intel_pm.c 227 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include <drm/drm_plane_helper.h>
  29. #include "i915_drv.h"
  30. #include "intel_drv.h"
  31. #include "../../../platform/x86/intel_ips.h"
  32. #include <linux/module.h>
  33. #include <drm/drm_atomic_helper.h>
  34. /**
  35. * DOC: RC6
  36. *
  37. * RC6 is a special power stage which allows the GPU to enter an very
  38. * low-voltage mode when idle, using down to 0V while at this stage. This
  39. * stage is entered automatically when the GPU is idle when RC6 support is
  40. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  41. *
  42. * There are different RC6 modes available in Intel GPU, which differentiate
  43. * among each other with the latency required to enter and leave RC6 and
  44. * voltage consumed by the GPU in different states.
  45. *
  46. * The combination of the following flags define which states GPU is allowed
  47. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  48. * RC6pp is deepest RC6. Their support by hardware varies according to the
  49. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  50. * which brings the most power savings; deeper states save more power, but
  51. * require higher latency to switch to and wake up.
  52. */
  53. #define INTEL_RC6_ENABLE (1<<0)
  54. #define INTEL_RC6p_ENABLE (1<<1)
  55. #define INTEL_RC6pp_ENABLE (1<<2)
  56. static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
  57. {
  58. /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
  59. I915_WRITE(CHICKEN_PAR1_1,
  60. I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
  61. I915_WRITE(GEN8_CONFIG0,
  62. I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
  63. /* WaEnableChickenDCPR:skl,bxt,kbl,glk */
  64. I915_WRITE(GEN8_CHICKEN_DCPR_1,
  65. I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
  66. /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
  67. /* WaFbcWakeMemOn:skl,bxt,kbl,glk */
  68. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  69. DISP_FBC_WM_DIS |
  70. DISP_FBC_MEMORY_WAKE);
  71. /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
  72. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  73. ILK_DPFC_DISABLE_DUMMY0);
  74. }
  75. static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
  76. {
  77. gen9_init_clock_gating(dev_priv);
  78. /* WaDisableSDEUnitClockGating:bxt */
  79. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  80. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  81. /*
  82. * FIXME:
  83. * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  84. */
  85. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  86. GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  87. /*
  88. * Wa: Backlight PWM may stop in the asserted state, causing backlight
  89. * to stay fully on.
  90. */
  91. I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  92. PWM1_GATING_DIS | PWM2_GATING_DIS);
  93. }
  94. static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
  95. {
  96. gen9_init_clock_gating(dev_priv);
  97. /*
  98. * WaDisablePWMClockGating:glk
  99. * Backlight PWM may stop in the asserted state, causing backlight
  100. * to stay fully on.
  101. */
  102. I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  103. PWM1_GATING_DIS | PWM2_GATING_DIS);
  104. }
  105. static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
  106. {
  107. u32 tmp;
  108. tmp = I915_READ(CLKCFG);
  109. switch (tmp & CLKCFG_FSB_MASK) {
  110. case CLKCFG_FSB_533:
  111. dev_priv->fsb_freq = 533; /* 133*4 */
  112. break;
  113. case CLKCFG_FSB_800:
  114. dev_priv->fsb_freq = 800; /* 200*4 */
  115. break;
  116. case CLKCFG_FSB_667:
  117. dev_priv->fsb_freq = 667; /* 167*4 */
  118. break;
  119. case CLKCFG_FSB_400:
  120. dev_priv->fsb_freq = 400; /* 100*4 */
  121. break;
  122. }
  123. switch (tmp & CLKCFG_MEM_MASK) {
  124. case CLKCFG_MEM_533:
  125. dev_priv->mem_freq = 533;
  126. break;
  127. case CLKCFG_MEM_667:
  128. dev_priv->mem_freq = 667;
  129. break;
  130. case CLKCFG_MEM_800:
  131. dev_priv->mem_freq = 800;
  132. break;
  133. }
  134. /* detect pineview DDR3 setting */
  135. tmp = I915_READ(CSHRDDR3CTL);
  136. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  137. }
  138. static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
  139. {
  140. u16 ddrpll, csipll;
  141. ddrpll = I915_READ16(DDRMPLL1);
  142. csipll = I915_READ16(CSIPLL0);
  143. switch (ddrpll & 0xff) {
  144. case 0xc:
  145. dev_priv->mem_freq = 800;
  146. break;
  147. case 0x10:
  148. dev_priv->mem_freq = 1066;
  149. break;
  150. case 0x14:
  151. dev_priv->mem_freq = 1333;
  152. break;
  153. case 0x18:
  154. dev_priv->mem_freq = 1600;
  155. break;
  156. default:
  157. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  158. ddrpll & 0xff);
  159. dev_priv->mem_freq = 0;
  160. break;
  161. }
  162. dev_priv->ips.r_t = dev_priv->mem_freq;
  163. switch (csipll & 0x3ff) {
  164. case 0x00c:
  165. dev_priv->fsb_freq = 3200;
  166. break;
  167. case 0x00e:
  168. dev_priv->fsb_freq = 3733;
  169. break;
  170. case 0x010:
  171. dev_priv->fsb_freq = 4266;
  172. break;
  173. case 0x012:
  174. dev_priv->fsb_freq = 4800;
  175. break;
  176. case 0x014:
  177. dev_priv->fsb_freq = 5333;
  178. break;
  179. case 0x016:
  180. dev_priv->fsb_freq = 5866;
  181. break;
  182. case 0x018:
  183. dev_priv->fsb_freq = 6400;
  184. break;
  185. default:
  186. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  187. csipll & 0x3ff);
  188. dev_priv->fsb_freq = 0;
  189. break;
  190. }
  191. if (dev_priv->fsb_freq == 3200) {
  192. dev_priv->ips.c_m = 0;
  193. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  194. dev_priv->ips.c_m = 1;
  195. } else {
  196. dev_priv->ips.c_m = 2;
  197. }
  198. }
  199. static const struct cxsr_latency cxsr_latency_table[] = {
  200. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  201. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  202. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  203. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  204. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  205. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  206. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  207. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  208. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  209. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  210. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  211. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  212. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  213. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  214. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  215. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  216. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  217. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  218. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  219. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  220. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  221. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  222. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  223. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  224. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  225. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  226. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  227. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  228. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  229. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  230. };
  231. static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
  232. bool is_ddr3,
  233. int fsb,
  234. int mem)
  235. {
  236. const struct cxsr_latency *latency;
  237. int i;
  238. if (fsb == 0 || mem == 0)
  239. return NULL;
  240. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  241. latency = &cxsr_latency_table[i];
  242. if (is_desktop == latency->is_desktop &&
  243. is_ddr3 == latency->is_ddr3 &&
  244. fsb == latency->fsb_freq && mem == latency->mem_freq)
  245. return latency;
  246. }
  247. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  248. return NULL;
  249. }
  250. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  251. {
  252. u32 val;
  253. mutex_lock(&dev_priv->rps.hw_lock);
  254. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  255. if (enable)
  256. val &= ~FORCE_DDR_HIGH_FREQ;
  257. else
  258. val |= FORCE_DDR_HIGH_FREQ;
  259. val &= ~FORCE_DDR_LOW_FREQ;
  260. val |= FORCE_DDR_FREQ_REQ_ACK;
  261. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  262. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  263. FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  264. DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  265. mutex_unlock(&dev_priv->rps.hw_lock);
  266. }
  267. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  268. {
  269. u32 val;
  270. mutex_lock(&dev_priv->rps.hw_lock);
  271. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  272. if (enable)
  273. val |= DSP_MAXFIFO_PM5_ENABLE;
  274. else
  275. val &= ~DSP_MAXFIFO_PM5_ENABLE;
  276. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  277. mutex_unlock(&dev_priv->rps.hw_lock);
  278. }
  279. #define FW_WM(value, plane) \
  280. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  281. static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  282. {
  283. bool was_enabled;
  284. u32 val;
  285. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  286. was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  287. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  288. POSTING_READ(FW_BLC_SELF_VLV);
  289. } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
  290. was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  291. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  292. POSTING_READ(FW_BLC_SELF);
  293. } else if (IS_PINEVIEW(dev_priv)) {
  294. val = I915_READ(DSPFW3);
  295. was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
  296. if (enable)
  297. val |= PINEVIEW_SELF_REFRESH_EN;
  298. else
  299. val &= ~PINEVIEW_SELF_REFRESH_EN;
  300. I915_WRITE(DSPFW3, val);
  301. POSTING_READ(DSPFW3);
  302. } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
  303. was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  304. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  305. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  306. I915_WRITE(FW_BLC_SELF, val);
  307. POSTING_READ(FW_BLC_SELF);
  308. } else if (IS_I915GM(dev_priv)) {
  309. /*
  310. * FIXME can't find a bit like this for 915G, and
  311. * and yet it does have the related watermark in
  312. * FW_BLC_SELF. What's going on?
  313. */
  314. was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  315. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  316. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  317. I915_WRITE(INSTPM, val);
  318. POSTING_READ(INSTPM);
  319. } else {
  320. return false;
  321. }
  322. DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
  323. enableddisabled(enable),
  324. enableddisabled(was_enabled));
  325. return was_enabled;
  326. }
  327. bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  328. {
  329. bool ret;
  330. mutex_lock(&dev_priv->wm.wm_mutex);
  331. ret = _intel_set_memory_cxsr(dev_priv, enable);
  332. dev_priv->wm.vlv.cxsr = enable;
  333. mutex_unlock(&dev_priv->wm.wm_mutex);
  334. return ret;
  335. }
  336. /*
  337. * Latency for FIFO fetches is dependent on several factors:
  338. * - memory configuration (speed, channels)
  339. * - chipset
  340. * - current MCH state
  341. * It can be fairly high in some situations, so here we assume a fairly
  342. * pessimal value. It's a tradeoff between extra memory fetches (if we
  343. * set this value too high, the FIFO will fetch frequently to stay full)
  344. * and power consumption (set it too low to save power and we might see
  345. * FIFO underruns and display "flicker").
  346. *
  347. * A value of 5us seems to be a good balance; safe for very low end
  348. * platforms but not overly aggressive on lower latency configs.
  349. */
  350. static const int pessimal_latency_ns = 5000;
  351. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  352. ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  353. static int vlv_get_fifo_size(struct intel_plane *plane)
  354. {
  355. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  356. int sprite0_start, sprite1_start, size;
  357. if (plane->id == PLANE_CURSOR)
  358. return 63;
  359. switch (plane->pipe) {
  360. uint32_t dsparb, dsparb2, dsparb3;
  361. case PIPE_A:
  362. dsparb = I915_READ(DSPARB);
  363. dsparb2 = I915_READ(DSPARB2);
  364. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  365. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  366. break;
  367. case PIPE_B:
  368. dsparb = I915_READ(DSPARB);
  369. dsparb2 = I915_READ(DSPARB2);
  370. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  371. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  372. break;
  373. case PIPE_C:
  374. dsparb2 = I915_READ(DSPARB2);
  375. dsparb3 = I915_READ(DSPARB3);
  376. sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  377. sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  378. break;
  379. default:
  380. return 0;
  381. }
  382. switch (plane->id) {
  383. case PLANE_PRIMARY:
  384. size = sprite0_start;
  385. break;
  386. case PLANE_SPRITE0:
  387. size = sprite1_start - sprite0_start;
  388. break;
  389. case PLANE_SPRITE1:
  390. size = 512 - 1 - sprite1_start;
  391. break;
  392. default:
  393. return 0;
  394. }
  395. DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
  396. return size;
  397. }
  398. static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  399. {
  400. uint32_t dsparb = I915_READ(DSPARB);
  401. int size;
  402. size = dsparb & 0x7f;
  403. if (plane)
  404. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  405. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  406. plane ? "B" : "A", size);
  407. return size;
  408. }
  409. static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  410. {
  411. uint32_t dsparb = I915_READ(DSPARB);
  412. int size;
  413. size = dsparb & 0x1ff;
  414. if (plane)
  415. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  416. size >>= 1; /* Convert to cachelines */
  417. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  418. plane ? "B" : "A", size);
  419. return size;
  420. }
  421. static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  422. {
  423. uint32_t dsparb = I915_READ(DSPARB);
  424. int size;
  425. size = dsparb & 0x7f;
  426. size >>= 2; /* Convert to cachelines */
  427. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  428. plane ? "B" : "A",
  429. size);
  430. return size;
  431. }
  432. /* Pineview has different values for various configs */
  433. static const struct intel_watermark_params pineview_display_wm = {
  434. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  435. .max_wm = PINEVIEW_MAX_WM,
  436. .default_wm = PINEVIEW_DFT_WM,
  437. .guard_size = PINEVIEW_GUARD_WM,
  438. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  439. };
  440. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  441. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  442. .max_wm = PINEVIEW_MAX_WM,
  443. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  444. .guard_size = PINEVIEW_GUARD_WM,
  445. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  446. };
  447. static const struct intel_watermark_params pineview_cursor_wm = {
  448. .fifo_size = PINEVIEW_CURSOR_FIFO,
  449. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  450. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  451. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  452. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  453. };
  454. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  455. .fifo_size = PINEVIEW_CURSOR_FIFO,
  456. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  457. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  458. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  459. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  460. };
  461. static const struct intel_watermark_params g4x_wm_info = {
  462. .fifo_size = G4X_FIFO_SIZE,
  463. .max_wm = G4X_MAX_WM,
  464. .default_wm = G4X_MAX_WM,
  465. .guard_size = 2,
  466. .cacheline_size = G4X_FIFO_LINE_SIZE,
  467. };
  468. static const struct intel_watermark_params g4x_cursor_wm_info = {
  469. .fifo_size = I965_CURSOR_FIFO,
  470. .max_wm = I965_CURSOR_MAX_WM,
  471. .default_wm = I965_CURSOR_DFT_WM,
  472. .guard_size = 2,
  473. .cacheline_size = G4X_FIFO_LINE_SIZE,
  474. };
  475. static const struct intel_watermark_params i965_cursor_wm_info = {
  476. .fifo_size = I965_CURSOR_FIFO,
  477. .max_wm = I965_CURSOR_MAX_WM,
  478. .default_wm = I965_CURSOR_DFT_WM,
  479. .guard_size = 2,
  480. .cacheline_size = I915_FIFO_LINE_SIZE,
  481. };
  482. static const struct intel_watermark_params i945_wm_info = {
  483. .fifo_size = I945_FIFO_SIZE,
  484. .max_wm = I915_MAX_WM,
  485. .default_wm = 1,
  486. .guard_size = 2,
  487. .cacheline_size = I915_FIFO_LINE_SIZE,
  488. };
  489. static const struct intel_watermark_params i915_wm_info = {
  490. .fifo_size = I915_FIFO_SIZE,
  491. .max_wm = I915_MAX_WM,
  492. .default_wm = 1,
  493. .guard_size = 2,
  494. .cacheline_size = I915_FIFO_LINE_SIZE,
  495. };
  496. static const struct intel_watermark_params i830_a_wm_info = {
  497. .fifo_size = I855GM_FIFO_SIZE,
  498. .max_wm = I915_MAX_WM,
  499. .default_wm = 1,
  500. .guard_size = 2,
  501. .cacheline_size = I830_FIFO_LINE_SIZE,
  502. };
  503. static const struct intel_watermark_params i830_bc_wm_info = {
  504. .fifo_size = I855GM_FIFO_SIZE,
  505. .max_wm = I915_MAX_WM/2,
  506. .default_wm = 1,
  507. .guard_size = 2,
  508. .cacheline_size = I830_FIFO_LINE_SIZE,
  509. };
  510. static const struct intel_watermark_params i845_wm_info = {
  511. .fifo_size = I830_FIFO_SIZE,
  512. .max_wm = I915_MAX_WM,
  513. .default_wm = 1,
  514. .guard_size = 2,
  515. .cacheline_size = I830_FIFO_LINE_SIZE,
  516. };
  517. /**
  518. * intel_calculate_wm - calculate watermark level
  519. * @clock_in_khz: pixel clock
  520. * @wm: chip FIFO params
  521. * @cpp: bytes per pixel
  522. * @latency_ns: memory latency for the platform
  523. *
  524. * Calculate the watermark level (the level at which the display plane will
  525. * start fetching from memory again). Each chip has a different display
  526. * FIFO size and allocation, so the caller needs to figure that out and pass
  527. * in the correct intel_watermark_params structure.
  528. *
  529. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  530. * on the pixel size. When it reaches the watermark level, it'll start
  531. * fetching FIFO line sized based chunks from memory until the FIFO fills
  532. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  533. * will occur, and a display engine hang could result.
  534. */
  535. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  536. const struct intel_watermark_params *wm,
  537. int fifo_size, int cpp,
  538. unsigned long latency_ns)
  539. {
  540. long entries_required, wm_size;
  541. /*
  542. * Note: we need to make sure we don't overflow for various clock &
  543. * latency values.
  544. * clocks go from a few thousand to several hundred thousand.
  545. * latency is usually a few thousand
  546. */
  547. entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
  548. 1000;
  549. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  550. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  551. wm_size = fifo_size - (entries_required + wm->guard_size);
  552. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  553. /* Don't promote wm_size to unsigned... */
  554. if (wm_size > (long)wm->max_wm)
  555. wm_size = wm->max_wm;
  556. if (wm_size <= 0)
  557. wm_size = wm->default_wm;
  558. /*
  559. * Bspec seems to indicate that the value shouldn't be lower than
  560. * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  561. * Lets go for 8 which is the burst size since certain platforms
  562. * already use a hardcoded 8 (which is what the spec says should be
  563. * done).
  564. */
  565. if (wm_size <= 8)
  566. wm_size = 8;
  567. return wm_size;
  568. }
  569. static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
  570. {
  571. struct intel_crtc *crtc, *enabled = NULL;
  572. for_each_intel_crtc(&dev_priv->drm, crtc) {
  573. if (intel_crtc_active(crtc)) {
  574. if (enabled)
  575. return NULL;
  576. enabled = crtc;
  577. }
  578. }
  579. return enabled;
  580. }
  581. static void pineview_update_wm(struct intel_crtc *unused_crtc)
  582. {
  583. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  584. struct intel_crtc *crtc;
  585. const struct cxsr_latency *latency;
  586. u32 reg;
  587. unsigned long wm;
  588. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
  589. dev_priv->is_ddr3,
  590. dev_priv->fsb_freq,
  591. dev_priv->mem_freq);
  592. if (!latency) {
  593. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  594. intel_set_memory_cxsr(dev_priv, false);
  595. return;
  596. }
  597. crtc = single_enabled_crtc(dev_priv);
  598. if (crtc) {
  599. const struct drm_display_mode *adjusted_mode =
  600. &crtc->config->base.adjusted_mode;
  601. const struct drm_framebuffer *fb =
  602. crtc->base.primary->state->fb;
  603. int cpp = fb->format->cpp[0];
  604. int clock = adjusted_mode->crtc_clock;
  605. /* Display SR */
  606. wm = intel_calculate_wm(clock, &pineview_display_wm,
  607. pineview_display_wm.fifo_size,
  608. cpp, latency->display_sr);
  609. reg = I915_READ(DSPFW1);
  610. reg &= ~DSPFW_SR_MASK;
  611. reg |= FW_WM(wm, SR);
  612. I915_WRITE(DSPFW1, reg);
  613. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  614. /* cursor SR */
  615. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  616. pineview_display_wm.fifo_size,
  617. cpp, latency->cursor_sr);
  618. reg = I915_READ(DSPFW3);
  619. reg &= ~DSPFW_CURSOR_SR_MASK;
  620. reg |= FW_WM(wm, CURSOR_SR);
  621. I915_WRITE(DSPFW3, reg);
  622. /* Display HPLL off SR */
  623. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  624. pineview_display_hplloff_wm.fifo_size,
  625. cpp, latency->display_hpll_disable);
  626. reg = I915_READ(DSPFW3);
  627. reg &= ~DSPFW_HPLL_SR_MASK;
  628. reg |= FW_WM(wm, HPLL_SR);
  629. I915_WRITE(DSPFW3, reg);
  630. /* cursor HPLL off SR */
  631. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  632. pineview_display_hplloff_wm.fifo_size,
  633. cpp, latency->cursor_hpll_disable);
  634. reg = I915_READ(DSPFW3);
  635. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  636. reg |= FW_WM(wm, HPLL_CURSOR);
  637. I915_WRITE(DSPFW3, reg);
  638. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  639. intel_set_memory_cxsr(dev_priv, true);
  640. } else {
  641. intel_set_memory_cxsr(dev_priv, false);
  642. }
  643. }
  644. static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
  645. int plane,
  646. const struct intel_watermark_params *display,
  647. int display_latency_ns,
  648. const struct intel_watermark_params *cursor,
  649. int cursor_latency_ns,
  650. int *plane_wm,
  651. int *cursor_wm)
  652. {
  653. struct intel_crtc *crtc;
  654. const struct drm_display_mode *adjusted_mode;
  655. const struct drm_framebuffer *fb;
  656. int htotal, hdisplay, clock, cpp;
  657. int line_time_us, line_count;
  658. int entries, tlb_miss;
  659. crtc = intel_get_crtc_for_plane(dev_priv, plane);
  660. if (!intel_crtc_active(crtc)) {
  661. *cursor_wm = cursor->guard_size;
  662. *plane_wm = display->guard_size;
  663. return false;
  664. }
  665. adjusted_mode = &crtc->config->base.adjusted_mode;
  666. fb = crtc->base.primary->state->fb;
  667. clock = adjusted_mode->crtc_clock;
  668. htotal = adjusted_mode->crtc_htotal;
  669. hdisplay = crtc->config->pipe_src_w;
  670. cpp = fb->format->cpp[0];
  671. /* Use the small buffer method to calculate plane watermark */
  672. entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
  673. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  674. if (tlb_miss > 0)
  675. entries += tlb_miss;
  676. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  677. *plane_wm = entries + display->guard_size;
  678. if (*plane_wm > (int)display->max_wm)
  679. *plane_wm = display->max_wm;
  680. /* Use the large buffer method to calculate cursor watermark */
  681. line_time_us = max(htotal * 1000 / clock, 1);
  682. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  683. entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
  684. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  685. if (tlb_miss > 0)
  686. entries += tlb_miss;
  687. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  688. *cursor_wm = entries + cursor->guard_size;
  689. if (*cursor_wm > (int)cursor->max_wm)
  690. *cursor_wm = (int)cursor->max_wm;
  691. return true;
  692. }
  693. /*
  694. * Check the wm result.
  695. *
  696. * If any calculated watermark values is larger than the maximum value that
  697. * can be programmed into the associated watermark register, that watermark
  698. * must be disabled.
  699. */
  700. static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
  701. int display_wm, int cursor_wm,
  702. const struct intel_watermark_params *display,
  703. const struct intel_watermark_params *cursor)
  704. {
  705. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  706. display_wm, cursor_wm);
  707. if (display_wm > display->max_wm) {
  708. DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
  709. display_wm, display->max_wm);
  710. return false;
  711. }
  712. if (cursor_wm > cursor->max_wm) {
  713. DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
  714. cursor_wm, cursor->max_wm);
  715. return false;
  716. }
  717. if (!(display_wm || cursor_wm)) {
  718. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  719. return false;
  720. }
  721. return true;
  722. }
  723. static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
  724. int plane,
  725. int latency_ns,
  726. const struct intel_watermark_params *display,
  727. const struct intel_watermark_params *cursor,
  728. int *display_wm, int *cursor_wm)
  729. {
  730. struct intel_crtc *crtc;
  731. const struct drm_display_mode *adjusted_mode;
  732. const struct drm_framebuffer *fb;
  733. int hdisplay, htotal, cpp, clock;
  734. unsigned long line_time_us;
  735. int line_count, line_size;
  736. int small, large;
  737. int entries;
  738. if (!latency_ns) {
  739. *display_wm = *cursor_wm = 0;
  740. return false;
  741. }
  742. crtc = intel_get_crtc_for_plane(dev_priv, plane);
  743. adjusted_mode = &crtc->config->base.adjusted_mode;
  744. fb = crtc->base.primary->state->fb;
  745. clock = adjusted_mode->crtc_clock;
  746. htotal = adjusted_mode->crtc_htotal;
  747. hdisplay = crtc->config->pipe_src_w;
  748. cpp = fb->format->cpp[0];
  749. line_time_us = max(htotal * 1000 / clock, 1);
  750. line_count = (latency_ns / line_time_us + 1000) / 1000;
  751. line_size = hdisplay * cpp;
  752. /* Use the minimum of the small and large buffer method for primary */
  753. small = ((clock * cpp / 1000) * latency_ns) / 1000;
  754. large = line_count * line_size;
  755. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  756. *display_wm = entries + display->guard_size;
  757. /* calculate the self-refresh watermark for display cursor */
  758. entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
  759. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  760. *cursor_wm = entries + cursor->guard_size;
  761. return g4x_check_srwm(dev_priv,
  762. *display_wm, *cursor_wm,
  763. display, cursor);
  764. }
  765. #define FW_WM_VLV(value, plane) \
  766. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  767. static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
  768. const struct vlv_wm_values *wm)
  769. {
  770. enum pipe pipe;
  771. for_each_pipe(dev_priv, pipe) {
  772. I915_WRITE(VLV_DDL(pipe),
  773. (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
  774. (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
  775. (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
  776. (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
  777. }
  778. /*
  779. * Zero the (unused) WM1 watermarks, and also clear all the
  780. * high order bits so that there are no out of bounds values
  781. * present in the registers during the reprogramming.
  782. */
  783. I915_WRITE(DSPHOWM, 0);
  784. I915_WRITE(DSPHOWM1, 0);
  785. I915_WRITE(DSPFW4, 0);
  786. I915_WRITE(DSPFW5, 0);
  787. I915_WRITE(DSPFW6, 0);
  788. I915_WRITE(DSPFW1,
  789. FW_WM(wm->sr.plane, SR) |
  790. FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
  791. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
  792. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
  793. I915_WRITE(DSPFW2,
  794. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
  795. FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
  796. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
  797. I915_WRITE(DSPFW3,
  798. FW_WM(wm->sr.cursor, CURSOR_SR));
  799. if (IS_CHERRYVIEW(dev_priv)) {
  800. I915_WRITE(DSPFW7_CHV,
  801. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
  802. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
  803. I915_WRITE(DSPFW8_CHV,
  804. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
  805. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
  806. I915_WRITE(DSPFW9_CHV,
  807. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
  808. FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
  809. I915_WRITE(DSPHOWM,
  810. FW_WM(wm->sr.plane >> 9, SR_HI) |
  811. FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
  812. FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
  813. FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
  814. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
  815. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
  816. FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
  817. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
  818. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
  819. FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
  820. } else {
  821. I915_WRITE(DSPFW7,
  822. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
  823. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
  824. I915_WRITE(DSPHOWM,
  825. FW_WM(wm->sr.plane >> 9, SR_HI) |
  826. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
  827. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
  828. FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
  829. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
  830. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
  831. FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
  832. }
  833. POSTING_READ(DSPFW1);
  834. }
  835. #undef FW_WM_VLV
  836. enum vlv_wm_level {
  837. VLV_WM_LEVEL_PM2,
  838. VLV_WM_LEVEL_PM5,
  839. VLV_WM_LEVEL_DDR_DVFS,
  840. };
  841. /* latency must be in 0.1us units. */
  842. static unsigned int vlv_wm_method2(unsigned int pixel_rate,
  843. unsigned int pipe_htotal,
  844. unsigned int horiz_pixels,
  845. unsigned int cpp,
  846. unsigned int latency)
  847. {
  848. unsigned int ret;
  849. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  850. ret = (ret + 1) * horiz_pixels * cpp;
  851. ret = DIV_ROUND_UP(ret, 64);
  852. return ret;
  853. }
  854. static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
  855. {
  856. /* all latencies in usec */
  857. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
  858. dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
  859. if (IS_CHERRYVIEW(dev_priv)) {
  860. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
  861. dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
  862. dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
  863. }
  864. }
  865. static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
  866. const struct intel_plane_state *plane_state,
  867. int level)
  868. {
  869. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  870. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  871. const struct drm_display_mode *adjusted_mode =
  872. &crtc_state->base.adjusted_mode;
  873. int clock, htotal, cpp, width, wm;
  874. if (dev_priv->wm.pri_latency[level] == 0)
  875. return USHRT_MAX;
  876. if (!plane_state->base.visible)
  877. return 0;
  878. cpp = plane_state->base.fb->format->cpp[0];
  879. clock = adjusted_mode->crtc_clock;
  880. htotal = adjusted_mode->crtc_htotal;
  881. width = crtc_state->pipe_src_w;
  882. if (WARN_ON(htotal == 0))
  883. htotal = 1;
  884. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  885. /*
  886. * FIXME the formula gives values that are
  887. * too big for the cursor FIFO, and hence we
  888. * would never be able to use cursors. For
  889. * now just hardcode the watermark.
  890. */
  891. wm = 63;
  892. } else {
  893. wm = vlv_wm_method2(clock, htotal, width, cpp,
  894. dev_priv->wm.pri_latency[level] * 10);
  895. }
  896. return min_t(int, wm, USHRT_MAX);
  897. }
  898. static void vlv_compute_fifo(struct intel_crtc *crtc)
  899. {
  900. struct drm_device *dev = crtc->base.dev;
  901. struct vlv_wm_state *wm_state = &crtc->wm_state;
  902. struct intel_plane *plane;
  903. unsigned int total_rate = 0;
  904. const int fifo_size = 512 - 1;
  905. int fifo_extra, fifo_left = fifo_size;
  906. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  907. struct intel_plane_state *state =
  908. to_intel_plane_state(plane->base.state);
  909. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  910. continue;
  911. if (state->base.visible) {
  912. wm_state->num_active_planes++;
  913. total_rate += state->base.fb->format->cpp[0];
  914. }
  915. }
  916. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  917. struct intel_plane_state *state =
  918. to_intel_plane_state(plane->base.state);
  919. unsigned int rate;
  920. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  921. plane->wm.fifo_size = 63;
  922. continue;
  923. }
  924. if (!state->base.visible) {
  925. plane->wm.fifo_size = 0;
  926. continue;
  927. }
  928. rate = state->base.fb->format->cpp[0];
  929. plane->wm.fifo_size = fifo_size * rate / total_rate;
  930. fifo_left -= plane->wm.fifo_size;
  931. }
  932. fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
  933. /* spread the remainder evenly */
  934. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  935. int plane_extra;
  936. if (fifo_left == 0)
  937. break;
  938. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  939. continue;
  940. /* give it all to the first plane if none are active */
  941. if (plane->wm.fifo_size == 0 &&
  942. wm_state->num_active_planes)
  943. continue;
  944. plane_extra = min(fifo_extra, fifo_left);
  945. plane->wm.fifo_size += plane_extra;
  946. fifo_left -= plane_extra;
  947. }
  948. WARN_ON(fifo_left != 0);
  949. }
  950. static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
  951. {
  952. if (wm > fifo_size)
  953. return USHRT_MAX;
  954. else
  955. return fifo_size - wm;
  956. }
  957. static void vlv_invert_wms(struct intel_crtc *crtc)
  958. {
  959. struct vlv_wm_state *wm_state = &crtc->wm_state;
  960. int level;
  961. for (level = 0; level < wm_state->num_levels; level++) {
  962. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  963. const int sr_fifo_size =
  964. INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
  965. struct intel_plane *plane;
  966. wm_state->sr[level].plane =
  967. vlv_invert_wm_value(wm_state->sr[level].plane,
  968. sr_fifo_size);
  969. wm_state->sr[level].cursor =
  970. vlv_invert_wm_value(wm_state->sr[level].cursor,
  971. 63);
  972. for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
  973. wm_state->wm[level].plane[plane->id] =
  974. vlv_invert_wm_value(wm_state->wm[level].plane[plane->id],
  975. plane->wm.fifo_size);
  976. }
  977. }
  978. }
  979. static void vlv_compute_wm(struct intel_crtc *crtc)
  980. {
  981. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  982. struct vlv_wm_state *wm_state = &crtc->wm_state;
  983. struct intel_plane *plane;
  984. int level;
  985. memset(wm_state, 0, sizeof(*wm_state));
  986. wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
  987. wm_state->num_levels = dev_priv->wm.max_level + 1;
  988. wm_state->num_active_planes = 0;
  989. vlv_compute_fifo(crtc);
  990. if (wm_state->num_active_planes != 1)
  991. wm_state->cxsr = false;
  992. for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
  993. struct intel_plane_state *state =
  994. to_intel_plane_state(plane->base.state);
  995. int level;
  996. if (!state->base.visible)
  997. continue;
  998. /* normal watermarks */
  999. for (level = 0; level < wm_state->num_levels; level++) {
  1000. int wm = vlv_compute_wm_level(crtc->config, state, level);
  1001. int max_wm = plane->wm.fifo_size;
  1002. /* hack */
  1003. if (WARN_ON(level == 0 && wm > max_wm))
  1004. wm = max_wm;
  1005. if (wm > max_wm)
  1006. break;
  1007. wm_state->wm[level].plane[plane->id] = wm;
  1008. }
  1009. wm_state->num_levels = level;
  1010. if (!wm_state->cxsr)
  1011. continue;
  1012. /* maxfifo watermarks */
  1013. if (plane->id == PLANE_CURSOR) {
  1014. for (level = 0; level < wm_state->num_levels; level++)
  1015. wm_state->sr[level].cursor =
  1016. wm_state->wm[level].plane[PLANE_CURSOR];
  1017. } else {
  1018. for (level = 0; level < wm_state->num_levels; level++)
  1019. wm_state->sr[level].plane =
  1020. max(wm_state->sr[level].plane,
  1021. wm_state->wm[level].plane[plane->id]);
  1022. }
  1023. }
  1024. /* clear any (partially) filled invalid levels */
  1025. for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
  1026. memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
  1027. memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
  1028. }
  1029. vlv_invert_wms(crtc);
  1030. }
  1031. #define VLV_FIFO(plane, value) \
  1032. (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
  1033. static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
  1034. {
  1035. struct drm_device *dev = crtc->base.dev;
  1036. struct drm_i915_private *dev_priv = to_i915(dev);
  1037. struct intel_plane *plane;
  1038. int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
  1039. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  1040. switch (plane->id) {
  1041. case PLANE_PRIMARY:
  1042. sprite0_start = plane->wm.fifo_size;
  1043. break;
  1044. case PLANE_SPRITE0:
  1045. sprite1_start = sprite0_start + plane->wm.fifo_size;
  1046. break;
  1047. case PLANE_SPRITE1:
  1048. fifo_size = sprite1_start + plane->wm.fifo_size;
  1049. break;
  1050. case PLANE_CURSOR:
  1051. WARN_ON(plane->wm.fifo_size != 63);
  1052. break;
  1053. default:
  1054. MISSING_CASE(plane->id);
  1055. break;
  1056. }
  1057. }
  1058. WARN_ON(fifo_size != 512 - 1);
  1059. DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
  1060. pipe_name(crtc->pipe), sprite0_start,
  1061. sprite1_start, fifo_size);
  1062. spin_lock(&dev_priv->wm.dsparb_lock);
  1063. switch (crtc->pipe) {
  1064. uint32_t dsparb, dsparb2, dsparb3;
  1065. case PIPE_A:
  1066. dsparb = I915_READ(DSPARB);
  1067. dsparb2 = I915_READ(DSPARB2);
  1068. dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
  1069. VLV_FIFO(SPRITEB, 0xff));
  1070. dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
  1071. VLV_FIFO(SPRITEB, sprite1_start));
  1072. dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
  1073. VLV_FIFO(SPRITEB_HI, 0x1));
  1074. dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
  1075. VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
  1076. I915_WRITE(DSPARB, dsparb);
  1077. I915_WRITE(DSPARB2, dsparb2);
  1078. break;
  1079. case PIPE_B:
  1080. dsparb = I915_READ(DSPARB);
  1081. dsparb2 = I915_READ(DSPARB2);
  1082. dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
  1083. VLV_FIFO(SPRITED, 0xff));
  1084. dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
  1085. VLV_FIFO(SPRITED, sprite1_start));
  1086. dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
  1087. VLV_FIFO(SPRITED_HI, 0xff));
  1088. dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
  1089. VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
  1090. I915_WRITE(DSPARB, dsparb);
  1091. I915_WRITE(DSPARB2, dsparb2);
  1092. break;
  1093. case PIPE_C:
  1094. dsparb3 = I915_READ(DSPARB3);
  1095. dsparb2 = I915_READ(DSPARB2);
  1096. dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
  1097. VLV_FIFO(SPRITEF, 0xff));
  1098. dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
  1099. VLV_FIFO(SPRITEF, sprite1_start));
  1100. dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
  1101. VLV_FIFO(SPRITEF_HI, 0xff));
  1102. dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
  1103. VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
  1104. I915_WRITE(DSPARB3, dsparb3);
  1105. I915_WRITE(DSPARB2, dsparb2);
  1106. break;
  1107. default:
  1108. break;
  1109. }
  1110. POSTING_READ(DSPARB);
  1111. spin_unlock(&dev_priv->wm.dsparb_lock);
  1112. }
  1113. #undef VLV_FIFO
  1114. static void vlv_merge_wm(struct drm_i915_private *dev_priv,
  1115. struct vlv_wm_values *wm)
  1116. {
  1117. struct intel_crtc *crtc;
  1118. int num_active_crtcs = 0;
  1119. wm->level = dev_priv->wm.max_level;
  1120. wm->cxsr = true;
  1121. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1122. const struct vlv_wm_state *wm_state = &crtc->wm_state;
  1123. if (!crtc->active)
  1124. continue;
  1125. if (!wm_state->cxsr)
  1126. wm->cxsr = false;
  1127. num_active_crtcs++;
  1128. wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
  1129. }
  1130. if (num_active_crtcs != 1)
  1131. wm->cxsr = false;
  1132. if (num_active_crtcs > 1)
  1133. wm->level = VLV_WM_LEVEL_PM2;
  1134. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1135. struct vlv_wm_state *wm_state = &crtc->wm_state;
  1136. enum pipe pipe = crtc->pipe;
  1137. if (!crtc->active)
  1138. continue;
  1139. wm->pipe[pipe] = wm_state->wm[wm->level];
  1140. if (wm->cxsr)
  1141. wm->sr = wm_state->sr[wm->level];
  1142. wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
  1143. wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
  1144. wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
  1145. wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
  1146. }
  1147. }
  1148. static bool is_disabling(int old, int new, int threshold)
  1149. {
  1150. return old >= threshold && new < threshold;
  1151. }
  1152. static bool is_enabling(int old, int new, int threshold)
  1153. {
  1154. return old < threshold && new >= threshold;
  1155. }
  1156. static void vlv_update_wm(struct intel_crtc *crtc)
  1157. {
  1158. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1159. enum pipe pipe = crtc->pipe;
  1160. struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
  1161. struct vlv_wm_values new_wm = {};
  1162. vlv_compute_wm(crtc);
  1163. vlv_merge_wm(dev_priv, &new_wm);
  1164. if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) {
  1165. /* FIXME should be part of crtc atomic commit */
  1166. vlv_pipe_set_fifo_size(crtc);
  1167. return;
  1168. }
  1169. if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
  1170. chv_set_memory_dvfs(dev_priv, false);
  1171. if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
  1172. chv_set_memory_pm5(dev_priv, false);
  1173. if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
  1174. _intel_set_memory_cxsr(dev_priv, false);
  1175. /* FIXME should be part of crtc atomic commit */
  1176. vlv_pipe_set_fifo_size(crtc);
  1177. vlv_write_wm_values(dev_priv, &new_wm);
  1178. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
  1179. "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
  1180. pipe_name(pipe), new_wm.pipe[pipe].plane[PLANE_PRIMARY], new_wm.pipe[pipe].plane[PLANE_CURSOR],
  1181. new_wm.pipe[pipe].plane[PLANE_SPRITE0], new_wm.pipe[pipe].plane[PLANE_SPRITE1],
  1182. new_wm.sr.plane, new_wm.sr.cursor, new_wm.level, new_wm.cxsr);
  1183. if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
  1184. _intel_set_memory_cxsr(dev_priv, true);
  1185. if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
  1186. chv_set_memory_pm5(dev_priv, true);
  1187. if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
  1188. chv_set_memory_dvfs(dev_priv, true);
  1189. *old_wm = new_wm;
  1190. }
  1191. #define single_plane_enabled(mask) is_power_of_2(mask)
  1192. static void g4x_update_wm(struct intel_crtc *crtc)
  1193. {
  1194. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1195. static const int sr_latency_ns = 12000;
  1196. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1197. int plane_sr, cursor_sr;
  1198. unsigned int enabled = 0;
  1199. bool cxsr_enabled;
  1200. if (g4x_compute_wm0(dev_priv, PIPE_A,
  1201. &g4x_wm_info, pessimal_latency_ns,
  1202. &g4x_cursor_wm_info, pessimal_latency_ns,
  1203. &planea_wm, &cursora_wm))
  1204. enabled |= 1 << PIPE_A;
  1205. if (g4x_compute_wm0(dev_priv, PIPE_B,
  1206. &g4x_wm_info, pessimal_latency_ns,
  1207. &g4x_cursor_wm_info, pessimal_latency_ns,
  1208. &planeb_wm, &cursorb_wm))
  1209. enabled |= 1 << PIPE_B;
  1210. if (single_plane_enabled(enabled) &&
  1211. g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
  1212. sr_latency_ns,
  1213. &g4x_wm_info,
  1214. &g4x_cursor_wm_info,
  1215. &plane_sr, &cursor_sr)) {
  1216. cxsr_enabled = true;
  1217. } else {
  1218. cxsr_enabled = false;
  1219. intel_set_memory_cxsr(dev_priv, false);
  1220. plane_sr = cursor_sr = 0;
  1221. }
  1222. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1223. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1224. planea_wm, cursora_wm,
  1225. planeb_wm, cursorb_wm,
  1226. plane_sr, cursor_sr);
  1227. I915_WRITE(DSPFW1,
  1228. FW_WM(plane_sr, SR) |
  1229. FW_WM(cursorb_wm, CURSORB) |
  1230. FW_WM(planeb_wm, PLANEB) |
  1231. FW_WM(planea_wm, PLANEA));
  1232. I915_WRITE(DSPFW2,
  1233. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1234. FW_WM(cursora_wm, CURSORA));
  1235. /* HPLL off in SR has some issues on G4x... disable it */
  1236. I915_WRITE(DSPFW3,
  1237. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1238. FW_WM(cursor_sr, CURSOR_SR));
  1239. if (cxsr_enabled)
  1240. intel_set_memory_cxsr(dev_priv, true);
  1241. }
  1242. static void i965_update_wm(struct intel_crtc *unused_crtc)
  1243. {
  1244. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  1245. struct intel_crtc *crtc;
  1246. int srwm = 1;
  1247. int cursor_sr = 16;
  1248. bool cxsr_enabled;
  1249. /* Calc sr entries for one plane configs */
  1250. crtc = single_enabled_crtc(dev_priv);
  1251. if (crtc) {
  1252. /* self-refresh has much higher latency */
  1253. static const int sr_latency_ns = 12000;
  1254. const struct drm_display_mode *adjusted_mode =
  1255. &crtc->config->base.adjusted_mode;
  1256. const struct drm_framebuffer *fb =
  1257. crtc->base.primary->state->fb;
  1258. int clock = adjusted_mode->crtc_clock;
  1259. int htotal = adjusted_mode->crtc_htotal;
  1260. int hdisplay = crtc->config->pipe_src_w;
  1261. int cpp = fb->format->cpp[0];
  1262. unsigned long line_time_us;
  1263. int entries;
  1264. line_time_us = max(htotal * 1000 / clock, 1);
  1265. /* Use ns/us then divide to preserve precision */
  1266. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1267. cpp * hdisplay;
  1268. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1269. srwm = I965_FIFO_SIZE - entries;
  1270. if (srwm < 0)
  1271. srwm = 1;
  1272. srwm &= 0x1ff;
  1273. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1274. entries, srwm);
  1275. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1276. cpp * crtc->base.cursor->state->crtc_w;
  1277. entries = DIV_ROUND_UP(entries,
  1278. i965_cursor_wm_info.cacheline_size);
  1279. cursor_sr = i965_cursor_wm_info.fifo_size -
  1280. (entries + i965_cursor_wm_info.guard_size);
  1281. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1282. cursor_sr = i965_cursor_wm_info.max_wm;
  1283. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1284. "cursor %d\n", srwm, cursor_sr);
  1285. cxsr_enabled = true;
  1286. } else {
  1287. cxsr_enabled = false;
  1288. /* Turn off self refresh if both pipes are enabled */
  1289. intel_set_memory_cxsr(dev_priv, false);
  1290. }
  1291. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1292. srwm);
  1293. /* 965 has limitations... */
  1294. I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1295. FW_WM(8, CURSORB) |
  1296. FW_WM(8, PLANEB) |
  1297. FW_WM(8, PLANEA));
  1298. I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1299. FW_WM(8, PLANEC_OLD));
  1300. /* update cursor SR watermark */
  1301. I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1302. if (cxsr_enabled)
  1303. intel_set_memory_cxsr(dev_priv, true);
  1304. }
  1305. #undef FW_WM
  1306. static void i9xx_update_wm(struct intel_crtc *unused_crtc)
  1307. {
  1308. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  1309. const struct intel_watermark_params *wm_info;
  1310. uint32_t fwater_lo;
  1311. uint32_t fwater_hi;
  1312. int cwm, srwm = 1;
  1313. int fifo_size;
  1314. int planea_wm, planeb_wm;
  1315. struct intel_crtc *crtc, *enabled = NULL;
  1316. if (IS_I945GM(dev_priv))
  1317. wm_info = &i945_wm_info;
  1318. else if (!IS_GEN2(dev_priv))
  1319. wm_info = &i915_wm_info;
  1320. else
  1321. wm_info = &i830_a_wm_info;
  1322. fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
  1323. crtc = intel_get_crtc_for_plane(dev_priv, 0);
  1324. if (intel_crtc_active(crtc)) {
  1325. const struct drm_display_mode *adjusted_mode =
  1326. &crtc->config->base.adjusted_mode;
  1327. const struct drm_framebuffer *fb =
  1328. crtc->base.primary->state->fb;
  1329. int cpp;
  1330. if (IS_GEN2(dev_priv))
  1331. cpp = 4;
  1332. else
  1333. cpp = fb->format->cpp[0];
  1334. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1335. wm_info, fifo_size, cpp,
  1336. pessimal_latency_ns);
  1337. enabled = crtc;
  1338. } else {
  1339. planea_wm = fifo_size - wm_info->guard_size;
  1340. if (planea_wm > (long)wm_info->max_wm)
  1341. planea_wm = wm_info->max_wm;
  1342. }
  1343. if (IS_GEN2(dev_priv))
  1344. wm_info = &i830_bc_wm_info;
  1345. fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
  1346. crtc = intel_get_crtc_for_plane(dev_priv, 1);
  1347. if (intel_crtc_active(crtc)) {
  1348. const struct drm_display_mode *adjusted_mode =
  1349. &crtc->config->base.adjusted_mode;
  1350. const struct drm_framebuffer *fb =
  1351. crtc->base.primary->state->fb;
  1352. int cpp;
  1353. if (IS_GEN2(dev_priv))
  1354. cpp = 4;
  1355. else
  1356. cpp = fb->format->cpp[0];
  1357. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1358. wm_info, fifo_size, cpp,
  1359. pessimal_latency_ns);
  1360. if (enabled == NULL)
  1361. enabled = crtc;
  1362. else
  1363. enabled = NULL;
  1364. } else {
  1365. planeb_wm = fifo_size - wm_info->guard_size;
  1366. if (planeb_wm > (long)wm_info->max_wm)
  1367. planeb_wm = wm_info->max_wm;
  1368. }
  1369. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1370. if (IS_I915GM(dev_priv) && enabled) {
  1371. struct drm_i915_gem_object *obj;
  1372. obj = intel_fb_obj(enabled->base.primary->state->fb);
  1373. /* self-refresh seems busted with untiled */
  1374. if (!i915_gem_object_is_tiled(obj))
  1375. enabled = NULL;
  1376. }
  1377. /*
  1378. * Overlay gets an aggressive default since video jitter is bad.
  1379. */
  1380. cwm = 2;
  1381. /* Play safe and disable self-refresh before adjusting watermarks. */
  1382. intel_set_memory_cxsr(dev_priv, false);
  1383. /* Calc sr entries for one plane configs */
  1384. if (HAS_FW_BLC(dev_priv) && enabled) {
  1385. /* self-refresh has much higher latency */
  1386. static const int sr_latency_ns = 6000;
  1387. const struct drm_display_mode *adjusted_mode =
  1388. &enabled->config->base.adjusted_mode;
  1389. const struct drm_framebuffer *fb =
  1390. enabled->base.primary->state->fb;
  1391. int clock = adjusted_mode->crtc_clock;
  1392. int htotal = adjusted_mode->crtc_htotal;
  1393. int hdisplay = enabled->config->pipe_src_w;
  1394. int cpp;
  1395. unsigned long line_time_us;
  1396. int entries;
  1397. if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
  1398. cpp = 4;
  1399. else
  1400. cpp = fb->format->cpp[0];
  1401. line_time_us = max(htotal * 1000 / clock, 1);
  1402. /* Use ns/us then divide to preserve precision */
  1403. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1404. cpp * hdisplay;
  1405. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1406. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1407. srwm = wm_info->fifo_size - entries;
  1408. if (srwm < 0)
  1409. srwm = 1;
  1410. if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1411. I915_WRITE(FW_BLC_SELF,
  1412. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1413. else
  1414. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1415. }
  1416. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1417. planea_wm, planeb_wm, cwm, srwm);
  1418. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1419. fwater_hi = (cwm & 0x1f);
  1420. /* Set request length to 8 cachelines per fetch */
  1421. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1422. fwater_hi = fwater_hi | (1 << 8);
  1423. I915_WRITE(FW_BLC, fwater_lo);
  1424. I915_WRITE(FW_BLC2, fwater_hi);
  1425. if (enabled)
  1426. intel_set_memory_cxsr(dev_priv, true);
  1427. }
  1428. static void i845_update_wm(struct intel_crtc *unused_crtc)
  1429. {
  1430. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  1431. struct intel_crtc *crtc;
  1432. const struct drm_display_mode *adjusted_mode;
  1433. uint32_t fwater_lo;
  1434. int planea_wm;
  1435. crtc = single_enabled_crtc(dev_priv);
  1436. if (crtc == NULL)
  1437. return;
  1438. adjusted_mode = &crtc->config->base.adjusted_mode;
  1439. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1440. &i845_wm_info,
  1441. dev_priv->display.get_fifo_size(dev_priv, 0),
  1442. 4, pessimal_latency_ns);
  1443. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1444. fwater_lo |= (3<<8) | planea_wm;
  1445. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1446. I915_WRITE(FW_BLC, fwater_lo);
  1447. }
  1448. /* latency must be in 0.1us units. */
  1449. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
  1450. {
  1451. uint64_t ret;
  1452. if (WARN(latency == 0, "Latency value missing\n"))
  1453. return UINT_MAX;
  1454. ret = (uint64_t) pixel_rate * cpp * latency;
  1455. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1456. return ret;
  1457. }
  1458. /* latency must be in 0.1us units. */
  1459. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1460. uint32_t horiz_pixels, uint8_t cpp,
  1461. uint32_t latency)
  1462. {
  1463. uint32_t ret;
  1464. if (WARN(latency == 0, "Latency value missing\n"))
  1465. return UINT_MAX;
  1466. if (WARN_ON(!pipe_htotal))
  1467. return UINT_MAX;
  1468. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1469. ret = (ret + 1) * horiz_pixels * cpp;
  1470. ret = DIV_ROUND_UP(ret, 64) + 2;
  1471. return ret;
  1472. }
  1473. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1474. uint8_t cpp)
  1475. {
  1476. /*
  1477. * Neither of these should be possible since this function shouldn't be
  1478. * called if the CRTC is off or the plane is invisible. But let's be
  1479. * extra paranoid to avoid a potential divide-by-zero if we screw up
  1480. * elsewhere in the driver.
  1481. */
  1482. if (WARN_ON(!cpp))
  1483. return 0;
  1484. if (WARN_ON(!horiz_pixels))
  1485. return 0;
  1486. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
  1487. }
  1488. struct ilk_wm_maximums {
  1489. uint16_t pri;
  1490. uint16_t spr;
  1491. uint16_t cur;
  1492. uint16_t fbc;
  1493. };
  1494. /*
  1495. * For both WM_PIPE and WM_LP.
  1496. * mem_value must be in 0.1us units.
  1497. */
  1498. static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
  1499. const struct intel_plane_state *pstate,
  1500. uint32_t mem_value,
  1501. bool is_lp)
  1502. {
  1503. uint32_t method1, method2;
  1504. int cpp;
  1505. if (!cstate->base.active || !pstate->base.visible)
  1506. return 0;
  1507. cpp = pstate->base.fb->format->cpp[0];
  1508. method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
  1509. if (!is_lp)
  1510. return method1;
  1511. method2 = ilk_wm_method2(cstate->pixel_rate,
  1512. cstate->base.adjusted_mode.crtc_htotal,
  1513. drm_rect_width(&pstate->base.dst),
  1514. cpp, mem_value);
  1515. return min(method1, method2);
  1516. }
  1517. /*
  1518. * For both WM_PIPE and WM_LP.
  1519. * mem_value must be in 0.1us units.
  1520. */
  1521. static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
  1522. const struct intel_plane_state *pstate,
  1523. uint32_t mem_value)
  1524. {
  1525. uint32_t method1, method2;
  1526. int cpp;
  1527. if (!cstate->base.active || !pstate->base.visible)
  1528. return 0;
  1529. cpp = pstate->base.fb->format->cpp[0];
  1530. method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
  1531. method2 = ilk_wm_method2(cstate->pixel_rate,
  1532. cstate->base.adjusted_mode.crtc_htotal,
  1533. drm_rect_width(&pstate->base.dst),
  1534. cpp, mem_value);
  1535. return min(method1, method2);
  1536. }
  1537. /*
  1538. * For both WM_PIPE and WM_LP.
  1539. * mem_value must be in 0.1us units.
  1540. */
  1541. static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
  1542. const struct intel_plane_state *pstate,
  1543. uint32_t mem_value)
  1544. {
  1545. /*
  1546. * We treat the cursor plane as always-on for the purposes of watermark
  1547. * calculation. Until we have two-stage watermark programming merged,
  1548. * this is necessary to avoid flickering.
  1549. */
  1550. int cpp = 4;
  1551. int width = pstate->base.visible ? pstate->base.crtc_w : 64;
  1552. if (!cstate->base.active)
  1553. return 0;
  1554. return ilk_wm_method2(cstate->pixel_rate,
  1555. cstate->base.adjusted_mode.crtc_htotal,
  1556. width, cpp, mem_value);
  1557. }
  1558. /* Only for WM_LP. */
  1559. static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
  1560. const struct intel_plane_state *pstate,
  1561. uint32_t pri_val)
  1562. {
  1563. int cpp;
  1564. if (!cstate->base.active || !pstate->base.visible)
  1565. return 0;
  1566. cpp = pstate->base.fb->format->cpp[0];
  1567. return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
  1568. }
  1569. static unsigned int
  1570. ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
  1571. {
  1572. if (INTEL_GEN(dev_priv) >= 8)
  1573. return 3072;
  1574. else if (INTEL_GEN(dev_priv) >= 7)
  1575. return 768;
  1576. else
  1577. return 512;
  1578. }
  1579. static unsigned int
  1580. ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
  1581. int level, bool is_sprite)
  1582. {
  1583. if (INTEL_GEN(dev_priv) >= 8)
  1584. /* BDW primary/sprite plane watermarks */
  1585. return level == 0 ? 255 : 2047;
  1586. else if (INTEL_GEN(dev_priv) >= 7)
  1587. /* IVB/HSW primary/sprite plane watermarks */
  1588. return level == 0 ? 127 : 1023;
  1589. else if (!is_sprite)
  1590. /* ILK/SNB primary plane watermarks */
  1591. return level == 0 ? 127 : 511;
  1592. else
  1593. /* ILK/SNB sprite plane watermarks */
  1594. return level == 0 ? 63 : 255;
  1595. }
  1596. static unsigned int
  1597. ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
  1598. {
  1599. if (INTEL_GEN(dev_priv) >= 7)
  1600. return level == 0 ? 63 : 255;
  1601. else
  1602. return level == 0 ? 31 : 63;
  1603. }
  1604. static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
  1605. {
  1606. if (INTEL_GEN(dev_priv) >= 8)
  1607. return 31;
  1608. else
  1609. return 15;
  1610. }
  1611. /* Calculate the maximum primary/sprite plane watermark */
  1612. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1613. int level,
  1614. const struct intel_wm_config *config,
  1615. enum intel_ddb_partitioning ddb_partitioning,
  1616. bool is_sprite)
  1617. {
  1618. struct drm_i915_private *dev_priv = to_i915(dev);
  1619. unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
  1620. /* if sprites aren't enabled, sprites get nothing */
  1621. if (is_sprite && !config->sprites_enabled)
  1622. return 0;
  1623. /* HSW allows LP1+ watermarks even with multiple pipes */
  1624. if (level == 0 || config->num_pipes_active > 1) {
  1625. fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
  1626. /*
  1627. * For some reason the non self refresh
  1628. * FIFO size is only half of the self
  1629. * refresh FIFO size on ILK/SNB.
  1630. */
  1631. if (INTEL_GEN(dev_priv) <= 6)
  1632. fifo_size /= 2;
  1633. }
  1634. if (config->sprites_enabled) {
  1635. /* level 0 is always calculated with 1:1 split */
  1636. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1637. if (is_sprite)
  1638. fifo_size *= 5;
  1639. fifo_size /= 6;
  1640. } else {
  1641. fifo_size /= 2;
  1642. }
  1643. }
  1644. /* clamp to max that the registers can hold */
  1645. return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
  1646. }
  1647. /* Calculate the maximum cursor plane watermark */
  1648. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1649. int level,
  1650. const struct intel_wm_config *config)
  1651. {
  1652. /* HSW LP1+ watermarks w/ multiple pipes */
  1653. if (level > 0 && config->num_pipes_active > 1)
  1654. return 64;
  1655. /* otherwise just report max that registers can hold */
  1656. return ilk_cursor_wm_reg_max(to_i915(dev), level);
  1657. }
  1658. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1659. int level,
  1660. const struct intel_wm_config *config,
  1661. enum intel_ddb_partitioning ddb_partitioning,
  1662. struct ilk_wm_maximums *max)
  1663. {
  1664. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1665. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1666. max->cur = ilk_cursor_wm_max(dev, level, config);
  1667. max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
  1668. }
  1669. static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
  1670. int level,
  1671. struct ilk_wm_maximums *max)
  1672. {
  1673. max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
  1674. max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
  1675. max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
  1676. max->fbc = ilk_fbc_wm_reg_max(dev_priv);
  1677. }
  1678. static bool ilk_validate_wm_level(int level,
  1679. const struct ilk_wm_maximums *max,
  1680. struct intel_wm_level *result)
  1681. {
  1682. bool ret;
  1683. /* already determined to be invalid? */
  1684. if (!result->enable)
  1685. return false;
  1686. result->enable = result->pri_val <= max->pri &&
  1687. result->spr_val <= max->spr &&
  1688. result->cur_val <= max->cur;
  1689. ret = result->enable;
  1690. /*
  1691. * HACK until we can pre-compute everything,
  1692. * and thus fail gracefully if LP0 watermarks
  1693. * are exceeded...
  1694. */
  1695. if (level == 0 && !result->enable) {
  1696. if (result->pri_val > max->pri)
  1697. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1698. level, result->pri_val, max->pri);
  1699. if (result->spr_val > max->spr)
  1700. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1701. level, result->spr_val, max->spr);
  1702. if (result->cur_val > max->cur)
  1703. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1704. level, result->cur_val, max->cur);
  1705. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1706. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1707. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1708. result->enable = true;
  1709. }
  1710. return ret;
  1711. }
  1712. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1713. const struct intel_crtc *intel_crtc,
  1714. int level,
  1715. struct intel_crtc_state *cstate,
  1716. struct intel_plane_state *pristate,
  1717. struct intel_plane_state *sprstate,
  1718. struct intel_plane_state *curstate,
  1719. struct intel_wm_level *result)
  1720. {
  1721. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1722. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1723. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1724. /* WM1+ latency values stored in 0.5us units */
  1725. if (level > 0) {
  1726. pri_latency *= 5;
  1727. spr_latency *= 5;
  1728. cur_latency *= 5;
  1729. }
  1730. if (pristate) {
  1731. result->pri_val = ilk_compute_pri_wm(cstate, pristate,
  1732. pri_latency, level);
  1733. result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
  1734. }
  1735. if (sprstate)
  1736. result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
  1737. if (curstate)
  1738. result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
  1739. result->enable = true;
  1740. }
  1741. static uint32_t
  1742. hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
  1743. {
  1744. const struct intel_atomic_state *intel_state =
  1745. to_intel_atomic_state(cstate->base.state);
  1746. const struct drm_display_mode *adjusted_mode =
  1747. &cstate->base.adjusted_mode;
  1748. u32 linetime, ips_linetime;
  1749. if (!cstate->base.active)
  1750. return 0;
  1751. if (WARN_ON(adjusted_mode->crtc_clock == 0))
  1752. return 0;
  1753. if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
  1754. return 0;
  1755. /* The WM are computed with base on how long it takes to fill a single
  1756. * row at the given clock rate, multiplied by 8.
  1757. * */
  1758. linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  1759. adjusted_mode->crtc_clock);
  1760. ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  1761. intel_state->cdclk.logical.cdclk);
  1762. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1763. PIPE_WM_LINETIME_TIME(linetime);
  1764. }
  1765. static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
  1766. uint16_t wm[8])
  1767. {
  1768. if (IS_GEN9(dev_priv)) {
  1769. uint32_t val;
  1770. int ret, i;
  1771. int level, max_level = ilk_wm_max_level(dev_priv);
  1772. /* read the first set of memory latencies[0:3] */
  1773. val = 0; /* data0 to be programmed to 0 for first set */
  1774. mutex_lock(&dev_priv->rps.hw_lock);
  1775. ret = sandybridge_pcode_read(dev_priv,
  1776. GEN9_PCODE_READ_MEM_LATENCY,
  1777. &val);
  1778. mutex_unlock(&dev_priv->rps.hw_lock);
  1779. if (ret) {
  1780. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1781. return;
  1782. }
  1783. wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1784. wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1785. GEN9_MEM_LATENCY_LEVEL_MASK;
  1786. wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1787. GEN9_MEM_LATENCY_LEVEL_MASK;
  1788. wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1789. GEN9_MEM_LATENCY_LEVEL_MASK;
  1790. /* read the second set of memory latencies[4:7] */
  1791. val = 1; /* data0 to be programmed to 1 for second set */
  1792. mutex_lock(&dev_priv->rps.hw_lock);
  1793. ret = sandybridge_pcode_read(dev_priv,
  1794. GEN9_PCODE_READ_MEM_LATENCY,
  1795. &val);
  1796. mutex_unlock(&dev_priv->rps.hw_lock);
  1797. if (ret) {
  1798. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1799. return;
  1800. }
  1801. wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1802. wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1803. GEN9_MEM_LATENCY_LEVEL_MASK;
  1804. wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1805. GEN9_MEM_LATENCY_LEVEL_MASK;
  1806. wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1807. GEN9_MEM_LATENCY_LEVEL_MASK;
  1808. /*
  1809. * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
  1810. * need to be disabled. We make sure to sanitize the values out
  1811. * of the punit to satisfy this requirement.
  1812. */
  1813. for (level = 1; level <= max_level; level++) {
  1814. if (wm[level] == 0) {
  1815. for (i = level + 1; i <= max_level; i++)
  1816. wm[i] = 0;
  1817. break;
  1818. }
  1819. }
  1820. /*
  1821. * WaWmMemoryReadLatency:skl,glk
  1822. *
  1823. * punit doesn't take into account the read latency so we need
  1824. * to add 2us to the various latency levels we retrieve from the
  1825. * punit when level 0 response data us 0us.
  1826. */
  1827. if (wm[0] == 0) {
  1828. wm[0] += 2;
  1829. for (level = 1; level <= max_level; level++) {
  1830. if (wm[level] == 0)
  1831. break;
  1832. wm[level] += 2;
  1833. }
  1834. }
  1835. } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  1836. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1837. wm[0] = (sskpd >> 56) & 0xFF;
  1838. if (wm[0] == 0)
  1839. wm[0] = sskpd & 0xF;
  1840. wm[1] = (sskpd >> 4) & 0xFF;
  1841. wm[2] = (sskpd >> 12) & 0xFF;
  1842. wm[3] = (sskpd >> 20) & 0x1FF;
  1843. wm[4] = (sskpd >> 32) & 0x1FF;
  1844. } else if (INTEL_GEN(dev_priv) >= 6) {
  1845. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1846. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1847. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1848. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1849. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1850. } else if (INTEL_GEN(dev_priv) >= 5) {
  1851. uint32_t mltr = I915_READ(MLTR_ILK);
  1852. /* ILK primary LP0 latency is 700 ns */
  1853. wm[0] = 7;
  1854. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1855. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1856. }
  1857. }
  1858. static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
  1859. uint16_t wm[5])
  1860. {
  1861. /* ILK sprite LP0 latency is 1300 ns */
  1862. if (IS_GEN5(dev_priv))
  1863. wm[0] = 13;
  1864. }
  1865. static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
  1866. uint16_t wm[5])
  1867. {
  1868. /* ILK cursor LP0 latency is 1300 ns */
  1869. if (IS_GEN5(dev_priv))
  1870. wm[0] = 13;
  1871. /* WaDoubleCursorLP3Latency:ivb */
  1872. if (IS_IVYBRIDGE(dev_priv))
  1873. wm[3] *= 2;
  1874. }
  1875. int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
  1876. {
  1877. /* how many WM levels are we expecting */
  1878. if (INTEL_GEN(dev_priv) >= 9)
  1879. return 7;
  1880. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  1881. return 4;
  1882. else if (INTEL_GEN(dev_priv) >= 6)
  1883. return 3;
  1884. else
  1885. return 2;
  1886. }
  1887. static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
  1888. const char *name,
  1889. const uint16_t wm[8])
  1890. {
  1891. int level, max_level = ilk_wm_max_level(dev_priv);
  1892. for (level = 0; level <= max_level; level++) {
  1893. unsigned int latency = wm[level];
  1894. if (latency == 0) {
  1895. DRM_ERROR("%s WM%d latency not provided\n",
  1896. name, level);
  1897. continue;
  1898. }
  1899. /*
  1900. * - latencies are in us on gen9.
  1901. * - before then, WM1+ latency values are in 0.5us units
  1902. */
  1903. if (IS_GEN9(dev_priv))
  1904. latency *= 10;
  1905. else if (level > 0)
  1906. latency *= 5;
  1907. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1908. name, level, wm[level],
  1909. latency / 10, latency % 10);
  1910. }
  1911. }
  1912. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1913. uint16_t wm[5], uint16_t min)
  1914. {
  1915. int level, max_level = ilk_wm_max_level(dev_priv);
  1916. if (wm[0] >= min)
  1917. return false;
  1918. wm[0] = max(wm[0], min);
  1919. for (level = 1; level <= max_level; level++)
  1920. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1921. return true;
  1922. }
  1923. static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
  1924. {
  1925. bool changed;
  1926. /*
  1927. * The BIOS provided WM memory latency values are often
  1928. * inadequate for high resolution displays. Adjust them.
  1929. */
  1930. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1931. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1932. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1933. if (!changed)
  1934. return;
  1935. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1936. intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
  1937. intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
  1938. intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
  1939. }
  1940. static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
  1941. {
  1942. intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
  1943. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1944. sizeof(dev_priv->wm.pri_latency));
  1945. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1946. sizeof(dev_priv->wm.pri_latency));
  1947. intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
  1948. intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
  1949. intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
  1950. intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
  1951. intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
  1952. if (IS_GEN6(dev_priv))
  1953. snb_wm_latency_quirk(dev_priv);
  1954. }
  1955. static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
  1956. {
  1957. intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
  1958. intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
  1959. }
  1960. static bool ilk_validate_pipe_wm(struct drm_device *dev,
  1961. struct intel_pipe_wm *pipe_wm)
  1962. {
  1963. /* LP0 watermark maximums depend on this pipe alone */
  1964. const struct intel_wm_config config = {
  1965. .num_pipes_active = 1,
  1966. .sprites_enabled = pipe_wm->sprites_enabled,
  1967. .sprites_scaled = pipe_wm->sprites_scaled,
  1968. };
  1969. struct ilk_wm_maximums max;
  1970. /* LP0 watermarks always use 1/2 DDB partitioning */
  1971. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1972. /* At least LP0 must be valid */
  1973. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
  1974. DRM_DEBUG_KMS("LP0 watermark invalid\n");
  1975. return false;
  1976. }
  1977. return true;
  1978. }
  1979. /* Compute new watermarks for the pipe */
  1980. static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
  1981. {
  1982. struct drm_atomic_state *state = cstate->base.state;
  1983. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  1984. struct intel_pipe_wm *pipe_wm;
  1985. struct drm_device *dev = state->dev;
  1986. const struct drm_i915_private *dev_priv = to_i915(dev);
  1987. struct intel_plane *intel_plane;
  1988. struct intel_plane_state *pristate = NULL;
  1989. struct intel_plane_state *sprstate = NULL;
  1990. struct intel_plane_state *curstate = NULL;
  1991. int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
  1992. struct ilk_wm_maximums max;
  1993. pipe_wm = &cstate->wm.ilk.optimal;
  1994. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  1995. struct intel_plane_state *ps;
  1996. ps = intel_atomic_get_existing_plane_state(state,
  1997. intel_plane);
  1998. if (!ps)
  1999. continue;
  2000. if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  2001. pristate = ps;
  2002. else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
  2003. sprstate = ps;
  2004. else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
  2005. curstate = ps;
  2006. }
  2007. pipe_wm->pipe_enabled = cstate->base.active;
  2008. if (sprstate) {
  2009. pipe_wm->sprites_enabled = sprstate->base.visible;
  2010. pipe_wm->sprites_scaled = sprstate->base.visible &&
  2011. (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
  2012. drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
  2013. }
  2014. usable_level = max_level;
  2015. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  2016. if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
  2017. usable_level = 1;
  2018. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  2019. if (pipe_wm->sprites_scaled)
  2020. usable_level = 0;
  2021. ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
  2022. pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
  2023. memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
  2024. pipe_wm->wm[0] = pipe_wm->raw_wm[0];
  2025. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  2026. pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
  2027. if (!ilk_validate_pipe_wm(dev, pipe_wm))
  2028. return -EINVAL;
  2029. ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
  2030. for (level = 1; level <= max_level; level++) {
  2031. struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
  2032. ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
  2033. pristate, sprstate, curstate, wm);
  2034. /*
  2035. * Disable any watermark level that exceeds the
  2036. * register maximums since such watermarks are
  2037. * always invalid.
  2038. */
  2039. if (level > usable_level)
  2040. continue;
  2041. if (ilk_validate_wm_level(level, &max, wm))
  2042. pipe_wm->wm[level] = *wm;
  2043. else
  2044. usable_level = level;
  2045. }
  2046. return 0;
  2047. }
  2048. /*
  2049. * Build a set of 'intermediate' watermark values that satisfy both the old
  2050. * state and the new state. These can be programmed to the hardware
  2051. * immediately.
  2052. */
  2053. static int ilk_compute_intermediate_wm(struct drm_device *dev,
  2054. struct intel_crtc *intel_crtc,
  2055. struct intel_crtc_state *newstate)
  2056. {
  2057. struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
  2058. struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
  2059. int level, max_level = ilk_wm_max_level(to_i915(dev));
  2060. /*
  2061. * Start with the final, target watermarks, then combine with the
  2062. * currently active watermarks to get values that are safe both before
  2063. * and after the vblank.
  2064. */
  2065. *a = newstate->wm.ilk.optimal;
  2066. a->pipe_enabled |= b->pipe_enabled;
  2067. a->sprites_enabled |= b->sprites_enabled;
  2068. a->sprites_scaled |= b->sprites_scaled;
  2069. for (level = 0; level <= max_level; level++) {
  2070. struct intel_wm_level *a_wm = &a->wm[level];
  2071. const struct intel_wm_level *b_wm = &b->wm[level];
  2072. a_wm->enable &= b_wm->enable;
  2073. a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
  2074. a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
  2075. a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
  2076. a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
  2077. }
  2078. /*
  2079. * We need to make sure that these merged watermark values are
  2080. * actually a valid configuration themselves. If they're not,
  2081. * there's no safe way to transition from the old state to
  2082. * the new state, so we need to fail the atomic transaction.
  2083. */
  2084. if (!ilk_validate_pipe_wm(dev, a))
  2085. return -EINVAL;
  2086. /*
  2087. * If our intermediate WM are identical to the final WM, then we can
  2088. * omit the post-vblank programming; only update if it's different.
  2089. */
  2090. if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
  2091. newstate->wm.need_postvbl_update = false;
  2092. return 0;
  2093. }
  2094. /*
  2095. * Merge the watermarks from all active pipes for a specific level.
  2096. */
  2097. static void ilk_merge_wm_level(struct drm_device *dev,
  2098. int level,
  2099. struct intel_wm_level *ret_wm)
  2100. {
  2101. const struct intel_crtc *intel_crtc;
  2102. ret_wm->enable = true;
  2103. for_each_intel_crtc(dev, intel_crtc) {
  2104. const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
  2105. const struct intel_wm_level *wm = &active->wm[level];
  2106. if (!active->pipe_enabled)
  2107. continue;
  2108. /*
  2109. * The watermark values may have been used in the past,
  2110. * so we must maintain them in the registers for some
  2111. * time even if the level is now disabled.
  2112. */
  2113. if (!wm->enable)
  2114. ret_wm->enable = false;
  2115. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2116. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2117. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2118. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2119. }
  2120. }
  2121. /*
  2122. * Merge all low power watermarks for all active pipes.
  2123. */
  2124. static void ilk_wm_merge(struct drm_device *dev,
  2125. const struct intel_wm_config *config,
  2126. const struct ilk_wm_maximums *max,
  2127. struct intel_pipe_wm *merged)
  2128. {
  2129. struct drm_i915_private *dev_priv = to_i915(dev);
  2130. int level, max_level = ilk_wm_max_level(dev_priv);
  2131. int last_enabled_level = max_level;
  2132. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2133. if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
  2134. config->num_pipes_active > 1)
  2135. last_enabled_level = 0;
  2136. /* ILK: FBC WM must be disabled always */
  2137. merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
  2138. /* merge each WM1+ level */
  2139. for (level = 1; level <= max_level; level++) {
  2140. struct intel_wm_level *wm = &merged->wm[level];
  2141. ilk_merge_wm_level(dev, level, wm);
  2142. if (level > last_enabled_level)
  2143. wm->enable = false;
  2144. else if (!ilk_validate_wm_level(level, max, wm))
  2145. /* make sure all following levels get disabled */
  2146. last_enabled_level = level - 1;
  2147. /*
  2148. * The spec says it is preferred to disable
  2149. * FBC WMs instead of disabling a WM level.
  2150. */
  2151. if (wm->fbc_val > max->fbc) {
  2152. if (wm->enable)
  2153. merged->fbc_wm_enabled = false;
  2154. wm->fbc_val = 0;
  2155. }
  2156. }
  2157. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2158. /*
  2159. * FIXME this is racy. FBC might get enabled later.
  2160. * What we should check here is whether FBC can be
  2161. * enabled sometime later.
  2162. */
  2163. if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
  2164. intel_fbc_is_active(dev_priv)) {
  2165. for (level = 2; level <= max_level; level++) {
  2166. struct intel_wm_level *wm = &merged->wm[level];
  2167. wm->enable = false;
  2168. }
  2169. }
  2170. }
  2171. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2172. {
  2173. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2174. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2175. }
  2176. /* The value we need to program into the WM_LPx latency field */
  2177. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2178. {
  2179. struct drm_i915_private *dev_priv = to_i915(dev);
  2180. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  2181. return 2 * level;
  2182. else
  2183. return dev_priv->wm.pri_latency[level];
  2184. }
  2185. static void ilk_compute_wm_results(struct drm_device *dev,
  2186. const struct intel_pipe_wm *merged,
  2187. enum intel_ddb_partitioning partitioning,
  2188. struct ilk_wm_values *results)
  2189. {
  2190. struct drm_i915_private *dev_priv = to_i915(dev);
  2191. struct intel_crtc *intel_crtc;
  2192. int level, wm_lp;
  2193. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2194. results->partitioning = partitioning;
  2195. /* LP1+ register values */
  2196. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2197. const struct intel_wm_level *r;
  2198. level = ilk_wm_lp_to_level(wm_lp, merged);
  2199. r = &merged->wm[level];
  2200. /*
  2201. * Maintain the watermark values even if the level is
  2202. * disabled. Doing otherwise could cause underruns.
  2203. */
  2204. results->wm_lp[wm_lp - 1] =
  2205. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2206. (r->pri_val << WM1_LP_SR_SHIFT) |
  2207. r->cur_val;
  2208. if (r->enable)
  2209. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2210. if (INTEL_GEN(dev_priv) >= 8)
  2211. results->wm_lp[wm_lp - 1] |=
  2212. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2213. else
  2214. results->wm_lp[wm_lp - 1] |=
  2215. r->fbc_val << WM1_LP_FBC_SHIFT;
  2216. /*
  2217. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2218. * level is disabled. Doing otherwise could cause underruns.
  2219. */
  2220. if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
  2221. WARN_ON(wm_lp != 1);
  2222. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2223. } else
  2224. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2225. }
  2226. /* LP0 register values */
  2227. for_each_intel_crtc(dev, intel_crtc) {
  2228. enum pipe pipe = intel_crtc->pipe;
  2229. const struct intel_wm_level *r =
  2230. &intel_crtc->wm.active.ilk.wm[0];
  2231. if (WARN_ON(!r->enable))
  2232. continue;
  2233. results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
  2234. results->wm_pipe[pipe] =
  2235. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2236. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2237. r->cur_val;
  2238. }
  2239. }
  2240. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2241. * case both are at the same level. Prefer r1 in case they're the same. */
  2242. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2243. struct intel_pipe_wm *r1,
  2244. struct intel_pipe_wm *r2)
  2245. {
  2246. int level, max_level = ilk_wm_max_level(to_i915(dev));
  2247. int level1 = 0, level2 = 0;
  2248. for (level = 1; level <= max_level; level++) {
  2249. if (r1->wm[level].enable)
  2250. level1 = level;
  2251. if (r2->wm[level].enable)
  2252. level2 = level;
  2253. }
  2254. if (level1 == level2) {
  2255. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2256. return r2;
  2257. else
  2258. return r1;
  2259. } else if (level1 > level2) {
  2260. return r1;
  2261. } else {
  2262. return r2;
  2263. }
  2264. }
  2265. /* dirty bits used to track which watermarks need changes */
  2266. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2267. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2268. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2269. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2270. #define WM_DIRTY_FBC (1 << 24)
  2271. #define WM_DIRTY_DDB (1 << 25)
  2272. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2273. const struct ilk_wm_values *old,
  2274. const struct ilk_wm_values *new)
  2275. {
  2276. unsigned int dirty = 0;
  2277. enum pipe pipe;
  2278. int wm_lp;
  2279. for_each_pipe(dev_priv, pipe) {
  2280. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2281. dirty |= WM_DIRTY_LINETIME(pipe);
  2282. /* Must disable LP1+ watermarks too */
  2283. dirty |= WM_DIRTY_LP_ALL;
  2284. }
  2285. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2286. dirty |= WM_DIRTY_PIPE(pipe);
  2287. /* Must disable LP1+ watermarks too */
  2288. dirty |= WM_DIRTY_LP_ALL;
  2289. }
  2290. }
  2291. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2292. dirty |= WM_DIRTY_FBC;
  2293. /* Must disable LP1+ watermarks too */
  2294. dirty |= WM_DIRTY_LP_ALL;
  2295. }
  2296. if (old->partitioning != new->partitioning) {
  2297. dirty |= WM_DIRTY_DDB;
  2298. /* Must disable LP1+ watermarks too */
  2299. dirty |= WM_DIRTY_LP_ALL;
  2300. }
  2301. /* LP1+ watermarks already deemed dirty, no need to continue */
  2302. if (dirty & WM_DIRTY_LP_ALL)
  2303. return dirty;
  2304. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2305. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2306. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2307. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2308. break;
  2309. }
  2310. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2311. for (; wm_lp <= 3; wm_lp++)
  2312. dirty |= WM_DIRTY_LP(wm_lp);
  2313. return dirty;
  2314. }
  2315. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2316. unsigned int dirty)
  2317. {
  2318. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2319. bool changed = false;
  2320. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2321. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2322. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2323. changed = true;
  2324. }
  2325. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2326. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2327. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2328. changed = true;
  2329. }
  2330. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2331. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2332. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2333. changed = true;
  2334. }
  2335. /*
  2336. * Don't touch WM1S_LP_EN here.
  2337. * Doing so could cause underruns.
  2338. */
  2339. return changed;
  2340. }
  2341. /*
  2342. * The spec says we shouldn't write when we don't need, because every write
  2343. * causes WMs to be re-evaluated, expending some power.
  2344. */
  2345. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2346. struct ilk_wm_values *results)
  2347. {
  2348. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2349. unsigned int dirty;
  2350. uint32_t val;
  2351. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2352. if (!dirty)
  2353. return;
  2354. _ilk_disable_lp_wm(dev_priv, dirty);
  2355. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2356. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2357. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2358. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2359. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2360. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2361. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2362. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2363. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2364. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2365. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2366. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2367. if (dirty & WM_DIRTY_DDB) {
  2368. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2369. val = I915_READ(WM_MISC);
  2370. if (results->partitioning == INTEL_DDB_PART_1_2)
  2371. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2372. else
  2373. val |= WM_MISC_DATA_PARTITION_5_6;
  2374. I915_WRITE(WM_MISC, val);
  2375. } else {
  2376. val = I915_READ(DISP_ARB_CTL2);
  2377. if (results->partitioning == INTEL_DDB_PART_1_2)
  2378. val &= ~DISP_DATA_PARTITION_5_6;
  2379. else
  2380. val |= DISP_DATA_PARTITION_5_6;
  2381. I915_WRITE(DISP_ARB_CTL2, val);
  2382. }
  2383. }
  2384. if (dirty & WM_DIRTY_FBC) {
  2385. val = I915_READ(DISP_ARB_CTL);
  2386. if (results->enable_fbc_wm)
  2387. val &= ~DISP_FBC_WM_DIS;
  2388. else
  2389. val |= DISP_FBC_WM_DIS;
  2390. I915_WRITE(DISP_ARB_CTL, val);
  2391. }
  2392. if (dirty & WM_DIRTY_LP(1) &&
  2393. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2394. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2395. if (INTEL_GEN(dev_priv) >= 7) {
  2396. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2397. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2398. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2399. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2400. }
  2401. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2402. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2403. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2404. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2405. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2406. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2407. dev_priv->wm.hw = *results;
  2408. }
  2409. bool ilk_disable_lp_wm(struct drm_device *dev)
  2410. {
  2411. struct drm_i915_private *dev_priv = to_i915(dev);
  2412. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2413. }
  2414. #define SKL_SAGV_BLOCK_TIME 30 /* µs */
  2415. /*
  2416. * FIXME: We still don't have the proper code detect if we need to apply the WA,
  2417. * so assume we'll always need it in order to avoid underruns.
  2418. */
  2419. static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
  2420. {
  2421. struct drm_i915_private *dev_priv = to_i915(state->base.dev);
  2422. if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
  2423. return true;
  2424. return false;
  2425. }
  2426. static bool
  2427. intel_has_sagv(struct drm_i915_private *dev_priv)
  2428. {
  2429. if (IS_KABYLAKE(dev_priv))
  2430. return true;
  2431. if (IS_SKYLAKE(dev_priv) &&
  2432. dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
  2433. return true;
  2434. return false;
  2435. }
  2436. /*
  2437. * SAGV dynamically adjusts the system agent voltage and clock frequencies
  2438. * depending on power and performance requirements. The display engine access
  2439. * to system memory is blocked during the adjustment time. Because of the
  2440. * blocking time, having this enabled can cause full system hangs and/or pipe
  2441. * underruns if we don't meet all of the following requirements:
  2442. *
  2443. * - <= 1 pipe enabled
  2444. * - All planes can enable watermarks for latencies >= SAGV engine block time
  2445. * - We're not using an interlaced display configuration
  2446. */
  2447. int
  2448. intel_enable_sagv(struct drm_i915_private *dev_priv)
  2449. {
  2450. int ret;
  2451. if (!intel_has_sagv(dev_priv))
  2452. return 0;
  2453. if (dev_priv->sagv_status == I915_SAGV_ENABLED)
  2454. return 0;
  2455. DRM_DEBUG_KMS("Enabling the SAGV\n");
  2456. mutex_lock(&dev_priv->rps.hw_lock);
  2457. ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
  2458. GEN9_SAGV_ENABLE);
  2459. /* We don't need to wait for the SAGV when enabling */
  2460. mutex_unlock(&dev_priv->rps.hw_lock);
  2461. /*
  2462. * Some skl systems, pre-release machines in particular,
  2463. * don't actually have an SAGV.
  2464. */
  2465. if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
  2466. DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
  2467. dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
  2468. return 0;
  2469. } else if (ret < 0) {
  2470. DRM_ERROR("Failed to enable the SAGV\n");
  2471. return ret;
  2472. }
  2473. dev_priv->sagv_status = I915_SAGV_ENABLED;
  2474. return 0;
  2475. }
  2476. int
  2477. intel_disable_sagv(struct drm_i915_private *dev_priv)
  2478. {
  2479. int ret;
  2480. if (!intel_has_sagv(dev_priv))
  2481. return 0;
  2482. if (dev_priv->sagv_status == I915_SAGV_DISABLED)
  2483. return 0;
  2484. DRM_DEBUG_KMS("Disabling the SAGV\n");
  2485. mutex_lock(&dev_priv->rps.hw_lock);
  2486. /* bspec says to keep retrying for at least 1 ms */
  2487. ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
  2488. GEN9_SAGV_DISABLE,
  2489. GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
  2490. 1);
  2491. mutex_unlock(&dev_priv->rps.hw_lock);
  2492. /*
  2493. * Some skl systems, pre-release machines in particular,
  2494. * don't actually have an SAGV.
  2495. */
  2496. if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
  2497. DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
  2498. dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
  2499. return 0;
  2500. } else if (ret < 0) {
  2501. DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
  2502. return ret;
  2503. }
  2504. dev_priv->sagv_status = I915_SAGV_DISABLED;
  2505. return 0;
  2506. }
  2507. bool intel_can_enable_sagv(struct drm_atomic_state *state)
  2508. {
  2509. struct drm_device *dev = state->dev;
  2510. struct drm_i915_private *dev_priv = to_i915(dev);
  2511. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  2512. struct intel_crtc *crtc;
  2513. struct intel_plane *plane;
  2514. struct intel_crtc_state *cstate;
  2515. enum pipe pipe;
  2516. int level, latency;
  2517. if (!intel_has_sagv(dev_priv))
  2518. return false;
  2519. /*
  2520. * SKL workaround: bspec recommends we disable the SAGV when we have
  2521. * more then one pipe enabled
  2522. *
  2523. * If there are no active CRTCs, no additional checks need be performed
  2524. */
  2525. if (hweight32(intel_state->active_crtcs) == 0)
  2526. return true;
  2527. else if (hweight32(intel_state->active_crtcs) > 1)
  2528. return false;
  2529. /* Since we're now guaranteed to only have one active CRTC... */
  2530. pipe = ffs(intel_state->active_crtcs) - 1;
  2531. crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
  2532. cstate = to_intel_crtc_state(crtc->base.state);
  2533. if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  2534. return false;
  2535. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  2536. struct skl_plane_wm *wm =
  2537. &cstate->wm.skl.optimal.planes[plane->id];
  2538. /* Skip this plane if it's not enabled */
  2539. if (!wm->wm[0].plane_en)
  2540. continue;
  2541. /* Find the highest enabled wm level for this plane */
  2542. for (level = ilk_wm_max_level(dev_priv);
  2543. !wm->wm[level].plane_en; --level)
  2544. { }
  2545. latency = dev_priv->wm.skl_latency[level];
  2546. if (skl_needs_memory_bw_wa(intel_state) &&
  2547. plane->base.state->fb->modifier ==
  2548. I915_FORMAT_MOD_X_TILED)
  2549. latency += 15;
  2550. /*
  2551. * If any of the planes on this pipe don't enable wm levels
  2552. * that incur memory latencies higher then 30µs we can't enable
  2553. * the SAGV
  2554. */
  2555. if (latency < SKL_SAGV_BLOCK_TIME)
  2556. return false;
  2557. }
  2558. return true;
  2559. }
  2560. static void
  2561. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  2562. const struct intel_crtc_state *cstate,
  2563. struct skl_ddb_entry *alloc, /* out */
  2564. int *num_active /* out */)
  2565. {
  2566. struct drm_atomic_state *state = cstate->base.state;
  2567. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  2568. struct drm_i915_private *dev_priv = to_i915(dev);
  2569. struct drm_crtc *for_crtc = cstate->base.crtc;
  2570. unsigned int pipe_size, ddb_size;
  2571. int nth_active_pipe;
  2572. if (WARN_ON(!state) || !cstate->base.active) {
  2573. alloc->start = 0;
  2574. alloc->end = 0;
  2575. *num_active = hweight32(dev_priv->active_crtcs);
  2576. return;
  2577. }
  2578. if (intel_state->active_pipe_changes)
  2579. *num_active = hweight32(intel_state->active_crtcs);
  2580. else
  2581. *num_active = hweight32(dev_priv->active_crtcs);
  2582. ddb_size = INTEL_INFO(dev_priv)->ddb_size;
  2583. WARN_ON(ddb_size == 0);
  2584. ddb_size -= 4; /* 4 blocks for bypass path allocation */
  2585. /*
  2586. * If the state doesn't change the active CRTC's, then there's
  2587. * no need to recalculate; the existing pipe allocation limits
  2588. * should remain unchanged. Note that we're safe from racing
  2589. * commits since any racing commit that changes the active CRTC
  2590. * list would need to grab _all_ crtc locks, including the one
  2591. * we currently hold.
  2592. */
  2593. if (!intel_state->active_pipe_changes) {
  2594. /*
  2595. * alloc may be cleared by clear_intel_crtc_state,
  2596. * copy from old state to be sure
  2597. */
  2598. *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
  2599. return;
  2600. }
  2601. nth_active_pipe = hweight32(intel_state->active_crtcs &
  2602. (drm_crtc_mask(for_crtc) - 1));
  2603. pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
  2604. alloc->start = nth_active_pipe * ddb_size / *num_active;
  2605. alloc->end = alloc->start + pipe_size;
  2606. }
  2607. static unsigned int skl_cursor_allocation(int num_active)
  2608. {
  2609. if (num_active == 1)
  2610. return 32;
  2611. return 8;
  2612. }
  2613. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  2614. {
  2615. entry->start = reg & 0x3ff;
  2616. entry->end = (reg >> 16) & 0x3ff;
  2617. if (entry->end)
  2618. entry->end += 1;
  2619. }
  2620. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  2621. struct skl_ddb_allocation *ddb /* out */)
  2622. {
  2623. struct intel_crtc *crtc;
  2624. memset(ddb, 0, sizeof(*ddb));
  2625. for_each_intel_crtc(&dev_priv->drm, crtc) {
  2626. enum intel_display_power_domain power_domain;
  2627. enum plane_id plane_id;
  2628. enum pipe pipe = crtc->pipe;
  2629. power_domain = POWER_DOMAIN_PIPE(pipe);
  2630. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  2631. continue;
  2632. for_each_plane_id_on_crtc(crtc, plane_id) {
  2633. u32 val;
  2634. if (plane_id != PLANE_CURSOR)
  2635. val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
  2636. else
  2637. val = I915_READ(CUR_BUF_CFG(pipe));
  2638. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
  2639. }
  2640. intel_display_power_put(dev_priv, power_domain);
  2641. }
  2642. }
  2643. /*
  2644. * Determines the downscale amount of a plane for the purposes of watermark calculations.
  2645. * The bspec defines downscale amount as:
  2646. *
  2647. * """
  2648. * Horizontal down scale amount = maximum[1, Horizontal source size /
  2649. * Horizontal destination size]
  2650. * Vertical down scale amount = maximum[1, Vertical source size /
  2651. * Vertical destination size]
  2652. * Total down scale amount = Horizontal down scale amount *
  2653. * Vertical down scale amount
  2654. * """
  2655. *
  2656. * Return value is provided in 16.16 fixed point form to retain fractional part.
  2657. * Caller should take care of dividing & rounding off the value.
  2658. */
  2659. static uint32_t
  2660. skl_plane_downscale_amount(const struct intel_plane_state *pstate)
  2661. {
  2662. uint32_t downscale_h, downscale_w;
  2663. uint32_t src_w, src_h, dst_w, dst_h;
  2664. if (WARN_ON(!pstate->base.visible))
  2665. return DRM_PLANE_HELPER_NO_SCALING;
  2666. /* n.b., src is 16.16 fixed point, dst is whole integer */
  2667. src_w = drm_rect_width(&pstate->base.src);
  2668. src_h = drm_rect_height(&pstate->base.src);
  2669. dst_w = drm_rect_width(&pstate->base.dst);
  2670. dst_h = drm_rect_height(&pstate->base.dst);
  2671. if (drm_rotation_90_or_270(pstate->base.rotation))
  2672. swap(dst_w, dst_h);
  2673. downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
  2674. downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
  2675. /* Provide result in 16.16 fixed point */
  2676. return (uint64_t)downscale_w * downscale_h >> 16;
  2677. }
  2678. static unsigned int
  2679. skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
  2680. const struct drm_plane_state *pstate,
  2681. int y)
  2682. {
  2683. struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
  2684. uint32_t down_scale_amount, data_rate;
  2685. uint32_t width = 0, height = 0;
  2686. struct drm_framebuffer *fb;
  2687. u32 format;
  2688. if (!intel_pstate->base.visible)
  2689. return 0;
  2690. fb = pstate->fb;
  2691. format = fb->format->format;
  2692. if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
  2693. return 0;
  2694. if (y && format != DRM_FORMAT_NV12)
  2695. return 0;
  2696. width = drm_rect_width(&intel_pstate->base.src) >> 16;
  2697. height = drm_rect_height(&intel_pstate->base.src) >> 16;
  2698. if (drm_rotation_90_or_270(pstate->rotation))
  2699. swap(width, height);
  2700. /* for planar format */
  2701. if (format == DRM_FORMAT_NV12) {
  2702. if (y) /* y-plane data rate */
  2703. data_rate = width * height *
  2704. fb->format->cpp[0];
  2705. else /* uv-plane data rate */
  2706. data_rate = (width / 2) * (height / 2) *
  2707. fb->format->cpp[1];
  2708. } else {
  2709. /* for packed formats */
  2710. data_rate = width * height * fb->format->cpp[0];
  2711. }
  2712. down_scale_amount = skl_plane_downscale_amount(intel_pstate);
  2713. return (uint64_t)data_rate * down_scale_amount >> 16;
  2714. }
  2715. /*
  2716. * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  2717. * a 8192x4096@32bpp framebuffer:
  2718. * 3 * 4096 * 8192 * 4 < 2^32
  2719. */
  2720. static unsigned int
  2721. skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
  2722. unsigned *plane_data_rate,
  2723. unsigned *plane_y_data_rate)
  2724. {
  2725. struct drm_crtc_state *cstate = &intel_cstate->base;
  2726. struct drm_atomic_state *state = cstate->state;
  2727. struct drm_plane *plane;
  2728. const struct drm_plane_state *pstate;
  2729. unsigned int total_data_rate = 0;
  2730. if (WARN_ON(!state))
  2731. return 0;
  2732. /* Calculate and cache data rate for each plane */
  2733. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
  2734. enum plane_id plane_id = to_intel_plane(plane)->id;
  2735. unsigned int rate;
  2736. /* packed/uv */
  2737. rate = skl_plane_relative_data_rate(intel_cstate,
  2738. pstate, 0);
  2739. plane_data_rate[plane_id] = rate;
  2740. total_data_rate += rate;
  2741. /* y-plane */
  2742. rate = skl_plane_relative_data_rate(intel_cstate,
  2743. pstate, 1);
  2744. plane_y_data_rate[plane_id] = rate;
  2745. total_data_rate += rate;
  2746. }
  2747. return total_data_rate;
  2748. }
  2749. static uint16_t
  2750. skl_ddb_min_alloc(const struct drm_plane_state *pstate,
  2751. const int y)
  2752. {
  2753. struct drm_framebuffer *fb = pstate->fb;
  2754. struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
  2755. uint32_t src_w, src_h;
  2756. uint32_t min_scanlines = 8;
  2757. uint8_t plane_bpp;
  2758. if (WARN_ON(!fb))
  2759. return 0;
  2760. /* For packed formats, no y-plane, return 0 */
  2761. if (y && fb->format->format != DRM_FORMAT_NV12)
  2762. return 0;
  2763. /* For Non Y-tile return 8-blocks */
  2764. if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
  2765. fb->modifier != I915_FORMAT_MOD_Yf_TILED)
  2766. return 8;
  2767. src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
  2768. src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
  2769. if (drm_rotation_90_or_270(pstate->rotation))
  2770. swap(src_w, src_h);
  2771. /* Halve UV plane width and height for NV12 */
  2772. if (fb->format->format == DRM_FORMAT_NV12 && !y) {
  2773. src_w /= 2;
  2774. src_h /= 2;
  2775. }
  2776. if (fb->format->format == DRM_FORMAT_NV12 && !y)
  2777. plane_bpp = fb->format->cpp[1];
  2778. else
  2779. plane_bpp = fb->format->cpp[0];
  2780. if (drm_rotation_90_or_270(pstate->rotation)) {
  2781. switch (plane_bpp) {
  2782. case 1:
  2783. min_scanlines = 32;
  2784. break;
  2785. case 2:
  2786. min_scanlines = 16;
  2787. break;
  2788. case 4:
  2789. min_scanlines = 8;
  2790. break;
  2791. case 8:
  2792. min_scanlines = 4;
  2793. break;
  2794. default:
  2795. WARN(1, "Unsupported pixel depth %u for rotation",
  2796. plane_bpp);
  2797. min_scanlines = 32;
  2798. }
  2799. }
  2800. return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
  2801. }
  2802. static void
  2803. skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
  2804. uint16_t *minimum, uint16_t *y_minimum)
  2805. {
  2806. const struct drm_plane_state *pstate;
  2807. struct drm_plane *plane;
  2808. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
  2809. enum plane_id plane_id = to_intel_plane(plane)->id;
  2810. if (plane_id == PLANE_CURSOR)
  2811. continue;
  2812. if (!pstate->visible)
  2813. continue;
  2814. minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
  2815. y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
  2816. }
  2817. minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
  2818. }
  2819. static int
  2820. skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
  2821. struct skl_ddb_allocation *ddb /* out */)
  2822. {
  2823. struct drm_atomic_state *state = cstate->base.state;
  2824. struct drm_crtc *crtc = cstate->base.crtc;
  2825. struct drm_device *dev = crtc->dev;
  2826. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2827. enum pipe pipe = intel_crtc->pipe;
  2828. struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
  2829. uint16_t alloc_size, start;
  2830. uint16_t minimum[I915_MAX_PLANES] = {};
  2831. uint16_t y_minimum[I915_MAX_PLANES] = {};
  2832. unsigned int total_data_rate;
  2833. enum plane_id plane_id;
  2834. int num_active;
  2835. unsigned plane_data_rate[I915_MAX_PLANES] = {};
  2836. unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
  2837. /* Clear the partitioning for disabled planes. */
  2838. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  2839. memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
  2840. if (WARN_ON(!state))
  2841. return 0;
  2842. if (!cstate->base.active) {
  2843. alloc->start = alloc->end = 0;
  2844. return 0;
  2845. }
  2846. skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
  2847. alloc_size = skl_ddb_entry_size(alloc);
  2848. if (alloc_size == 0) {
  2849. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  2850. return 0;
  2851. }
  2852. skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
  2853. /*
  2854. * 1. Allocate the mininum required blocks for each active plane
  2855. * and allocate the cursor, it doesn't require extra allocation
  2856. * proportional to the data rate.
  2857. */
  2858. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  2859. alloc_size -= minimum[plane_id];
  2860. alloc_size -= y_minimum[plane_id];
  2861. }
  2862. ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
  2863. ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
  2864. /*
  2865. * 2. Distribute the remaining space in proportion to the amount of
  2866. * data each plane needs to fetch from memory.
  2867. *
  2868. * FIXME: we may not allocate every single block here.
  2869. */
  2870. total_data_rate = skl_get_total_relative_data_rate(cstate,
  2871. plane_data_rate,
  2872. plane_y_data_rate);
  2873. if (total_data_rate == 0)
  2874. return 0;
  2875. start = alloc->start;
  2876. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  2877. unsigned int data_rate, y_data_rate;
  2878. uint16_t plane_blocks, y_plane_blocks = 0;
  2879. if (plane_id == PLANE_CURSOR)
  2880. continue;
  2881. data_rate = plane_data_rate[plane_id];
  2882. /*
  2883. * allocation for (packed formats) or (uv-plane part of planar format):
  2884. * promote the expression to 64 bits to avoid overflowing, the
  2885. * result is < available as data_rate / total_data_rate < 1
  2886. */
  2887. plane_blocks = minimum[plane_id];
  2888. plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  2889. total_data_rate);
  2890. /* Leave disabled planes at (0,0) */
  2891. if (data_rate) {
  2892. ddb->plane[pipe][plane_id].start = start;
  2893. ddb->plane[pipe][plane_id].end = start + plane_blocks;
  2894. }
  2895. start += plane_blocks;
  2896. /*
  2897. * allocation for y_plane part of planar format:
  2898. */
  2899. y_data_rate = plane_y_data_rate[plane_id];
  2900. y_plane_blocks = y_minimum[plane_id];
  2901. y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
  2902. total_data_rate);
  2903. if (y_data_rate) {
  2904. ddb->y_plane[pipe][plane_id].start = start;
  2905. ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
  2906. }
  2907. start += y_plane_blocks;
  2908. }
  2909. return 0;
  2910. }
  2911. /*
  2912. * The max latency should be 257 (max the punit can code is 255 and we add 2us
  2913. * for the read latency) and cpp should always be <= 8, so that
  2914. * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  2915. * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  2916. */
  2917. static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
  2918. uint32_t latency)
  2919. {
  2920. uint32_t wm_intermediate_val;
  2921. uint_fixed_16_16_t ret;
  2922. if (latency == 0)
  2923. return FP_16_16_MAX;
  2924. wm_intermediate_val = latency * pixel_rate * cpp;
  2925. ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
  2926. return ret;
  2927. }
  2928. static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
  2929. uint32_t pipe_htotal,
  2930. uint32_t latency,
  2931. uint_fixed_16_16_t plane_blocks_per_line)
  2932. {
  2933. uint32_t wm_intermediate_val;
  2934. uint_fixed_16_16_t ret;
  2935. if (latency == 0)
  2936. return FP_16_16_MAX;
  2937. wm_intermediate_val = latency * pixel_rate;
  2938. wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
  2939. pipe_htotal * 1000);
  2940. ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
  2941. return ret;
  2942. }
  2943. static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
  2944. struct intel_plane_state *pstate)
  2945. {
  2946. uint64_t adjusted_pixel_rate;
  2947. uint64_t downscale_amount;
  2948. uint64_t pixel_rate;
  2949. /* Shouldn't reach here on disabled planes... */
  2950. if (WARN_ON(!pstate->base.visible))
  2951. return 0;
  2952. /*
  2953. * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
  2954. * with additional adjustments for plane-specific scaling.
  2955. */
  2956. adjusted_pixel_rate = cstate->pixel_rate;
  2957. downscale_amount = skl_plane_downscale_amount(pstate);
  2958. pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
  2959. WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
  2960. return pixel_rate;
  2961. }
  2962. static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  2963. struct intel_crtc_state *cstate,
  2964. struct intel_plane_state *intel_pstate,
  2965. uint16_t ddb_allocation,
  2966. int level,
  2967. uint16_t *out_blocks, /* out */
  2968. uint8_t *out_lines, /* out */
  2969. bool *enabled /* out */)
  2970. {
  2971. struct drm_plane_state *pstate = &intel_pstate->base;
  2972. struct drm_framebuffer *fb = pstate->fb;
  2973. uint32_t latency = dev_priv->wm.skl_latency[level];
  2974. uint_fixed_16_16_t method1, method2;
  2975. uint_fixed_16_16_t plane_blocks_per_line;
  2976. uint_fixed_16_16_t selected_result;
  2977. uint32_t interm_pbpl;
  2978. uint32_t plane_bytes_per_line;
  2979. uint32_t res_blocks, res_lines;
  2980. uint8_t cpp;
  2981. uint32_t width = 0, height = 0;
  2982. uint32_t plane_pixel_rate;
  2983. uint_fixed_16_16_t y_tile_minimum;
  2984. uint32_t y_min_scanlines;
  2985. struct intel_atomic_state *state =
  2986. to_intel_atomic_state(cstate->base.state);
  2987. bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
  2988. bool y_tiled, x_tiled;
  2989. if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
  2990. *enabled = false;
  2991. return 0;
  2992. }
  2993. y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
  2994. fb->modifier == I915_FORMAT_MOD_Yf_TILED;
  2995. x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
  2996. /* Display WA #1141: kbl. */
  2997. if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
  2998. latency += 4;
  2999. if (apply_memory_bw_wa && x_tiled)
  3000. latency += 15;
  3001. width = drm_rect_width(&intel_pstate->base.src) >> 16;
  3002. height = drm_rect_height(&intel_pstate->base.src) >> 16;
  3003. if (drm_rotation_90_or_270(pstate->rotation))
  3004. swap(width, height);
  3005. cpp = fb->format->cpp[0];
  3006. plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
  3007. if (drm_rotation_90_or_270(pstate->rotation)) {
  3008. int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
  3009. fb->format->cpp[1] :
  3010. fb->format->cpp[0];
  3011. switch (cpp) {
  3012. case 1:
  3013. y_min_scanlines = 16;
  3014. break;
  3015. case 2:
  3016. y_min_scanlines = 8;
  3017. break;
  3018. case 4:
  3019. y_min_scanlines = 4;
  3020. break;
  3021. default:
  3022. MISSING_CASE(cpp);
  3023. return -EINVAL;
  3024. }
  3025. } else {
  3026. y_min_scanlines = 4;
  3027. }
  3028. if (apply_memory_bw_wa)
  3029. y_min_scanlines *= 2;
  3030. plane_bytes_per_line = width * cpp;
  3031. if (y_tiled) {
  3032. interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
  3033. y_min_scanlines, 512);
  3034. plane_blocks_per_line =
  3035. fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
  3036. } else if (x_tiled) {
  3037. interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
  3038. plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
  3039. } else {
  3040. interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
  3041. plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
  3042. }
  3043. method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
  3044. method2 = skl_wm_method2(plane_pixel_rate,
  3045. cstate->base.adjusted_mode.crtc_htotal,
  3046. latency,
  3047. plane_blocks_per_line);
  3048. y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
  3049. plane_blocks_per_line);
  3050. if (y_tiled) {
  3051. selected_result = max_fixed_16_16(method2, y_tile_minimum);
  3052. } else {
  3053. if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
  3054. (plane_bytes_per_line / 512 < 1))
  3055. selected_result = method2;
  3056. else if ((ddb_allocation /
  3057. fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
  3058. selected_result = min_fixed_16_16(method1, method2);
  3059. else
  3060. selected_result = method1;
  3061. }
  3062. res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
  3063. res_lines = DIV_ROUND_UP(selected_result.val,
  3064. plane_blocks_per_line.val);
  3065. if (level >= 1 && level <= 7) {
  3066. if (y_tiled) {
  3067. res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
  3068. res_lines += y_min_scanlines;
  3069. } else {
  3070. res_blocks++;
  3071. }
  3072. }
  3073. if (res_blocks >= ddb_allocation || res_lines > 31) {
  3074. *enabled = false;
  3075. /*
  3076. * If there are no valid level 0 watermarks, then we can't
  3077. * support this display configuration.
  3078. */
  3079. if (level) {
  3080. return 0;
  3081. } else {
  3082. struct drm_plane *plane = pstate->plane;
  3083. DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
  3084. DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
  3085. plane->base.id, plane->name,
  3086. res_blocks, ddb_allocation, res_lines);
  3087. return -EINVAL;
  3088. }
  3089. }
  3090. *out_blocks = res_blocks;
  3091. *out_lines = res_lines;
  3092. *enabled = true;
  3093. return 0;
  3094. }
  3095. static int
  3096. skl_compute_wm_level(const struct drm_i915_private *dev_priv,
  3097. struct skl_ddb_allocation *ddb,
  3098. struct intel_crtc_state *cstate,
  3099. struct intel_plane *intel_plane,
  3100. int level,
  3101. struct skl_wm_level *result)
  3102. {
  3103. struct drm_atomic_state *state = cstate->base.state;
  3104. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3105. struct drm_plane *plane = &intel_plane->base;
  3106. struct intel_plane_state *intel_pstate = NULL;
  3107. uint16_t ddb_blocks;
  3108. enum pipe pipe = intel_crtc->pipe;
  3109. int ret;
  3110. if (state)
  3111. intel_pstate =
  3112. intel_atomic_get_existing_plane_state(state,
  3113. intel_plane);
  3114. /*
  3115. * Note: If we start supporting multiple pending atomic commits against
  3116. * the same planes/CRTC's in the future, plane->state will no longer be
  3117. * the correct pre-state to use for the calculations here and we'll
  3118. * need to change where we get the 'unchanged' plane data from.
  3119. *
  3120. * For now this is fine because we only allow one queued commit against
  3121. * a CRTC. Even if the plane isn't modified by this transaction and we
  3122. * don't have a plane lock, we still have the CRTC's lock, so we know
  3123. * that no other transactions are racing with us to update it.
  3124. */
  3125. if (!intel_pstate)
  3126. intel_pstate = to_intel_plane_state(plane->state);
  3127. WARN_ON(!intel_pstate->base.fb);
  3128. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
  3129. ret = skl_compute_plane_wm(dev_priv,
  3130. cstate,
  3131. intel_pstate,
  3132. ddb_blocks,
  3133. level,
  3134. &result->plane_res_b,
  3135. &result->plane_res_l,
  3136. &result->plane_en);
  3137. if (ret)
  3138. return ret;
  3139. return 0;
  3140. }
  3141. static uint32_t
  3142. skl_compute_linetime_wm(struct intel_crtc_state *cstate)
  3143. {
  3144. struct drm_atomic_state *state = cstate->base.state;
  3145. struct drm_i915_private *dev_priv = to_i915(state->dev);
  3146. uint32_t pixel_rate;
  3147. uint32_t linetime_wm;
  3148. if (!cstate->base.active)
  3149. return 0;
  3150. pixel_rate = cstate->pixel_rate;
  3151. if (WARN_ON(pixel_rate == 0))
  3152. return 0;
  3153. linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
  3154. 1000, pixel_rate);
  3155. /* Display WA #1135: bxt. */
  3156. if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
  3157. linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
  3158. return linetime_wm;
  3159. }
  3160. static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
  3161. struct skl_wm_level *trans_wm /* out */)
  3162. {
  3163. if (!cstate->base.active)
  3164. return;
  3165. /* Until we know more, just disable transition WMs */
  3166. trans_wm->plane_en = false;
  3167. }
  3168. static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
  3169. struct skl_ddb_allocation *ddb,
  3170. struct skl_pipe_wm *pipe_wm)
  3171. {
  3172. struct drm_device *dev = cstate->base.crtc->dev;
  3173. const struct drm_i915_private *dev_priv = to_i915(dev);
  3174. struct intel_plane *intel_plane;
  3175. struct skl_plane_wm *wm;
  3176. int level, max_level = ilk_wm_max_level(dev_priv);
  3177. int ret;
  3178. /*
  3179. * We'll only calculate watermarks for planes that are actually
  3180. * enabled, so make sure all other planes are set as disabled.
  3181. */
  3182. memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
  3183. for_each_intel_plane_mask(&dev_priv->drm,
  3184. intel_plane,
  3185. cstate->base.plane_mask) {
  3186. wm = &pipe_wm->planes[intel_plane->id];
  3187. for (level = 0; level <= max_level; level++) {
  3188. ret = skl_compute_wm_level(dev_priv, ddb, cstate,
  3189. intel_plane, level,
  3190. &wm->wm[level]);
  3191. if (ret)
  3192. return ret;
  3193. }
  3194. skl_compute_transition_wm(cstate, &wm->trans_wm);
  3195. }
  3196. pipe_wm->linetime = skl_compute_linetime_wm(cstate);
  3197. return 0;
  3198. }
  3199. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
  3200. i915_reg_t reg,
  3201. const struct skl_ddb_entry *entry)
  3202. {
  3203. if (entry->end)
  3204. I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  3205. else
  3206. I915_WRITE(reg, 0);
  3207. }
  3208. static void skl_write_wm_level(struct drm_i915_private *dev_priv,
  3209. i915_reg_t reg,
  3210. const struct skl_wm_level *level)
  3211. {
  3212. uint32_t val = 0;
  3213. if (level->plane_en) {
  3214. val |= PLANE_WM_EN;
  3215. val |= level->plane_res_b;
  3216. val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
  3217. }
  3218. I915_WRITE(reg, val);
  3219. }
  3220. static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
  3221. const struct skl_plane_wm *wm,
  3222. const struct skl_ddb_allocation *ddb,
  3223. enum plane_id plane_id)
  3224. {
  3225. struct drm_crtc *crtc = &intel_crtc->base;
  3226. struct drm_device *dev = crtc->dev;
  3227. struct drm_i915_private *dev_priv = to_i915(dev);
  3228. int level, max_level = ilk_wm_max_level(dev_priv);
  3229. enum pipe pipe = intel_crtc->pipe;
  3230. for (level = 0; level <= max_level; level++) {
  3231. skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
  3232. &wm->wm[level]);
  3233. }
  3234. skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
  3235. &wm->trans_wm);
  3236. skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
  3237. &ddb->plane[pipe][plane_id]);
  3238. skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
  3239. &ddb->y_plane[pipe][plane_id]);
  3240. }
  3241. static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
  3242. const struct skl_plane_wm *wm,
  3243. const struct skl_ddb_allocation *ddb)
  3244. {
  3245. struct drm_crtc *crtc = &intel_crtc->base;
  3246. struct drm_device *dev = crtc->dev;
  3247. struct drm_i915_private *dev_priv = to_i915(dev);
  3248. int level, max_level = ilk_wm_max_level(dev_priv);
  3249. enum pipe pipe = intel_crtc->pipe;
  3250. for (level = 0; level <= max_level; level++) {
  3251. skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
  3252. &wm->wm[level]);
  3253. }
  3254. skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
  3255. skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  3256. &ddb->plane[pipe][PLANE_CURSOR]);
  3257. }
  3258. bool skl_wm_level_equals(const struct skl_wm_level *l1,
  3259. const struct skl_wm_level *l2)
  3260. {
  3261. if (l1->plane_en != l2->plane_en)
  3262. return false;
  3263. /* If both planes aren't enabled, the rest shouldn't matter */
  3264. if (!l1->plane_en)
  3265. return true;
  3266. return (l1->plane_res_l == l2->plane_res_l &&
  3267. l1->plane_res_b == l2->plane_res_b);
  3268. }
  3269. static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
  3270. const struct skl_ddb_entry *b)
  3271. {
  3272. return a->start < b->end && b->start < a->end;
  3273. }
  3274. bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
  3275. const struct skl_ddb_entry *ddb,
  3276. int ignore)
  3277. {
  3278. int i;
  3279. for (i = 0; i < I915_MAX_PIPES; i++)
  3280. if (i != ignore && entries[i] &&
  3281. skl_ddb_entries_overlap(ddb, entries[i]))
  3282. return true;
  3283. return false;
  3284. }
  3285. static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
  3286. const struct skl_pipe_wm *old_pipe_wm,
  3287. struct skl_pipe_wm *pipe_wm, /* out */
  3288. struct skl_ddb_allocation *ddb, /* out */
  3289. bool *changed /* out */)
  3290. {
  3291. struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
  3292. int ret;
  3293. ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
  3294. if (ret)
  3295. return ret;
  3296. if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
  3297. *changed = false;
  3298. else
  3299. *changed = true;
  3300. return 0;
  3301. }
  3302. static uint32_t
  3303. pipes_modified(struct drm_atomic_state *state)
  3304. {
  3305. struct drm_crtc *crtc;
  3306. struct drm_crtc_state *cstate;
  3307. uint32_t i, ret = 0;
  3308. for_each_crtc_in_state(state, crtc, cstate, i)
  3309. ret |= drm_crtc_mask(crtc);
  3310. return ret;
  3311. }
  3312. static int
  3313. skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
  3314. {
  3315. struct drm_atomic_state *state = cstate->base.state;
  3316. struct drm_device *dev = state->dev;
  3317. struct drm_crtc *crtc = cstate->base.crtc;
  3318. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3319. struct drm_i915_private *dev_priv = to_i915(dev);
  3320. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  3321. struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
  3322. struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  3323. struct drm_plane_state *plane_state;
  3324. struct drm_plane *plane;
  3325. enum pipe pipe = intel_crtc->pipe;
  3326. WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
  3327. drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
  3328. enum plane_id plane_id = to_intel_plane(plane)->id;
  3329. if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
  3330. &new_ddb->plane[pipe][plane_id]) &&
  3331. skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
  3332. &new_ddb->y_plane[pipe][plane_id]))
  3333. continue;
  3334. plane_state = drm_atomic_get_plane_state(state, plane);
  3335. if (IS_ERR(plane_state))
  3336. return PTR_ERR(plane_state);
  3337. }
  3338. return 0;
  3339. }
  3340. static int
  3341. skl_compute_ddb(struct drm_atomic_state *state)
  3342. {
  3343. struct drm_device *dev = state->dev;
  3344. struct drm_i915_private *dev_priv = to_i915(dev);
  3345. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  3346. struct intel_crtc *intel_crtc;
  3347. struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
  3348. uint32_t realloc_pipes = pipes_modified(state);
  3349. int ret;
  3350. /*
  3351. * If this is our first atomic update following hardware readout,
  3352. * we can't trust the DDB that the BIOS programmed for us. Let's
  3353. * pretend that all pipes switched active status so that we'll
  3354. * ensure a full DDB recompute.
  3355. */
  3356. if (dev_priv->wm.distrust_bios_wm) {
  3357. ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
  3358. state->acquire_ctx);
  3359. if (ret)
  3360. return ret;
  3361. intel_state->active_pipe_changes = ~0;
  3362. /*
  3363. * We usually only initialize intel_state->active_crtcs if we
  3364. * we're doing a modeset; make sure this field is always
  3365. * initialized during the sanitization process that happens
  3366. * on the first commit too.
  3367. */
  3368. if (!intel_state->modeset)
  3369. intel_state->active_crtcs = dev_priv->active_crtcs;
  3370. }
  3371. /*
  3372. * If the modeset changes which CRTC's are active, we need to
  3373. * recompute the DDB allocation for *all* active pipes, even
  3374. * those that weren't otherwise being modified in any way by this
  3375. * atomic commit. Due to the shrinking of the per-pipe allocations
  3376. * when new active CRTC's are added, it's possible for a pipe that
  3377. * we were already using and aren't changing at all here to suddenly
  3378. * become invalid if its DDB needs exceeds its new allocation.
  3379. *
  3380. * Note that if we wind up doing a full DDB recompute, we can't let
  3381. * any other display updates race with this transaction, so we need
  3382. * to grab the lock on *all* CRTC's.
  3383. */
  3384. if (intel_state->active_pipe_changes) {
  3385. realloc_pipes = ~0;
  3386. intel_state->wm_results.dirty_pipes = ~0;
  3387. }
  3388. /*
  3389. * We're not recomputing for the pipes not included in the commit, so
  3390. * make sure we start with the current state.
  3391. */
  3392. memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
  3393. for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
  3394. struct intel_crtc_state *cstate;
  3395. cstate = intel_atomic_get_crtc_state(state, intel_crtc);
  3396. if (IS_ERR(cstate))
  3397. return PTR_ERR(cstate);
  3398. ret = skl_allocate_pipe_ddb(cstate, ddb);
  3399. if (ret)
  3400. return ret;
  3401. ret = skl_ddb_add_affected_planes(cstate);
  3402. if (ret)
  3403. return ret;
  3404. }
  3405. return 0;
  3406. }
  3407. static void
  3408. skl_copy_wm_for_pipe(struct skl_wm_values *dst,
  3409. struct skl_wm_values *src,
  3410. enum pipe pipe)
  3411. {
  3412. memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
  3413. sizeof(dst->ddb.y_plane[pipe]));
  3414. memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
  3415. sizeof(dst->ddb.plane[pipe]));
  3416. }
  3417. static void
  3418. skl_print_wm_changes(const struct drm_atomic_state *state)
  3419. {
  3420. const struct drm_device *dev = state->dev;
  3421. const struct drm_i915_private *dev_priv = to_i915(dev);
  3422. const struct intel_atomic_state *intel_state =
  3423. to_intel_atomic_state(state);
  3424. const struct drm_crtc *crtc;
  3425. const struct drm_crtc_state *cstate;
  3426. const struct intel_plane *intel_plane;
  3427. const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
  3428. const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
  3429. int i;
  3430. for_each_crtc_in_state(state, crtc, cstate, i) {
  3431. const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3432. enum pipe pipe = intel_crtc->pipe;
  3433. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  3434. enum plane_id plane_id = intel_plane->id;
  3435. const struct skl_ddb_entry *old, *new;
  3436. old = &old_ddb->plane[pipe][plane_id];
  3437. new = &new_ddb->plane[pipe][plane_id];
  3438. if (skl_ddb_entry_equal(old, new))
  3439. continue;
  3440. DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
  3441. intel_plane->base.base.id,
  3442. intel_plane->base.name,
  3443. old->start, old->end,
  3444. new->start, new->end);
  3445. }
  3446. }
  3447. }
  3448. static int
  3449. skl_compute_wm(struct drm_atomic_state *state)
  3450. {
  3451. struct drm_crtc *crtc;
  3452. struct drm_crtc_state *cstate;
  3453. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  3454. struct skl_wm_values *results = &intel_state->wm_results;
  3455. struct skl_pipe_wm *pipe_wm;
  3456. bool changed = false;
  3457. int ret, i;
  3458. /*
  3459. * If this transaction isn't actually touching any CRTC's, don't
  3460. * bother with watermark calculation. Note that if we pass this
  3461. * test, we're guaranteed to hold at least one CRTC state mutex,
  3462. * which means we can safely use values like dev_priv->active_crtcs
  3463. * since any racing commits that want to update them would need to
  3464. * hold _all_ CRTC state mutexes.
  3465. */
  3466. for_each_crtc_in_state(state, crtc, cstate, i)
  3467. changed = true;
  3468. if (!changed)
  3469. return 0;
  3470. /* Clear all dirty flags */
  3471. results->dirty_pipes = 0;
  3472. ret = skl_compute_ddb(state);
  3473. if (ret)
  3474. return ret;
  3475. /*
  3476. * Calculate WM's for all pipes that are part of this transaction.
  3477. * Note that the DDB allocation above may have added more CRTC's that
  3478. * weren't otherwise being modified (and set bits in dirty_pipes) if
  3479. * pipe allocations had to change.
  3480. *
  3481. * FIXME: Now that we're doing this in the atomic check phase, we
  3482. * should allow skl_update_pipe_wm() to return failure in cases where
  3483. * no suitable watermark values can be found.
  3484. */
  3485. for_each_crtc_in_state(state, crtc, cstate, i) {
  3486. struct intel_crtc_state *intel_cstate =
  3487. to_intel_crtc_state(cstate);
  3488. const struct skl_pipe_wm *old_pipe_wm =
  3489. &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
  3490. pipe_wm = &intel_cstate->wm.skl.optimal;
  3491. ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
  3492. &results->ddb, &changed);
  3493. if (ret)
  3494. return ret;
  3495. if (changed)
  3496. results->dirty_pipes |= drm_crtc_mask(crtc);
  3497. if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
  3498. /* This pipe's WM's did not change */
  3499. continue;
  3500. intel_cstate->update_wm_pre = true;
  3501. }
  3502. skl_print_wm_changes(state);
  3503. return 0;
  3504. }
  3505. static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
  3506. struct intel_crtc_state *cstate)
  3507. {
  3508. struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
  3509. struct drm_i915_private *dev_priv = to_i915(state->base.dev);
  3510. struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
  3511. const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
  3512. enum pipe pipe = crtc->pipe;
  3513. enum plane_id plane_id;
  3514. if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
  3515. return;
  3516. I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
  3517. for_each_plane_id_on_crtc(crtc, plane_id) {
  3518. if (plane_id != PLANE_CURSOR)
  3519. skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
  3520. ddb, plane_id);
  3521. else
  3522. skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
  3523. ddb);
  3524. }
  3525. }
  3526. static void skl_initial_wm(struct intel_atomic_state *state,
  3527. struct intel_crtc_state *cstate)
  3528. {
  3529. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3530. struct drm_device *dev = intel_crtc->base.dev;
  3531. struct drm_i915_private *dev_priv = to_i915(dev);
  3532. struct skl_wm_values *results = &state->wm_results;
  3533. struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
  3534. enum pipe pipe = intel_crtc->pipe;
  3535. if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
  3536. return;
  3537. mutex_lock(&dev_priv->wm.wm_mutex);
  3538. if (cstate->base.active_changed)
  3539. skl_atomic_update_crtc_wm(state, cstate);
  3540. skl_copy_wm_for_pipe(hw_vals, results, pipe);
  3541. mutex_unlock(&dev_priv->wm.wm_mutex);
  3542. }
  3543. static void ilk_compute_wm_config(struct drm_device *dev,
  3544. struct intel_wm_config *config)
  3545. {
  3546. struct intel_crtc *crtc;
  3547. /* Compute the currently _active_ config */
  3548. for_each_intel_crtc(dev, crtc) {
  3549. const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
  3550. if (!wm->pipe_enabled)
  3551. continue;
  3552. config->sprites_enabled |= wm->sprites_enabled;
  3553. config->sprites_scaled |= wm->sprites_scaled;
  3554. config->num_pipes_active++;
  3555. }
  3556. }
  3557. static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
  3558. {
  3559. struct drm_device *dev = &dev_priv->drm;
  3560. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  3561. struct ilk_wm_maximums max;
  3562. struct intel_wm_config config = {};
  3563. struct ilk_wm_values results = {};
  3564. enum intel_ddb_partitioning partitioning;
  3565. ilk_compute_wm_config(dev, &config);
  3566. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  3567. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  3568. /* 5/6 split only in single pipe config on IVB+ */
  3569. if (INTEL_GEN(dev_priv) >= 7 &&
  3570. config.num_pipes_active == 1 && config.sprites_enabled) {
  3571. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  3572. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  3573. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  3574. } else {
  3575. best_lp_wm = &lp_wm_1_2;
  3576. }
  3577. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  3578. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  3579. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  3580. ilk_write_wm_values(dev_priv, &results);
  3581. }
  3582. static void ilk_initial_watermarks(struct intel_atomic_state *state,
  3583. struct intel_crtc_state *cstate)
  3584. {
  3585. struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
  3586. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3587. mutex_lock(&dev_priv->wm.wm_mutex);
  3588. intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
  3589. ilk_program_watermarks(dev_priv);
  3590. mutex_unlock(&dev_priv->wm.wm_mutex);
  3591. }
  3592. static void ilk_optimize_watermarks(struct intel_atomic_state *state,
  3593. struct intel_crtc_state *cstate)
  3594. {
  3595. struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
  3596. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3597. mutex_lock(&dev_priv->wm.wm_mutex);
  3598. if (cstate->wm.need_postvbl_update) {
  3599. intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
  3600. ilk_program_watermarks(dev_priv);
  3601. }
  3602. mutex_unlock(&dev_priv->wm.wm_mutex);
  3603. }
  3604. static inline void skl_wm_level_from_reg_val(uint32_t val,
  3605. struct skl_wm_level *level)
  3606. {
  3607. level->plane_en = val & PLANE_WM_EN;
  3608. level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
  3609. level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
  3610. PLANE_WM_LINES_MASK;
  3611. }
  3612. void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
  3613. struct skl_pipe_wm *out)
  3614. {
  3615. struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  3616. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3617. enum pipe pipe = intel_crtc->pipe;
  3618. int level, max_level;
  3619. enum plane_id plane_id;
  3620. uint32_t val;
  3621. max_level = ilk_wm_max_level(dev_priv);
  3622. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  3623. struct skl_plane_wm *wm = &out->planes[plane_id];
  3624. for (level = 0; level <= max_level; level++) {
  3625. if (plane_id != PLANE_CURSOR)
  3626. val = I915_READ(PLANE_WM(pipe, plane_id, level));
  3627. else
  3628. val = I915_READ(CUR_WM(pipe, level));
  3629. skl_wm_level_from_reg_val(val, &wm->wm[level]);
  3630. }
  3631. if (plane_id != PLANE_CURSOR)
  3632. val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
  3633. else
  3634. val = I915_READ(CUR_WM_TRANS(pipe));
  3635. skl_wm_level_from_reg_val(val, &wm->trans_wm);
  3636. }
  3637. if (!intel_crtc->active)
  3638. return;
  3639. out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
  3640. }
  3641. void skl_wm_get_hw_state(struct drm_device *dev)
  3642. {
  3643. struct drm_i915_private *dev_priv = to_i915(dev);
  3644. struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  3645. struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  3646. struct drm_crtc *crtc;
  3647. struct intel_crtc *intel_crtc;
  3648. struct intel_crtc_state *cstate;
  3649. skl_ddb_get_hw_state(dev_priv, ddb);
  3650. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3651. intel_crtc = to_intel_crtc(crtc);
  3652. cstate = to_intel_crtc_state(crtc->state);
  3653. skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
  3654. if (intel_crtc->active)
  3655. hw->dirty_pipes |= drm_crtc_mask(crtc);
  3656. }
  3657. if (dev_priv->active_crtcs) {
  3658. /* Fully recompute DDB on first atomic commit */
  3659. dev_priv->wm.distrust_bios_wm = true;
  3660. } else {
  3661. /* Easy/common case; just sanitize DDB now if everything off */
  3662. memset(ddb, 0, sizeof(*ddb));
  3663. }
  3664. }
  3665. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  3666. {
  3667. struct drm_device *dev = crtc->dev;
  3668. struct drm_i915_private *dev_priv = to_i915(dev);
  3669. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3670. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3671. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3672. struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
  3673. enum pipe pipe = intel_crtc->pipe;
  3674. static const i915_reg_t wm0_pipe_reg[] = {
  3675. [PIPE_A] = WM0_PIPEA_ILK,
  3676. [PIPE_B] = WM0_PIPEB_ILK,
  3677. [PIPE_C] = WM0_PIPEC_IVB,
  3678. };
  3679. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  3680. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  3681. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3682. memset(active, 0, sizeof(*active));
  3683. active->pipe_enabled = intel_crtc->active;
  3684. if (active->pipe_enabled) {
  3685. u32 tmp = hw->wm_pipe[pipe];
  3686. /*
  3687. * For active pipes LP0 watermark is marked as
  3688. * enabled, and LP1+ watermaks as disabled since
  3689. * we can't really reverse compute them in case
  3690. * multiple pipes are active.
  3691. */
  3692. active->wm[0].enable = true;
  3693. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  3694. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  3695. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  3696. active->linetime = hw->wm_linetime[pipe];
  3697. } else {
  3698. int level, max_level = ilk_wm_max_level(dev_priv);
  3699. /*
  3700. * For inactive pipes, all watermark levels
  3701. * should be marked as enabled but zeroed,
  3702. * which is what we'd compute them to.
  3703. */
  3704. for (level = 0; level <= max_level; level++)
  3705. active->wm[level].enable = true;
  3706. }
  3707. intel_crtc->wm.active.ilk = *active;
  3708. }
  3709. #define _FW_WM(value, plane) \
  3710. (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
  3711. #define _FW_WM_VLV(value, plane) \
  3712. (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
  3713. static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
  3714. struct vlv_wm_values *wm)
  3715. {
  3716. enum pipe pipe;
  3717. uint32_t tmp;
  3718. for_each_pipe(dev_priv, pipe) {
  3719. tmp = I915_READ(VLV_DDL(pipe));
  3720. wm->ddl[pipe].plane[PLANE_PRIMARY] =
  3721. (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3722. wm->ddl[pipe].plane[PLANE_CURSOR] =
  3723. (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3724. wm->ddl[pipe].plane[PLANE_SPRITE0] =
  3725. (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3726. wm->ddl[pipe].plane[PLANE_SPRITE1] =
  3727. (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3728. }
  3729. tmp = I915_READ(DSPFW1);
  3730. wm->sr.plane = _FW_WM(tmp, SR);
  3731. wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
  3732. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
  3733. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
  3734. tmp = I915_READ(DSPFW2);
  3735. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
  3736. wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
  3737. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
  3738. tmp = I915_READ(DSPFW3);
  3739. wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
  3740. if (IS_CHERRYVIEW(dev_priv)) {
  3741. tmp = I915_READ(DSPFW7_CHV);
  3742. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
  3743. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
  3744. tmp = I915_READ(DSPFW8_CHV);
  3745. wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
  3746. wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
  3747. tmp = I915_READ(DSPFW9_CHV);
  3748. wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
  3749. wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
  3750. tmp = I915_READ(DSPHOWM);
  3751. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3752. wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
  3753. wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
  3754. wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
  3755. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3756. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3757. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
  3758. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3759. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3760. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
  3761. } else {
  3762. tmp = I915_READ(DSPFW7);
  3763. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
  3764. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
  3765. tmp = I915_READ(DSPHOWM);
  3766. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3767. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3768. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3769. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
  3770. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3771. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3772. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
  3773. }
  3774. }
  3775. #undef _FW_WM
  3776. #undef _FW_WM_VLV
  3777. void vlv_wm_get_hw_state(struct drm_device *dev)
  3778. {
  3779. struct drm_i915_private *dev_priv = to_i915(dev);
  3780. struct vlv_wm_values *wm = &dev_priv->wm.vlv;
  3781. struct intel_plane *plane;
  3782. enum pipe pipe;
  3783. u32 val;
  3784. vlv_read_wm_values(dev_priv, wm);
  3785. for_each_intel_plane(dev, plane)
  3786. plane->wm.fifo_size = vlv_get_fifo_size(plane);
  3787. wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  3788. wm->level = VLV_WM_LEVEL_PM2;
  3789. if (IS_CHERRYVIEW(dev_priv)) {
  3790. mutex_lock(&dev_priv->rps.hw_lock);
  3791. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  3792. if (val & DSP_MAXFIFO_PM5_ENABLE)
  3793. wm->level = VLV_WM_LEVEL_PM5;
  3794. /*
  3795. * If DDR DVFS is disabled in the BIOS, Punit
  3796. * will never ack the request. So if that happens
  3797. * assume we don't have to enable/disable DDR DVFS
  3798. * dynamically. To test that just set the REQ_ACK
  3799. * bit to poke the Punit, but don't change the
  3800. * HIGH/LOW bits so that we don't actually change
  3801. * the current state.
  3802. */
  3803. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  3804. val |= FORCE_DDR_FREQ_REQ_ACK;
  3805. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  3806. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  3807. FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
  3808. DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
  3809. "assuming DDR DVFS is disabled\n");
  3810. dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
  3811. } else {
  3812. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  3813. if ((val & FORCE_DDR_HIGH_FREQ) == 0)
  3814. wm->level = VLV_WM_LEVEL_DDR_DVFS;
  3815. }
  3816. mutex_unlock(&dev_priv->rps.hw_lock);
  3817. }
  3818. for_each_pipe(dev_priv, pipe)
  3819. DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
  3820. pipe_name(pipe),
  3821. wm->pipe[pipe].plane[PLANE_PRIMARY],
  3822. wm->pipe[pipe].plane[PLANE_CURSOR],
  3823. wm->pipe[pipe].plane[PLANE_SPRITE0],
  3824. wm->pipe[pipe].plane[PLANE_SPRITE1]);
  3825. DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
  3826. wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
  3827. }
  3828. void ilk_wm_get_hw_state(struct drm_device *dev)
  3829. {
  3830. struct drm_i915_private *dev_priv = to_i915(dev);
  3831. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3832. struct drm_crtc *crtc;
  3833. for_each_crtc(dev, crtc)
  3834. ilk_pipe_wm_get_hw_state(crtc);
  3835. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  3836. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  3837. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  3838. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  3839. if (INTEL_GEN(dev_priv) >= 7) {
  3840. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  3841. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  3842. }
  3843. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  3844. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  3845. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3846. else if (IS_IVYBRIDGE(dev_priv))
  3847. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  3848. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3849. hw->enable_fbc_wm =
  3850. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  3851. }
  3852. /**
  3853. * intel_update_watermarks - update FIFO watermark values based on current modes
  3854. *
  3855. * Calculate watermark values for the various WM regs based on current mode
  3856. * and plane configuration.
  3857. *
  3858. * There are several cases to deal with here:
  3859. * - normal (i.e. non-self-refresh)
  3860. * - self-refresh (SR) mode
  3861. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3862. * - lines are small relative to FIFO size (buffer can hold more than 2
  3863. * lines), so need to account for TLB latency
  3864. *
  3865. * The normal calculation is:
  3866. * watermark = dotclock * bytes per pixel * latency
  3867. * where latency is platform & configuration dependent (we assume pessimal
  3868. * values here).
  3869. *
  3870. * The SR calculation is:
  3871. * watermark = (trunc(latency/line time)+1) * surface width *
  3872. * bytes per pixel
  3873. * where
  3874. * line time = htotal / dotclock
  3875. * surface width = hdisplay for normal plane and 64 for cursor
  3876. * and latency is assumed to be high, as above.
  3877. *
  3878. * The final value programmed to the register should always be rounded up,
  3879. * and include an extra 2 entries to account for clock crossings.
  3880. *
  3881. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3882. * to set the non-SR watermarks to 8.
  3883. */
  3884. void intel_update_watermarks(struct intel_crtc *crtc)
  3885. {
  3886. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  3887. if (dev_priv->display.update_wm)
  3888. dev_priv->display.update_wm(crtc);
  3889. }
  3890. /*
  3891. * Lock protecting IPS related data structures
  3892. */
  3893. DEFINE_SPINLOCK(mchdev_lock);
  3894. /* Global for IPS driver to get at the current i915 device. Protected by
  3895. * mchdev_lock. */
  3896. static struct drm_i915_private *i915_mch_dev;
  3897. bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
  3898. {
  3899. u16 rgvswctl;
  3900. assert_spin_locked(&mchdev_lock);
  3901. rgvswctl = I915_READ16(MEMSWCTL);
  3902. if (rgvswctl & MEMCTL_CMD_STS) {
  3903. DRM_DEBUG("gpu busy, RCS change rejected\n");
  3904. return false; /* still busy with another command */
  3905. }
  3906. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  3907. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  3908. I915_WRITE16(MEMSWCTL, rgvswctl);
  3909. POSTING_READ16(MEMSWCTL);
  3910. rgvswctl |= MEMCTL_CMD_STS;
  3911. I915_WRITE16(MEMSWCTL, rgvswctl);
  3912. return true;
  3913. }
  3914. static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
  3915. {
  3916. u32 rgvmodectl;
  3917. u8 fmax, fmin, fstart, vstart;
  3918. spin_lock_irq(&mchdev_lock);
  3919. rgvmodectl = I915_READ(MEMMODECTL);
  3920. /* Enable temp reporting */
  3921. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  3922. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  3923. /* 100ms RC evaluation intervals */
  3924. I915_WRITE(RCUPEI, 100000);
  3925. I915_WRITE(RCDNEI, 100000);
  3926. /* Set max/min thresholds to 90ms and 80ms respectively */
  3927. I915_WRITE(RCBMAXAVG, 90000);
  3928. I915_WRITE(RCBMINAVG, 80000);
  3929. I915_WRITE(MEMIHYST, 1);
  3930. /* Set up min, max, and cur for interrupt handling */
  3931. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  3932. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  3933. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  3934. MEMMODE_FSTART_SHIFT;
  3935. vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
  3936. PXVFREQ_PX_SHIFT;
  3937. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  3938. dev_priv->ips.fstart = fstart;
  3939. dev_priv->ips.max_delay = fstart;
  3940. dev_priv->ips.min_delay = fmin;
  3941. dev_priv->ips.cur_delay = fstart;
  3942. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  3943. fmax, fmin, fstart);
  3944. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  3945. /*
  3946. * Interrupts will be enabled in ironlake_irq_postinstall
  3947. */
  3948. I915_WRITE(VIDSTART, vstart);
  3949. POSTING_READ(VIDSTART);
  3950. rgvmodectl |= MEMMODE_SWMODE_EN;
  3951. I915_WRITE(MEMMODECTL, rgvmodectl);
  3952. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  3953. DRM_ERROR("stuck trying to change perf mode\n");
  3954. mdelay(1);
  3955. ironlake_set_drps(dev_priv, fstart);
  3956. dev_priv->ips.last_count1 = I915_READ(DMIEC) +
  3957. I915_READ(DDREC) + I915_READ(CSIEC);
  3958. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  3959. dev_priv->ips.last_count2 = I915_READ(GFXEC);
  3960. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  3961. spin_unlock_irq(&mchdev_lock);
  3962. }
  3963. static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
  3964. {
  3965. u16 rgvswctl;
  3966. spin_lock_irq(&mchdev_lock);
  3967. rgvswctl = I915_READ16(MEMSWCTL);
  3968. /* Ack interrupts, disable EFC interrupt */
  3969. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  3970. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  3971. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  3972. I915_WRITE(DEIIR, DE_PCU_EVENT);
  3973. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  3974. /* Go back to the starting frequency */
  3975. ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
  3976. mdelay(1);
  3977. rgvswctl |= MEMCTL_CMD_STS;
  3978. I915_WRITE(MEMSWCTL, rgvswctl);
  3979. mdelay(1);
  3980. spin_unlock_irq(&mchdev_lock);
  3981. }
  3982. /* There's a funny hw issue where the hw returns all 0 when reading from
  3983. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  3984. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  3985. * all limits and the gpu stuck at whatever frequency it is at atm).
  3986. */
  3987. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  3988. {
  3989. u32 limits;
  3990. /* Only set the down limit when we've reached the lowest level to avoid
  3991. * getting more interrupts, otherwise leave this clear. This prevents a
  3992. * race in the hw when coming out of rc6: There's a tiny window where
  3993. * the hw runs at the minimal clock before selecting the desired
  3994. * frequency, if the down threshold expires in that window we will not
  3995. * receive a down interrupt. */
  3996. if (IS_GEN9(dev_priv)) {
  3997. limits = (dev_priv->rps.max_freq_softlimit) << 23;
  3998. if (val <= dev_priv->rps.min_freq_softlimit)
  3999. limits |= (dev_priv->rps.min_freq_softlimit) << 14;
  4000. } else {
  4001. limits = dev_priv->rps.max_freq_softlimit << 24;
  4002. if (val <= dev_priv->rps.min_freq_softlimit)
  4003. limits |= dev_priv->rps.min_freq_softlimit << 16;
  4004. }
  4005. return limits;
  4006. }
  4007. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  4008. {
  4009. int new_power;
  4010. u32 threshold_up = 0, threshold_down = 0; /* in % */
  4011. u32 ei_up = 0, ei_down = 0;
  4012. new_power = dev_priv->rps.power;
  4013. switch (dev_priv->rps.power) {
  4014. case LOW_POWER:
  4015. if (val > dev_priv->rps.efficient_freq + 1 &&
  4016. val > dev_priv->rps.cur_freq)
  4017. new_power = BETWEEN;
  4018. break;
  4019. case BETWEEN:
  4020. if (val <= dev_priv->rps.efficient_freq &&
  4021. val < dev_priv->rps.cur_freq)
  4022. new_power = LOW_POWER;
  4023. else if (val >= dev_priv->rps.rp0_freq &&
  4024. val > dev_priv->rps.cur_freq)
  4025. new_power = HIGH_POWER;
  4026. break;
  4027. case HIGH_POWER:
  4028. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
  4029. val < dev_priv->rps.cur_freq)
  4030. new_power = BETWEEN;
  4031. break;
  4032. }
  4033. /* Max/min bins are special */
  4034. if (val <= dev_priv->rps.min_freq_softlimit)
  4035. new_power = LOW_POWER;
  4036. if (val >= dev_priv->rps.max_freq_softlimit)
  4037. new_power = HIGH_POWER;
  4038. if (new_power == dev_priv->rps.power)
  4039. return;
  4040. /* Note the units here are not exactly 1us, but 1280ns. */
  4041. switch (new_power) {
  4042. case LOW_POWER:
  4043. /* Upclock if more than 95% busy over 16ms */
  4044. ei_up = 16000;
  4045. threshold_up = 95;
  4046. /* Downclock if less than 85% busy over 32ms */
  4047. ei_down = 32000;
  4048. threshold_down = 85;
  4049. break;
  4050. case BETWEEN:
  4051. /* Upclock if more than 90% busy over 13ms */
  4052. ei_up = 13000;
  4053. threshold_up = 90;
  4054. /* Downclock if less than 75% busy over 32ms */
  4055. ei_down = 32000;
  4056. threshold_down = 75;
  4057. break;
  4058. case HIGH_POWER:
  4059. /* Upclock if more than 85% busy over 10ms */
  4060. ei_up = 10000;
  4061. threshold_up = 85;
  4062. /* Downclock if less than 60% busy over 32ms */
  4063. ei_down = 32000;
  4064. threshold_down = 60;
  4065. break;
  4066. }
  4067. I915_WRITE(GEN6_RP_UP_EI,
  4068. GT_INTERVAL_FROM_US(dev_priv, ei_up));
  4069. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  4070. GT_INTERVAL_FROM_US(dev_priv,
  4071. ei_up * threshold_up / 100));
  4072. I915_WRITE(GEN6_RP_DOWN_EI,
  4073. GT_INTERVAL_FROM_US(dev_priv, ei_down));
  4074. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  4075. GT_INTERVAL_FROM_US(dev_priv,
  4076. ei_down * threshold_down / 100));
  4077. I915_WRITE(GEN6_RP_CONTROL,
  4078. GEN6_RP_MEDIA_TURBO |
  4079. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4080. GEN6_RP_MEDIA_IS_GFX |
  4081. GEN6_RP_ENABLE |
  4082. GEN6_RP_UP_BUSY_AVG |
  4083. GEN6_RP_DOWN_IDLE_AVG);
  4084. dev_priv->rps.power = new_power;
  4085. dev_priv->rps.up_threshold = threshold_up;
  4086. dev_priv->rps.down_threshold = threshold_down;
  4087. dev_priv->rps.last_adj = 0;
  4088. }
  4089. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  4090. {
  4091. u32 mask = 0;
  4092. if (val > dev_priv->rps.min_freq_softlimit)
  4093. mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  4094. if (val < dev_priv->rps.max_freq_softlimit)
  4095. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  4096. mask &= dev_priv->pm_rps_events;
  4097. return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  4098. }
  4099. /* gen6_set_rps is called to update the frequency request, but should also be
  4100. * called when the range (min_delay and max_delay) is modified so that we can
  4101. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  4102. static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
  4103. {
  4104. /* min/max delay may still have been modified so be sure to
  4105. * write the limits value.
  4106. */
  4107. if (val != dev_priv->rps.cur_freq) {
  4108. gen6_set_rps_thresholds(dev_priv, val);
  4109. if (IS_GEN9(dev_priv))
  4110. I915_WRITE(GEN6_RPNSWREQ,
  4111. GEN9_FREQUENCY(val));
  4112. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  4113. I915_WRITE(GEN6_RPNSWREQ,
  4114. HSW_FREQUENCY(val));
  4115. else
  4116. I915_WRITE(GEN6_RPNSWREQ,
  4117. GEN6_FREQUENCY(val) |
  4118. GEN6_OFFSET(0) |
  4119. GEN6_AGGRESSIVE_TURBO);
  4120. }
  4121. /* Make sure we continue to get interrupts
  4122. * until we hit the minimum or maximum frequencies.
  4123. */
  4124. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  4125. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  4126. dev_priv->rps.cur_freq = val;
  4127. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  4128. return 0;
  4129. }
  4130. static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
  4131. {
  4132. int err;
  4133. if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
  4134. "Odd GPU freq value\n"))
  4135. val &= ~1;
  4136. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  4137. if (val != dev_priv->rps.cur_freq) {
  4138. err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  4139. if (err)
  4140. return err;
  4141. gen6_set_rps_thresholds(dev_priv, val);
  4142. }
  4143. dev_priv->rps.cur_freq = val;
  4144. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  4145. return 0;
  4146. }
  4147. /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
  4148. *
  4149. * * If Gfx is Idle, then
  4150. * 1. Forcewake Media well.
  4151. * 2. Request idle freq.
  4152. * 3. Release Forcewake of Media well.
  4153. */
  4154. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  4155. {
  4156. u32 val = dev_priv->rps.idle_freq;
  4157. int err;
  4158. if (dev_priv->rps.cur_freq <= val)
  4159. return;
  4160. /* The punit delays the write of the frequency and voltage until it
  4161. * determines the GPU is awake. During normal usage we don't want to
  4162. * waste power changing the frequency if the GPU is sleeping (rc6).
  4163. * However, the GPU and driver is now idle and we do not want to delay
  4164. * switching to minimum voltage (reducing power whilst idle) as we do
  4165. * not expect to be woken in the near future and so must flush the
  4166. * change by waking the device.
  4167. *
  4168. * We choose to take the media powerwell (either would do to trick the
  4169. * punit into committing the voltage change) as that takes a lot less
  4170. * power than the render powerwell.
  4171. */
  4172. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
  4173. err = valleyview_set_rps(dev_priv, val);
  4174. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
  4175. if (err)
  4176. DRM_ERROR("Failed to set RPS for idle\n");
  4177. }
  4178. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  4179. {
  4180. mutex_lock(&dev_priv->rps.hw_lock);
  4181. if (dev_priv->rps.enabled) {
  4182. u8 freq;
  4183. if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
  4184. gen6_rps_reset_ei(dev_priv);
  4185. I915_WRITE(GEN6_PMINTRMSK,
  4186. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  4187. gen6_enable_rps_interrupts(dev_priv);
  4188. /* Use the user's desired frequency as a guide, but for better
  4189. * performance, jump directly to RPe as our starting frequency.
  4190. */
  4191. freq = max(dev_priv->rps.cur_freq,
  4192. dev_priv->rps.efficient_freq);
  4193. if (intel_set_rps(dev_priv,
  4194. clamp(freq,
  4195. dev_priv->rps.min_freq_softlimit,
  4196. dev_priv->rps.max_freq_softlimit)))
  4197. DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
  4198. }
  4199. mutex_unlock(&dev_priv->rps.hw_lock);
  4200. }
  4201. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  4202. {
  4203. /* Flush our bottom-half so that it does not race with us
  4204. * setting the idle frequency and so that it is bounded by
  4205. * our rpm wakeref. And then disable the interrupts to stop any
  4206. * futher RPS reclocking whilst we are asleep.
  4207. */
  4208. gen6_disable_rps_interrupts(dev_priv);
  4209. mutex_lock(&dev_priv->rps.hw_lock);
  4210. if (dev_priv->rps.enabled) {
  4211. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  4212. vlv_set_rps_idle(dev_priv);
  4213. else
  4214. gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
  4215. dev_priv->rps.last_adj = 0;
  4216. I915_WRITE(GEN6_PMINTRMSK,
  4217. gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  4218. }
  4219. mutex_unlock(&dev_priv->rps.hw_lock);
  4220. spin_lock(&dev_priv->rps.client_lock);
  4221. while (!list_empty(&dev_priv->rps.clients))
  4222. list_del_init(dev_priv->rps.clients.next);
  4223. spin_unlock(&dev_priv->rps.client_lock);
  4224. }
  4225. void gen6_rps_boost(struct drm_i915_private *dev_priv,
  4226. struct intel_rps_client *rps,
  4227. unsigned long submitted)
  4228. {
  4229. /* This is intentionally racy! We peek at the state here, then
  4230. * validate inside the RPS worker.
  4231. */
  4232. if (!(dev_priv->gt.awake &&
  4233. dev_priv->rps.enabled &&
  4234. dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
  4235. return;
  4236. /* Force a RPS boost (and don't count it against the client) if
  4237. * the GPU is severely congested.
  4238. */
  4239. if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
  4240. rps = NULL;
  4241. spin_lock(&dev_priv->rps.client_lock);
  4242. if (rps == NULL || list_empty(&rps->link)) {
  4243. spin_lock_irq(&dev_priv->irq_lock);
  4244. if (dev_priv->rps.interrupts_enabled) {
  4245. dev_priv->rps.client_boost = true;
  4246. schedule_work(&dev_priv->rps.work);
  4247. }
  4248. spin_unlock_irq(&dev_priv->irq_lock);
  4249. if (rps != NULL) {
  4250. list_add(&rps->link, &dev_priv->rps.clients);
  4251. rps->boosts++;
  4252. } else
  4253. dev_priv->rps.boosts++;
  4254. }
  4255. spin_unlock(&dev_priv->rps.client_lock);
  4256. }
  4257. int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
  4258. {
  4259. int err;
  4260. lockdep_assert_held(&dev_priv->rps.hw_lock);
  4261. GEM_BUG_ON(val > dev_priv->rps.max_freq);
  4262. GEM_BUG_ON(val < dev_priv->rps.min_freq);
  4263. if (!dev_priv->rps.enabled) {
  4264. dev_priv->rps.cur_freq = val;
  4265. return 0;
  4266. }
  4267. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  4268. err = valleyview_set_rps(dev_priv, val);
  4269. else
  4270. err = gen6_set_rps(dev_priv, val);
  4271. return err;
  4272. }
  4273. static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
  4274. {
  4275. I915_WRITE(GEN6_RC_CONTROL, 0);
  4276. I915_WRITE(GEN9_PG_ENABLE, 0);
  4277. }
  4278. static void gen9_disable_rps(struct drm_i915_private *dev_priv)
  4279. {
  4280. I915_WRITE(GEN6_RP_CONTROL, 0);
  4281. }
  4282. static void gen6_disable_rps(struct drm_i915_private *dev_priv)
  4283. {
  4284. I915_WRITE(GEN6_RC_CONTROL, 0);
  4285. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  4286. I915_WRITE(GEN6_RP_CONTROL, 0);
  4287. }
  4288. static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
  4289. {
  4290. I915_WRITE(GEN6_RC_CONTROL, 0);
  4291. }
  4292. static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
  4293. {
  4294. /* we're doing forcewake before Disabling RC6,
  4295. * This what the BIOS expects when going into suspend */
  4296. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4297. I915_WRITE(GEN6_RC_CONTROL, 0);
  4298. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4299. }
  4300. static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
  4301. {
  4302. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  4303. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  4304. mode = GEN6_RC_CTL_RC6_ENABLE;
  4305. else
  4306. mode = 0;
  4307. }
  4308. if (HAS_RC6p(dev_priv))
  4309. DRM_DEBUG_DRIVER("Enabling RC6 states: "
  4310. "RC6 %s RC6p %s RC6pp %s\n",
  4311. onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
  4312. onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
  4313. onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
  4314. else
  4315. DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
  4316. onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
  4317. }
  4318. static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
  4319. {
  4320. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  4321. bool enable_rc6 = true;
  4322. unsigned long rc6_ctx_base;
  4323. u32 rc_ctl;
  4324. int rc_sw_target;
  4325. rc_ctl = I915_READ(GEN6_RC_CONTROL);
  4326. rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
  4327. RC_SW_TARGET_STATE_SHIFT;
  4328. DRM_DEBUG_DRIVER("BIOS enabled RC states: "
  4329. "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
  4330. onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
  4331. onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
  4332. rc_sw_target);
  4333. if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
  4334. DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
  4335. enable_rc6 = false;
  4336. }
  4337. /*
  4338. * The exact context size is not known for BXT, so assume a page size
  4339. * for this check.
  4340. */
  4341. rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
  4342. if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
  4343. (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
  4344. ggtt->stolen_reserved_size))) {
  4345. DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
  4346. enable_rc6 = false;
  4347. }
  4348. if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
  4349. ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
  4350. ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
  4351. ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
  4352. DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
  4353. enable_rc6 = false;
  4354. }
  4355. if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
  4356. !I915_READ(GEN8_PUSHBUS_ENABLE) ||
  4357. !I915_READ(GEN8_PUSHBUS_SHIFT)) {
  4358. DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
  4359. enable_rc6 = false;
  4360. }
  4361. if (!I915_READ(GEN6_GFXPAUSE)) {
  4362. DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
  4363. enable_rc6 = false;
  4364. }
  4365. if (!I915_READ(GEN8_MISC_CTRL0)) {
  4366. DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
  4367. enable_rc6 = false;
  4368. }
  4369. return enable_rc6;
  4370. }
  4371. int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
  4372. {
  4373. /* No RC6 before Ironlake and code is gone for ilk. */
  4374. if (INTEL_INFO(dev_priv)->gen < 6)
  4375. return 0;
  4376. if (!enable_rc6)
  4377. return 0;
  4378. if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
  4379. DRM_INFO("RC6 disabled by BIOS\n");
  4380. return 0;
  4381. }
  4382. /* Respect the kernel parameter if it is set */
  4383. if (enable_rc6 >= 0) {
  4384. int mask;
  4385. if (HAS_RC6p(dev_priv))
  4386. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  4387. INTEL_RC6pp_ENABLE;
  4388. else
  4389. mask = INTEL_RC6_ENABLE;
  4390. if ((enable_rc6 & mask) != enable_rc6)
  4391. DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
  4392. "(requested %d, valid %d)\n",
  4393. enable_rc6 & mask, enable_rc6, mask);
  4394. return enable_rc6 & mask;
  4395. }
  4396. if (IS_IVYBRIDGE(dev_priv))
  4397. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  4398. return INTEL_RC6_ENABLE;
  4399. }
  4400. static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
  4401. {
  4402. /* All of these values are in units of 50MHz */
  4403. /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  4404. if (IS_GEN9_LP(dev_priv)) {
  4405. u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  4406. dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
  4407. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  4408. dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
  4409. } else {
  4410. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  4411. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  4412. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  4413. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  4414. }
  4415. /* hw_max = RP0 until we check for overclocking */
  4416. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  4417. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  4418. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
  4419. IS_GEN9_BC(dev_priv)) {
  4420. u32 ddcc_status = 0;
  4421. if (sandybridge_pcode_read(dev_priv,
  4422. HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  4423. &ddcc_status) == 0)
  4424. dev_priv->rps.efficient_freq =
  4425. clamp_t(u8,
  4426. ((ddcc_status >> 8) & 0xff),
  4427. dev_priv->rps.min_freq,
  4428. dev_priv->rps.max_freq);
  4429. }
  4430. if (IS_GEN9_BC(dev_priv)) {
  4431. /* Store the frequency values in 16.66 MHZ units, which is
  4432. * the natural hardware unit for SKL
  4433. */
  4434. dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
  4435. dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
  4436. dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
  4437. dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
  4438. dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
  4439. }
  4440. }
  4441. static void reset_rps(struct drm_i915_private *dev_priv,
  4442. int (*set)(struct drm_i915_private *, u8))
  4443. {
  4444. u8 freq = dev_priv->rps.cur_freq;
  4445. /* force a reset */
  4446. dev_priv->rps.power = -1;
  4447. dev_priv->rps.cur_freq = -1;
  4448. if (set(dev_priv, freq))
  4449. DRM_ERROR("Failed to reset RPS to initial values\n");
  4450. }
  4451. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  4452. static void gen9_enable_rps(struct drm_i915_private *dev_priv)
  4453. {
  4454. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4455. /* Program defaults and thresholds for RPS*/
  4456. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  4457. GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
  4458. /* 1 second timeout*/
  4459. I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  4460. GT_INTERVAL_FROM_US(dev_priv, 1000000));
  4461. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  4462. /* Leaning on the below call to gen6_set_rps to program/setup the
  4463. * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  4464. * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  4465. reset_rps(dev_priv, gen6_set_rps);
  4466. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4467. }
  4468. static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
  4469. {
  4470. struct intel_engine_cs *engine;
  4471. enum intel_engine_id id;
  4472. uint32_t rc6_mask = 0;
  4473. /* 1a: Software RC state - RC0 */
  4474. I915_WRITE(GEN6_RC_STATE, 0);
  4475. /* 1b: Get forcewake during program sequence. Although the driver
  4476. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4477. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4478. /* 2a: Disable RC states. */
  4479. I915_WRITE(GEN6_RC_CONTROL, 0);
  4480. /* 2b: Program RC6 thresholds.*/
  4481. /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
  4482. if (IS_SKYLAKE(dev_priv))
  4483. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
  4484. else
  4485. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  4486. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4487. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4488. for_each_engine(engine, dev_priv, id)
  4489. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  4490. if (HAS_GUC(dev_priv))
  4491. I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
  4492. I915_WRITE(GEN6_RC_SLEEP, 0);
  4493. /* 2c: Program Coarse Power Gating Policies. */
  4494. I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  4495. I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  4496. /* 3a: Enable RC6 */
  4497. if (intel_enable_rc6() & INTEL_RC6_ENABLE)
  4498. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  4499. DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
  4500. I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  4501. I915_WRITE(GEN6_RC_CONTROL,
  4502. GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
  4503. /*
  4504. * 3b: Enable Coarse Power Gating only when RC6 is enabled.
  4505. * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
  4506. */
  4507. if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
  4508. I915_WRITE(GEN9_PG_ENABLE, 0);
  4509. else
  4510. I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  4511. (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
  4512. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4513. }
  4514. static void gen8_enable_rps(struct drm_i915_private *dev_priv)
  4515. {
  4516. struct intel_engine_cs *engine;
  4517. enum intel_engine_id id;
  4518. uint32_t rc6_mask = 0;
  4519. /* 1a: Software RC state - RC0 */
  4520. I915_WRITE(GEN6_RC_STATE, 0);
  4521. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  4522. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4523. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4524. /* 2a: Disable RC states. */
  4525. I915_WRITE(GEN6_RC_CONTROL, 0);
  4526. /* 2b: Program RC6 thresholds.*/
  4527. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4528. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4529. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4530. for_each_engine(engine, dev_priv, id)
  4531. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  4532. I915_WRITE(GEN6_RC_SLEEP, 0);
  4533. if (IS_BROADWELL(dev_priv))
  4534. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  4535. else
  4536. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  4537. /* 3: Enable RC6 */
  4538. if (intel_enable_rc6() & INTEL_RC6_ENABLE)
  4539. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  4540. intel_print_rc6_info(dev_priv, rc6_mask);
  4541. if (IS_BROADWELL(dev_priv))
  4542. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4543. GEN7_RC_CTL_TO_MODE |
  4544. rc6_mask);
  4545. else
  4546. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4547. GEN6_RC_CTL_EI_MODE(1) |
  4548. rc6_mask);
  4549. /* 4 Program defaults and thresholds for RPS*/
  4550. I915_WRITE(GEN6_RPNSWREQ,
  4551. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4552. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  4553. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4554. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  4555. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  4556. /* Docs recommend 900MHz, and 300 MHz respectively */
  4557. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  4558. dev_priv->rps.max_freq_softlimit << 24 |
  4559. dev_priv->rps.min_freq_softlimit << 16);
  4560. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  4561. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  4562. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  4563. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  4564. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4565. /* 5: Enable RPS */
  4566. I915_WRITE(GEN6_RP_CONTROL,
  4567. GEN6_RP_MEDIA_TURBO |
  4568. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4569. GEN6_RP_MEDIA_IS_GFX |
  4570. GEN6_RP_ENABLE |
  4571. GEN6_RP_UP_BUSY_AVG |
  4572. GEN6_RP_DOWN_IDLE_AVG);
  4573. /* 6: Ring frequency + overclocking (our driver does this later */
  4574. reset_rps(dev_priv, gen6_set_rps);
  4575. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4576. }
  4577. static void gen6_enable_rps(struct drm_i915_private *dev_priv)
  4578. {
  4579. struct intel_engine_cs *engine;
  4580. enum intel_engine_id id;
  4581. u32 rc6vids, rc6_mask = 0;
  4582. u32 gtfifodbg;
  4583. int rc6_mode;
  4584. int ret;
  4585. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4586. /* Here begins a magic sequence of register writes to enable
  4587. * auto-downclocking.
  4588. *
  4589. * Perhaps there might be some value in exposing these to
  4590. * userspace...
  4591. */
  4592. I915_WRITE(GEN6_RC_STATE, 0);
  4593. /* Clear the DBG now so we don't confuse earlier errors */
  4594. gtfifodbg = I915_READ(GTFIFODBG);
  4595. if (gtfifodbg) {
  4596. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  4597. I915_WRITE(GTFIFODBG, gtfifodbg);
  4598. }
  4599. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4600. /* disable the counters and set deterministic thresholds */
  4601. I915_WRITE(GEN6_RC_CONTROL, 0);
  4602. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  4603. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  4604. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  4605. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4606. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4607. for_each_engine(engine, dev_priv, id)
  4608. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  4609. I915_WRITE(GEN6_RC_SLEEP, 0);
  4610. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  4611. if (IS_IVYBRIDGE(dev_priv))
  4612. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  4613. else
  4614. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  4615. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  4616. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  4617. /* Check if we are enabling RC6 */
  4618. rc6_mode = intel_enable_rc6();
  4619. if (rc6_mode & INTEL_RC6_ENABLE)
  4620. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  4621. /* We don't use those on Haswell */
  4622. if (!IS_HASWELL(dev_priv)) {
  4623. if (rc6_mode & INTEL_RC6p_ENABLE)
  4624. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  4625. if (rc6_mode & INTEL_RC6pp_ENABLE)
  4626. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  4627. }
  4628. intel_print_rc6_info(dev_priv, rc6_mask);
  4629. I915_WRITE(GEN6_RC_CONTROL,
  4630. rc6_mask |
  4631. GEN6_RC_CTL_EI_MODE(1) |
  4632. GEN6_RC_CTL_HW_ENABLE);
  4633. /* Power down if completely idle for over 50ms */
  4634. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  4635. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4636. reset_rps(dev_priv, gen6_set_rps);
  4637. rc6vids = 0;
  4638. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  4639. if (IS_GEN6(dev_priv) && ret) {
  4640. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  4641. } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  4642. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  4643. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  4644. rc6vids &= 0xffff00;
  4645. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  4646. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  4647. if (ret)
  4648. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  4649. }
  4650. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4651. }
  4652. static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  4653. {
  4654. int min_freq = 15;
  4655. unsigned int gpu_freq;
  4656. unsigned int max_ia_freq, min_ring_freq;
  4657. unsigned int max_gpu_freq, min_gpu_freq;
  4658. int scaling_factor = 180;
  4659. struct cpufreq_policy *policy;
  4660. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4661. policy = cpufreq_cpu_get(0);
  4662. if (policy) {
  4663. max_ia_freq = policy->cpuinfo.max_freq;
  4664. cpufreq_cpu_put(policy);
  4665. } else {
  4666. /*
  4667. * Default to measured freq if none found, PCU will ensure we
  4668. * don't go over
  4669. */
  4670. max_ia_freq = tsc_khz;
  4671. }
  4672. /* Convert from kHz to MHz */
  4673. max_ia_freq /= 1000;
  4674. min_ring_freq = I915_READ(DCLK) & 0xf;
  4675. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  4676. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  4677. if (IS_GEN9_BC(dev_priv)) {
  4678. /* Convert GT frequency to 50 HZ units */
  4679. min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
  4680. max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
  4681. } else {
  4682. min_gpu_freq = dev_priv->rps.min_freq;
  4683. max_gpu_freq = dev_priv->rps.max_freq;
  4684. }
  4685. /*
  4686. * For each potential GPU frequency, load a ring frequency we'd like
  4687. * to use for memory access. We do this by specifying the IA frequency
  4688. * the PCU should use as a reference to determine the ring frequency.
  4689. */
  4690. for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
  4691. int diff = max_gpu_freq - gpu_freq;
  4692. unsigned int ia_freq = 0, ring_freq = 0;
  4693. if (IS_GEN9_BC(dev_priv)) {
  4694. /*
  4695. * ring_freq = 2 * GT. ring_freq is in 100MHz units
  4696. * No floor required for ring frequency on SKL.
  4697. */
  4698. ring_freq = gpu_freq;
  4699. } else if (INTEL_INFO(dev_priv)->gen >= 8) {
  4700. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  4701. ring_freq = max(min_ring_freq, gpu_freq);
  4702. } else if (IS_HASWELL(dev_priv)) {
  4703. ring_freq = mult_frac(gpu_freq, 5, 4);
  4704. ring_freq = max(min_ring_freq, ring_freq);
  4705. /* leave ia_freq as the default, chosen by cpufreq */
  4706. } else {
  4707. /* On older processors, there is no separate ring
  4708. * clock domain, so in order to boost the bandwidth
  4709. * of the ring, we need to upclock the CPU (ia_freq).
  4710. *
  4711. * For GPU frequencies less than 750MHz,
  4712. * just use the lowest ring freq.
  4713. */
  4714. if (gpu_freq < min_freq)
  4715. ia_freq = 800;
  4716. else
  4717. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  4718. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  4719. }
  4720. sandybridge_pcode_write(dev_priv,
  4721. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  4722. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  4723. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  4724. gpu_freq);
  4725. }
  4726. }
  4727. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  4728. {
  4729. u32 val, rp0;
  4730. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  4731. switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
  4732. case 8:
  4733. /* (2 * 4) config */
  4734. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  4735. break;
  4736. case 12:
  4737. /* (2 * 6) config */
  4738. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  4739. break;
  4740. case 16:
  4741. /* (2 * 8) config */
  4742. default:
  4743. /* Setting (2 * 8) Min RP0 for any other combination */
  4744. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  4745. break;
  4746. }
  4747. rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  4748. return rp0;
  4749. }
  4750. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  4751. {
  4752. u32 val, rpe;
  4753. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  4754. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  4755. return rpe;
  4756. }
  4757. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  4758. {
  4759. u32 val, rp1;
  4760. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  4761. rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  4762. return rp1;
  4763. }
  4764. static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  4765. {
  4766. u32 val, rpn;
  4767. val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
  4768. rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
  4769. FB_GFX_FREQ_FUSE_MASK);
  4770. return rpn;
  4771. }
  4772. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  4773. {
  4774. u32 val, rp1;
  4775. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  4776. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  4777. return rp1;
  4778. }
  4779. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  4780. {
  4781. u32 val, rp0;
  4782. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  4783. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  4784. /* Clamp to max */
  4785. rp0 = min_t(u32, rp0, 0xea);
  4786. return rp0;
  4787. }
  4788. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  4789. {
  4790. u32 val, rpe;
  4791. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  4792. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  4793. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  4794. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  4795. return rpe;
  4796. }
  4797. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  4798. {
  4799. u32 val;
  4800. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  4801. /*
  4802. * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
  4803. * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
  4804. * a BYT-M B0 the above register contains 0xbf. Moreover when setting
  4805. * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
  4806. * to make sure it matches what Punit accepts.
  4807. */
  4808. return max_t(u32, val, 0xc0);
  4809. }
  4810. /* Check that the pctx buffer wasn't move under us. */
  4811. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  4812. {
  4813. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  4814. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  4815. dev_priv->vlv_pctx->stolen->start);
  4816. }
  4817. /* Check that the pcbr address is not empty. */
  4818. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  4819. {
  4820. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  4821. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  4822. }
  4823. static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
  4824. {
  4825. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  4826. unsigned long pctx_paddr, paddr;
  4827. u32 pcbr;
  4828. int pctx_size = 32*1024;
  4829. pcbr = I915_READ(VLV_PCBR);
  4830. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  4831. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4832. paddr = (dev_priv->mm.stolen_base +
  4833. (ggtt->stolen_size - pctx_size));
  4834. pctx_paddr = (paddr & (~4095));
  4835. I915_WRITE(VLV_PCBR, pctx_paddr);
  4836. }
  4837. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4838. }
  4839. static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
  4840. {
  4841. struct drm_i915_gem_object *pctx;
  4842. unsigned long pctx_paddr;
  4843. u32 pcbr;
  4844. int pctx_size = 24*1024;
  4845. pcbr = I915_READ(VLV_PCBR);
  4846. if (pcbr) {
  4847. /* BIOS set it up already, grab the pre-alloc'd space */
  4848. int pcbr_offset;
  4849. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  4850. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
  4851. pcbr_offset,
  4852. I915_GTT_OFFSET_NONE,
  4853. pctx_size);
  4854. goto out;
  4855. }
  4856. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4857. /*
  4858. * From the Gunit register HAS:
  4859. * The Gfx driver is expected to program this register and ensure
  4860. * proper allocation within Gfx stolen memory. For example, this
  4861. * register should be programmed such than the PCBR range does not
  4862. * overlap with other ranges, such as the frame buffer, protected
  4863. * memory, or any other relevant ranges.
  4864. */
  4865. pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
  4866. if (!pctx) {
  4867. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  4868. goto out;
  4869. }
  4870. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  4871. I915_WRITE(VLV_PCBR, pctx_paddr);
  4872. out:
  4873. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4874. dev_priv->vlv_pctx = pctx;
  4875. }
  4876. static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
  4877. {
  4878. if (WARN_ON(!dev_priv->vlv_pctx))
  4879. return;
  4880. i915_gem_object_put(dev_priv->vlv_pctx);
  4881. dev_priv->vlv_pctx = NULL;
  4882. }
  4883. static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
  4884. {
  4885. dev_priv->rps.gpll_ref_freq =
  4886. vlv_get_cck_clock(dev_priv, "GPLL ref",
  4887. CCK_GPLL_CLOCK_CONTROL,
  4888. dev_priv->czclk_freq);
  4889. DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
  4890. dev_priv->rps.gpll_ref_freq);
  4891. }
  4892. static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
  4893. {
  4894. u32 val;
  4895. valleyview_setup_pctx(dev_priv);
  4896. vlv_init_gpll_ref_freq(dev_priv);
  4897. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4898. switch ((val >> 6) & 3) {
  4899. case 0:
  4900. case 1:
  4901. dev_priv->mem_freq = 800;
  4902. break;
  4903. case 2:
  4904. dev_priv->mem_freq = 1066;
  4905. break;
  4906. case 3:
  4907. dev_priv->mem_freq = 1333;
  4908. break;
  4909. }
  4910. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4911. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  4912. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4913. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4914. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4915. dev_priv->rps.max_freq);
  4916. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  4917. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4918. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4919. dev_priv->rps.efficient_freq);
  4920. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  4921. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  4922. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4923. dev_priv->rps.rp1_freq);
  4924. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  4925. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4926. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4927. dev_priv->rps.min_freq);
  4928. }
  4929. static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
  4930. {
  4931. u32 val;
  4932. cherryview_setup_pctx(dev_priv);
  4933. vlv_init_gpll_ref_freq(dev_priv);
  4934. mutex_lock(&dev_priv->sb_lock);
  4935. val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  4936. mutex_unlock(&dev_priv->sb_lock);
  4937. switch ((val >> 2) & 0x7) {
  4938. case 3:
  4939. dev_priv->mem_freq = 2000;
  4940. break;
  4941. default:
  4942. dev_priv->mem_freq = 1600;
  4943. break;
  4944. }
  4945. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4946. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  4947. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4948. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4949. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4950. dev_priv->rps.max_freq);
  4951. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  4952. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4953. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4954. dev_priv->rps.efficient_freq);
  4955. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  4956. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  4957. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4958. dev_priv->rps.rp1_freq);
  4959. dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
  4960. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4961. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4962. dev_priv->rps.min_freq);
  4963. WARN_ONCE((dev_priv->rps.max_freq |
  4964. dev_priv->rps.efficient_freq |
  4965. dev_priv->rps.rp1_freq |
  4966. dev_priv->rps.min_freq) & 1,
  4967. "Odd GPU freq values\n");
  4968. }
  4969. static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
  4970. {
  4971. valleyview_cleanup_pctx(dev_priv);
  4972. }
  4973. static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
  4974. {
  4975. struct intel_engine_cs *engine;
  4976. enum intel_engine_id id;
  4977. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  4978. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4979. gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
  4980. GT_FIFO_FREE_ENTRIES_CHV);
  4981. if (gtfifodbg) {
  4982. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4983. gtfifodbg);
  4984. I915_WRITE(GTFIFODBG, gtfifodbg);
  4985. }
  4986. cherryview_check_pctx(dev_priv);
  4987. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  4988. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4989. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4990. /* Disable RC states. */
  4991. I915_WRITE(GEN6_RC_CONTROL, 0);
  4992. /* 2a: Program RC6 thresholds.*/
  4993. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4994. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4995. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4996. for_each_engine(engine, dev_priv, id)
  4997. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  4998. I915_WRITE(GEN6_RC_SLEEP, 0);
  4999. /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
  5000. I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
  5001. /* allows RC6 residency counter to work */
  5002. I915_WRITE(VLV_COUNTER_CONTROL,
  5003. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  5004. VLV_MEDIA_RC6_COUNT_EN |
  5005. VLV_RENDER_RC6_COUNT_EN));
  5006. /* For now we assume BIOS is allocating and populating the PCBR */
  5007. pcbr = I915_READ(VLV_PCBR);
  5008. /* 3: Enable RC6 */
  5009. if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
  5010. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  5011. rc6_mode = GEN7_RC_CTL_TO_MODE;
  5012. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  5013. /* 4 Program defaults and thresholds for RPS*/
  5014. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  5015. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  5016. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  5017. I915_WRITE(GEN6_RP_UP_EI, 66000);
  5018. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  5019. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5020. /* 5: Enable RPS */
  5021. I915_WRITE(GEN6_RP_CONTROL,
  5022. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5023. GEN6_RP_MEDIA_IS_GFX |
  5024. GEN6_RP_ENABLE |
  5025. GEN6_RP_UP_BUSY_AVG |
  5026. GEN6_RP_DOWN_IDLE_AVG);
  5027. /* Setting Fixed Bias */
  5028. val = VLV_OVERRIDE_EN |
  5029. VLV_SOC_TDP_EN |
  5030. CHV_BIAS_CPU_50_SOC_50;
  5031. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  5032. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5033. /* RPS code assumes GPLL is used */
  5034. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  5035. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  5036. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  5037. reset_rps(dev_priv, valleyview_set_rps);
  5038. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5039. }
  5040. static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
  5041. {
  5042. struct intel_engine_cs *engine;
  5043. enum intel_engine_id id;
  5044. u32 gtfifodbg, val, rc6_mode = 0;
  5045. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5046. valleyview_check_pctx(dev_priv);
  5047. gtfifodbg = I915_READ(GTFIFODBG);
  5048. if (gtfifodbg) {
  5049. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  5050. gtfifodbg);
  5051. I915_WRITE(GTFIFODBG, gtfifodbg);
  5052. }
  5053. /* If VLV, Forcewake all wells, else re-direct to regular path */
  5054. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5055. /* Disable RC states. */
  5056. I915_WRITE(GEN6_RC_CONTROL, 0);
  5057. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  5058. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  5059. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  5060. I915_WRITE(GEN6_RP_UP_EI, 66000);
  5061. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  5062. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5063. I915_WRITE(GEN6_RP_CONTROL,
  5064. GEN6_RP_MEDIA_TURBO |
  5065. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5066. GEN6_RP_MEDIA_IS_GFX |
  5067. GEN6_RP_ENABLE |
  5068. GEN6_RP_UP_BUSY_AVG |
  5069. GEN6_RP_DOWN_IDLE_CONT);
  5070. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  5071. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  5072. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  5073. for_each_engine(engine, dev_priv, id)
  5074. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5075. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  5076. /* allows RC6 residency counter to work */
  5077. I915_WRITE(VLV_COUNTER_CONTROL,
  5078. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  5079. VLV_RENDER_RC0_COUNT_EN |
  5080. VLV_MEDIA_RC6_COUNT_EN |
  5081. VLV_RENDER_RC6_COUNT_EN));
  5082. if (intel_enable_rc6() & INTEL_RC6_ENABLE)
  5083. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  5084. intel_print_rc6_info(dev_priv, rc6_mode);
  5085. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  5086. /* Setting Fixed Bias */
  5087. val = VLV_OVERRIDE_EN |
  5088. VLV_SOC_TDP_EN |
  5089. VLV_BIAS_CPU_125_SOC_875;
  5090. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  5091. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5092. /* RPS code assumes GPLL is used */
  5093. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  5094. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  5095. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  5096. reset_rps(dev_priv, valleyview_set_rps);
  5097. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5098. }
  5099. static unsigned long intel_pxfreq(u32 vidfreq)
  5100. {
  5101. unsigned long freq;
  5102. int div = (vidfreq & 0x3f0000) >> 16;
  5103. int post = (vidfreq & 0x3000) >> 12;
  5104. int pre = (vidfreq & 0x7);
  5105. if (!pre)
  5106. return 0;
  5107. freq = ((div * 133333) / ((1<<post) * pre));
  5108. return freq;
  5109. }
  5110. static const struct cparams {
  5111. u16 i;
  5112. u16 t;
  5113. u16 m;
  5114. u16 c;
  5115. } cparams[] = {
  5116. { 1, 1333, 301, 28664 },
  5117. { 1, 1066, 294, 24460 },
  5118. { 1, 800, 294, 25192 },
  5119. { 0, 1333, 276, 27605 },
  5120. { 0, 1066, 276, 27605 },
  5121. { 0, 800, 231, 23784 },
  5122. };
  5123. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  5124. {
  5125. u64 total_count, diff, ret;
  5126. u32 count1, count2, count3, m = 0, c = 0;
  5127. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  5128. int i;
  5129. assert_spin_locked(&mchdev_lock);
  5130. diff1 = now - dev_priv->ips.last_time1;
  5131. /* Prevent division-by-zero if we are asking too fast.
  5132. * Also, we don't get interesting results if we are polling
  5133. * faster than once in 10ms, so just return the saved value
  5134. * in such cases.
  5135. */
  5136. if (diff1 <= 10)
  5137. return dev_priv->ips.chipset_power;
  5138. count1 = I915_READ(DMIEC);
  5139. count2 = I915_READ(DDREC);
  5140. count3 = I915_READ(CSIEC);
  5141. total_count = count1 + count2 + count3;
  5142. /* FIXME: handle per-counter overflow */
  5143. if (total_count < dev_priv->ips.last_count1) {
  5144. diff = ~0UL - dev_priv->ips.last_count1;
  5145. diff += total_count;
  5146. } else {
  5147. diff = total_count - dev_priv->ips.last_count1;
  5148. }
  5149. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  5150. if (cparams[i].i == dev_priv->ips.c_m &&
  5151. cparams[i].t == dev_priv->ips.r_t) {
  5152. m = cparams[i].m;
  5153. c = cparams[i].c;
  5154. break;
  5155. }
  5156. }
  5157. diff = div_u64(diff, diff1);
  5158. ret = ((m * diff) + c);
  5159. ret = div_u64(ret, 10);
  5160. dev_priv->ips.last_count1 = total_count;
  5161. dev_priv->ips.last_time1 = now;
  5162. dev_priv->ips.chipset_power = ret;
  5163. return ret;
  5164. }
  5165. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  5166. {
  5167. unsigned long val;
  5168. if (INTEL_INFO(dev_priv)->gen != 5)
  5169. return 0;
  5170. spin_lock_irq(&mchdev_lock);
  5171. val = __i915_chipset_val(dev_priv);
  5172. spin_unlock_irq(&mchdev_lock);
  5173. return val;
  5174. }
  5175. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  5176. {
  5177. unsigned long m, x, b;
  5178. u32 tsfs;
  5179. tsfs = I915_READ(TSFS);
  5180. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  5181. x = I915_READ8(TR1);
  5182. b = tsfs & TSFS_INTR_MASK;
  5183. return ((m * x) / 127) - b;
  5184. }
  5185. static int _pxvid_to_vd(u8 pxvid)
  5186. {
  5187. if (pxvid == 0)
  5188. return 0;
  5189. if (pxvid >= 8 && pxvid < 31)
  5190. pxvid = 31;
  5191. return (pxvid + 2) * 125;
  5192. }
  5193. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  5194. {
  5195. const int vd = _pxvid_to_vd(pxvid);
  5196. const int vm = vd - 1125;
  5197. if (INTEL_INFO(dev_priv)->is_mobile)
  5198. return vm > 0 ? vm : 0;
  5199. return vd;
  5200. }
  5201. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  5202. {
  5203. u64 now, diff, diffms;
  5204. u32 count;
  5205. assert_spin_locked(&mchdev_lock);
  5206. now = ktime_get_raw_ns();
  5207. diffms = now - dev_priv->ips.last_time2;
  5208. do_div(diffms, NSEC_PER_MSEC);
  5209. /* Don't divide by 0 */
  5210. if (!diffms)
  5211. return;
  5212. count = I915_READ(GFXEC);
  5213. if (count < dev_priv->ips.last_count2) {
  5214. diff = ~0UL - dev_priv->ips.last_count2;
  5215. diff += count;
  5216. } else {
  5217. diff = count - dev_priv->ips.last_count2;
  5218. }
  5219. dev_priv->ips.last_count2 = count;
  5220. dev_priv->ips.last_time2 = now;
  5221. /* More magic constants... */
  5222. diff = diff * 1181;
  5223. diff = div_u64(diff, diffms * 10);
  5224. dev_priv->ips.gfx_power = diff;
  5225. }
  5226. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  5227. {
  5228. if (INTEL_INFO(dev_priv)->gen != 5)
  5229. return;
  5230. spin_lock_irq(&mchdev_lock);
  5231. __i915_update_gfx_val(dev_priv);
  5232. spin_unlock_irq(&mchdev_lock);
  5233. }
  5234. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  5235. {
  5236. unsigned long t, corr, state1, corr2, state2;
  5237. u32 pxvid, ext_v;
  5238. assert_spin_locked(&mchdev_lock);
  5239. pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
  5240. pxvid = (pxvid >> 24) & 0x7f;
  5241. ext_v = pvid_to_extvid(dev_priv, pxvid);
  5242. state1 = ext_v;
  5243. t = i915_mch_val(dev_priv);
  5244. /* Revel in the empirically derived constants */
  5245. /* Correction factor in 1/100000 units */
  5246. if (t > 80)
  5247. corr = ((t * 2349) + 135940);
  5248. else if (t >= 50)
  5249. corr = ((t * 964) + 29317);
  5250. else /* < 50 */
  5251. corr = ((t * 301) + 1004);
  5252. corr = corr * ((150142 * state1) / 10000 - 78642);
  5253. corr /= 100000;
  5254. corr2 = (corr * dev_priv->ips.corr);
  5255. state2 = (corr2 * state1) / 10000;
  5256. state2 /= 100; /* convert to mW */
  5257. __i915_update_gfx_val(dev_priv);
  5258. return dev_priv->ips.gfx_power + state2;
  5259. }
  5260. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  5261. {
  5262. unsigned long val;
  5263. if (INTEL_INFO(dev_priv)->gen != 5)
  5264. return 0;
  5265. spin_lock_irq(&mchdev_lock);
  5266. val = __i915_gfx_val(dev_priv);
  5267. spin_unlock_irq(&mchdev_lock);
  5268. return val;
  5269. }
  5270. /**
  5271. * i915_read_mch_val - return value for IPS use
  5272. *
  5273. * Calculate and return a value for the IPS driver to use when deciding whether
  5274. * we have thermal and power headroom to increase CPU or GPU power budget.
  5275. */
  5276. unsigned long i915_read_mch_val(void)
  5277. {
  5278. struct drm_i915_private *dev_priv;
  5279. unsigned long chipset_val, graphics_val, ret = 0;
  5280. spin_lock_irq(&mchdev_lock);
  5281. if (!i915_mch_dev)
  5282. goto out_unlock;
  5283. dev_priv = i915_mch_dev;
  5284. chipset_val = __i915_chipset_val(dev_priv);
  5285. graphics_val = __i915_gfx_val(dev_priv);
  5286. ret = chipset_val + graphics_val;
  5287. out_unlock:
  5288. spin_unlock_irq(&mchdev_lock);
  5289. return ret;
  5290. }
  5291. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  5292. /**
  5293. * i915_gpu_raise - raise GPU frequency limit
  5294. *
  5295. * Raise the limit; IPS indicates we have thermal headroom.
  5296. */
  5297. bool i915_gpu_raise(void)
  5298. {
  5299. struct drm_i915_private *dev_priv;
  5300. bool ret = true;
  5301. spin_lock_irq(&mchdev_lock);
  5302. if (!i915_mch_dev) {
  5303. ret = false;
  5304. goto out_unlock;
  5305. }
  5306. dev_priv = i915_mch_dev;
  5307. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  5308. dev_priv->ips.max_delay--;
  5309. out_unlock:
  5310. spin_unlock_irq(&mchdev_lock);
  5311. return ret;
  5312. }
  5313. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  5314. /**
  5315. * i915_gpu_lower - lower GPU frequency limit
  5316. *
  5317. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  5318. * frequency maximum.
  5319. */
  5320. bool i915_gpu_lower(void)
  5321. {
  5322. struct drm_i915_private *dev_priv;
  5323. bool ret = true;
  5324. spin_lock_irq(&mchdev_lock);
  5325. if (!i915_mch_dev) {
  5326. ret = false;
  5327. goto out_unlock;
  5328. }
  5329. dev_priv = i915_mch_dev;
  5330. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  5331. dev_priv->ips.max_delay++;
  5332. out_unlock:
  5333. spin_unlock_irq(&mchdev_lock);
  5334. return ret;
  5335. }
  5336. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  5337. /**
  5338. * i915_gpu_busy - indicate GPU business to IPS
  5339. *
  5340. * Tell the IPS driver whether or not the GPU is busy.
  5341. */
  5342. bool i915_gpu_busy(void)
  5343. {
  5344. bool ret = false;
  5345. spin_lock_irq(&mchdev_lock);
  5346. if (i915_mch_dev)
  5347. ret = i915_mch_dev->gt.awake;
  5348. spin_unlock_irq(&mchdev_lock);
  5349. return ret;
  5350. }
  5351. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  5352. /**
  5353. * i915_gpu_turbo_disable - disable graphics turbo
  5354. *
  5355. * Disable graphics turbo by resetting the max frequency and setting the
  5356. * current frequency to the default.
  5357. */
  5358. bool i915_gpu_turbo_disable(void)
  5359. {
  5360. struct drm_i915_private *dev_priv;
  5361. bool ret = true;
  5362. spin_lock_irq(&mchdev_lock);
  5363. if (!i915_mch_dev) {
  5364. ret = false;
  5365. goto out_unlock;
  5366. }
  5367. dev_priv = i915_mch_dev;
  5368. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  5369. if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
  5370. ret = false;
  5371. out_unlock:
  5372. spin_unlock_irq(&mchdev_lock);
  5373. return ret;
  5374. }
  5375. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  5376. /**
  5377. * Tells the intel_ips driver that the i915 driver is now loaded, if
  5378. * IPS got loaded first.
  5379. *
  5380. * This awkward dance is so that neither module has to depend on the
  5381. * other in order for IPS to do the appropriate communication of
  5382. * GPU turbo limits to i915.
  5383. */
  5384. static void
  5385. ips_ping_for_i915_load(void)
  5386. {
  5387. void (*link)(void);
  5388. link = symbol_get(ips_link_to_i915_driver);
  5389. if (link) {
  5390. link();
  5391. symbol_put(ips_link_to_i915_driver);
  5392. }
  5393. }
  5394. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  5395. {
  5396. /* We only register the i915 ips part with intel-ips once everything is
  5397. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  5398. spin_lock_irq(&mchdev_lock);
  5399. i915_mch_dev = dev_priv;
  5400. spin_unlock_irq(&mchdev_lock);
  5401. ips_ping_for_i915_load();
  5402. }
  5403. void intel_gpu_ips_teardown(void)
  5404. {
  5405. spin_lock_irq(&mchdev_lock);
  5406. i915_mch_dev = NULL;
  5407. spin_unlock_irq(&mchdev_lock);
  5408. }
  5409. static void intel_init_emon(struct drm_i915_private *dev_priv)
  5410. {
  5411. u32 lcfuse;
  5412. u8 pxw[16];
  5413. int i;
  5414. /* Disable to program */
  5415. I915_WRITE(ECR, 0);
  5416. POSTING_READ(ECR);
  5417. /* Program energy weights for various events */
  5418. I915_WRITE(SDEW, 0x15040d00);
  5419. I915_WRITE(CSIEW0, 0x007f0000);
  5420. I915_WRITE(CSIEW1, 0x1e220004);
  5421. I915_WRITE(CSIEW2, 0x04000004);
  5422. for (i = 0; i < 5; i++)
  5423. I915_WRITE(PEW(i), 0);
  5424. for (i = 0; i < 3; i++)
  5425. I915_WRITE(DEW(i), 0);
  5426. /* Program P-state weights to account for frequency power adjustment */
  5427. for (i = 0; i < 16; i++) {
  5428. u32 pxvidfreq = I915_READ(PXVFREQ(i));
  5429. unsigned long freq = intel_pxfreq(pxvidfreq);
  5430. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  5431. PXVFREQ_PX_SHIFT;
  5432. unsigned long val;
  5433. val = vid * vid;
  5434. val *= (freq / 1000);
  5435. val *= 255;
  5436. val /= (127*127*900);
  5437. if (val > 0xff)
  5438. DRM_ERROR("bad pxval: %ld\n", val);
  5439. pxw[i] = val;
  5440. }
  5441. /* Render standby states get 0 weight */
  5442. pxw[14] = 0;
  5443. pxw[15] = 0;
  5444. for (i = 0; i < 4; i++) {
  5445. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  5446. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  5447. I915_WRITE(PXW(i), val);
  5448. }
  5449. /* Adjust magic regs to magic values (more experimental results) */
  5450. I915_WRITE(OGW0, 0);
  5451. I915_WRITE(OGW1, 0);
  5452. I915_WRITE(EG0, 0x00007f00);
  5453. I915_WRITE(EG1, 0x0000000e);
  5454. I915_WRITE(EG2, 0x000e0000);
  5455. I915_WRITE(EG3, 0x68000300);
  5456. I915_WRITE(EG4, 0x42000000);
  5457. I915_WRITE(EG5, 0x00140031);
  5458. I915_WRITE(EG6, 0);
  5459. I915_WRITE(EG7, 0);
  5460. for (i = 0; i < 8; i++)
  5461. I915_WRITE(PXWL(i), 0);
  5462. /* Enable PMON + select events */
  5463. I915_WRITE(ECR, 0x80000019);
  5464. lcfuse = I915_READ(LCFUSE02);
  5465. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  5466. }
  5467. void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
  5468. {
  5469. /*
  5470. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  5471. * requirement.
  5472. */
  5473. if (!i915.enable_rc6) {
  5474. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  5475. intel_runtime_pm_get(dev_priv);
  5476. }
  5477. mutex_lock(&dev_priv->drm.struct_mutex);
  5478. mutex_lock(&dev_priv->rps.hw_lock);
  5479. /* Initialize RPS limits (for userspace) */
  5480. if (IS_CHERRYVIEW(dev_priv))
  5481. cherryview_init_gt_powersave(dev_priv);
  5482. else if (IS_VALLEYVIEW(dev_priv))
  5483. valleyview_init_gt_powersave(dev_priv);
  5484. else if (INTEL_GEN(dev_priv) >= 6)
  5485. gen6_init_rps_frequencies(dev_priv);
  5486. /* Derive initial user preferences/limits from the hardware limits */
  5487. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  5488. dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
  5489. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  5490. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  5491. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  5492. dev_priv->rps.min_freq_softlimit =
  5493. max_t(int,
  5494. dev_priv->rps.efficient_freq,
  5495. intel_freq_opcode(dev_priv, 450));
  5496. /* After setting max-softlimit, find the overclock max freq */
  5497. if (IS_GEN6(dev_priv) ||
  5498. IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
  5499. u32 params = 0;
  5500. sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
  5501. if (params & BIT(31)) { /* OC supported */
  5502. DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
  5503. (dev_priv->rps.max_freq & 0xff) * 50,
  5504. (params & 0xff) * 50);
  5505. dev_priv->rps.max_freq = params & 0xff;
  5506. }
  5507. }
  5508. /* Finally allow us to boost to max by default */
  5509. dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
  5510. mutex_unlock(&dev_priv->rps.hw_lock);
  5511. mutex_unlock(&dev_priv->drm.struct_mutex);
  5512. intel_autoenable_gt_powersave(dev_priv);
  5513. }
  5514. void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
  5515. {
  5516. if (IS_VALLEYVIEW(dev_priv))
  5517. valleyview_cleanup_gt_powersave(dev_priv);
  5518. if (!i915.enable_rc6)
  5519. intel_runtime_pm_put(dev_priv);
  5520. }
  5521. /**
  5522. * intel_suspend_gt_powersave - suspend PM work and helper threads
  5523. * @dev_priv: i915 device
  5524. *
  5525. * We don't want to disable RC6 or other features here, we just want
  5526. * to make sure any work we've queued has finished and won't bother
  5527. * us while we're suspended.
  5528. */
  5529. void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
  5530. {
  5531. if (INTEL_GEN(dev_priv) < 6)
  5532. return;
  5533. if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
  5534. intel_runtime_pm_put(dev_priv);
  5535. /* gen6_rps_idle() will be called later to disable interrupts */
  5536. }
  5537. void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
  5538. {
  5539. dev_priv->rps.enabled = true; /* force disabling */
  5540. intel_disable_gt_powersave(dev_priv);
  5541. gen6_reset_rps_interrupts(dev_priv);
  5542. }
  5543. void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
  5544. {
  5545. if (!READ_ONCE(dev_priv->rps.enabled))
  5546. return;
  5547. mutex_lock(&dev_priv->rps.hw_lock);
  5548. if (INTEL_GEN(dev_priv) >= 9) {
  5549. gen9_disable_rc6(dev_priv);
  5550. gen9_disable_rps(dev_priv);
  5551. } else if (IS_CHERRYVIEW(dev_priv)) {
  5552. cherryview_disable_rps(dev_priv);
  5553. } else if (IS_VALLEYVIEW(dev_priv)) {
  5554. valleyview_disable_rps(dev_priv);
  5555. } else if (INTEL_GEN(dev_priv) >= 6) {
  5556. gen6_disable_rps(dev_priv);
  5557. } else if (IS_IRONLAKE_M(dev_priv)) {
  5558. ironlake_disable_drps(dev_priv);
  5559. }
  5560. dev_priv->rps.enabled = false;
  5561. mutex_unlock(&dev_priv->rps.hw_lock);
  5562. }
  5563. void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
  5564. {
  5565. /* We shouldn't be disabling as we submit, so this should be less
  5566. * racy than it appears!
  5567. */
  5568. if (READ_ONCE(dev_priv->rps.enabled))
  5569. return;
  5570. /* Powersaving is controlled by the host when inside a VM */
  5571. if (intel_vgpu_active(dev_priv))
  5572. return;
  5573. mutex_lock(&dev_priv->rps.hw_lock);
  5574. if (IS_CHERRYVIEW(dev_priv)) {
  5575. cherryview_enable_rps(dev_priv);
  5576. } else if (IS_VALLEYVIEW(dev_priv)) {
  5577. valleyview_enable_rps(dev_priv);
  5578. } else if (INTEL_GEN(dev_priv) >= 9) {
  5579. gen9_enable_rc6(dev_priv);
  5580. gen9_enable_rps(dev_priv);
  5581. if (IS_GEN9_BC(dev_priv))
  5582. gen6_update_ring_freq(dev_priv);
  5583. } else if (IS_BROADWELL(dev_priv)) {
  5584. gen8_enable_rps(dev_priv);
  5585. gen6_update_ring_freq(dev_priv);
  5586. } else if (INTEL_GEN(dev_priv) >= 6) {
  5587. gen6_enable_rps(dev_priv);
  5588. gen6_update_ring_freq(dev_priv);
  5589. } else if (IS_IRONLAKE_M(dev_priv)) {
  5590. ironlake_enable_drps(dev_priv);
  5591. intel_init_emon(dev_priv);
  5592. }
  5593. WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
  5594. WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
  5595. WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
  5596. WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
  5597. dev_priv->rps.enabled = true;
  5598. mutex_unlock(&dev_priv->rps.hw_lock);
  5599. }
  5600. static void __intel_autoenable_gt_powersave(struct work_struct *work)
  5601. {
  5602. struct drm_i915_private *dev_priv =
  5603. container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
  5604. struct intel_engine_cs *rcs;
  5605. struct drm_i915_gem_request *req;
  5606. if (READ_ONCE(dev_priv->rps.enabled))
  5607. goto out;
  5608. rcs = dev_priv->engine[RCS];
  5609. if (rcs->last_retired_context)
  5610. goto out;
  5611. if (!rcs->init_context)
  5612. goto out;
  5613. mutex_lock(&dev_priv->drm.struct_mutex);
  5614. req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
  5615. if (IS_ERR(req))
  5616. goto unlock;
  5617. if (!i915.enable_execlists && i915_switch_context(req) == 0)
  5618. rcs->init_context(req);
  5619. /* Mark the device busy, calling intel_enable_gt_powersave() */
  5620. i915_add_request_no_flush(req);
  5621. unlock:
  5622. mutex_unlock(&dev_priv->drm.struct_mutex);
  5623. out:
  5624. intel_runtime_pm_put(dev_priv);
  5625. }
  5626. void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
  5627. {
  5628. if (READ_ONCE(dev_priv->rps.enabled))
  5629. return;
  5630. if (IS_IRONLAKE_M(dev_priv)) {
  5631. ironlake_enable_drps(dev_priv);
  5632. intel_init_emon(dev_priv);
  5633. } else if (INTEL_INFO(dev_priv)->gen >= 6) {
  5634. /*
  5635. * PCU communication is slow and this doesn't need to be
  5636. * done at any specific time, so do this out of our fast path
  5637. * to make resume and init faster.
  5638. *
  5639. * We depend on the HW RC6 power context save/restore
  5640. * mechanism when entering D3 through runtime PM suspend. So
  5641. * disable RPM until RPS/RC6 is properly setup. We can only
  5642. * get here via the driver load/system resume/runtime resume
  5643. * paths, so the _noresume version is enough (and in case of
  5644. * runtime resume it's necessary).
  5645. */
  5646. if (queue_delayed_work(dev_priv->wq,
  5647. &dev_priv->rps.autoenable_work,
  5648. round_jiffies_up_relative(HZ)))
  5649. intel_runtime_pm_get_noresume(dev_priv);
  5650. }
  5651. }
  5652. static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
  5653. {
  5654. /*
  5655. * On Ibex Peak and Cougar Point, we need to disable clock
  5656. * gating for the panel power sequencer or it will fail to
  5657. * start up when no ports are active.
  5658. */
  5659. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  5660. }
  5661. static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
  5662. {
  5663. enum pipe pipe;
  5664. for_each_pipe(dev_priv, pipe) {
  5665. I915_WRITE(DSPCNTR(pipe),
  5666. I915_READ(DSPCNTR(pipe)) |
  5667. DISPPLANE_TRICKLE_FEED_DISABLE);
  5668. I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
  5669. POSTING_READ(DSPSURF(pipe));
  5670. }
  5671. }
  5672. static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
  5673. {
  5674. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  5675. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  5676. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  5677. /*
  5678. * Don't touch WM1S_LP_EN here.
  5679. * Doing so could cause underruns.
  5680. */
  5681. }
  5682. static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
  5683. {
  5684. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  5685. /*
  5686. * Required for FBC
  5687. * WaFbcDisableDpfcClockGating:ilk
  5688. */
  5689. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  5690. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  5691. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  5692. I915_WRITE(PCH_3DCGDIS0,
  5693. MARIUNIT_CLOCK_GATE_DISABLE |
  5694. SVSMUNIT_CLOCK_GATE_DISABLE);
  5695. I915_WRITE(PCH_3DCGDIS1,
  5696. VFMUNIT_CLOCK_GATE_DISABLE);
  5697. /*
  5698. * According to the spec the following bits should be set in
  5699. * order to enable memory self-refresh
  5700. * The bit 22/21 of 0x42004
  5701. * The bit 5 of 0x42020
  5702. * The bit 15 of 0x45000
  5703. */
  5704. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5705. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  5706. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  5707. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  5708. I915_WRITE(DISP_ARB_CTL,
  5709. (I915_READ(DISP_ARB_CTL) |
  5710. DISP_FBC_WM_DIS));
  5711. ilk_init_lp_watermarks(dev_priv);
  5712. /*
  5713. * Based on the document from hardware guys the following bits
  5714. * should be set unconditionally in order to enable FBC.
  5715. * The bit 22 of 0x42000
  5716. * The bit 22 of 0x42004
  5717. * The bit 7,8,9 of 0x42020.
  5718. */
  5719. if (IS_IRONLAKE_M(dev_priv)) {
  5720. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  5721. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  5722. I915_READ(ILK_DISPLAY_CHICKEN1) |
  5723. ILK_FBCQ_DIS);
  5724. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5725. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5726. ILK_DPARB_GATE);
  5727. }
  5728. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  5729. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5730. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5731. ILK_ELPIN_409_SELECT);
  5732. I915_WRITE(_3D_CHICKEN2,
  5733. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  5734. _3D_CHICKEN2_WM_READ_PIPELINED);
  5735. /* WaDisableRenderCachePipelinedFlush:ilk */
  5736. I915_WRITE(CACHE_MODE_0,
  5737. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5738. /* WaDisable_RenderCache_OperationalFlush:ilk */
  5739. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5740. g4x_disable_trickle_feed(dev_priv);
  5741. ibx_init_clock_gating(dev_priv);
  5742. }
  5743. static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
  5744. {
  5745. int pipe;
  5746. uint32_t val;
  5747. /*
  5748. * On Ibex Peak and Cougar Point, we need to disable clock
  5749. * gating for the panel power sequencer or it will fail to
  5750. * start up when no ports are active.
  5751. */
  5752. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  5753. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  5754. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  5755. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  5756. DPLS_EDP_PPS_FIX_DIS);
  5757. /* The below fixes the weird display corruption, a few pixels shifted
  5758. * downward, on (only) LVDS of some HP laptops with IVY.
  5759. */
  5760. for_each_pipe(dev_priv, pipe) {
  5761. val = I915_READ(TRANS_CHICKEN2(pipe));
  5762. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  5763. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  5764. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  5765. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  5766. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  5767. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  5768. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  5769. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  5770. }
  5771. /* WADP0ClockGatingDisable */
  5772. for_each_pipe(dev_priv, pipe) {
  5773. I915_WRITE(TRANS_CHICKEN1(pipe),
  5774. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5775. }
  5776. }
  5777. static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
  5778. {
  5779. uint32_t tmp;
  5780. tmp = I915_READ(MCH_SSKPD);
  5781. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  5782. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  5783. tmp);
  5784. }
  5785. static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
  5786. {
  5787. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  5788. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  5789. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5790. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5791. ILK_ELPIN_409_SELECT);
  5792. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  5793. I915_WRITE(_3D_CHICKEN,
  5794. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  5795. /* WaDisable_RenderCache_OperationalFlush:snb */
  5796. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5797. /*
  5798. * BSpec recoomends 8x4 when MSAA is used,
  5799. * however in practice 16x4 seems fastest.
  5800. *
  5801. * Note that PS/WM thread counts depend on the WIZ hashing
  5802. * disable bit, which we don't touch here, but it's good
  5803. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5804. */
  5805. I915_WRITE(GEN6_GT_MODE,
  5806. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5807. ilk_init_lp_watermarks(dev_priv);
  5808. I915_WRITE(CACHE_MODE_0,
  5809. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  5810. I915_WRITE(GEN6_UCGCTL1,
  5811. I915_READ(GEN6_UCGCTL1) |
  5812. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  5813. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5814. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  5815. * gating disable must be set. Failure to set it results in
  5816. * flickering pixels due to Z write ordering failures after
  5817. * some amount of runtime in the Mesa "fire" demo, and Unigine
  5818. * Sanctuary and Tropics, and apparently anything else with
  5819. * alpha test or pixel discard.
  5820. *
  5821. * According to the spec, bit 11 (RCCUNIT) must also be set,
  5822. * but we didn't debug actual testcases to find it out.
  5823. *
  5824. * WaDisableRCCUnitClockGating:snb
  5825. * WaDisableRCPBUnitClockGating:snb
  5826. */
  5827. I915_WRITE(GEN6_UCGCTL2,
  5828. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  5829. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  5830. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  5831. I915_WRITE(_3D_CHICKEN3,
  5832. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  5833. /*
  5834. * Bspec says:
  5835. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  5836. * 3DSTATE_SF number of SF output attributes is more than 16."
  5837. */
  5838. I915_WRITE(_3D_CHICKEN3,
  5839. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  5840. /*
  5841. * According to the spec the following bits should be
  5842. * set in order to enable memory self-refresh and fbc:
  5843. * The bit21 and bit22 of 0x42000
  5844. * The bit21 and bit22 of 0x42004
  5845. * The bit5 and bit7 of 0x42020
  5846. * The bit14 of 0x70180
  5847. * The bit14 of 0x71180
  5848. *
  5849. * WaFbcAsynchFlipDisableFbcQueue:snb
  5850. */
  5851. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  5852. I915_READ(ILK_DISPLAY_CHICKEN1) |
  5853. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  5854. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5855. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5856. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  5857. I915_WRITE(ILK_DSPCLK_GATE_D,
  5858. I915_READ(ILK_DSPCLK_GATE_D) |
  5859. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  5860. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  5861. g4x_disable_trickle_feed(dev_priv);
  5862. cpt_init_clock_gating(dev_priv);
  5863. gen6_check_mch_setup(dev_priv);
  5864. }
  5865. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  5866. {
  5867. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  5868. /*
  5869. * WaVSThreadDispatchOverride:ivb,vlv
  5870. *
  5871. * This actually overrides the dispatch
  5872. * mode for all thread types.
  5873. */
  5874. reg &= ~GEN7_FF_SCHED_MASK;
  5875. reg |= GEN7_FF_TS_SCHED_HW;
  5876. reg |= GEN7_FF_VS_SCHED_HW;
  5877. reg |= GEN7_FF_DS_SCHED_HW;
  5878. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  5879. }
  5880. static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
  5881. {
  5882. /*
  5883. * TODO: this bit should only be enabled when really needed, then
  5884. * disabled when not needed anymore in order to save power.
  5885. */
  5886. if (HAS_PCH_LPT_LP(dev_priv))
  5887. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  5888. I915_READ(SOUTH_DSPCLK_GATE_D) |
  5889. PCH_LP_PARTITION_LEVEL_DISABLE);
  5890. /* WADPOClockGatingDisable:hsw */
  5891. I915_WRITE(TRANS_CHICKEN1(PIPE_A),
  5892. I915_READ(TRANS_CHICKEN1(PIPE_A)) |
  5893. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5894. }
  5895. static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
  5896. {
  5897. if (HAS_PCH_LPT_LP(dev_priv)) {
  5898. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5899. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5900. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5901. }
  5902. }
  5903. static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
  5904. int general_prio_credits,
  5905. int high_prio_credits)
  5906. {
  5907. u32 misccpctl;
  5908. /* WaTempDisableDOPClkGating:bdw */
  5909. misccpctl = I915_READ(GEN7_MISCCPCTL);
  5910. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  5911. I915_WRITE(GEN8_L3SQCREG1,
  5912. L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
  5913. L3_HIGH_PRIO_CREDITS(high_prio_credits));
  5914. /*
  5915. * Wait at least 100 clocks before re-enabling clock gating.
  5916. * See the definition of L3SQCREG1 in BSpec.
  5917. */
  5918. POSTING_READ(GEN8_L3SQCREG1);
  5919. udelay(1);
  5920. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  5921. }
  5922. static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
  5923. {
  5924. gen9_init_clock_gating(dev_priv);
  5925. /* WaDisableSDEUnitClockGating:kbl */
  5926. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  5927. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5928. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5929. /* WaDisableGamClockGating:kbl */
  5930. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  5931. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5932. GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
  5933. /* WaFbcNukeOnHostModify:kbl */
  5934. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  5935. ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
  5936. }
  5937. static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
  5938. {
  5939. gen9_init_clock_gating(dev_priv);
  5940. /* WAC6entrylatency:skl */
  5941. I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
  5942. FBC_LLC_FULLY_OPEN);
  5943. /* WaFbcNukeOnHostModify:skl */
  5944. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  5945. ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
  5946. }
  5947. static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
  5948. {
  5949. enum pipe pipe;
  5950. ilk_init_lp_watermarks(dev_priv);
  5951. /* WaSwitchSolVfFArbitrationPriority:bdw */
  5952. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5953. /* WaPsrDPAMaskVBlankInSRD:bdw */
  5954. I915_WRITE(CHICKEN_PAR1_1,
  5955. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  5956. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  5957. for_each_pipe(dev_priv, pipe) {
  5958. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  5959. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  5960. BDW_DPRS_MASK_VBLANK_SRD);
  5961. }
  5962. /* WaVSRefCountFullforceMissDisable:bdw */
  5963. /* WaDSRefCountFullforceMissDisable:bdw */
  5964. I915_WRITE(GEN7_FF_THREAD_MODE,
  5965. I915_READ(GEN7_FF_THREAD_MODE) &
  5966. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5967. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5968. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5969. /* WaDisableSDEUnitClockGating:bdw */
  5970. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5971. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5972. /* WaProgramL3SqcReg1Default:bdw */
  5973. gen8_set_l3sqc_credits(dev_priv, 30, 2);
  5974. /*
  5975. * WaGttCachingOffByDefault:bdw
  5976. * GTT cache may not work with big pages, so if those
  5977. * are ever enabled GTT cache may need to be disabled.
  5978. */
  5979. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  5980. /* WaKVMNotificationOnConfigChange:bdw */
  5981. I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
  5982. | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
  5983. lpt_init_clock_gating(dev_priv);
  5984. /* WaDisableDopClockGating:bdw
  5985. *
  5986. * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
  5987. * clock gating.
  5988. */
  5989. I915_WRITE(GEN6_UCGCTL1,
  5990. I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
  5991. }
  5992. static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
  5993. {
  5994. ilk_init_lp_watermarks(dev_priv);
  5995. /* L3 caching of data atomics doesn't work -- disable it. */
  5996. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  5997. I915_WRITE(HSW_ROW_CHICKEN3,
  5998. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  5999. /* This is required by WaCatErrorRejectionIssue:hsw */
  6000. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6001. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6002. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6003. /* WaVSRefCountFullforceMissDisable:hsw */
  6004. I915_WRITE(GEN7_FF_THREAD_MODE,
  6005. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  6006. /* WaDisable_RenderCache_OperationalFlush:hsw */
  6007. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6008. /* enable HiZ Raw Stall Optimization */
  6009. I915_WRITE(CACHE_MODE_0_GEN7,
  6010. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  6011. /* WaDisable4x2SubspanOptimization:hsw */
  6012. I915_WRITE(CACHE_MODE_1,
  6013. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  6014. /*
  6015. * BSpec recommends 8x4 when MSAA is used,
  6016. * however in practice 16x4 seems fastest.
  6017. *
  6018. * Note that PS/WM thread counts depend on the WIZ hashing
  6019. * disable bit, which we don't touch here, but it's good
  6020. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6021. */
  6022. I915_WRITE(GEN7_GT_MODE,
  6023. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6024. /* WaSampleCChickenBitEnable:hsw */
  6025. I915_WRITE(HALF_SLICE_CHICKEN3,
  6026. _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  6027. /* WaSwitchSolVfFArbitrationPriority:hsw */
  6028. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  6029. /* WaRsPkgCStateDisplayPMReq:hsw */
  6030. I915_WRITE(CHICKEN_PAR1_1,
  6031. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  6032. lpt_init_clock_gating(dev_priv);
  6033. }
  6034. static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
  6035. {
  6036. uint32_t snpcr;
  6037. ilk_init_lp_watermarks(dev_priv);
  6038. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  6039. /* WaDisableEarlyCull:ivb */
  6040. I915_WRITE(_3D_CHICKEN3,
  6041. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  6042. /* WaDisableBackToBackFlipFix:ivb */
  6043. I915_WRITE(IVB_CHICKEN3,
  6044. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  6045. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  6046. /* WaDisablePSDDualDispatchEnable:ivb */
  6047. if (IS_IVB_GT1(dev_priv))
  6048. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  6049. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  6050. /* WaDisable_RenderCache_OperationalFlush:ivb */
  6051. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6052. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  6053. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  6054. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  6055. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  6056. I915_WRITE(GEN7_L3CNTLREG1,
  6057. GEN7_WA_FOR_GEN7_L3_CONTROL);
  6058. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  6059. GEN7_WA_L3_CHICKEN_MODE);
  6060. if (IS_IVB_GT1(dev_priv))
  6061. I915_WRITE(GEN7_ROW_CHICKEN2,
  6062. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6063. else {
  6064. /* must write both registers */
  6065. I915_WRITE(GEN7_ROW_CHICKEN2,
  6066. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6067. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  6068. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6069. }
  6070. /* WaForceL3Serialization:ivb */
  6071. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  6072. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  6073. /*
  6074. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  6075. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  6076. */
  6077. I915_WRITE(GEN6_UCGCTL2,
  6078. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  6079. /* This is required by WaCatErrorRejectionIssue:ivb */
  6080. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6081. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6082. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6083. g4x_disable_trickle_feed(dev_priv);
  6084. gen7_setup_fixed_func_scheduler(dev_priv);
  6085. if (0) { /* causes HiZ corruption on ivb:gt1 */
  6086. /* enable HiZ Raw Stall Optimization */
  6087. I915_WRITE(CACHE_MODE_0_GEN7,
  6088. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  6089. }
  6090. /* WaDisable4x2SubspanOptimization:ivb */
  6091. I915_WRITE(CACHE_MODE_1,
  6092. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  6093. /*
  6094. * BSpec recommends 8x4 when MSAA is used,
  6095. * however in practice 16x4 seems fastest.
  6096. *
  6097. * Note that PS/WM thread counts depend on the WIZ hashing
  6098. * disable bit, which we don't touch here, but it's good
  6099. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6100. */
  6101. I915_WRITE(GEN7_GT_MODE,
  6102. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6103. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  6104. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  6105. snpcr |= GEN6_MBC_SNPCR_MED;
  6106. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  6107. if (!HAS_PCH_NOP(dev_priv))
  6108. cpt_init_clock_gating(dev_priv);
  6109. gen6_check_mch_setup(dev_priv);
  6110. }
  6111. static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
  6112. {
  6113. /* WaDisableEarlyCull:vlv */
  6114. I915_WRITE(_3D_CHICKEN3,
  6115. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  6116. /* WaDisableBackToBackFlipFix:vlv */
  6117. I915_WRITE(IVB_CHICKEN3,
  6118. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  6119. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  6120. /* WaPsdDispatchEnable:vlv */
  6121. /* WaDisablePSDDualDispatchEnable:vlv */
  6122. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  6123. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  6124. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  6125. /* WaDisable_RenderCache_OperationalFlush:vlv */
  6126. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6127. /* WaForceL3Serialization:vlv */
  6128. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  6129. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  6130. /* WaDisableDopClockGating:vlv */
  6131. I915_WRITE(GEN7_ROW_CHICKEN2,
  6132. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6133. /* This is required by WaCatErrorRejectionIssue:vlv */
  6134. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6135. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6136. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6137. gen7_setup_fixed_func_scheduler(dev_priv);
  6138. /*
  6139. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  6140. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  6141. */
  6142. I915_WRITE(GEN6_UCGCTL2,
  6143. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  6144. /* WaDisableL3Bank2xClockGate:vlv
  6145. * Disabling L3 clock gating- MMIO 940c[25] = 1
  6146. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  6147. I915_WRITE(GEN7_UCGCTL4,
  6148. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  6149. /*
  6150. * BSpec says this must be set, even though
  6151. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  6152. */
  6153. I915_WRITE(CACHE_MODE_1,
  6154. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  6155. /*
  6156. * BSpec recommends 8x4 when MSAA is used,
  6157. * however in practice 16x4 seems fastest.
  6158. *
  6159. * Note that PS/WM thread counts depend on the WIZ hashing
  6160. * disable bit, which we don't touch here, but it's good
  6161. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6162. */
  6163. I915_WRITE(GEN7_GT_MODE,
  6164. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6165. /*
  6166. * WaIncreaseL3CreditsForVLVB0:vlv
  6167. * This is the hardware default actually.
  6168. */
  6169. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  6170. /*
  6171. * WaDisableVLVClockGating_VBIIssue:vlv
  6172. * Disable clock gating on th GCFG unit to prevent a delay
  6173. * in the reporting of vblank events.
  6174. */
  6175. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  6176. }
  6177. static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
  6178. {
  6179. /* WaVSRefCountFullforceMissDisable:chv */
  6180. /* WaDSRefCountFullforceMissDisable:chv */
  6181. I915_WRITE(GEN7_FF_THREAD_MODE,
  6182. I915_READ(GEN7_FF_THREAD_MODE) &
  6183. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  6184. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  6185. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  6186. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  6187. /* WaDisableCSUnitClockGating:chv */
  6188. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  6189. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  6190. /* WaDisableSDEUnitClockGating:chv */
  6191. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  6192. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  6193. /*
  6194. * WaProgramL3SqcReg1Default:chv
  6195. * See gfxspecs/Related Documents/Performance Guide/
  6196. * LSQC Setting Recommendations.
  6197. */
  6198. gen8_set_l3sqc_credits(dev_priv, 38, 2);
  6199. /*
  6200. * GTT cache may not work with big pages, so if those
  6201. * are ever enabled GTT cache may need to be disabled.
  6202. */
  6203. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  6204. }
  6205. static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
  6206. {
  6207. uint32_t dspclk_gate;
  6208. I915_WRITE(RENCLK_GATE_D1, 0);
  6209. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  6210. GS_UNIT_CLOCK_GATE_DISABLE |
  6211. CL_UNIT_CLOCK_GATE_DISABLE);
  6212. I915_WRITE(RAMCLK_GATE_D, 0);
  6213. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  6214. OVRUNIT_CLOCK_GATE_DISABLE |
  6215. OVCUNIT_CLOCK_GATE_DISABLE;
  6216. if (IS_GM45(dev_priv))
  6217. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  6218. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  6219. /* WaDisableRenderCachePipelinedFlush */
  6220. I915_WRITE(CACHE_MODE_0,
  6221. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  6222. /* WaDisable_RenderCache_OperationalFlush:g4x */
  6223. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6224. g4x_disable_trickle_feed(dev_priv);
  6225. }
  6226. static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
  6227. {
  6228. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  6229. I915_WRITE(RENCLK_GATE_D2, 0);
  6230. I915_WRITE(DSPCLK_GATE_D, 0);
  6231. I915_WRITE(RAMCLK_GATE_D, 0);
  6232. I915_WRITE16(DEUC, 0);
  6233. I915_WRITE(MI_ARB_STATE,
  6234. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  6235. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  6236. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6237. }
  6238. static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
  6239. {
  6240. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  6241. I965_RCC_CLOCK_GATE_DISABLE |
  6242. I965_RCPB_CLOCK_GATE_DISABLE |
  6243. I965_ISC_CLOCK_GATE_DISABLE |
  6244. I965_FBC_CLOCK_GATE_DISABLE);
  6245. I915_WRITE(RENCLK_GATE_D2, 0);
  6246. I915_WRITE(MI_ARB_STATE,
  6247. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  6248. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  6249. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6250. }
  6251. static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
  6252. {
  6253. u32 dstate = I915_READ(D_STATE);
  6254. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  6255. DSTATE_DOT_CLOCK_GATING;
  6256. I915_WRITE(D_STATE, dstate);
  6257. if (IS_PINEVIEW(dev_priv))
  6258. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  6259. /* IIR "flip pending" means done if this bit is set */
  6260. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  6261. /* interrupts should cause a wake up from C3 */
  6262. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  6263. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  6264. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  6265. I915_WRITE(MI_ARB_STATE,
  6266. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  6267. }
  6268. static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
  6269. {
  6270. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  6271. /* interrupts should cause a wake up from C3 */
  6272. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  6273. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  6274. I915_WRITE(MEM_MODE,
  6275. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  6276. }
  6277. static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
  6278. {
  6279. I915_WRITE(MEM_MODE,
  6280. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  6281. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  6282. }
  6283. void intel_init_clock_gating(struct drm_i915_private *dev_priv)
  6284. {
  6285. dev_priv->display.init_clock_gating(dev_priv);
  6286. }
  6287. void intel_suspend_hw(struct drm_i915_private *dev_priv)
  6288. {
  6289. if (HAS_PCH_LPT(dev_priv))
  6290. lpt_suspend_hw(dev_priv);
  6291. }
  6292. static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
  6293. {
  6294. DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
  6295. }
  6296. /**
  6297. * intel_init_clock_gating_hooks - setup the clock gating hooks
  6298. * @dev_priv: device private
  6299. *
  6300. * Setup the hooks that configure which clocks of a given platform can be
  6301. * gated and also apply various GT and display specific workarounds for these
  6302. * platforms. Note that some GT specific workarounds are applied separately
  6303. * when GPU contexts or batchbuffers start their execution.
  6304. */
  6305. void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
  6306. {
  6307. if (IS_SKYLAKE(dev_priv))
  6308. dev_priv->display.init_clock_gating = skylake_init_clock_gating;
  6309. else if (IS_KABYLAKE(dev_priv))
  6310. dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
  6311. else if (IS_BROXTON(dev_priv))
  6312. dev_priv->display.init_clock_gating = bxt_init_clock_gating;
  6313. else if (IS_GEMINILAKE(dev_priv))
  6314. dev_priv->display.init_clock_gating = glk_init_clock_gating;
  6315. else if (IS_BROADWELL(dev_priv))
  6316. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  6317. else if (IS_CHERRYVIEW(dev_priv))
  6318. dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
  6319. else if (IS_HASWELL(dev_priv))
  6320. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  6321. else if (IS_IVYBRIDGE(dev_priv))
  6322. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  6323. else if (IS_VALLEYVIEW(dev_priv))
  6324. dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
  6325. else if (IS_GEN6(dev_priv))
  6326. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  6327. else if (IS_GEN5(dev_priv))
  6328. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  6329. else if (IS_G4X(dev_priv))
  6330. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  6331. else if (IS_I965GM(dev_priv))
  6332. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  6333. else if (IS_I965G(dev_priv))
  6334. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  6335. else if (IS_GEN3(dev_priv))
  6336. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  6337. else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
  6338. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  6339. else if (IS_GEN2(dev_priv))
  6340. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  6341. else {
  6342. MISSING_CASE(INTEL_DEVID(dev_priv));
  6343. dev_priv->display.init_clock_gating = nop_init_clock_gating;
  6344. }
  6345. }
  6346. /* Set up chip specific power management-related functions */
  6347. void intel_init_pm(struct drm_i915_private *dev_priv)
  6348. {
  6349. intel_fbc_init(dev_priv);
  6350. /* For cxsr */
  6351. if (IS_PINEVIEW(dev_priv))
  6352. i915_pineview_get_mem_freq(dev_priv);
  6353. else if (IS_GEN5(dev_priv))
  6354. i915_ironlake_get_mem_freq(dev_priv);
  6355. /* For FIFO watermark updates */
  6356. if (INTEL_GEN(dev_priv) >= 9) {
  6357. skl_setup_wm_latency(dev_priv);
  6358. dev_priv->display.initial_watermarks = skl_initial_wm;
  6359. dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
  6360. dev_priv->display.compute_global_watermarks = skl_compute_wm;
  6361. } else if (HAS_PCH_SPLIT(dev_priv)) {
  6362. ilk_setup_wm_latency(dev_priv);
  6363. if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
  6364. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  6365. (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
  6366. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  6367. dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
  6368. dev_priv->display.compute_intermediate_wm =
  6369. ilk_compute_intermediate_wm;
  6370. dev_priv->display.initial_watermarks =
  6371. ilk_initial_watermarks;
  6372. dev_priv->display.optimize_watermarks =
  6373. ilk_optimize_watermarks;
  6374. } else {
  6375. DRM_DEBUG_KMS("Failed to read display plane latency. "
  6376. "Disable CxSR\n");
  6377. }
  6378. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  6379. vlv_setup_wm_latency(dev_priv);
  6380. dev_priv->display.update_wm = vlv_update_wm;
  6381. } else if (IS_PINEVIEW(dev_priv)) {
  6382. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
  6383. dev_priv->is_ddr3,
  6384. dev_priv->fsb_freq,
  6385. dev_priv->mem_freq)) {
  6386. DRM_INFO("failed to find known CxSR latency "
  6387. "(found ddr%s fsb freq %d, mem freq %d), "
  6388. "disabling CxSR\n",
  6389. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  6390. dev_priv->fsb_freq, dev_priv->mem_freq);
  6391. /* Disable CxSR and never update its watermark again */
  6392. intel_set_memory_cxsr(dev_priv, false);
  6393. dev_priv->display.update_wm = NULL;
  6394. } else
  6395. dev_priv->display.update_wm = pineview_update_wm;
  6396. } else if (IS_G4X(dev_priv)) {
  6397. dev_priv->display.update_wm = g4x_update_wm;
  6398. } else if (IS_GEN4(dev_priv)) {
  6399. dev_priv->display.update_wm = i965_update_wm;
  6400. } else if (IS_GEN3(dev_priv)) {
  6401. dev_priv->display.update_wm = i9xx_update_wm;
  6402. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  6403. } else if (IS_GEN2(dev_priv)) {
  6404. if (INTEL_INFO(dev_priv)->num_pipes == 1) {
  6405. dev_priv->display.update_wm = i845_update_wm;
  6406. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  6407. } else {
  6408. dev_priv->display.update_wm = i9xx_update_wm;
  6409. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  6410. }
  6411. } else {
  6412. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  6413. }
  6414. }
  6415. static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
  6416. {
  6417. uint32_t flags =
  6418. I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
  6419. switch (flags) {
  6420. case GEN6_PCODE_SUCCESS:
  6421. return 0;
  6422. case GEN6_PCODE_UNIMPLEMENTED_CMD:
  6423. case GEN6_PCODE_ILLEGAL_CMD:
  6424. return -ENXIO;
  6425. case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  6426. case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  6427. return -EOVERFLOW;
  6428. case GEN6_PCODE_TIMEOUT:
  6429. return -ETIMEDOUT;
  6430. default:
  6431. MISSING_CASE(flags)
  6432. return 0;
  6433. }
  6434. }
  6435. static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
  6436. {
  6437. uint32_t flags =
  6438. I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
  6439. switch (flags) {
  6440. case GEN6_PCODE_SUCCESS:
  6441. return 0;
  6442. case GEN6_PCODE_ILLEGAL_CMD:
  6443. return -ENXIO;
  6444. case GEN7_PCODE_TIMEOUT:
  6445. return -ETIMEDOUT;
  6446. case GEN7_PCODE_ILLEGAL_DATA:
  6447. return -EINVAL;
  6448. case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  6449. return -EOVERFLOW;
  6450. default:
  6451. MISSING_CASE(flags);
  6452. return 0;
  6453. }
  6454. }
  6455. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  6456. {
  6457. int status;
  6458. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6459. /* GEN6_PCODE_* are outside of the forcewake domain, we can
  6460. * use te fw I915_READ variants to reduce the amount of work
  6461. * required when reading/writing.
  6462. */
  6463. if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  6464. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  6465. return -EAGAIN;
  6466. }
  6467. I915_WRITE_FW(GEN6_PCODE_DATA, *val);
  6468. I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
  6469. I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  6470. if (intel_wait_for_register_fw(dev_priv,
  6471. GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
  6472. 500)) {
  6473. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  6474. return -ETIMEDOUT;
  6475. }
  6476. *val = I915_READ_FW(GEN6_PCODE_DATA);
  6477. I915_WRITE_FW(GEN6_PCODE_DATA, 0);
  6478. if (INTEL_GEN(dev_priv) > 6)
  6479. status = gen7_check_mailbox_status(dev_priv);
  6480. else
  6481. status = gen6_check_mailbox_status(dev_priv);
  6482. if (status) {
  6483. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
  6484. status);
  6485. return status;
  6486. }
  6487. return 0;
  6488. }
  6489. int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
  6490. u32 mbox, u32 val)
  6491. {
  6492. int status;
  6493. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6494. /* GEN6_PCODE_* are outside of the forcewake domain, we can
  6495. * use te fw I915_READ variants to reduce the amount of work
  6496. * required when reading/writing.
  6497. */
  6498. if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  6499. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  6500. return -EAGAIN;
  6501. }
  6502. I915_WRITE_FW(GEN6_PCODE_DATA, val);
  6503. I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
  6504. I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  6505. if (intel_wait_for_register_fw(dev_priv,
  6506. GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
  6507. 500)) {
  6508. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  6509. return -ETIMEDOUT;
  6510. }
  6511. I915_WRITE_FW(GEN6_PCODE_DATA, 0);
  6512. if (INTEL_GEN(dev_priv) > 6)
  6513. status = gen7_check_mailbox_status(dev_priv);
  6514. else
  6515. status = gen6_check_mailbox_status(dev_priv);
  6516. if (status) {
  6517. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
  6518. status);
  6519. return status;
  6520. }
  6521. return 0;
  6522. }
  6523. static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
  6524. u32 request, u32 reply_mask, u32 reply,
  6525. u32 *status)
  6526. {
  6527. u32 val = request;
  6528. *status = sandybridge_pcode_read(dev_priv, mbox, &val);
  6529. return *status || ((val & reply_mask) == reply);
  6530. }
  6531. /**
  6532. * skl_pcode_request - send PCODE request until acknowledgment
  6533. * @dev_priv: device private
  6534. * @mbox: PCODE mailbox ID the request is targeted for
  6535. * @request: request ID
  6536. * @reply_mask: mask used to check for request acknowledgment
  6537. * @reply: value used to check for request acknowledgment
  6538. * @timeout_base_ms: timeout for polling with preemption enabled
  6539. *
  6540. * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
  6541. * reports an error or an overall timeout of @timeout_base_ms+10 ms expires.
  6542. * The request is acknowledged once the PCODE reply dword equals @reply after
  6543. * applying @reply_mask. Polling is first attempted with preemption enabled
  6544. * for @timeout_base_ms and if this times out for another 10 ms with
  6545. * preemption disabled.
  6546. *
  6547. * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
  6548. * other error as reported by PCODE.
  6549. */
  6550. int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
  6551. u32 reply_mask, u32 reply, int timeout_base_ms)
  6552. {
  6553. u32 status;
  6554. int ret;
  6555. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6556. #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
  6557. &status)
  6558. /*
  6559. * Prime the PCODE by doing a request first. Normally it guarantees
  6560. * that a subsequent request, at most @timeout_base_ms later, succeeds.
  6561. * _wait_for() doesn't guarantee when its passed condition is evaluated
  6562. * first, so send the first request explicitly.
  6563. */
  6564. if (COND) {
  6565. ret = 0;
  6566. goto out;
  6567. }
  6568. ret = _wait_for(COND, timeout_base_ms * 1000, 10);
  6569. if (!ret)
  6570. goto out;
  6571. /*
  6572. * The above can time out if the number of requests was low (2 in the
  6573. * worst case) _and_ PCODE was busy for some reason even after a
  6574. * (queued) request and @timeout_base_ms delay. As a workaround retry
  6575. * the poll with preemption disabled to maximize the number of
  6576. * requests. Increase the timeout from @timeout_base_ms to 10ms to
  6577. * account for interrupts that could reduce the number of these
  6578. * requests.
  6579. */
  6580. DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
  6581. WARN_ON_ONCE(timeout_base_ms > 3);
  6582. preempt_disable();
  6583. ret = wait_for_atomic(COND, 10);
  6584. preempt_enable();
  6585. out:
  6586. return ret ? ret : status;
  6587. #undef COND
  6588. }
  6589. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6590. {
  6591. /*
  6592. * N = val - 0xb7
  6593. * Slow = Fast = GPLL ref * N
  6594. */
  6595. return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
  6596. }
  6597. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6598. {
  6599. return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
  6600. }
  6601. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6602. {
  6603. /*
  6604. * N = val / 2
  6605. * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
  6606. */
  6607. return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
  6608. }
  6609. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6610. {
  6611. /* CHV needs even values */
  6612. return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
  6613. }
  6614. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6615. {
  6616. if (IS_GEN9(dev_priv))
  6617. return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
  6618. GEN9_FREQ_SCALER);
  6619. else if (IS_CHERRYVIEW(dev_priv))
  6620. return chv_gpu_freq(dev_priv, val);
  6621. else if (IS_VALLEYVIEW(dev_priv))
  6622. return byt_gpu_freq(dev_priv, val);
  6623. else
  6624. return val * GT_FREQUENCY_MULTIPLIER;
  6625. }
  6626. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6627. {
  6628. if (IS_GEN9(dev_priv))
  6629. return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
  6630. GT_FREQUENCY_MULTIPLIER);
  6631. else if (IS_CHERRYVIEW(dev_priv))
  6632. return chv_freq_opcode(dev_priv, val);
  6633. else if (IS_VALLEYVIEW(dev_priv))
  6634. return byt_freq_opcode(dev_priv, val);
  6635. else
  6636. return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
  6637. }
  6638. struct request_boost {
  6639. struct work_struct work;
  6640. struct drm_i915_gem_request *req;
  6641. };
  6642. static void __intel_rps_boost_work(struct work_struct *work)
  6643. {
  6644. struct request_boost *boost = container_of(work, struct request_boost, work);
  6645. struct drm_i915_gem_request *req = boost->req;
  6646. if (!i915_gem_request_completed(req))
  6647. gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
  6648. i915_gem_request_put(req);
  6649. kfree(boost);
  6650. }
  6651. void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
  6652. {
  6653. struct request_boost *boost;
  6654. if (req == NULL || INTEL_GEN(req->i915) < 6)
  6655. return;
  6656. if (i915_gem_request_completed(req))
  6657. return;
  6658. boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
  6659. if (boost == NULL)
  6660. return;
  6661. boost->req = i915_gem_request_get(req);
  6662. INIT_WORK(&boost->work, __intel_rps_boost_work);
  6663. queue_work(req->i915->wq, &boost->work);
  6664. }
  6665. void intel_pm_setup(struct drm_i915_private *dev_priv)
  6666. {
  6667. mutex_init(&dev_priv->rps.hw_lock);
  6668. spin_lock_init(&dev_priv->rps.client_lock);
  6669. INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
  6670. __intel_autoenable_gt_powersave);
  6671. INIT_LIST_HEAD(&dev_priv->rps.clients);
  6672. dev_priv->pm.suspended = false;
  6673. atomic_set(&dev_priv->pm.wakeref_count, 0);
  6674. }