ordered-data.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/slab.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/writeback.h>
  21. #include <linux/pagevec.h>
  22. #include "ctree.h"
  23. #include "transaction.h"
  24. #include "btrfs_inode.h"
  25. #include "extent_io.h"
  26. #include "disk-io.h"
  27. #include "compression.h"
  28. static struct kmem_cache *btrfs_ordered_extent_cache;
  29. static u64 entry_end(struct btrfs_ordered_extent *entry)
  30. {
  31. if (entry->file_offset + entry->len < entry->file_offset)
  32. return (u64)-1;
  33. return entry->file_offset + entry->len;
  34. }
  35. /* returns NULL if the insertion worked, or it returns the node it did find
  36. * in the tree
  37. */
  38. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  39. struct rb_node *node)
  40. {
  41. struct rb_node **p = &root->rb_node;
  42. struct rb_node *parent = NULL;
  43. struct btrfs_ordered_extent *entry;
  44. while (*p) {
  45. parent = *p;
  46. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  47. if (file_offset < entry->file_offset)
  48. p = &(*p)->rb_left;
  49. else if (file_offset >= entry_end(entry))
  50. p = &(*p)->rb_right;
  51. else
  52. return parent;
  53. }
  54. rb_link_node(node, parent, p);
  55. rb_insert_color(node, root);
  56. return NULL;
  57. }
  58. static void ordered_data_tree_panic(struct inode *inode, int errno,
  59. u64 offset)
  60. {
  61. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  62. btrfs_panic(fs_info, errno,
  63. "Inconsistency in ordered tree at offset %llu", offset);
  64. }
  65. /*
  66. * look for a given offset in the tree, and if it can't be found return the
  67. * first lesser offset
  68. */
  69. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  70. struct rb_node **prev_ret)
  71. {
  72. struct rb_node *n = root->rb_node;
  73. struct rb_node *prev = NULL;
  74. struct rb_node *test;
  75. struct btrfs_ordered_extent *entry;
  76. struct btrfs_ordered_extent *prev_entry = NULL;
  77. while (n) {
  78. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  79. prev = n;
  80. prev_entry = entry;
  81. if (file_offset < entry->file_offset)
  82. n = n->rb_left;
  83. else if (file_offset >= entry_end(entry))
  84. n = n->rb_right;
  85. else
  86. return n;
  87. }
  88. if (!prev_ret)
  89. return NULL;
  90. while (prev && file_offset >= entry_end(prev_entry)) {
  91. test = rb_next(prev);
  92. if (!test)
  93. break;
  94. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  95. rb_node);
  96. if (file_offset < entry_end(prev_entry))
  97. break;
  98. prev = test;
  99. }
  100. if (prev)
  101. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  102. rb_node);
  103. while (prev && file_offset < entry_end(prev_entry)) {
  104. test = rb_prev(prev);
  105. if (!test)
  106. break;
  107. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  108. rb_node);
  109. prev = test;
  110. }
  111. *prev_ret = prev;
  112. return NULL;
  113. }
  114. /*
  115. * helper to check if a given offset is inside a given entry
  116. */
  117. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  118. {
  119. if (file_offset < entry->file_offset ||
  120. entry->file_offset + entry->len <= file_offset)
  121. return 0;
  122. return 1;
  123. }
  124. static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
  125. u64 len)
  126. {
  127. if (file_offset + len <= entry->file_offset ||
  128. entry->file_offset + entry->len <= file_offset)
  129. return 0;
  130. return 1;
  131. }
  132. /*
  133. * look find the first ordered struct that has this offset, otherwise
  134. * the first one less than this offset
  135. */
  136. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  137. u64 file_offset)
  138. {
  139. struct rb_root *root = &tree->tree;
  140. struct rb_node *prev = NULL;
  141. struct rb_node *ret;
  142. struct btrfs_ordered_extent *entry;
  143. if (tree->last) {
  144. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  145. rb_node);
  146. if (offset_in_entry(entry, file_offset))
  147. return tree->last;
  148. }
  149. ret = __tree_search(root, file_offset, &prev);
  150. if (!ret)
  151. ret = prev;
  152. if (ret)
  153. tree->last = ret;
  154. return ret;
  155. }
  156. /* allocate and add a new ordered_extent into the per-inode tree.
  157. * file_offset is the logical offset in the file
  158. *
  159. * start is the disk block number of an extent already reserved in the
  160. * extent allocation tree
  161. *
  162. * len is the length of the extent
  163. *
  164. * The tree is given a single reference on the ordered extent that was
  165. * inserted.
  166. */
  167. static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  168. u64 start, u64 len, u64 disk_len,
  169. int type, int dio, int compress_type)
  170. {
  171. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  172. struct btrfs_root *root = BTRFS_I(inode)->root;
  173. struct btrfs_ordered_inode_tree *tree;
  174. struct rb_node *node;
  175. struct btrfs_ordered_extent *entry;
  176. tree = &BTRFS_I(inode)->ordered_tree;
  177. entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
  178. if (!entry)
  179. return -ENOMEM;
  180. entry->file_offset = file_offset;
  181. entry->start = start;
  182. entry->len = len;
  183. entry->disk_len = disk_len;
  184. entry->bytes_left = len;
  185. entry->inode = igrab(inode);
  186. entry->compress_type = compress_type;
  187. entry->truncated_len = (u64)-1;
  188. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  189. set_bit(type, &entry->flags);
  190. if (dio)
  191. set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
  192. /* one ref for the tree */
  193. refcount_set(&entry->refs, 1);
  194. init_waitqueue_head(&entry->wait);
  195. INIT_LIST_HEAD(&entry->list);
  196. INIT_LIST_HEAD(&entry->root_extent_list);
  197. INIT_LIST_HEAD(&entry->work_list);
  198. init_completion(&entry->completion);
  199. INIT_LIST_HEAD(&entry->log_list);
  200. INIT_LIST_HEAD(&entry->trans_list);
  201. trace_btrfs_ordered_extent_add(inode, entry);
  202. spin_lock_irq(&tree->lock);
  203. node = tree_insert(&tree->tree, file_offset,
  204. &entry->rb_node);
  205. if (node)
  206. ordered_data_tree_panic(inode, -EEXIST, file_offset);
  207. spin_unlock_irq(&tree->lock);
  208. spin_lock(&root->ordered_extent_lock);
  209. list_add_tail(&entry->root_extent_list,
  210. &root->ordered_extents);
  211. root->nr_ordered_extents++;
  212. if (root->nr_ordered_extents == 1) {
  213. spin_lock(&fs_info->ordered_root_lock);
  214. BUG_ON(!list_empty(&root->ordered_root));
  215. list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
  216. spin_unlock(&fs_info->ordered_root_lock);
  217. }
  218. spin_unlock(&root->ordered_extent_lock);
  219. /*
  220. * We don't need the count_max_extents here, we can assume that all of
  221. * that work has been done at higher layers, so this is truly the
  222. * smallest the extent is going to get.
  223. */
  224. spin_lock(&BTRFS_I(inode)->lock);
  225. btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
  226. spin_unlock(&BTRFS_I(inode)->lock);
  227. return 0;
  228. }
  229. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  230. u64 start, u64 len, u64 disk_len, int type)
  231. {
  232. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  233. disk_len, type, 0,
  234. BTRFS_COMPRESS_NONE);
  235. }
  236. int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
  237. u64 start, u64 len, u64 disk_len, int type)
  238. {
  239. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  240. disk_len, type, 1,
  241. BTRFS_COMPRESS_NONE);
  242. }
  243. int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
  244. u64 start, u64 len, u64 disk_len,
  245. int type, int compress_type)
  246. {
  247. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  248. disk_len, type, 0,
  249. compress_type);
  250. }
  251. /*
  252. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  253. * when an ordered extent is finished. If the list covers more than one
  254. * ordered extent, it is split across multiples.
  255. */
  256. void btrfs_add_ordered_sum(struct inode *inode,
  257. struct btrfs_ordered_extent *entry,
  258. struct btrfs_ordered_sum *sum)
  259. {
  260. struct btrfs_ordered_inode_tree *tree;
  261. tree = &BTRFS_I(inode)->ordered_tree;
  262. spin_lock_irq(&tree->lock);
  263. list_add_tail(&sum->list, &entry->list);
  264. spin_unlock_irq(&tree->lock);
  265. }
  266. /*
  267. * this is used to account for finished IO across a given range
  268. * of the file. The IO may span ordered extents. If
  269. * a given ordered_extent is completely done, 1 is returned, otherwise
  270. * 0.
  271. *
  272. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  273. * to make sure this function only returns 1 once for a given ordered extent.
  274. *
  275. * file_offset is updated to one byte past the range that is recorded as
  276. * complete. This allows you to walk forward in the file.
  277. */
  278. int btrfs_dec_test_first_ordered_pending(struct inode *inode,
  279. struct btrfs_ordered_extent **cached,
  280. u64 *file_offset, u64 io_size, int uptodate)
  281. {
  282. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  283. struct btrfs_ordered_inode_tree *tree;
  284. struct rb_node *node;
  285. struct btrfs_ordered_extent *entry = NULL;
  286. int ret;
  287. unsigned long flags;
  288. u64 dec_end;
  289. u64 dec_start;
  290. u64 to_dec;
  291. tree = &BTRFS_I(inode)->ordered_tree;
  292. spin_lock_irqsave(&tree->lock, flags);
  293. node = tree_search(tree, *file_offset);
  294. if (!node) {
  295. ret = 1;
  296. goto out;
  297. }
  298. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  299. if (!offset_in_entry(entry, *file_offset)) {
  300. ret = 1;
  301. goto out;
  302. }
  303. dec_start = max(*file_offset, entry->file_offset);
  304. dec_end = min(*file_offset + io_size, entry->file_offset +
  305. entry->len);
  306. *file_offset = dec_end;
  307. if (dec_start > dec_end) {
  308. btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
  309. dec_start, dec_end);
  310. }
  311. to_dec = dec_end - dec_start;
  312. if (to_dec > entry->bytes_left) {
  313. btrfs_crit(fs_info,
  314. "bad ordered accounting left %llu size %llu",
  315. entry->bytes_left, to_dec);
  316. }
  317. entry->bytes_left -= to_dec;
  318. if (!uptodate)
  319. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  320. if (entry->bytes_left == 0) {
  321. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  322. /*
  323. * Implicit memory barrier after test_and_set_bit
  324. */
  325. if (waitqueue_active(&entry->wait))
  326. wake_up(&entry->wait);
  327. } else {
  328. ret = 1;
  329. }
  330. out:
  331. if (!ret && cached && entry) {
  332. *cached = entry;
  333. refcount_inc(&entry->refs);
  334. }
  335. spin_unlock_irqrestore(&tree->lock, flags);
  336. return ret == 0;
  337. }
  338. /*
  339. * this is used to account for finished IO across a given range
  340. * of the file. The IO should not span ordered extents. If
  341. * a given ordered_extent is completely done, 1 is returned, otherwise
  342. * 0.
  343. *
  344. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  345. * to make sure this function only returns 1 once for a given ordered extent.
  346. */
  347. int btrfs_dec_test_ordered_pending(struct inode *inode,
  348. struct btrfs_ordered_extent **cached,
  349. u64 file_offset, u64 io_size, int uptodate)
  350. {
  351. struct btrfs_ordered_inode_tree *tree;
  352. struct rb_node *node;
  353. struct btrfs_ordered_extent *entry = NULL;
  354. unsigned long flags;
  355. int ret;
  356. tree = &BTRFS_I(inode)->ordered_tree;
  357. spin_lock_irqsave(&tree->lock, flags);
  358. if (cached && *cached) {
  359. entry = *cached;
  360. goto have_entry;
  361. }
  362. node = tree_search(tree, file_offset);
  363. if (!node) {
  364. ret = 1;
  365. goto out;
  366. }
  367. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  368. have_entry:
  369. if (!offset_in_entry(entry, file_offset)) {
  370. ret = 1;
  371. goto out;
  372. }
  373. if (io_size > entry->bytes_left) {
  374. btrfs_crit(BTRFS_I(inode)->root->fs_info,
  375. "bad ordered accounting left %llu size %llu",
  376. entry->bytes_left, io_size);
  377. }
  378. entry->bytes_left -= io_size;
  379. if (!uptodate)
  380. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  381. if (entry->bytes_left == 0) {
  382. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  383. /*
  384. * Implicit memory barrier after test_and_set_bit
  385. */
  386. if (waitqueue_active(&entry->wait))
  387. wake_up(&entry->wait);
  388. } else {
  389. ret = 1;
  390. }
  391. out:
  392. if (!ret && cached && entry) {
  393. *cached = entry;
  394. refcount_inc(&entry->refs);
  395. }
  396. spin_unlock_irqrestore(&tree->lock, flags);
  397. return ret == 0;
  398. }
  399. /* Needs to either be called under a log transaction or the log_mutex */
  400. void btrfs_get_logged_extents(struct btrfs_inode *inode,
  401. struct list_head *logged_list,
  402. const loff_t start,
  403. const loff_t end)
  404. {
  405. struct btrfs_ordered_inode_tree *tree;
  406. struct btrfs_ordered_extent *ordered;
  407. struct rb_node *n;
  408. struct rb_node *prev;
  409. tree = &inode->ordered_tree;
  410. spin_lock_irq(&tree->lock);
  411. n = __tree_search(&tree->tree, end, &prev);
  412. if (!n)
  413. n = prev;
  414. for (; n; n = rb_prev(n)) {
  415. ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  416. if (ordered->file_offset > end)
  417. continue;
  418. if (entry_end(ordered) <= start)
  419. break;
  420. if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
  421. continue;
  422. list_add(&ordered->log_list, logged_list);
  423. refcount_inc(&ordered->refs);
  424. }
  425. spin_unlock_irq(&tree->lock);
  426. }
  427. void btrfs_put_logged_extents(struct list_head *logged_list)
  428. {
  429. struct btrfs_ordered_extent *ordered;
  430. while (!list_empty(logged_list)) {
  431. ordered = list_first_entry(logged_list,
  432. struct btrfs_ordered_extent,
  433. log_list);
  434. list_del_init(&ordered->log_list);
  435. btrfs_put_ordered_extent(ordered);
  436. }
  437. }
  438. void btrfs_submit_logged_extents(struct list_head *logged_list,
  439. struct btrfs_root *log)
  440. {
  441. int index = log->log_transid % 2;
  442. spin_lock_irq(&log->log_extents_lock[index]);
  443. list_splice_tail(logged_list, &log->logged_list[index]);
  444. spin_unlock_irq(&log->log_extents_lock[index]);
  445. }
  446. void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
  447. struct btrfs_root *log, u64 transid)
  448. {
  449. struct btrfs_ordered_extent *ordered;
  450. int index = transid % 2;
  451. spin_lock_irq(&log->log_extents_lock[index]);
  452. while (!list_empty(&log->logged_list[index])) {
  453. struct inode *inode;
  454. ordered = list_first_entry(&log->logged_list[index],
  455. struct btrfs_ordered_extent,
  456. log_list);
  457. list_del_init(&ordered->log_list);
  458. inode = ordered->inode;
  459. spin_unlock_irq(&log->log_extents_lock[index]);
  460. if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
  461. !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
  462. u64 start = ordered->file_offset;
  463. u64 end = ordered->file_offset + ordered->len - 1;
  464. WARN_ON(!inode);
  465. filemap_fdatawrite_range(inode->i_mapping, start, end);
  466. }
  467. wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
  468. &ordered->flags));
  469. /*
  470. * In order to keep us from losing our ordered extent
  471. * information when committing the transaction we have to make
  472. * sure that any logged extents are completed when we go to
  473. * commit the transaction. To do this we simply increase the
  474. * current transactions pending_ordered counter and decrement it
  475. * when the ordered extent completes.
  476. */
  477. if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
  478. struct btrfs_ordered_inode_tree *tree;
  479. tree = &BTRFS_I(inode)->ordered_tree;
  480. spin_lock_irq(&tree->lock);
  481. if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
  482. set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
  483. atomic_inc(&trans->transaction->pending_ordered);
  484. }
  485. spin_unlock_irq(&tree->lock);
  486. }
  487. btrfs_put_ordered_extent(ordered);
  488. spin_lock_irq(&log->log_extents_lock[index]);
  489. }
  490. spin_unlock_irq(&log->log_extents_lock[index]);
  491. }
  492. void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
  493. {
  494. struct btrfs_ordered_extent *ordered;
  495. int index = transid % 2;
  496. spin_lock_irq(&log->log_extents_lock[index]);
  497. while (!list_empty(&log->logged_list[index])) {
  498. ordered = list_first_entry(&log->logged_list[index],
  499. struct btrfs_ordered_extent,
  500. log_list);
  501. list_del_init(&ordered->log_list);
  502. spin_unlock_irq(&log->log_extents_lock[index]);
  503. btrfs_put_ordered_extent(ordered);
  504. spin_lock_irq(&log->log_extents_lock[index]);
  505. }
  506. spin_unlock_irq(&log->log_extents_lock[index]);
  507. }
  508. /*
  509. * used to drop a reference on an ordered extent. This will free
  510. * the extent if the last reference is dropped
  511. */
  512. void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  513. {
  514. struct list_head *cur;
  515. struct btrfs_ordered_sum *sum;
  516. trace_btrfs_ordered_extent_put(entry->inode, entry);
  517. if (refcount_dec_and_test(&entry->refs)) {
  518. ASSERT(list_empty(&entry->log_list));
  519. ASSERT(list_empty(&entry->trans_list));
  520. ASSERT(list_empty(&entry->root_extent_list));
  521. ASSERT(RB_EMPTY_NODE(&entry->rb_node));
  522. if (entry->inode)
  523. btrfs_add_delayed_iput(entry->inode);
  524. while (!list_empty(&entry->list)) {
  525. cur = entry->list.next;
  526. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  527. list_del(&sum->list);
  528. kfree(sum);
  529. }
  530. kmem_cache_free(btrfs_ordered_extent_cache, entry);
  531. }
  532. }
  533. /*
  534. * remove an ordered extent from the tree. No references are dropped
  535. * and waiters are woken up.
  536. */
  537. void btrfs_remove_ordered_extent(struct inode *inode,
  538. struct btrfs_ordered_extent *entry)
  539. {
  540. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  541. struct btrfs_ordered_inode_tree *tree;
  542. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  543. struct btrfs_root *root = btrfs_inode->root;
  544. struct rb_node *node;
  545. bool dec_pending_ordered = false;
  546. /* This is paired with btrfs_add_ordered_extent. */
  547. spin_lock(&btrfs_inode->lock);
  548. btrfs_mod_outstanding_extents(btrfs_inode, -1);
  549. spin_unlock(&btrfs_inode->lock);
  550. if (root != fs_info->tree_root)
  551. btrfs_delalloc_release_metadata(btrfs_inode, entry->len);
  552. tree = &btrfs_inode->ordered_tree;
  553. spin_lock_irq(&tree->lock);
  554. node = &entry->rb_node;
  555. rb_erase(node, &tree->tree);
  556. RB_CLEAR_NODE(node);
  557. if (tree->last == node)
  558. tree->last = NULL;
  559. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  560. if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
  561. dec_pending_ordered = true;
  562. spin_unlock_irq(&tree->lock);
  563. /*
  564. * The current running transaction is waiting on us, we need to let it
  565. * know that we're complete and wake it up.
  566. */
  567. if (dec_pending_ordered) {
  568. struct btrfs_transaction *trans;
  569. /*
  570. * The checks for trans are just a formality, it should be set,
  571. * but if it isn't we don't want to deref/assert under the spin
  572. * lock, so be nice and check if trans is set, but ASSERT() so
  573. * if it isn't set a developer will notice.
  574. */
  575. spin_lock(&fs_info->trans_lock);
  576. trans = fs_info->running_transaction;
  577. if (trans)
  578. refcount_inc(&trans->use_count);
  579. spin_unlock(&fs_info->trans_lock);
  580. ASSERT(trans);
  581. if (trans) {
  582. if (atomic_dec_and_test(&trans->pending_ordered))
  583. wake_up(&trans->pending_wait);
  584. btrfs_put_transaction(trans);
  585. }
  586. }
  587. spin_lock(&root->ordered_extent_lock);
  588. list_del_init(&entry->root_extent_list);
  589. root->nr_ordered_extents--;
  590. trace_btrfs_ordered_extent_remove(inode, entry);
  591. if (!root->nr_ordered_extents) {
  592. spin_lock(&fs_info->ordered_root_lock);
  593. BUG_ON(list_empty(&root->ordered_root));
  594. list_del_init(&root->ordered_root);
  595. spin_unlock(&fs_info->ordered_root_lock);
  596. }
  597. spin_unlock(&root->ordered_extent_lock);
  598. wake_up(&entry->wait);
  599. }
  600. static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
  601. {
  602. struct btrfs_ordered_extent *ordered;
  603. ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
  604. btrfs_start_ordered_extent(ordered->inode, ordered, 1);
  605. complete(&ordered->completion);
  606. }
  607. /*
  608. * wait for all the ordered extents in a root. This is done when balancing
  609. * space between drives.
  610. */
  611. u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
  612. const u64 range_start, const u64 range_len)
  613. {
  614. struct btrfs_fs_info *fs_info = root->fs_info;
  615. LIST_HEAD(splice);
  616. LIST_HEAD(skipped);
  617. LIST_HEAD(works);
  618. struct btrfs_ordered_extent *ordered, *next;
  619. u64 count = 0;
  620. const u64 range_end = range_start + range_len;
  621. mutex_lock(&root->ordered_extent_mutex);
  622. spin_lock(&root->ordered_extent_lock);
  623. list_splice_init(&root->ordered_extents, &splice);
  624. while (!list_empty(&splice) && nr) {
  625. ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
  626. root_extent_list);
  627. if (range_end <= ordered->start ||
  628. ordered->start + ordered->disk_len <= range_start) {
  629. list_move_tail(&ordered->root_extent_list, &skipped);
  630. cond_resched_lock(&root->ordered_extent_lock);
  631. continue;
  632. }
  633. list_move_tail(&ordered->root_extent_list,
  634. &root->ordered_extents);
  635. refcount_inc(&ordered->refs);
  636. spin_unlock(&root->ordered_extent_lock);
  637. btrfs_init_work(&ordered->flush_work,
  638. btrfs_flush_delalloc_helper,
  639. btrfs_run_ordered_extent_work, NULL, NULL);
  640. list_add_tail(&ordered->work_list, &works);
  641. btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
  642. cond_resched();
  643. spin_lock(&root->ordered_extent_lock);
  644. if (nr != U64_MAX)
  645. nr--;
  646. count++;
  647. }
  648. list_splice_tail(&skipped, &root->ordered_extents);
  649. list_splice_tail(&splice, &root->ordered_extents);
  650. spin_unlock(&root->ordered_extent_lock);
  651. list_for_each_entry_safe(ordered, next, &works, work_list) {
  652. list_del_init(&ordered->work_list);
  653. wait_for_completion(&ordered->completion);
  654. btrfs_put_ordered_extent(ordered);
  655. cond_resched();
  656. }
  657. mutex_unlock(&root->ordered_extent_mutex);
  658. return count;
  659. }
  660. u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
  661. const u64 range_start, const u64 range_len)
  662. {
  663. struct btrfs_root *root;
  664. struct list_head splice;
  665. u64 total_done = 0;
  666. u64 done;
  667. INIT_LIST_HEAD(&splice);
  668. mutex_lock(&fs_info->ordered_operations_mutex);
  669. spin_lock(&fs_info->ordered_root_lock);
  670. list_splice_init(&fs_info->ordered_roots, &splice);
  671. while (!list_empty(&splice) && nr) {
  672. root = list_first_entry(&splice, struct btrfs_root,
  673. ordered_root);
  674. root = btrfs_grab_fs_root(root);
  675. BUG_ON(!root);
  676. list_move_tail(&root->ordered_root,
  677. &fs_info->ordered_roots);
  678. spin_unlock(&fs_info->ordered_root_lock);
  679. done = btrfs_wait_ordered_extents(root, nr,
  680. range_start, range_len);
  681. btrfs_put_fs_root(root);
  682. total_done += done;
  683. spin_lock(&fs_info->ordered_root_lock);
  684. if (nr != U64_MAX) {
  685. nr -= done;
  686. }
  687. }
  688. list_splice_tail(&splice, &fs_info->ordered_roots);
  689. spin_unlock(&fs_info->ordered_root_lock);
  690. mutex_unlock(&fs_info->ordered_operations_mutex);
  691. return total_done;
  692. }
  693. /*
  694. * Used to start IO or wait for a given ordered extent to finish.
  695. *
  696. * If wait is one, this effectively waits on page writeback for all the pages
  697. * in the extent, and it waits on the io completion code to insert
  698. * metadata into the btree corresponding to the extent
  699. */
  700. void btrfs_start_ordered_extent(struct inode *inode,
  701. struct btrfs_ordered_extent *entry,
  702. int wait)
  703. {
  704. u64 start = entry->file_offset;
  705. u64 end = start + entry->len - 1;
  706. trace_btrfs_ordered_extent_start(inode, entry);
  707. /*
  708. * pages in the range can be dirty, clean or writeback. We
  709. * start IO on any dirty ones so the wait doesn't stall waiting
  710. * for the flusher thread to find them
  711. */
  712. if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
  713. filemap_fdatawrite_range(inode->i_mapping, start, end);
  714. if (wait) {
  715. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  716. &entry->flags));
  717. }
  718. }
  719. /*
  720. * Used to wait on ordered extents across a large range of bytes.
  721. */
  722. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  723. {
  724. int ret = 0;
  725. int ret_wb = 0;
  726. u64 end;
  727. u64 orig_end;
  728. struct btrfs_ordered_extent *ordered;
  729. if (start + len < start) {
  730. orig_end = INT_LIMIT(loff_t);
  731. } else {
  732. orig_end = start + len - 1;
  733. if (orig_end > INT_LIMIT(loff_t))
  734. orig_end = INT_LIMIT(loff_t);
  735. }
  736. /* start IO across the range first to instantiate any delalloc
  737. * extents
  738. */
  739. ret = btrfs_fdatawrite_range(inode, start, orig_end);
  740. if (ret)
  741. return ret;
  742. /*
  743. * If we have a writeback error don't return immediately. Wait first
  744. * for any ordered extents that haven't completed yet. This is to make
  745. * sure no one can dirty the same page ranges and call writepages()
  746. * before the ordered extents complete - to avoid failures (-EEXIST)
  747. * when adding the new ordered extents to the ordered tree.
  748. */
  749. ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  750. end = orig_end;
  751. while (1) {
  752. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  753. if (!ordered)
  754. break;
  755. if (ordered->file_offset > orig_end) {
  756. btrfs_put_ordered_extent(ordered);
  757. break;
  758. }
  759. if (ordered->file_offset + ordered->len <= start) {
  760. btrfs_put_ordered_extent(ordered);
  761. break;
  762. }
  763. btrfs_start_ordered_extent(inode, ordered, 1);
  764. end = ordered->file_offset;
  765. if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
  766. ret = -EIO;
  767. btrfs_put_ordered_extent(ordered);
  768. if (ret || end == 0 || end == start)
  769. break;
  770. end--;
  771. }
  772. return ret_wb ? ret_wb : ret;
  773. }
  774. /*
  775. * find an ordered extent corresponding to file_offset. return NULL if
  776. * nothing is found, otherwise take a reference on the extent and return it
  777. */
  778. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  779. u64 file_offset)
  780. {
  781. struct btrfs_ordered_inode_tree *tree;
  782. struct rb_node *node;
  783. struct btrfs_ordered_extent *entry = NULL;
  784. tree = &BTRFS_I(inode)->ordered_tree;
  785. spin_lock_irq(&tree->lock);
  786. node = tree_search(tree, file_offset);
  787. if (!node)
  788. goto out;
  789. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  790. if (!offset_in_entry(entry, file_offset))
  791. entry = NULL;
  792. if (entry)
  793. refcount_inc(&entry->refs);
  794. out:
  795. spin_unlock_irq(&tree->lock);
  796. return entry;
  797. }
  798. /* Since the DIO code tries to lock a wide area we need to look for any ordered
  799. * extents that exist in the range, rather than just the start of the range.
  800. */
  801. struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
  802. struct btrfs_inode *inode, u64 file_offset, u64 len)
  803. {
  804. struct btrfs_ordered_inode_tree *tree;
  805. struct rb_node *node;
  806. struct btrfs_ordered_extent *entry = NULL;
  807. tree = &inode->ordered_tree;
  808. spin_lock_irq(&tree->lock);
  809. node = tree_search(tree, file_offset);
  810. if (!node) {
  811. node = tree_search(tree, file_offset + len);
  812. if (!node)
  813. goto out;
  814. }
  815. while (1) {
  816. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  817. if (range_overlaps(entry, file_offset, len))
  818. break;
  819. if (entry->file_offset >= file_offset + len) {
  820. entry = NULL;
  821. break;
  822. }
  823. entry = NULL;
  824. node = rb_next(node);
  825. if (!node)
  826. break;
  827. }
  828. out:
  829. if (entry)
  830. refcount_inc(&entry->refs);
  831. spin_unlock_irq(&tree->lock);
  832. return entry;
  833. }
  834. bool btrfs_have_ordered_extents_in_range(struct inode *inode,
  835. u64 file_offset,
  836. u64 len)
  837. {
  838. struct btrfs_ordered_extent *oe;
  839. oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
  840. if (oe) {
  841. btrfs_put_ordered_extent(oe);
  842. return true;
  843. }
  844. return false;
  845. }
  846. /*
  847. * lookup and return any extent before 'file_offset'. NULL is returned
  848. * if none is found
  849. */
  850. struct btrfs_ordered_extent *
  851. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  852. {
  853. struct btrfs_ordered_inode_tree *tree;
  854. struct rb_node *node;
  855. struct btrfs_ordered_extent *entry = NULL;
  856. tree = &BTRFS_I(inode)->ordered_tree;
  857. spin_lock_irq(&tree->lock);
  858. node = tree_search(tree, file_offset);
  859. if (!node)
  860. goto out;
  861. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  862. refcount_inc(&entry->refs);
  863. out:
  864. spin_unlock_irq(&tree->lock);
  865. return entry;
  866. }
  867. /*
  868. * After an extent is done, call this to conditionally update the on disk
  869. * i_size. i_size is updated to cover any fully written part of the file.
  870. */
  871. int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
  872. struct btrfs_ordered_extent *ordered)
  873. {
  874. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  875. u64 disk_i_size;
  876. u64 new_i_size;
  877. u64 i_size = i_size_read(inode);
  878. struct rb_node *node;
  879. struct rb_node *prev = NULL;
  880. struct btrfs_ordered_extent *test;
  881. int ret = 1;
  882. u64 orig_offset = offset;
  883. spin_lock_irq(&tree->lock);
  884. if (ordered) {
  885. offset = entry_end(ordered);
  886. if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
  887. offset = min(offset,
  888. ordered->file_offset +
  889. ordered->truncated_len);
  890. } else {
  891. offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
  892. }
  893. disk_i_size = BTRFS_I(inode)->disk_i_size;
  894. /*
  895. * truncate file.
  896. * If ordered is not NULL, then this is called from endio and
  897. * disk_i_size will be updated by either truncate itself or any
  898. * in-flight IOs which are inside the disk_i_size.
  899. *
  900. * Because btrfs_setsize() may set i_size with disk_i_size if truncate
  901. * fails somehow, we need to make sure we have a precise disk_i_size by
  902. * updating it as usual.
  903. *
  904. */
  905. if (!ordered && disk_i_size > i_size) {
  906. BTRFS_I(inode)->disk_i_size = orig_offset;
  907. ret = 0;
  908. goto out;
  909. }
  910. /*
  911. * if the disk i_size is already at the inode->i_size, or
  912. * this ordered extent is inside the disk i_size, we're done
  913. */
  914. if (disk_i_size == i_size)
  915. goto out;
  916. /*
  917. * We still need to update disk_i_size if outstanding_isize is greater
  918. * than disk_i_size.
  919. */
  920. if (offset <= disk_i_size &&
  921. (!ordered || ordered->outstanding_isize <= disk_i_size))
  922. goto out;
  923. /*
  924. * walk backward from this ordered extent to disk_i_size.
  925. * if we find an ordered extent then we can't update disk i_size
  926. * yet
  927. */
  928. if (ordered) {
  929. node = rb_prev(&ordered->rb_node);
  930. } else {
  931. prev = tree_search(tree, offset);
  932. /*
  933. * we insert file extents without involving ordered struct,
  934. * so there should be no ordered struct cover this offset
  935. */
  936. if (prev) {
  937. test = rb_entry(prev, struct btrfs_ordered_extent,
  938. rb_node);
  939. BUG_ON(offset_in_entry(test, offset));
  940. }
  941. node = prev;
  942. }
  943. for (; node; node = rb_prev(node)) {
  944. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  945. /* We treat this entry as if it doesn't exist */
  946. if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
  947. continue;
  948. if (entry_end(test) <= disk_i_size)
  949. break;
  950. if (test->file_offset >= i_size)
  951. break;
  952. /*
  953. * We don't update disk_i_size now, so record this undealt
  954. * i_size. Or we will not know the real i_size.
  955. */
  956. if (test->outstanding_isize < offset)
  957. test->outstanding_isize = offset;
  958. if (ordered &&
  959. ordered->outstanding_isize > test->outstanding_isize)
  960. test->outstanding_isize = ordered->outstanding_isize;
  961. goto out;
  962. }
  963. new_i_size = min_t(u64, offset, i_size);
  964. /*
  965. * Some ordered extents may completed before the current one, and
  966. * we hold the real i_size in ->outstanding_isize.
  967. */
  968. if (ordered && ordered->outstanding_isize > new_i_size)
  969. new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
  970. BTRFS_I(inode)->disk_i_size = new_i_size;
  971. ret = 0;
  972. out:
  973. /*
  974. * We need to do this because we can't remove ordered extents until
  975. * after the i_disk_size has been updated and then the inode has been
  976. * updated to reflect the change, so we need to tell anybody who finds
  977. * this ordered extent that we've already done all the real work, we
  978. * just haven't completed all the other work.
  979. */
  980. if (ordered)
  981. set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
  982. spin_unlock_irq(&tree->lock);
  983. return ret;
  984. }
  985. /*
  986. * search the ordered extents for one corresponding to 'offset' and
  987. * try to find a checksum. This is used because we allow pages to
  988. * be reclaimed before their checksum is actually put into the btree
  989. */
  990. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  991. u32 *sum, int len)
  992. {
  993. struct btrfs_ordered_sum *ordered_sum;
  994. struct btrfs_ordered_extent *ordered;
  995. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  996. unsigned long num_sectors;
  997. unsigned long i;
  998. u32 sectorsize = btrfs_inode_sectorsize(inode);
  999. int index = 0;
  1000. ordered = btrfs_lookup_ordered_extent(inode, offset);
  1001. if (!ordered)
  1002. return 0;
  1003. spin_lock_irq(&tree->lock);
  1004. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  1005. if (disk_bytenr >= ordered_sum->bytenr &&
  1006. disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
  1007. i = (disk_bytenr - ordered_sum->bytenr) >>
  1008. inode->i_sb->s_blocksize_bits;
  1009. num_sectors = ordered_sum->len >>
  1010. inode->i_sb->s_blocksize_bits;
  1011. num_sectors = min_t(int, len - index, num_sectors - i);
  1012. memcpy(sum + index, ordered_sum->sums + i,
  1013. num_sectors);
  1014. index += (int)num_sectors;
  1015. if (index == len)
  1016. goto out;
  1017. disk_bytenr += num_sectors * sectorsize;
  1018. }
  1019. }
  1020. out:
  1021. spin_unlock_irq(&tree->lock);
  1022. btrfs_put_ordered_extent(ordered);
  1023. return index;
  1024. }
  1025. int __init ordered_data_init(void)
  1026. {
  1027. btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
  1028. sizeof(struct btrfs_ordered_extent), 0,
  1029. SLAB_MEM_SPREAD,
  1030. NULL);
  1031. if (!btrfs_ordered_extent_cache)
  1032. return -ENOMEM;
  1033. return 0;
  1034. }
  1035. void ordered_data_exit(void)
  1036. {
  1037. kmem_cache_destroy(btrfs_ordered_extent_cache);
  1038. }