
  1893. /*
  1894. * Withdraw the table only after we mark the pmd entry invalid.
  1895. * This's critical for some architectures (Power).
  1896. */
  1897. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1898. pmd_populate(mm, &_pmd, pgtable);
  1899. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  1900. pte_t entry, *pte;
  1901. /*
  1902. * Note that NUMA hinting access restrictions are not
  1903. * transferred to avoid any possibility of altering
  1904. * permissions across VMAs.
  1905. */
  1906. if (freeze || pmd_migration) {
  1907. swp_entry_t swp_entry;
  1908. swp_entry = make_migration_entry(page + i, write);
  1909. entry = swp_entry_to_pte(swp_entry);
  1910. if (soft_dirty)
  1911. entry = pte_swp_mksoft_dirty(entry);
  1912. } else {
  1913. entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
  1914. entry = maybe_mkwrite(entry, vma);
  1915. if (!write)
  1916. entry = pte_wrprotect(entry);
  1917. if (!young)
  1918. entry = pte_mkold(entry);
  1919. if (soft_dirty)
  1920. entry = pte_mksoft_dirty(entry);
  1921. }
  1922. pte = pte_offset_map(&_pmd, addr);
  1923. BUG_ON(!pte_none(*pte));
  1924. set_pte_at(mm, addr, pte, entry);
  1925. atomic_inc(&page[i]._mapcount);
  1926. pte_unmap(pte);
  1927. }
  1928. /*
  1929. * Set PG_double_map before dropping compound_mapcount to avoid
  1930. * false-negative page_mapped().
  1931. */
  1932. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  1933. for (i = 0; i < HPAGE_PMD_NR; i++)
  1934. atomic_inc(&page[i]._mapcount);
  1935. }
  1936. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  1937. /* Last compound_mapcount is gone. */
  1938. __dec_node_page_state(page, NR_ANON_THPS);
  1939. if (TestClearPageDoubleMap(page)) {
  1940. /* No need in mapcount reference anymore */
  1941. for (i = 0; i < HPAGE_PMD_NR; i++)
  1942. atomic_dec(&page[i]._mapcount);
  1943. }
  1944. }
  1945. smp_wmb(); /* make pte visible before pmd */
  1946. pmd_populate(mm, pmd, pgtable);
  1947. if (freeze) {
  1948. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1949. page_remove_rmap(page + i, false);
  1950. put_page(page + i);
  1951. }
  1952. }
  1953. }
  1954. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1955. unsigned long address, bool freeze, struct page *page)
  1956. {
  1957. spinlock_t *ptl;
  1958. struct mm_struct *mm = vma->vm_mm;
  1959. unsigned long haddr = address & HPAGE_PMD_MASK;
  1960. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  1961. ptl = pmd_lock(mm, pmd);
  1962. /*
  1963. * If caller asks to setup a migration entries, we need a page to check
  1964. * pmd against. Otherwise we can end up replacing wrong page.
  1965. */
  1966. VM_BUG_ON(freeze && !page);
  1967. if (page && page != pmd_page(*pmd))
  1968. goto out;
  1969. if (pmd_trans_huge(*pmd)) {
  1970. page = pmd_page(*pmd);
  1971. if (PageMlocked(page))
  1972. clear_page_mlock(page);
  1973. } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
  1974. goto out;
  1975. __split_huge_pmd_locked(vma, pmd, haddr, freeze);
  1976. out:
  1977. spin_unlock(ptl);
  1978. /*
  1979. * No need to double call mmu_notifier->invalidate_range() callback.
  1980. * They are 3 cases to consider inside __split_huge_pmd_locked():
  1981. * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
  1982. * 2) __split_huge_zero_page_pmd() read only zero page and any write
  1983. * fault will trigger a flush_notify before pointing to a new page
  1984. * (it is fine if the secondary mmu keeps pointing to the old zero
  1985. * page in the meantime)
  1986. * 3) Split a huge pmd into pte pointing to the same page. No need
  1987. * to invalidate secondary tlb entry they are all still valid.
  1988. * any further changes to individual pte will notify. So no need
  1989. * to call mmu_notifier->invalidate_range()
  1990. */
  1991. mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
  1992. HPAGE_PMD_SIZE);
  1993. }
  1994. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  1995. bool freeze, struct page *page)
  1996. {
  1997. pgd_t *pgd;
  1998. p4d_t *p4d;
  1999. pud_t *pud;
  2000. pmd_t *pmd;
  2001. pgd = pgd_offset(vma->vm_mm, address);
  2002. if (!pgd_present(*pgd))
  2003. return;
  2004. p4d = p4d_offset(pgd, address);
  2005. if (!p4d_present(*p4d))
  2006. return;
  2007. pud = pud_offset(p4d, address);
  2008. if (!pud_present(*pud))
  2009. return;
  2010. pmd = pmd_offset(pud, address);
  2011. __split_huge_pmd(vma, pmd, address, freeze, page);
  2012. }
  2013. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2014. unsigned long start,
  2015. unsigned long end,
  2016. long adjust_next)
  2017. {
  2018. /*
  2019. * If the new start address isn't hpage aligned and it could
  2020. * previously contain an hugepage: check if we need to split
  2021. * an huge pmd.
  2022. */
  2023. if (start & ~HPAGE_PMD_MASK &&
  2024. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2025. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2026. split_huge_pmd_address(vma, start, false, NULL);
  2027. /*
  2028. * If the new end address isn't hpage aligned and it could
  2029. * previously contain an hugepage: check if we need to split
  2030. * an huge pmd.
  2031. */
  2032. if (end & ~HPAGE_PMD_MASK &&
  2033. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2034. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2035. split_huge_pmd_address(vma, end, false, NULL);
  2036. /*
  2037. * If we're also updating the vma->vm_next->vm_start, if the new
  2038. * vm_next->vm_start isn't page aligned and it could previously
  2039. * contain an hugepage: check if we need to split an huge pmd.
  2040. */
  2041. if (adjust_next > 0) {
  2042. struct vm_area_struct *next = vma->vm_next;
  2043. unsigned long nstart = next->vm_start;
  2044. nstart += adjust_next << PAGE_SHIFT;
  2045. if (nstart & ~HPAGE_PMD_MASK &&
  2046. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2047. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2048. split_huge_pmd_address(next, nstart, false, NULL);
  2049. }
  2050. }
  2051. static void freeze_page(struct page *page)
  2052. {
  2053. enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
  2054. TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
  2055. bool unmap_success;
  2056. VM_BUG_ON_PAGE(!PageHead(page), page);
  2057. if (PageAnon(page))
  2058. ttu_flags |= TTU_SPLIT_FREEZE;
  2059. unmap_success = try_to_unmap(page, ttu_flags);
  2060. VM_BUG_ON_PAGE(!unmap_success, page);
  2061. }
  2062. static void unfreeze_page(struct page *page)
  2063. {
  2064. int i;
  2065. if (PageTransHuge(page)) {
  2066. remove_migration_ptes(page, page, true);
  2067. } else {
  2068. for (i = 0; i < HPAGE_PMD_NR; i++)
  2069. remove_migration_ptes(page + i, page + i, true);
  2070. }
  2071. }
  2072. static void __split_huge_page_tail(struct page *head, int tail,
  2073. struct lruvec *lruvec, struct list_head *list)
  2074. {
  2075. struct page *page_tail = head + tail;
  2076. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  2077. /*
  2078. * Clone page flags before unfreezing refcount.
  2079. *
  2080. * After successful get_page_unless_zero() might follow flags change,
  2081. * for exmaple lock_page() which set PG_waiters.
  2082. */
  2083. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  2084. page_tail->flags |= (head->flags &
  2085. ((1L << PG_referenced) |
  2086. (1L << PG_swapbacked) |
  2087. (1L << PG_swapcache) |
  2088. (1L << PG_mlocked) |
  2089. (1L << PG_uptodate) |
  2090. (1L << PG_active) |
  2091. (1L << PG_locked) |
  2092. (1L << PG_unevictable) |
  2093. (1L << PG_dirty)));
  2094. /* Page flags must be visible before we make the page non-compound. */
  2095. smp_wmb();
  2096. /*
  2097. * Clear PageTail before unfreezing page refcount.
  2098. *
  2099. * After successful get_page_unless_zero() might follow put_page()
  2100. * which needs correct compound_head().
  2101. */
  2102. clear_compound_head(page_tail);
  2103. /* Finally unfreeze refcount. Additional reference from page cache. */
  2104. page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
  2105. PageSwapCache(head)));
  2106. if (page_is_young(head))
  2107. set_page_young(page_tail);
  2108. if (page_is_idle(head))
  2109. set_page_idle(page_tail);
  2110. /* ->mapping in first tail page is compound_mapcount */
  2111. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  2112. page_tail);
  2113. page_tail->mapping = head->mapping;
  2114. page_tail->index = head->index + tail;
  2115. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  2116. /*
  2117. * always add to the tail because some iterators expect new
  2118. * pages to show after the currently processed elements - e.g.
  2119. * migrate_pages
  2120. */
  2121. lru_add_page_tail(head, page_tail, lruvec, list);
  2122. }
  2123. static void __split_huge_page(struct page *page, struct list_head *list,
  2124. unsigned long flags)
  2125. {
  2126. struct page *head = compound_head(page);
  2127. struct zone *zone = page_zone(head);
  2128. struct lruvec *lruvec;
  2129. pgoff_t end = -1;
  2130. int i;
  2131. lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
  2132. /* complete memcg works before add pages to LRU */
  2133. mem_cgroup_split_huge_fixup(head);
  2134. if (!PageAnon(page))
  2135. end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
  2136. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  2137. __split_huge_page_tail(head, i, lruvec, list);
  2138. /* Some pages can be beyond i_size: drop them from page cache */
  2139. if (head[i].index >= end) {
  2140. ClearPageDirty(head + i);
  2141. __delete_from_page_cache(head + i, NULL);
  2142. if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
  2143. shmem_uncharge(head->mapping->host, 1);
  2144. put_page(head + i);
  2145. }
  2146. }
  2147. ClearPageCompound(head);
  2148. /* See comment in __split_huge_page_tail() */
  2149. if (PageAnon(head)) {
  2150. /* Additional pin to radix tree of swap cache */
  2151. if (PageSwapCache(head))
  2152. page_ref_add(head, 2);
  2153. else
  2154. page_ref_inc(head);
  2155. } else {
  2156. /* Additional pin to radix tree */
  2157. page_ref_add(head, 2);
  2158. xa_unlock(&head->mapping->i_pages);
  2159. }
  2160. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  2161. unfreeze_page(head);
  2162. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2163. struct page *subpage = head + i;
  2164. if (subpage == page)
  2165. continue;
  2166. unlock_page(subpage);
  2167. /*
  2168. * Subpages may be freed if there wasn't any mapping
  2169. * like if add_to_swap() is running on a lru page that
  2170. * had its mapping zapped. And freeing these pages
  2171. * requires taking the lru_lock so we do the put_page
  2172. * of the tail pages after the split is complete.
  2173. */
  2174. put_page(subpage);
  2175. }
  2176. }
  2177. int total_mapcount(struct page *page)
  2178. {
  2179. int i, compound, ret;
  2180. VM_BUG_ON_PAGE(PageTail(page), page);
  2181. if (likely(!PageCompound(page)))
  2182. return atomic_read(&page->_mapcount) + 1;
  2183. compound = compound_mapcount(page);
  2184. if (PageHuge(page))
  2185. return compound;
  2186. ret = compound;
  2187. for (i = 0; i < HPAGE_PMD_NR; i++)
  2188. ret += atomic_read(&page[i]._mapcount) + 1;
  2189. /* File pages has compound_mapcount included in _mapcount */
  2190. if (!PageAnon(page))
  2191. return ret - compound * HPAGE_PMD_NR;
  2192. if (PageDoubleMap(page))
  2193. ret -= HPAGE_PMD_NR;
  2194. return ret;
  2195. }
  2196. /*
  2197. * This calculates accurately how many mappings a transparent hugepage
  2198. * has (unlike page_mapcount() which isn't fully accurate). This full
  2199. * accuracy is primarily needed to know if copy-on-write faults can
  2200. * reuse the page and change the mapping to read-write instead of
  2201. * copying them. At the same time this returns the total_mapcount too.
  2202. *
  2203. * The function returns the highest mapcount any one of the subpages
  2204. * has. If the return value is one, even if different processes are
  2205. * mapping different subpages of the transparent hugepage, they can
  2206. * all reuse it, because each process is reusing a different subpage.
  2207. *
  2208. * The total_mapcount is instead counting all virtual mappings of the
  2209. * subpages. If the total_mapcount is equal to "one", it tells the
  2210. * caller all mappings belong to the same "mm" and in turn the
  2211. * anon_vma of the transparent hugepage can become the vma->anon_vma
  2212. * local one as no other process may be mapping any of the subpages.
  2213. *
  2214. * It would be more accurate to replace page_mapcount() with
  2215. * page_trans_huge_mapcount(), however we only use
  2216. * page_trans_huge_mapcount() in the copy-on-write faults where we
  2217. * need full accuracy to avoid breaking page pinning, because
  2218. * page_trans_huge_mapcount() is slower than page_mapcount().
  2219. */
  2220. int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
  2221. {
  2222. int i, ret, _total_mapcount, mapcount;
  2223. /* hugetlbfs shouldn't call it */
  2224. VM_BUG_ON_PAGE(PageHuge(page), page);
  2225. if (likely(!PageTransCompound(page))) {
  2226. mapcount = atomic_read(&page->_mapcount) + 1;
  2227. if (total_mapcount)
  2228. *total_mapcount = mapcount;
  2229. return mapcount;
  2230. }
  2231. page = compound_head(page);
  2232. _total_mapcount = ret = 0;
  2233. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2234. mapcount = atomic_read(&page[i]._mapcount) + 1;
  2235. ret = max(ret, mapcount);
  2236. _total_mapcount += mapcount;
  2237. }
  2238. if (PageDoubleMap(page)) {
  2239. ret -= 1;
  2240. _total_mapcount -= HPAGE_PMD_NR;
  2241. }
  2242. mapcount = compound_mapcount(page);
  2243. ret += mapcount;
  2244. _total_mapcount += mapcount;
  2245. if (total_mapcount)
  2246. *total_mapcount = _total_mapcount;
  2247. return ret;
  2248. }
  2249. /* Racy check whether the huge page can be split */
  2250. bool can_split_huge_page(struct page *page, int *pextra_pins)
  2251. {
  2252. int extra_pins;
  2253. /* Additional pins from radix tree */
  2254. if (PageAnon(page))
  2255. extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
  2256. else
  2257. extra_pins = HPAGE_PMD_NR;
  2258. if (pextra_pins)
  2259. *pextra_pins = extra_pins;
  2260. return total_mapcount(page) == page_count(page) - extra_pins - 1;
  2261. }
  2262. /*
  2263. * This function splits huge page into normal pages. @page can point to any
  2264. * subpage of huge page to split. Split doesn't change the position of @page.
  2265. *
  2266. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2267. * The huge page must be locked.
  2268. *
  2269. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2270. *
  2271. * Both head page and tail pages will inherit mapping, flags, and so on from
  2272. * the hugepage.
  2273. *
  2274. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2275. * they are not mapped.
  2276. *
  2277. * Returns 0 if the hugepage is split successfully.
  2278. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2279. * us.
  2280. */
  2281. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2282. {
  2283. struct page *head = compound_head(page);
  2284. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  2285. struct anon_vma *anon_vma = NULL;
  2286. struct address_space *mapping = NULL;
  2287. int count, mapcount, extra_pins, ret;
  2288. bool mlocked;
  2289. unsigned long flags;
  2290. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  2291. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2292. VM_BUG_ON_PAGE(!PageCompound(page), page);
  2293. if (PageWriteback(page))
  2294. return -EBUSY;
  2295. if (PageAnon(head)) {
  2296. /*
  2297. * The caller does not necessarily hold an mmap_sem that would
  2298. * prevent the anon_vma disappearing so we first we take a
  2299. * reference to it and then lock the anon_vma for write. This
  2300. * is similar to page_lock_anon_vma_read except the write lock
  2301. * is taken to serialise against parallel split or collapse
  2302. * operations.
  2303. */
  2304. anon_vma = page_get_anon_vma(head);
  2305. if (!anon_vma) {
  2306. ret = -EBUSY;
  2307. goto out;
  2308. }
  2309. mapping = NULL;
  2310. anon_vma_lock_write(anon_vma);
  2311. } else {
  2312. mapping = head->mapping;
  2313. /* Truncated ? */
  2314. if (!mapping) {
  2315. ret = -EBUSY;
  2316. goto out;
  2317. }
  2318. anon_vma = NULL;
  2319. i_mmap_lock_read(mapping);
  2320. }
  2321. /*
  2322. * Racy check if we can split the page, before freeze_page() will
  2323. * split PMDs
  2324. */
  2325. if (!can_split_huge_page(head, &extra_pins)) {
  2326. ret = -EBUSY;
  2327. goto out_unlock;
  2328. }
  2329. mlocked = PageMlocked(page);
  2330. freeze_page(head);
  2331. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  2332. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  2333. if (mlocked)
  2334. lru_add_drain();
  2335. /* prevent PageLRU to go away from under us, and freeze lru stats */
  2336. spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
  2337. if (mapping) {
  2338. void **pslot;
  2339. xa_lock(&mapping->i_pages);
  2340. pslot = radix_tree_lookup_slot(&mapping->i_pages,
  2341. page_index(head));
  2342. /*
  2343. * Check if the head page is present in radix tree.
  2344. * We assume all tail are present too, if head is there.
  2345. */
  2346. if (radix_tree_deref_slot_protected(pslot,
  2347. &mapping->i_pages.xa_lock) != head)
  2348. goto fail;
  2349. }
  2350. /* Prevent deferred_split_scan() touching ->_refcount */
  2351. spin_lock(&pgdata->split_queue_lock);
  2352. count = page_count(head);
  2353. mapcount = total_mapcount(head);
  2354. if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
  2355. if (!list_empty(page_deferred_list(head))) {
  2356. pgdata->split_queue_len--;
  2357. list_del(page_deferred_list(head));
  2358. }
  2359. if (mapping)
  2360. __dec_node_page_state(page, NR_SHMEM_THPS);
  2361. spin_unlock(&pgdata->split_queue_lock);
  2362. __split_huge_page(page, list, flags);
  2363. if (PageSwapCache(head)) {
  2364. swp_entry_t entry = { .val = page_private(head) };
  2365. ret = split_swap_cluster(entry);
  2366. } else
  2367. ret = 0;
  2368. } else {
  2369. if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  2370. pr_alert("total_mapcount: %u, page_count(): %u\n",
  2371. mapcount, count);
  2372. if (PageTail(page))
  2373. dump_page(head, NULL);
  2374. dump_page(page, "total_mapcount(head) > 0");
  2375. BUG();
  2376. }
  2377. spin_unlock(&pgdata->split_queue_lock);
  2378. fail: if (mapping)
  2379. xa_unlock(&mapping->i_pages);
  2380. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  2381. unfreeze_page(head);
  2382. ret = -EBUSY;
  2383. }
  2384. out_unlock:
  2385. if (anon_vma) {
  2386. anon_vma_unlock_write(anon_vma);
  2387. put_anon_vma(anon_vma);
  2388. }
  2389. if (mapping)
  2390. i_mmap_unlock_read(mapping);
  2391. out:
  2392. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  2393. return ret;
  2394. }
  2395. void free_transhuge_page(struct page *page)
  2396. {
  2397. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2398. unsigned long flags;
  2399. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2400. if (!list_empty(page_deferred_list(page))) {
  2401. pgdata->split_queue_len--;
  2402. list_del(page_deferred_list(page));
  2403. }
  2404. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2405. free_compound_page(page);
  2406. }
  2407. void deferred_split_huge_page(struct page *page)
  2408. {
  2409. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2410. unsigned long flags;
  2411. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  2412. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2413. if (list_empty(page_deferred_list(page))) {
  2414. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  2415. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  2416. pgdata->split_queue_len++;
  2417. }
  2418. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2419. }
  2420. static unsigned long deferred_split_count(struct shrinker *shrink,
  2421. struct shrink_control *sc)
  2422. {
  2423. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2424. return READ_ONCE(pgdata->split_queue_len);
  2425. }
  2426. static unsigned long deferred_split_scan(struct shrinker *shrink,
  2427. struct shrink_control *sc)
  2428. {
  2429. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2430. unsigned long flags;
  2431. LIST_HEAD(list), *pos, *next;
  2432. struct page *page;
  2433. int split = 0;
  2434. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2435. /* Take pin on all head pages to avoid freeing them under us */
  2436. list_for_each_safe(pos, next, &pgdata->split_queue) {
  2437. page = list_entry((void *)pos, struct page, mapping);
  2438. page = compound_head(page);
  2439. if (get_page_unless_zero(page)) {
  2440. list_move(page_deferred_list(page), &list);
  2441. } else {
  2442. /* We lost race with put_compound_page() */
  2443. list_del_init(page_deferred_list(page));
  2444. pgdata->split_queue_len--;
  2445. }
  2446. if (!--sc->nr_to_scan)
  2447. break;
  2448. }
  2449. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2450. list_for_each_safe(pos, next, &list) {
  2451. page = list_entry((void *)pos, struct page, mapping);
  2452. if (!trylock_page(page))
  2453. goto next;
  2454. /* split_huge_page() removes page from list on success */
  2455. if (!split_huge_page(page))
  2456. split++;
  2457. unlock_page(page);
  2458. next:
  2459. put_page(page);
  2460. }
  2461. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2462. list_splice_tail(&list, &pgdata->split_queue);
  2463. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2464. /*
  2465. * Stop shrinker if we didn't split any page, but the queue is empty.
  2466. * This can happen if pages were freed under us.
  2467. */
  2468. if (!split && list_empty(&pgdata->split_queue))
  2469. return SHRINK_STOP;
  2470. return split;
  2471. }
  2472. static struct shrinker deferred_split_shrinker = {
  2473. .count_objects = deferred_split_count,
  2474. .scan_objects = deferred_split_scan,
  2475. .seeks = DEFAULT_SEEKS,
  2476. .flags = SHRINKER_NUMA_AWARE,
  2477. };
  2478. #ifdef CONFIG_DEBUG_FS
  2479. static int split_huge_pages_set(void *data, u64 val)
  2480. {
  2481. struct zone *zone;
  2482. struct page *page;
  2483. unsigned long pfn, max_zone_pfn;
  2484. unsigned long total = 0, split = 0;
  2485. if (val != 1)
  2486. return -EINVAL;
  2487. for_each_populated_zone(zone) {
  2488. max_zone_pfn = zone_end_pfn(zone);
  2489. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  2490. if (!pfn_valid(pfn))
  2491. continue;
  2492. page = pfn_to_page(pfn);
  2493. if (!get_page_unless_zero(page))
  2494. continue;
  2495. if (zone != page_zone(page))
  2496. goto next;
  2497. if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
  2498. goto next;
  2499. total++;
  2500. lock_page(page);
  2501. if (!split_huge_page(page))
  2502. split++;
  2503. unlock_page(page);
  2504. next:
  2505. put_page(page);
  2506. }
  2507. }
  2508. pr_info("%lu of %lu THP split\n", split, total);
  2509. return 0;
  2510. }
  2511. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  2512. "%llu\n");
  2513. static int __init split_huge_pages_debugfs(void)
  2514. {
  2515. void *ret;
  2516. ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
  2517. &split_huge_pages_fops);
  2518. if (!ret)
  2519. pr_warn("Failed to create split_huge_pages in debugfs");
  2520. return 0;
  2521. }
  2522. late_initcall(split_huge_pages_debugfs);
  2523. #endif
  2524. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  2525. void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
  2526. struct page *page)
  2527. {
  2528. struct vm_area_struct *vma = pvmw->vma;
  2529. struct mm_struct *mm = vma->vm_mm;
  2530. unsigned long address = pvmw->address;
  2531. pmd_t pmdval;
  2532. swp_entry_t entry;
  2533. pmd_t pmdswp;
  2534. if (!(pvmw->pmd && !pvmw->pte))
  2535. return;
  2536. mmu_notifier_invalidate_range_start(mm, address,
  2537. address + HPAGE_PMD_SIZE);
  2538. flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
  2539. pmdval = *pvmw->pmd;
  2540. pmdp_invalidate(vma, address, pvmw->pmd);
  2541. if (pmd_dirty(pmdval))
  2542. set_page_dirty(page);
  2543. entry = make_migration_entry(page, pmd_write(pmdval));
  2544. pmdswp = swp_entry_to_pmd(entry);
  2545. if (pmd_soft_dirty(pmdval))
  2546. pmdswp = pmd_swp_mksoft_dirty(pmdswp);
  2547. set_pmd_at(mm, address, pvmw->pmd, pmdswp);
  2548. page_remove_rmap(page, true);
  2549. put_page(page);
  2550. mmu_notifier_invalidate_range_end(mm, address,
  2551. address + HPAGE_PMD_SIZE);
  2552. }
  2553. void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
  2554. {
  2555. struct vm_area_struct *vma = pvmw->vma;
  2556. struct mm_struct *mm = vma->vm_mm;
  2557. unsigned long address = pvmw->address;
  2558. unsigned long mmun_start = address & HPAGE_PMD_MASK;
  2559. pmd_t pmde;
  2560. swp_entry_t entry;
  2561. if (!(pvmw->pmd && !pvmw->pte))
  2562. return;
  2563. entry = pmd_to_swp_entry(*pvmw->pmd);
  2564. get_page(new);
  2565. pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
  2566. if (pmd_swp_soft_dirty(*pvmw->pmd))
  2567. pmde = pmd_mksoft_dirty(pmde);
  2568. if (is_write_migration_entry(entry))
  2569. pmde = maybe_pmd_mkwrite(pmde, vma);
  2570. flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
  2571. if (PageAnon(new))
  2572. page_add_anon_rmap(new, vma, mmun_start, true);
  2573. else
  2574. page_add_file_rmap(new, true);
  2575. set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
  2576. if (vma->vm_flags & VM_LOCKED)
  2577. mlock_vma_page(new);
  2578. update_mmu_cache_pmd(vma, address, pvmw->pmd);
  2579. }
  2580. #endif