123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383 |
- #ifndef _ASM_X86_TLBFLUSH_H
- #define _ASM_X86_TLBFLUSH_H
- #include <linux/mm.h>
- #include <linux/sched.h>
- #include <asm/processor.h>
- #include <asm/cpufeature.h>
- #include <asm/special_insns.h>
- #include <asm/smp.h>
- static inline void __invpcid(unsigned long pcid, unsigned long addr,
- unsigned long type)
- {
- struct { u64 d[2]; } desc = { { pcid, addr } };
- /*
- * The memory clobber is because the whole point is to invalidate
- * stale TLB entries and, especially if we're flushing global
- * mappings, we don't want the compiler to reorder any subsequent
- * memory accesses before the TLB flush.
- *
- * The hex opcode is invpcid (%ecx), %eax in 32-bit mode and
- * invpcid (%rcx), %rax in long mode.
- */
- asm volatile (".byte 0x66, 0x0f, 0x38, 0x82, 0x01"
- : : "m" (desc), "a" (type), "c" (&desc) : "memory");
- }
- #define INVPCID_TYPE_INDIV_ADDR 0
- #define INVPCID_TYPE_SINGLE_CTXT 1
- #define INVPCID_TYPE_ALL_INCL_GLOBAL 2
- #define INVPCID_TYPE_ALL_NON_GLOBAL 3
- /* Flush all mappings for a given pcid and addr, not including globals. */
- static inline void invpcid_flush_one(unsigned long pcid,
- unsigned long addr)
- {
- __invpcid(pcid, addr, INVPCID_TYPE_INDIV_ADDR);
- }
- /* Flush all mappings for a given PCID, not including globals. */
- static inline void invpcid_flush_single_context(unsigned long pcid)
- {
- __invpcid(pcid, 0, INVPCID_TYPE_SINGLE_CTXT);
- }
- /* Flush all mappings, including globals, for all PCIDs. */
- static inline void invpcid_flush_all(void)
- {
- __invpcid(0, 0, INVPCID_TYPE_ALL_INCL_GLOBAL);
- }
- /* Flush all mappings for all PCIDs except globals. */
- static inline void invpcid_flush_all_nonglobals(void)
- {
- __invpcid(0, 0, INVPCID_TYPE_ALL_NON_GLOBAL);
- }
- static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
- {
- u64 new_tlb_gen;
- /*
- * Bump the generation count. This also serves as a full barrier
- * that synchronizes with switch_mm(): callers are required to order
- * their read of mm_cpumask after their writes to the paging
- * structures.
- */
- smp_mb__before_atomic();
- new_tlb_gen = atomic64_inc_return(&mm->context.tlb_gen);
- smp_mb__after_atomic();
- return new_tlb_gen;
- }
- #ifdef CONFIG_PARAVIRT
- #include <asm/paravirt.h>
- #else
- #define __flush_tlb() __native_flush_tlb()
- #define __flush_tlb_global() __native_flush_tlb_global()
- #define __flush_tlb_single(addr) __native_flush_tlb_single(addr)
- #endif
- static inline bool tlb_defer_switch_to_init_mm(void)
- {
- /*
- * If we have PCID, then switching to init_mm is reasonably
- * fast. If we don't have PCID, then switching to init_mm is
- * quite slow, so we try to defer it in the hopes that we can
- * avoid it entirely. The latter approach runs the risk of
- * receiving otherwise unnecessary IPIs.
- *
- * This choice is just a heuristic. The tlb code can handle this
- * function returning true or false regardless of whether we have
- * PCID.
- */
- return !static_cpu_has(X86_FEATURE_PCID);
- }
- /*
- * 6 because 6 should be plenty and struct tlb_state will fit in
- * two cache lines.
- */
- #define TLB_NR_DYN_ASIDS 6
- struct tlb_context {
- u64 ctx_id;
- u64 tlb_gen;
- };
- struct tlb_state {
- /*
- * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
- * are on. This means that it may not match current->active_mm,
- * which will contain the previous user mm when we're in lazy TLB
- * mode even if we've already switched back to swapper_pg_dir.
- */
- struct mm_struct *loaded_mm;
- u16 loaded_mm_asid;
- u16 next_asid;
- /*
- * We can be in one of several states:
- *
- * - Actively using an mm. Our CPU's bit will be set in
- * mm_cpumask(loaded_mm) and is_lazy == false;
- *
- * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
- * will not be set in mm_cpumask(&init_mm) and is_lazy == false.
- *
- * - Lazily using a real mm. loaded_mm != &init_mm, our bit
- * is set in mm_cpumask(loaded_mm), but is_lazy == true.
- * We're heuristically guessing that the CR3 load we
- * skipped more than makes up for the overhead added by
- * lazy mode.
- */
- bool is_lazy;
- /*
- * Access to this CR4 shadow and to H/W CR4 is protected by
- * disabling interrupts when modifying either one.
- */
- unsigned long cr4;
- /*
- * This is a list of all contexts that might exist in the TLB.
- * There is one per ASID that we use, and the ASID (what the
- * CPU calls PCID) is the index into ctxts.
- *
- * For each context, ctx_id indicates which mm the TLB's user
- * entries came from. As an invariant, the TLB will never
- * contain entries that are out-of-date as when that mm reached
- * the tlb_gen in the list.
- *
- * To be clear, this means that it's legal for the TLB code to
- * flush the TLB without updating tlb_gen. This can happen
- * (for now, at least) due to paravirt remote flushes.
- *
- * NB: context 0 is a bit special, since it's also used by
- * various bits of init code. This is fine -- code that
- * isn't aware of PCID will end up harmlessly flushing
- * context 0.
- */
- struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
- };
- DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
- /* Initialize cr4 shadow for this CPU. */
- static inline void cr4_init_shadow(void)
- {
- this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
- }
- /* Set in this cpu's CR4. */
- static inline void cr4_set_bits(unsigned long mask)
- {
- unsigned long cr4;
- cr4 = this_cpu_read(cpu_tlbstate.cr4);
- if ((cr4 | mask) != cr4) {
- cr4 |= mask;
- this_cpu_write(cpu_tlbstate.cr4, cr4);
- __write_cr4(cr4);
- }
- }
- /* Clear in this cpu's CR4. */
- static inline void cr4_clear_bits(unsigned long mask)
- {
- unsigned long cr4;
- cr4 = this_cpu_read(cpu_tlbstate.cr4);
- if ((cr4 & ~mask) != cr4) {
- cr4 &= ~mask;
- this_cpu_write(cpu_tlbstate.cr4, cr4);
- __write_cr4(cr4);
- }
- }
- static inline void cr4_toggle_bits(unsigned long mask)
- {
- unsigned long cr4;
- cr4 = this_cpu_read(cpu_tlbstate.cr4);
- cr4 ^= mask;
- this_cpu_write(cpu_tlbstate.cr4, cr4);
- __write_cr4(cr4);
- }
- /* Read the CR4 shadow. */
- static inline unsigned long cr4_read_shadow(void)
- {
- return this_cpu_read(cpu_tlbstate.cr4);
- }
- /*
- * Save some of cr4 feature set we're using (e.g. Pentium 4MB
- * enable and PPro Global page enable), so that any CPU's that boot
- * up after us can get the correct flags. This should only be used
- * during boot on the boot cpu.
- */
- extern unsigned long mmu_cr4_features;
- extern u32 *trampoline_cr4_features;
- static inline void cr4_set_bits_and_update_boot(unsigned long mask)
- {
- mmu_cr4_features |= mask;
- if (trampoline_cr4_features)
- *trampoline_cr4_features = mmu_cr4_features;
- cr4_set_bits(mask);
- }
- extern void initialize_tlbstate_and_flush(void);
- static inline void __native_flush_tlb(void)
- {
- /*
- * If current->mm == NULL then we borrow a mm which may change during a
- * task switch and therefore we must not be preempted while we write CR3
- * back:
- */
- preempt_disable();
- native_write_cr3(__native_read_cr3());
- preempt_enable();
- }
- static inline void __native_flush_tlb_global_irq_disabled(void)
- {
- unsigned long cr4;
- cr4 = this_cpu_read(cpu_tlbstate.cr4);
- /* clear PGE */
- native_write_cr4(cr4 & ~X86_CR4_PGE);
- /* write old PGE again and flush TLBs */
- native_write_cr4(cr4);
- }
- static inline void __native_flush_tlb_global(void)
- {
- unsigned long flags;
- if (static_cpu_has(X86_FEATURE_INVPCID)) {
- /*
- * Using INVPCID is considerably faster than a pair of writes
- * to CR4 sandwiched inside an IRQ flag save/restore.
- */
- invpcid_flush_all();
- return;
- }
- /*
- * Read-modify-write to CR4 - protect it from preemption and
- * from interrupts. (Use the raw variant because this code can
- * be called from deep inside debugging code.)
- */
- raw_local_irq_save(flags);
- __native_flush_tlb_global_irq_disabled();
- raw_local_irq_restore(flags);
- }
- static inline void __native_flush_tlb_single(unsigned long addr)
- {
- asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
- }
- static inline void __flush_tlb_all(void)
- {
- if (boot_cpu_has(X86_FEATURE_PGE))
- __flush_tlb_global();
- else
- __flush_tlb();
- /*
- * Note: if we somehow had PCID but not PGE, then this wouldn't work --
- * we'd end up flushing kernel translations for the current ASID but
- * we might fail to flush kernel translations for other cached ASIDs.
- *
- * To avoid this issue, we force PCID off if PGE is off.
- */
- }
- static inline void __flush_tlb_one(unsigned long addr)
- {
- count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
- __flush_tlb_single(addr);
- }
- #define TLB_FLUSH_ALL -1UL
- /*
- * TLB flushing:
- *
- * - flush_tlb_all() flushes all processes TLBs
- * - flush_tlb_mm(mm) flushes the specified mm context TLB's
- * - flush_tlb_page(vma, vmaddr) flushes one page
- * - flush_tlb_range(vma, start, end) flushes a range of pages
- * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
- * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
- *
- * ..but the i386 has somewhat limited tlb flushing capabilities,
- * and page-granular flushes are available only on i486 and up.
- */
- struct flush_tlb_info {
- /*
- * We support several kinds of flushes.
- *
- * - Fully flush a single mm. .mm will be set, .end will be
- * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
- * which the IPI sender is trying to catch us up.
- *
- * - Partially flush a single mm. .mm will be set, .start and
- * .end will indicate the range, and .new_tlb_gen will be set
- * such that the changes between generation .new_tlb_gen-1 and
- * .new_tlb_gen are entirely contained in the indicated range.
- *
- * - Fully flush all mms whose tlb_gens have been updated. .mm
- * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
- * will be zero.
- */
- struct mm_struct *mm;
- unsigned long start;
- unsigned long end;
- u64 new_tlb_gen;
- };
- #define local_flush_tlb() __flush_tlb()
- #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
- #define flush_tlb_range(vma, start, end) \
- flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
- extern void flush_tlb_all(void);
- extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
- unsigned long end, unsigned long vmflag);
- extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
- static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
- {
- flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
- }
- void native_flush_tlb_others(const struct cpumask *cpumask,
- const struct flush_tlb_info *info);
- static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
- struct mm_struct *mm)
- {
- inc_mm_tlb_gen(mm);
- cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
- }
- extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
- #ifndef CONFIG_PARAVIRT
- #define flush_tlb_others(mask, info) \
- native_flush_tlb_others(mask, info)
- #endif
- #endif /* _ASM_X86_TLBFLUSH_H */
|