delayed-inode.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "ctree.h"
  24. #define BTRFS_DELAYED_WRITEBACK 512
  25. #define BTRFS_DELAYED_BACKGROUND 128
  26. #define BTRFS_DELAYED_BATCH 16
  27. static struct kmem_cache *delayed_node_cache;
  28. int __init btrfs_delayed_inode_init(void)
  29. {
  30. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  31. sizeof(struct btrfs_delayed_node),
  32. 0,
  33. SLAB_MEM_SPREAD,
  34. NULL);
  35. if (!delayed_node_cache)
  36. return -ENOMEM;
  37. return 0;
  38. }
  39. void btrfs_delayed_inode_exit(void)
  40. {
  41. kmem_cache_destroy(delayed_node_cache);
  42. }
  43. static inline void btrfs_init_delayed_node(
  44. struct btrfs_delayed_node *delayed_node,
  45. struct btrfs_root *root, u64 inode_id)
  46. {
  47. delayed_node->root = root;
  48. delayed_node->inode_id = inode_id;
  49. refcount_set(&delayed_node->refs, 0);
  50. delayed_node->ins_root = RB_ROOT;
  51. delayed_node->del_root = RB_ROOT;
  52. mutex_init(&delayed_node->mutex);
  53. INIT_LIST_HEAD(&delayed_node->n_list);
  54. INIT_LIST_HEAD(&delayed_node->p_list);
  55. }
  56. static inline int btrfs_is_continuous_delayed_item(
  57. struct btrfs_delayed_item *item1,
  58. struct btrfs_delayed_item *item2)
  59. {
  60. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  61. item1->key.objectid == item2->key.objectid &&
  62. item1->key.type == item2->key.type &&
  63. item1->key.offset + 1 == item2->key.offset)
  64. return 1;
  65. return 0;
  66. }
  67. static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68. struct btrfs_inode *btrfs_inode)
  69. {
  70. struct btrfs_root *root = btrfs_inode->root;
  71. u64 ino = btrfs_ino(btrfs_inode);
  72. struct btrfs_delayed_node *node;
  73. node = READ_ONCE(btrfs_inode->delayed_node);
  74. if (node) {
  75. refcount_inc(&node->refs);
  76. return node;
  77. }
  78. spin_lock(&root->inode_lock);
  79. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  80. if (node) {
  81. if (btrfs_inode->delayed_node) {
  82. refcount_inc(&node->refs); /* can be accessed */
  83. BUG_ON(btrfs_inode->delayed_node != node);
  84. spin_unlock(&root->inode_lock);
  85. return node;
  86. }
  87. btrfs_inode->delayed_node = node;
  88. /* can be accessed and cached in the inode */
  89. refcount_add(2, &node->refs);
  90. spin_unlock(&root->inode_lock);
  91. return node;
  92. }
  93. spin_unlock(&root->inode_lock);
  94. return NULL;
  95. }
  96. /* Will return either the node or PTR_ERR(-ENOMEM) */
  97. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  98. struct btrfs_inode *btrfs_inode)
  99. {
  100. struct btrfs_delayed_node *node;
  101. struct btrfs_root *root = btrfs_inode->root;
  102. u64 ino = btrfs_ino(btrfs_inode);
  103. int ret;
  104. again:
  105. node = btrfs_get_delayed_node(btrfs_inode);
  106. if (node)
  107. return node;
  108. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  109. if (!node)
  110. return ERR_PTR(-ENOMEM);
  111. btrfs_init_delayed_node(node, root, ino);
  112. /* cached in the btrfs inode and can be accessed */
  113. refcount_set(&node->refs, 2);
  114. ret = radix_tree_preload(GFP_NOFS);
  115. if (ret) {
  116. kmem_cache_free(delayed_node_cache, node);
  117. return ERR_PTR(ret);
  118. }
  119. spin_lock(&root->inode_lock);
  120. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  121. if (ret == -EEXIST) {
  122. spin_unlock(&root->inode_lock);
  123. kmem_cache_free(delayed_node_cache, node);
  124. radix_tree_preload_end();
  125. goto again;
  126. }
  127. btrfs_inode->delayed_node = node;
  128. spin_unlock(&root->inode_lock);
  129. radix_tree_preload_end();
  130. return node;
  131. }
  132. /*
  133. * Call it when holding delayed_node->mutex
  134. *
  135. * If mod = 1, add this node into the prepared list.
  136. */
  137. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  138. struct btrfs_delayed_node *node,
  139. int mod)
  140. {
  141. spin_lock(&root->lock);
  142. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  143. if (!list_empty(&node->p_list))
  144. list_move_tail(&node->p_list, &root->prepare_list);
  145. else if (mod)
  146. list_add_tail(&node->p_list, &root->prepare_list);
  147. } else {
  148. list_add_tail(&node->n_list, &root->node_list);
  149. list_add_tail(&node->p_list, &root->prepare_list);
  150. refcount_inc(&node->refs); /* inserted into list */
  151. root->nodes++;
  152. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  153. }
  154. spin_unlock(&root->lock);
  155. }
  156. /* Call it when holding delayed_node->mutex */
  157. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  158. struct btrfs_delayed_node *node)
  159. {
  160. spin_lock(&root->lock);
  161. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  162. root->nodes--;
  163. refcount_dec(&node->refs); /* not in the list */
  164. list_del_init(&node->n_list);
  165. if (!list_empty(&node->p_list))
  166. list_del_init(&node->p_list);
  167. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  168. }
  169. spin_unlock(&root->lock);
  170. }
  171. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  172. struct btrfs_delayed_root *delayed_root)
  173. {
  174. struct list_head *p;
  175. struct btrfs_delayed_node *node = NULL;
  176. spin_lock(&delayed_root->lock);
  177. if (list_empty(&delayed_root->node_list))
  178. goto out;
  179. p = delayed_root->node_list.next;
  180. node = list_entry(p, struct btrfs_delayed_node, n_list);
  181. refcount_inc(&node->refs);
  182. out:
  183. spin_unlock(&delayed_root->lock);
  184. return node;
  185. }
  186. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  187. struct btrfs_delayed_node *node)
  188. {
  189. struct btrfs_delayed_root *delayed_root;
  190. struct list_head *p;
  191. struct btrfs_delayed_node *next = NULL;
  192. delayed_root = node->root->fs_info->delayed_root;
  193. spin_lock(&delayed_root->lock);
  194. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  195. /* not in the list */
  196. if (list_empty(&delayed_root->node_list))
  197. goto out;
  198. p = delayed_root->node_list.next;
  199. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  200. goto out;
  201. else
  202. p = node->n_list.next;
  203. next = list_entry(p, struct btrfs_delayed_node, n_list);
  204. refcount_inc(&next->refs);
  205. out:
  206. spin_unlock(&delayed_root->lock);
  207. return next;
  208. }
  209. static void __btrfs_release_delayed_node(
  210. struct btrfs_delayed_node *delayed_node,
  211. int mod)
  212. {
  213. struct btrfs_delayed_root *delayed_root;
  214. if (!delayed_node)
  215. return;
  216. delayed_root = delayed_node->root->fs_info->delayed_root;
  217. mutex_lock(&delayed_node->mutex);
  218. if (delayed_node->count)
  219. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  220. else
  221. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  222. mutex_unlock(&delayed_node->mutex);
  223. if (refcount_dec_and_test(&delayed_node->refs)) {
  224. bool free = false;
  225. struct btrfs_root *root = delayed_node->root;
  226. spin_lock(&root->inode_lock);
  227. if (refcount_read(&delayed_node->refs) == 0) {
  228. radix_tree_delete(&root->delayed_nodes_tree,
  229. delayed_node->inode_id);
  230. free = true;
  231. }
  232. spin_unlock(&root->inode_lock);
  233. if (free)
  234. kmem_cache_free(delayed_node_cache, delayed_node);
  235. }
  236. }
  237. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  238. {
  239. __btrfs_release_delayed_node(node, 0);
  240. }
  241. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  242. struct btrfs_delayed_root *delayed_root)
  243. {
  244. struct list_head *p;
  245. struct btrfs_delayed_node *node = NULL;
  246. spin_lock(&delayed_root->lock);
  247. if (list_empty(&delayed_root->prepare_list))
  248. goto out;
  249. p = delayed_root->prepare_list.next;
  250. list_del_init(p);
  251. node = list_entry(p, struct btrfs_delayed_node, p_list);
  252. refcount_inc(&node->refs);
  253. out:
  254. spin_unlock(&delayed_root->lock);
  255. return node;
  256. }
  257. static inline void btrfs_release_prepared_delayed_node(
  258. struct btrfs_delayed_node *node)
  259. {
  260. __btrfs_release_delayed_node(node, 1);
  261. }
  262. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  263. {
  264. struct btrfs_delayed_item *item;
  265. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  266. if (item) {
  267. item->data_len = data_len;
  268. item->ins_or_del = 0;
  269. item->bytes_reserved = 0;
  270. item->delayed_node = NULL;
  271. refcount_set(&item->refs, 1);
  272. }
  273. return item;
  274. }
  275. /*
  276. * __btrfs_lookup_delayed_item - look up the delayed item by key
  277. * @delayed_node: pointer to the delayed node
  278. * @key: the key to look up
  279. * @prev: used to store the prev item if the right item isn't found
  280. * @next: used to store the next item if the right item isn't found
  281. *
  282. * Note: if we don't find the right item, we will return the prev item and
  283. * the next item.
  284. */
  285. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  286. struct rb_root *root,
  287. struct btrfs_key *key,
  288. struct btrfs_delayed_item **prev,
  289. struct btrfs_delayed_item **next)
  290. {
  291. struct rb_node *node, *prev_node = NULL;
  292. struct btrfs_delayed_item *delayed_item = NULL;
  293. int ret = 0;
  294. node = root->rb_node;
  295. while (node) {
  296. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  297. rb_node);
  298. prev_node = node;
  299. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  300. if (ret < 0)
  301. node = node->rb_right;
  302. else if (ret > 0)
  303. node = node->rb_left;
  304. else
  305. return delayed_item;
  306. }
  307. if (prev) {
  308. if (!prev_node)
  309. *prev = NULL;
  310. else if (ret < 0)
  311. *prev = delayed_item;
  312. else if ((node = rb_prev(prev_node)) != NULL) {
  313. *prev = rb_entry(node, struct btrfs_delayed_item,
  314. rb_node);
  315. } else
  316. *prev = NULL;
  317. }
  318. if (next) {
  319. if (!prev_node)
  320. *next = NULL;
  321. else if (ret > 0)
  322. *next = delayed_item;
  323. else if ((node = rb_next(prev_node)) != NULL) {
  324. *next = rb_entry(node, struct btrfs_delayed_item,
  325. rb_node);
  326. } else
  327. *next = NULL;
  328. }
  329. return NULL;
  330. }
  331. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  332. struct btrfs_delayed_node *delayed_node,
  333. struct btrfs_key *key)
  334. {
  335. return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  336. NULL, NULL);
  337. }
  338. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  339. struct btrfs_delayed_item *ins,
  340. int action)
  341. {
  342. struct rb_node **p, *node;
  343. struct rb_node *parent_node = NULL;
  344. struct rb_root *root;
  345. struct btrfs_delayed_item *item;
  346. int cmp;
  347. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  348. root = &delayed_node->ins_root;
  349. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  350. root = &delayed_node->del_root;
  351. else
  352. BUG();
  353. p = &root->rb_node;
  354. node = &ins->rb_node;
  355. while (*p) {
  356. parent_node = *p;
  357. item = rb_entry(parent_node, struct btrfs_delayed_item,
  358. rb_node);
  359. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  360. if (cmp < 0)
  361. p = &(*p)->rb_right;
  362. else if (cmp > 0)
  363. p = &(*p)->rb_left;
  364. else
  365. return -EEXIST;
  366. }
  367. rb_link_node(node, parent_node, p);
  368. rb_insert_color(node, root);
  369. ins->delayed_node = delayed_node;
  370. ins->ins_or_del = action;
  371. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  372. action == BTRFS_DELAYED_INSERTION_ITEM &&
  373. ins->key.offset >= delayed_node->index_cnt)
  374. delayed_node->index_cnt = ins->key.offset + 1;
  375. delayed_node->count++;
  376. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  377. return 0;
  378. }
  379. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  380. struct btrfs_delayed_item *item)
  381. {
  382. return __btrfs_add_delayed_item(node, item,
  383. BTRFS_DELAYED_INSERTION_ITEM);
  384. }
  385. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  386. struct btrfs_delayed_item *item)
  387. {
  388. return __btrfs_add_delayed_item(node, item,
  389. BTRFS_DELAYED_DELETION_ITEM);
  390. }
  391. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  392. {
  393. int seq = atomic_inc_return(&delayed_root->items_seq);
  394. /*
  395. * atomic_dec_return implies a barrier for waitqueue_active
  396. */
  397. if ((atomic_dec_return(&delayed_root->items) <
  398. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  399. waitqueue_active(&delayed_root->wait))
  400. wake_up(&delayed_root->wait);
  401. }
  402. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  403. {
  404. struct rb_root *root;
  405. struct btrfs_delayed_root *delayed_root;
  406. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  407. BUG_ON(!delayed_root);
  408. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  409. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  410. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  411. root = &delayed_item->delayed_node->ins_root;
  412. else
  413. root = &delayed_item->delayed_node->del_root;
  414. rb_erase(&delayed_item->rb_node, root);
  415. delayed_item->delayed_node->count--;
  416. finish_one_item(delayed_root);
  417. }
  418. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  419. {
  420. if (item) {
  421. __btrfs_remove_delayed_item(item);
  422. if (refcount_dec_and_test(&item->refs))
  423. kfree(item);
  424. }
  425. }
  426. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  427. struct btrfs_delayed_node *delayed_node)
  428. {
  429. struct rb_node *p;
  430. struct btrfs_delayed_item *item = NULL;
  431. p = rb_first(&delayed_node->ins_root);
  432. if (p)
  433. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  434. return item;
  435. }
  436. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  437. struct btrfs_delayed_node *delayed_node)
  438. {
  439. struct rb_node *p;
  440. struct btrfs_delayed_item *item = NULL;
  441. p = rb_first(&delayed_node->del_root);
  442. if (p)
  443. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  444. return item;
  445. }
  446. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  447. struct btrfs_delayed_item *item)
  448. {
  449. struct rb_node *p;
  450. struct btrfs_delayed_item *next = NULL;
  451. p = rb_next(&item->rb_node);
  452. if (p)
  453. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  454. return next;
  455. }
  456. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  457. struct btrfs_fs_info *fs_info,
  458. struct btrfs_delayed_item *item)
  459. {
  460. struct btrfs_block_rsv *src_rsv;
  461. struct btrfs_block_rsv *dst_rsv;
  462. u64 num_bytes;
  463. int ret;
  464. if (!trans->bytes_reserved)
  465. return 0;
  466. src_rsv = trans->block_rsv;
  467. dst_rsv = &fs_info->delayed_block_rsv;
  468. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  469. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  470. if (!ret) {
  471. trace_btrfs_space_reservation(fs_info, "delayed_item",
  472. item->key.objectid,
  473. num_bytes, 1);
  474. item->bytes_reserved = num_bytes;
  475. }
  476. return ret;
  477. }
  478. static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
  479. struct btrfs_delayed_item *item)
  480. {
  481. struct btrfs_block_rsv *rsv;
  482. if (!item->bytes_reserved)
  483. return;
  484. rsv = &fs_info->delayed_block_rsv;
  485. trace_btrfs_space_reservation(fs_info, "delayed_item",
  486. item->key.objectid, item->bytes_reserved,
  487. 0);
  488. btrfs_block_rsv_release(fs_info, rsv,
  489. item->bytes_reserved);
  490. }
  491. static int btrfs_delayed_inode_reserve_metadata(
  492. struct btrfs_trans_handle *trans,
  493. struct btrfs_root *root,
  494. struct btrfs_inode *inode,
  495. struct btrfs_delayed_node *node)
  496. {
  497. struct btrfs_fs_info *fs_info = root->fs_info;
  498. struct btrfs_block_rsv *src_rsv;
  499. struct btrfs_block_rsv *dst_rsv;
  500. u64 num_bytes;
  501. int ret;
  502. src_rsv = trans->block_rsv;
  503. dst_rsv = &fs_info->delayed_block_rsv;
  504. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  505. /*
  506. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  507. * which doesn't reserve space for speed. This is a problem since we
  508. * still need to reserve space for this update, so try to reserve the
  509. * space.
  510. *
  511. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  512. * we always reserve enough to update the inode item.
  513. */
  514. if (!src_rsv || (!trans->bytes_reserved &&
  515. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  516. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  517. BTRFS_RESERVE_NO_FLUSH);
  518. /*
  519. * Since we're under a transaction reserve_metadata_bytes could
  520. * try to commit the transaction which will make it return
  521. * EAGAIN to make us stop the transaction we have, so return
  522. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  523. */
  524. if (ret == -EAGAIN)
  525. ret = -ENOSPC;
  526. if (!ret) {
  527. node->bytes_reserved = num_bytes;
  528. trace_btrfs_space_reservation(fs_info,
  529. "delayed_inode",
  530. btrfs_ino(inode),
  531. num_bytes, 1);
  532. }
  533. return ret;
  534. }
  535. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  536. if (!ret) {
  537. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  538. btrfs_ino(inode), num_bytes, 1);
  539. node->bytes_reserved = num_bytes;
  540. }
  541. return ret;
  542. }
  543. static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
  544. struct btrfs_delayed_node *node)
  545. {
  546. struct btrfs_block_rsv *rsv;
  547. if (!node->bytes_reserved)
  548. return;
  549. rsv = &fs_info->delayed_block_rsv;
  550. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  551. node->inode_id, node->bytes_reserved, 0);
  552. btrfs_block_rsv_release(fs_info, rsv,
  553. node->bytes_reserved);
  554. node->bytes_reserved = 0;
  555. }
  556. /*
  557. * This helper will insert some continuous items into the same leaf according
  558. * to the free space of the leaf.
  559. */
  560. static int btrfs_batch_insert_items(struct btrfs_root *root,
  561. struct btrfs_path *path,
  562. struct btrfs_delayed_item *item)
  563. {
  564. struct btrfs_fs_info *fs_info = root->fs_info;
  565. struct btrfs_delayed_item *curr, *next;
  566. int free_space;
  567. int total_data_size = 0, total_size = 0;
  568. struct extent_buffer *leaf;
  569. char *data_ptr;
  570. struct btrfs_key *keys;
  571. u32 *data_size;
  572. struct list_head head;
  573. int slot;
  574. int nitems;
  575. int i;
  576. int ret = 0;
  577. BUG_ON(!path->nodes[0]);
  578. leaf = path->nodes[0];
  579. free_space = btrfs_leaf_free_space(fs_info, leaf);
  580. INIT_LIST_HEAD(&head);
  581. next = item;
  582. nitems = 0;
  583. /*
  584. * count the number of the continuous items that we can insert in batch
  585. */
  586. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  587. free_space) {
  588. total_data_size += next->data_len;
  589. total_size += next->data_len + sizeof(struct btrfs_item);
  590. list_add_tail(&next->tree_list, &head);
  591. nitems++;
  592. curr = next;
  593. next = __btrfs_next_delayed_item(curr);
  594. if (!next)
  595. break;
  596. if (!btrfs_is_continuous_delayed_item(curr, next))
  597. break;
  598. }
  599. if (!nitems) {
  600. ret = 0;
  601. goto out;
  602. }
  603. /*
  604. * we need allocate some memory space, but it might cause the task
  605. * to sleep, so we set all locked nodes in the path to blocking locks
  606. * first.
  607. */
  608. btrfs_set_path_blocking(path);
  609. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  610. if (!keys) {
  611. ret = -ENOMEM;
  612. goto out;
  613. }
  614. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  615. if (!data_size) {
  616. ret = -ENOMEM;
  617. goto error;
  618. }
  619. /* get keys of all the delayed items */
  620. i = 0;
  621. list_for_each_entry(next, &head, tree_list) {
  622. keys[i] = next->key;
  623. data_size[i] = next->data_len;
  624. i++;
  625. }
  626. /* reset all the locked nodes in the patch to spinning locks. */
  627. btrfs_clear_path_blocking(path, NULL, 0);
  628. /* insert the keys of the items */
  629. setup_items_for_insert(root, path, keys, data_size,
  630. total_data_size, total_size, nitems);
  631. /* insert the dir index items */
  632. slot = path->slots[0];
  633. list_for_each_entry_safe(curr, next, &head, tree_list) {
  634. data_ptr = btrfs_item_ptr(leaf, slot, char);
  635. write_extent_buffer(leaf, &curr->data,
  636. (unsigned long)data_ptr,
  637. curr->data_len);
  638. slot++;
  639. btrfs_delayed_item_release_metadata(fs_info, curr);
  640. list_del(&curr->tree_list);
  641. btrfs_release_delayed_item(curr);
  642. }
  643. error:
  644. kfree(data_size);
  645. kfree(keys);
  646. out:
  647. return ret;
  648. }
  649. /*
  650. * This helper can just do simple insertion that needn't extend item for new
  651. * data, such as directory name index insertion, inode insertion.
  652. */
  653. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  654. struct btrfs_root *root,
  655. struct btrfs_path *path,
  656. struct btrfs_delayed_item *delayed_item)
  657. {
  658. struct btrfs_fs_info *fs_info = root->fs_info;
  659. struct extent_buffer *leaf;
  660. char *ptr;
  661. int ret;
  662. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  663. delayed_item->data_len);
  664. if (ret < 0 && ret != -EEXIST)
  665. return ret;
  666. leaf = path->nodes[0];
  667. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  668. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  669. delayed_item->data_len);
  670. btrfs_mark_buffer_dirty(leaf);
  671. btrfs_delayed_item_release_metadata(fs_info, delayed_item);
  672. return 0;
  673. }
  674. /*
  675. * we insert an item first, then if there are some continuous items, we try
  676. * to insert those items into the same leaf.
  677. */
  678. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  679. struct btrfs_path *path,
  680. struct btrfs_root *root,
  681. struct btrfs_delayed_node *node)
  682. {
  683. struct btrfs_delayed_item *curr, *prev;
  684. int ret = 0;
  685. do_again:
  686. mutex_lock(&node->mutex);
  687. curr = __btrfs_first_delayed_insertion_item(node);
  688. if (!curr)
  689. goto insert_end;
  690. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  691. if (ret < 0) {
  692. btrfs_release_path(path);
  693. goto insert_end;
  694. }
  695. prev = curr;
  696. curr = __btrfs_next_delayed_item(prev);
  697. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  698. /* insert the continuous items into the same leaf */
  699. path->slots[0]++;
  700. btrfs_batch_insert_items(root, path, curr);
  701. }
  702. btrfs_release_delayed_item(prev);
  703. btrfs_mark_buffer_dirty(path->nodes[0]);
  704. btrfs_release_path(path);
  705. mutex_unlock(&node->mutex);
  706. goto do_again;
  707. insert_end:
  708. mutex_unlock(&node->mutex);
  709. return ret;
  710. }
  711. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  712. struct btrfs_root *root,
  713. struct btrfs_path *path,
  714. struct btrfs_delayed_item *item)
  715. {
  716. struct btrfs_fs_info *fs_info = root->fs_info;
  717. struct btrfs_delayed_item *curr, *next;
  718. struct extent_buffer *leaf;
  719. struct btrfs_key key;
  720. struct list_head head;
  721. int nitems, i, last_item;
  722. int ret = 0;
  723. BUG_ON(!path->nodes[0]);
  724. leaf = path->nodes[0];
  725. i = path->slots[0];
  726. last_item = btrfs_header_nritems(leaf) - 1;
  727. if (i > last_item)
  728. return -ENOENT; /* FIXME: Is errno suitable? */
  729. next = item;
  730. INIT_LIST_HEAD(&head);
  731. btrfs_item_key_to_cpu(leaf, &key, i);
  732. nitems = 0;
  733. /*
  734. * count the number of the dir index items that we can delete in batch
  735. */
  736. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  737. list_add_tail(&next->tree_list, &head);
  738. nitems++;
  739. curr = next;
  740. next = __btrfs_next_delayed_item(curr);
  741. if (!next)
  742. break;
  743. if (!btrfs_is_continuous_delayed_item(curr, next))
  744. break;
  745. i++;
  746. if (i > last_item)
  747. break;
  748. btrfs_item_key_to_cpu(leaf, &key, i);
  749. }
  750. if (!nitems)
  751. return 0;
  752. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  753. if (ret)
  754. goto out;
  755. list_for_each_entry_safe(curr, next, &head, tree_list) {
  756. btrfs_delayed_item_release_metadata(fs_info, curr);
  757. list_del(&curr->tree_list);
  758. btrfs_release_delayed_item(curr);
  759. }
  760. out:
  761. return ret;
  762. }
  763. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  764. struct btrfs_path *path,
  765. struct btrfs_root *root,
  766. struct btrfs_delayed_node *node)
  767. {
  768. struct btrfs_delayed_item *curr, *prev;
  769. int ret = 0;
  770. do_again:
  771. mutex_lock(&node->mutex);
  772. curr = __btrfs_first_delayed_deletion_item(node);
  773. if (!curr)
  774. goto delete_fail;
  775. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  776. if (ret < 0)
  777. goto delete_fail;
  778. else if (ret > 0) {
  779. /*
  780. * can't find the item which the node points to, so this node
  781. * is invalid, just drop it.
  782. */
  783. prev = curr;
  784. curr = __btrfs_next_delayed_item(prev);
  785. btrfs_release_delayed_item(prev);
  786. ret = 0;
  787. btrfs_release_path(path);
  788. if (curr) {
  789. mutex_unlock(&node->mutex);
  790. goto do_again;
  791. } else
  792. goto delete_fail;
  793. }
  794. btrfs_batch_delete_items(trans, root, path, curr);
  795. btrfs_release_path(path);
  796. mutex_unlock(&node->mutex);
  797. goto do_again;
  798. delete_fail:
  799. btrfs_release_path(path);
  800. mutex_unlock(&node->mutex);
  801. return ret;
  802. }
  803. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  804. {
  805. struct btrfs_delayed_root *delayed_root;
  806. if (delayed_node &&
  807. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  808. BUG_ON(!delayed_node->root);
  809. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  810. delayed_node->count--;
  811. delayed_root = delayed_node->root->fs_info->delayed_root;
  812. finish_one_item(delayed_root);
  813. }
  814. }
  815. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  816. {
  817. struct btrfs_delayed_root *delayed_root;
  818. ASSERT(delayed_node->root);
  819. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  820. delayed_node->count--;
  821. delayed_root = delayed_node->root->fs_info->delayed_root;
  822. finish_one_item(delayed_root);
  823. }
  824. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  825. struct btrfs_root *root,
  826. struct btrfs_path *path,
  827. struct btrfs_delayed_node *node)
  828. {
  829. struct btrfs_fs_info *fs_info = root->fs_info;
  830. struct btrfs_key key;
  831. struct btrfs_inode_item *inode_item;
  832. struct extent_buffer *leaf;
  833. int mod;
  834. int ret;
  835. key.objectid = node->inode_id;
  836. key.type = BTRFS_INODE_ITEM_KEY;
  837. key.offset = 0;
  838. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  839. mod = -1;
  840. else
  841. mod = 1;
  842. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  843. if (ret > 0) {
  844. btrfs_release_path(path);
  845. return -ENOENT;
  846. } else if (ret < 0) {
  847. return ret;
  848. }
  849. leaf = path->nodes[0];
  850. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  851. struct btrfs_inode_item);
  852. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  853. sizeof(struct btrfs_inode_item));
  854. btrfs_mark_buffer_dirty(leaf);
  855. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  856. goto no_iref;
  857. path->slots[0]++;
  858. if (path->slots[0] >= btrfs_header_nritems(leaf))
  859. goto search;
  860. again:
  861. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  862. if (key.objectid != node->inode_id)
  863. goto out;
  864. if (key.type != BTRFS_INODE_REF_KEY &&
  865. key.type != BTRFS_INODE_EXTREF_KEY)
  866. goto out;
  867. /*
  868. * Delayed iref deletion is for the inode who has only one link,
  869. * so there is only one iref. The case that several irefs are
  870. * in the same item doesn't exist.
  871. */
  872. btrfs_del_item(trans, root, path);
  873. out:
  874. btrfs_release_delayed_iref(node);
  875. no_iref:
  876. btrfs_release_path(path);
  877. err_out:
  878. btrfs_delayed_inode_release_metadata(fs_info, node);
  879. btrfs_release_delayed_inode(node);
  880. return ret;
  881. search:
  882. btrfs_release_path(path);
  883. key.type = BTRFS_INODE_EXTREF_KEY;
  884. key.offset = -1;
  885. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  886. if (ret < 0)
  887. goto err_out;
  888. ASSERT(ret);
  889. ret = 0;
  890. leaf = path->nodes[0];
  891. path->slots[0]--;
  892. goto again;
  893. }
  894. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  895. struct btrfs_root *root,
  896. struct btrfs_path *path,
  897. struct btrfs_delayed_node *node)
  898. {
  899. int ret;
  900. mutex_lock(&node->mutex);
  901. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  902. mutex_unlock(&node->mutex);
  903. return 0;
  904. }
  905. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  906. mutex_unlock(&node->mutex);
  907. return ret;
  908. }
  909. static inline int
  910. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  911. struct btrfs_path *path,
  912. struct btrfs_delayed_node *node)
  913. {
  914. int ret;
  915. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  916. if (ret)
  917. return ret;
  918. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  919. if (ret)
  920. return ret;
  921. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  922. return ret;
  923. }
  924. /*
  925. * Called when committing the transaction.
  926. * Returns 0 on success.
  927. * Returns < 0 on error and returns with an aborted transaction with any
  928. * outstanding delayed items cleaned up.
  929. */
  930. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  931. struct btrfs_fs_info *fs_info, int nr)
  932. {
  933. struct btrfs_delayed_root *delayed_root;
  934. struct btrfs_delayed_node *curr_node, *prev_node;
  935. struct btrfs_path *path;
  936. struct btrfs_block_rsv *block_rsv;
  937. int ret = 0;
  938. bool count = (nr > 0);
  939. if (trans->aborted)
  940. return -EIO;
  941. path = btrfs_alloc_path();
  942. if (!path)
  943. return -ENOMEM;
  944. path->leave_spinning = 1;
  945. block_rsv = trans->block_rsv;
  946. trans->block_rsv = &fs_info->delayed_block_rsv;
  947. delayed_root = fs_info->delayed_root;
  948. curr_node = btrfs_first_delayed_node(delayed_root);
  949. while (curr_node && (!count || (count && nr--))) {
  950. ret = __btrfs_commit_inode_delayed_items(trans, path,
  951. curr_node);
  952. if (ret) {
  953. btrfs_release_delayed_node(curr_node);
  954. curr_node = NULL;
  955. btrfs_abort_transaction(trans, ret);
  956. break;
  957. }
  958. prev_node = curr_node;
  959. curr_node = btrfs_next_delayed_node(curr_node);
  960. btrfs_release_delayed_node(prev_node);
  961. }
  962. if (curr_node)
  963. btrfs_release_delayed_node(curr_node);
  964. btrfs_free_path(path);
  965. trans->block_rsv = block_rsv;
  966. return ret;
  967. }
  968. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  969. struct btrfs_fs_info *fs_info)
  970. {
  971. return __btrfs_run_delayed_items(trans, fs_info, -1);
  972. }
  973. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  974. struct btrfs_fs_info *fs_info, int nr)
  975. {
  976. return __btrfs_run_delayed_items(trans, fs_info, nr);
  977. }
  978. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  979. struct btrfs_inode *inode)
  980. {
  981. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  982. struct btrfs_path *path;
  983. struct btrfs_block_rsv *block_rsv;
  984. int ret;
  985. if (!delayed_node)
  986. return 0;
  987. mutex_lock(&delayed_node->mutex);
  988. if (!delayed_node->count) {
  989. mutex_unlock(&delayed_node->mutex);
  990. btrfs_release_delayed_node(delayed_node);
  991. return 0;
  992. }
  993. mutex_unlock(&delayed_node->mutex);
  994. path = btrfs_alloc_path();
  995. if (!path) {
  996. btrfs_release_delayed_node(delayed_node);
  997. return -ENOMEM;
  998. }
  999. path->leave_spinning = 1;
  1000. block_rsv = trans->block_rsv;
  1001. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1002. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1003. btrfs_release_delayed_node(delayed_node);
  1004. btrfs_free_path(path);
  1005. trans->block_rsv = block_rsv;
  1006. return ret;
  1007. }
  1008. int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
  1009. {
  1010. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1011. struct btrfs_trans_handle *trans;
  1012. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1013. struct btrfs_path *path;
  1014. struct btrfs_block_rsv *block_rsv;
  1015. int ret;
  1016. if (!delayed_node)
  1017. return 0;
  1018. mutex_lock(&delayed_node->mutex);
  1019. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1020. mutex_unlock(&delayed_node->mutex);
  1021. btrfs_release_delayed_node(delayed_node);
  1022. return 0;
  1023. }
  1024. mutex_unlock(&delayed_node->mutex);
  1025. trans = btrfs_join_transaction(delayed_node->root);
  1026. if (IS_ERR(trans)) {
  1027. ret = PTR_ERR(trans);
  1028. goto out;
  1029. }
  1030. path = btrfs_alloc_path();
  1031. if (!path) {
  1032. ret = -ENOMEM;
  1033. goto trans_out;
  1034. }
  1035. path->leave_spinning = 1;
  1036. block_rsv = trans->block_rsv;
  1037. trans->block_rsv = &fs_info->delayed_block_rsv;
  1038. mutex_lock(&delayed_node->mutex);
  1039. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1040. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1041. path, delayed_node);
  1042. else
  1043. ret = 0;
  1044. mutex_unlock(&delayed_node->mutex);
  1045. btrfs_free_path(path);
  1046. trans->block_rsv = block_rsv;
  1047. trans_out:
  1048. btrfs_end_transaction(trans);
  1049. btrfs_btree_balance_dirty(fs_info);
  1050. out:
  1051. btrfs_release_delayed_node(delayed_node);
  1052. return ret;
  1053. }
  1054. void btrfs_remove_delayed_node(struct btrfs_inode *inode)
  1055. {
  1056. struct btrfs_delayed_node *delayed_node;
  1057. delayed_node = READ_ONCE(inode->delayed_node);
  1058. if (!delayed_node)
  1059. return;
  1060. inode->delayed_node = NULL;
  1061. btrfs_release_delayed_node(delayed_node);
  1062. }
  1063. struct btrfs_async_delayed_work {
  1064. struct btrfs_delayed_root *delayed_root;
  1065. int nr;
  1066. struct btrfs_work work;
  1067. };
  1068. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1069. {
  1070. struct btrfs_async_delayed_work *async_work;
  1071. struct btrfs_delayed_root *delayed_root;
  1072. struct btrfs_trans_handle *trans;
  1073. struct btrfs_path *path;
  1074. struct btrfs_delayed_node *delayed_node = NULL;
  1075. struct btrfs_root *root;
  1076. struct btrfs_block_rsv *block_rsv;
  1077. int total_done = 0;
  1078. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1079. delayed_root = async_work->delayed_root;
  1080. path = btrfs_alloc_path();
  1081. if (!path)
  1082. goto out;
  1083. again:
  1084. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1085. goto free_path;
  1086. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1087. if (!delayed_node)
  1088. goto free_path;
  1089. path->leave_spinning = 1;
  1090. root = delayed_node->root;
  1091. trans = btrfs_join_transaction(root);
  1092. if (IS_ERR(trans))
  1093. goto release_path;
  1094. block_rsv = trans->block_rsv;
  1095. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1096. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1097. trans->block_rsv = block_rsv;
  1098. btrfs_end_transaction(trans);
  1099. btrfs_btree_balance_dirty_nodelay(root->fs_info);
  1100. release_path:
  1101. btrfs_release_path(path);
  1102. total_done++;
  1103. btrfs_release_prepared_delayed_node(delayed_node);
  1104. if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
  1105. total_done < async_work->nr)
  1106. goto again;
  1107. free_path:
  1108. btrfs_free_path(path);
  1109. out:
  1110. wake_up(&delayed_root->wait);
  1111. kfree(async_work);
  1112. }
  1113. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1114. struct btrfs_fs_info *fs_info, int nr)
  1115. {
  1116. struct btrfs_async_delayed_work *async_work;
  1117. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
  1118. btrfs_workqueue_normal_congested(fs_info->delayed_workers))
  1119. return 0;
  1120. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1121. if (!async_work)
  1122. return -ENOMEM;
  1123. async_work->delayed_root = delayed_root;
  1124. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1125. btrfs_async_run_delayed_root, NULL, NULL);
  1126. async_work->nr = nr;
  1127. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1128. return 0;
  1129. }
  1130. void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
  1131. {
  1132. WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
  1133. }
  1134. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1135. {
  1136. int val = atomic_read(&delayed_root->items_seq);
  1137. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1138. return 1;
  1139. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1140. return 1;
  1141. return 0;
  1142. }
  1143. void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
  1144. {
  1145. struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
  1146. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1147. return;
  1148. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1149. int seq;
  1150. int ret;
  1151. seq = atomic_read(&delayed_root->items_seq);
  1152. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1153. if (ret)
  1154. return;
  1155. wait_event_interruptible(delayed_root->wait,
  1156. could_end_wait(delayed_root, seq));
  1157. return;
  1158. }
  1159. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1160. }
  1161. /* Will return 0 or -ENOMEM */
  1162. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1163. struct btrfs_fs_info *fs_info,
  1164. const char *name, int name_len,
  1165. struct btrfs_inode *dir,
  1166. struct btrfs_disk_key *disk_key, u8 type,
  1167. u64 index)
  1168. {
  1169. struct btrfs_delayed_node *delayed_node;
  1170. struct btrfs_delayed_item *delayed_item;
  1171. struct btrfs_dir_item *dir_item;
  1172. int ret;
  1173. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1174. if (IS_ERR(delayed_node))
  1175. return PTR_ERR(delayed_node);
  1176. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1177. if (!delayed_item) {
  1178. ret = -ENOMEM;
  1179. goto release_node;
  1180. }
  1181. delayed_item->key.objectid = btrfs_ino(dir);
  1182. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1183. delayed_item->key.offset = index;
  1184. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1185. dir_item->location = *disk_key;
  1186. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1187. btrfs_set_stack_dir_data_len(dir_item, 0);
  1188. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1189. btrfs_set_stack_dir_type(dir_item, type);
  1190. memcpy((char *)(dir_item + 1), name, name_len);
  1191. ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
  1192. /*
  1193. * we have reserved enough space when we start a new transaction,
  1194. * so reserving metadata failure is impossible
  1195. */
  1196. BUG_ON(ret);
  1197. mutex_lock(&delayed_node->mutex);
  1198. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1199. if (unlikely(ret)) {
  1200. btrfs_err(fs_info,
  1201. "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1202. name_len, name, delayed_node->root->objectid,
  1203. delayed_node->inode_id, ret);
  1204. BUG();
  1205. }
  1206. mutex_unlock(&delayed_node->mutex);
  1207. release_node:
  1208. btrfs_release_delayed_node(delayed_node);
  1209. return ret;
  1210. }
  1211. static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
  1212. struct btrfs_delayed_node *node,
  1213. struct btrfs_key *key)
  1214. {
  1215. struct btrfs_delayed_item *item;
  1216. mutex_lock(&node->mutex);
  1217. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1218. if (!item) {
  1219. mutex_unlock(&node->mutex);
  1220. return 1;
  1221. }
  1222. btrfs_delayed_item_release_metadata(fs_info, item);
  1223. btrfs_release_delayed_item(item);
  1224. mutex_unlock(&node->mutex);
  1225. return 0;
  1226. }
  1227. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1228. struct btrfs_fs_info *fs_info,
  1229. struct btrfs_inode *dir, u64 index)
  1230. {
  1231. struct btrfs_delayed_node *node;
  1232. struct btrfs_delayed_item *item;
  1233. struct btrfs_key item_key;
  1234. int ret;
  1235. node = btrfs_get_or_create_delayed_node(dir);
  1236. if (IS_ERR(node))
  1237. return PTR_ERR(node);
  1238. item_key.objectid = btrfs_ino(dir);
  1239. item_key.type = BTRFS_DIR_INDEX_KEY;
  1240. item_key.offset = index;
  1241. ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
  1242. if (!ret)
  1243. goto end;
  1244. item = btrfs_alloc_delayed_item(0);
  1245. if (!item) {
  1246. ret = -ENOMEM;
  1247. goto end;
  1248. }
  1249. item->key = item_key;
  1250. ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
  1251. /*
  1252. * we have reserved enough space when we start a new transaction,
  1253. * so reserving metadata failure is impossible.
  1254. */
  1255. BUG_ON(ret);
  1256. mutex_lock(&node->mutex);
  1257. ret = __btrfs_add_delayed_deletion_item(node, item);
  1258. if (unlikely(ret)) {
  1259. btrfs_err(fs_info,
  1260. "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1261. index, node->root->objectid, node->inode_id, ret);
  1262. BUG();
  1263. }
  1264. mutex_unlock(&node->mutex);
  1265. end:
  1266. btrfs_release_delayed_node(node);
  1267. return ret;
  1268. }
  1269. int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
  1270. {
  1271. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1272. if (!delayed_node)
  1273. return -ENOENT;
  1274. /*
  1275. * Since we have held i_mutex of this directory, it is impossible that
  1276. * a new directory index is added into the delayed node and index_cnt
  1277. * is updated now. So we needn't lock the delayed node.
  1278. */
  1279. if (!delayed_node->index_cnt) {
  1280. btrfs_release_delayed_node(delayed_node);
  1281. return -EINVAL;
  1282. }
  1283. inode->index_cnt = delayed_node->index_cnt;
  1284. btrfs_release_delayed_node(delayed_node);
  1285. return 0;
  1286. }
  1287. bool btrfs_readdir_get_delayed_items(struct inode *inode,
  1288. struct list_head *ins_list,
  1289. struct list_head *del_list)
  1290. {
  1291. struct btrfs_delayed_node *delayed_node;
  1292. struct btrfs_delayed_item *item;
  1293. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1294. if (!delayed_node)
  1295. return false;
  1296. /*
  1297. * We can only do one readdir with delayed items at a time because of
  1298. * item->readdir_list.
  1299. */
  1300. inode_unlock_shared(inode);
  1301. inode_lock(inode);
  1302. mutex_lock(&delayed_node->mutex);
  1303. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1304. while (item) {
  1305. refcount_inc(&item->refs);
  1306. list_add_tail(&item->readdir_list, ins_list);
  1307. item = __btrfs_next_delayed_item(item);
  1308. }
  1309. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1310. while (item) {
  1311. refcount_inc(&item->refs);
  1312. list_add_tail(&item->readdir_list, del_list);
  1313. item = __btrfs_next_delayed_item(item);
  1314. }
  1315. mutex_unlock(&delayed_node->mutex);
  1316. /*
  1317. * This delayed node is still cached in the btrfs inode, so refs
  1318. * must be > 1 now, and we needn't check it is going to be freed
  1319. * or not.
  1320. *
  1321. * Besides that, this function is used to read dir, we do not
  1322. * insert/delete delayed items in this period. So we also needn't
  1323. * requeue or dequeue this delayed node.
  1324. */
  1325. refcount_dec(&delayed_node->refs);
  1326. return true;
  1327. }
  1328. void btrfs_readdir_put_delayed_items(struct inode *inode,
  1329. struct list_head *ins_list,
  1330. struct list_head *del_list)
  1331. {
  1332. struct btrfs_delayed_item *curr, *next;
  1333. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1334. list_del(&curr->readdir_list);
  1335. if (refcount_dec_and_test(&curr->refs))
  1336. kfree(curr);
  1337. }
  1338. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1339. list_del(&curr->readdir_list);
  1340. if (refcount_dec_and_test(&curr->refs))
  1341. kfree(curr);
  1342. }
  1343. /*
  1344. * The VFS is going to do up_read(), so we need to downgrade back to a
  1345. * read lock.
  1346. */
  1347. downgrade_write(&inode->i_rwsem);
  1348. }
  1349. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1350. u64 index)
  1351. {
  1352. struct btrfs_delayed_item *curr, *next;
  1353. int ret;
  1354. if (list_empty(del_list))
  1355. return 0;
  1356. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1357. if (curr->key.offset > index)
  1358. break;
  1359. list_del(&curr->readdir_list);
  1360. ret = (curr->key.offset == index);
  1361. if (refcount_dec_and_test(&curr->refs))
  1362. kfree(curr);
  1363. if (ret)
  1364. return 1;
  1365. else
  1366. continue;
  1367. }
  1368. return 0;
  1369. }
  1370. /*
  1371. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1372. *
  1373. */
  1374. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1375. struct list_head *ins_list)
  1376. {
  1377. struct btrfs_dir_item *di;
  1378. struct btrfs_delayed_item *curr, *next;
  1379. struct btrfs_key location;
  1380. char *name;
  1381. int name_len;
  1382. int over = 0;
  1383. unsigned char d_type;
  1384. if (list_empty(ins_list))
  1385. return 0;
  1386. /*
  1387. * Changing the data of the delayed item is impossible. So
  1388. * we needn't lock them. And we have held i_mutex of the
  1389. * directory, nobody can delete any directory indexes now.
  1390. */
  1391. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1392. list_del(&curr->readdir_list);
  1393. if (curr->key.offset < ctx->pos) {
  1394. if (refcount_dec_and_test(&curr->refs))
  1395. kfree(curr);
  1396. continue;
  1397. }
  1398. ctx->pos = curr->key.offset;
  1399. di = (struct btrfs_dir_item *)curr->data;
  1400. name = (char *)(di + 1);
  1401. name_len = btrfs_stack_dir_name_len(di);
  1402. d_type = btrfs_filetype_table[di->type];
  1403. btrfs_disk_key_to_cpu(&location, &di->location);
  1404. over = !dir_emit(ctx, name, name_len,
  1405. location.objectid, d_type);
  1406. if (refcount_dec_and_test(&curr->refs))
  1407. kfree(curr);
  1408. if (over)
  1409. return 1;
  1410. ctx->pos++;
  1411. }
  1412. return 0;
  1413. }
  1414. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1415. struct btrfs_inode_item *inode_item,
  1416. struct inode *inode)
  1417. {
  1418. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1419. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1420. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1421. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1422. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1423. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1424. btrfs_set_stack_inode_generation(inode_item,
  1425. BTRFS_I(inode)->generation);
  1426. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1427. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1428. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1429. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1430. btrfs_set_stack_inode_block_group(inode_item, 0);
  1431. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1432. inode->i_atime.tv_sec);
  1433. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1434. inode->i_atime.tv_nsec);
  1435. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1436. inode->i_mtime.tv_sec);
  1437. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1438. inode->i_mtime.tv_nsec);
  1439. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1440. inode->i_ctime.tv_sec);
  1441. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1442. inode->i_ctime.tv_nsec);
  1443. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1444. BTRFS_I(inode)->i_otime.tv_sec);
  1445. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1446. BTRFS_I(inode)->i_otime.tv_nsec);
  1447. }
  1448. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1449. {
  1450. struct btrfs_delayed_node *delayed_node;
  1451. struct btrfs_inode_item *inode_item;
  1452. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1453. if (!delayed_node)
  1454. return -ENOENT;
  1455. mutex_lock(&delayed_node->mutex);
  1456. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1457. mutex_unlock(&delayed_node->mutex);
  1458. btrfs_release_delayed_node(delayed_node);
  1459. return -ENOENT;
  1460. }
  1461. inode_item = &delayed_node->inode_item;
  1462. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1463. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1464. btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
  1465. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1466. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1467. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1468. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1469. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1470. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1471. inode->i_rdev = 0;
  1472. *rdev = btrfs_stack_inode_rdev(inode_item);
  1473. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1474. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1475. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1476. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1477. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1478. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1479. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1480. BTRFS_I(inode)->i_otime.tv_sec =
  1481. btrfs_stack_timespec_sec(&inode_item->otime);
  1482. BTRFS_I(inode)->i_otime.tv_nsec =
  1483. btrfs_stack_timespec_nsec(&inode_item->otime);
  1484. inode->i_generation = BTRFS_I(inode)->generation;
  1485. BTRFS_I(inode)->index_cnt = (u64)-1;
  1486. mutex_unlock(&delayed_node->mutex);
  1487. btrfs_release_delayed_node(delayed_node);
  1488. return 0;
  1489. }
  1490. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1491. struct btrfs_root *root, struct inode *inode)
  1492. {
  1493. struct btrfs_delayed_node *delayed_node;
  1494. int ret = 0;
  1495. delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
  1496. if (IS_ERR(delayed_node))
  1497. return PTR_ERR(delayed_node);
  1498. mutex_lock(&delayed_node->mutex);
  1499. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1500. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1501. goto release_node;
  1502. }
  1503. ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
  1504. delayed_node);
  1505. if (ret)
  1506. goto release_node;
  1507. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1508. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1509. delayed_node->count++;
  1510. atomic_inc(&root->fs_info->delayed_root->items);
  1511. release_node:
  1512. mutex_unlock(&delayed_node->mutex);
  1513. btrfs_release_delayed_node(delayed_node);
  1514. return ret;
  1515. }
  1516. int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
  1517. {
  1518. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1519. struct btrfs_delayed_node *delayed_node;
  1520. /*
  1521. * we don't do delayed inode updates during log recovery because it
  1522. * leads to enospc problems. This means we also can't do
  1523. * delayed inode refs
  1524. */
  1525. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
  1526. return -EAGAIN;
  1527. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1528. if (IS_ERR(delayed_node))
  1529. return PTR_ERR(delayed_node);
  1530. /*
  1531. * We don't reserve space for inode ref deletion is because:
  1532. * - We ONLY do async inode ref deletion for the inode who has only
  1533. * one link(i_nlink == 1), it means there is only one inode ref.
  1534. * And in most case, the inode ref and the inode item are in the
  1535. * same leaf, and we will deal with them at the same time.
  1536. * Since we are sure we will reserve the space for the inode item,
  1537. * it is unnecessary to reserve space for inode ref deletion.
  1538. * - If the inode ref and the inode item are not in the same leaf,
  1539. * We also needn't worry about enospc problem, because we reserve
  1540. * much more space for the inode update than it needs.
  1541. * - At the worst, we can steal some space from the global reservation.
  1542. * It is very rare.
  1543. */
  1544. mutex_lock(&delayed_node->mutex);
  1545. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1546. goto release_node;
  1547. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1548. delayed_node->count++;
  1549. atomic_inc(&fs_info->delayed_root->items);
  1550. release_node:
  1551. mutex_unlock(&delayed_node->mutex);
  1552. btrfs_release_delayed_node(delayed_node);
  1553. return 0;
  1554. }
  1555. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1556. {
  1557. struct btrfs_root *root = delayed_node->root;
  1558. struct btrfs_fs_info *fs_info = root->fs_info;
  1559. struct btrfs_delayed_item *curr_item, *prev_item;
  1560. mutex_lock(&delayed_node->mutex);
  1561. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1562. while (curr_item) {
  1563. btrfs_delayed_item_release_metadata(fs_info, curr_item);
  1564. prev_item = curr_item;
  1565. curr_item = __btrfs_next_delayed_item(prev_item);
  1566. btrfs_release_delayed_item(prev_item);
  1567. }
  1568. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1569. while (curr_item) {
  1570. btrfs_delayed_item_release_metadata(fs_info, curr_item);
  1571. prev_item = curr_item;
  1572. curr_item = __btrfs_next_delayed_item(prev_item);
  1573. btrfs_release_delayed_item(prev_item);
  1574. }
  1575. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1576. btrfs_release_delayed_iref(delayed_node);
  1577. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1578. btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
  1579. btrfs_release_delayed_inode(delayed_node);
  1580. }
  1581. mutex_unlock(&delayed_node->mutex);
  1582. }
  1583. void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
  1584. {
  1585. struct btrfs_delayed_node *delayed_node;
  1586. delayed_node = btrfs_get_delayed_node(inode);
  1587. if (!delayed_node)
  1588. return;
  1589. __btrfs_kill_delayed_node(delayed_node);
  1590. btrfs_release_delayed_node(delayed_node);
  1591. }
  1592. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1593. {
  1594. u64 inode_id = 0;
  1595. struct btrfs_delayed_node *delayed_nodes[8];
  1596. int i, n;
  1597. while (1) {
  1598. spin_lock(&root->inode_lock);
  1599. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1600. (void **)delayed_nodes, inode_id,
  1601. ARRAY_SIZE(delayed_nodes));
  1602. if (!n) {
  1603. spin_unlock(&root->inode_lock);
  1604. break;
  1605. }
  1606. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1607. for (i = 0; i < n; i++)
  1608. refcount_inc(&delayed_nodes[i]->refs);
  1609. spin_unlock(&root->inode_lock);
  1610. for (i = 0; i < n; i++) {
  1611. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1612. btrfs_release_delayed_node(delayed_nodes[i]);
  1613. }
  1614. }
  1615. }
  1616. void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
  1617. {
  1618. struct btrfs_delayed_node *curr_node, *prev_node;
  1619. curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
  1620. while (curr_node) {
  1621. __btrfs_kill_delayed_node(curr_node);
  1622. prev_node = curr_node;
  1623. curr_node = btrfs_next_delayed_node(curr_node);
  1624. btrfs_release_delayed_node(prev_node);
  1625. }
  1626. }