tcp_output.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes: Pedro Roque : Retransmit queue handled by TCP.
  22. * : Fragmentation on mtu decrease
  23. * : Segment collapse on retransmit
  24. * : AF independence
  25. *
  26. * Linus Torvalds : send_delayed_ack
  27. * David S. Miller : Charge memory using the right skb
  28. * during syn/ack processing.
  29. * David S. Miller : Output engine completely rewritten.
  30. * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
  31. * Cacophonix Gaul : draft-minshall-nagle-01
  32. * J Hadi Salim : ECN support
  33. *
  34. */
  35. #define pr_fmt(fmt) "TCP: " fmt
  36. #include <net/tcp.h>
  37. #include <linux/compiler.h>
  38. #include <linux/gfp.h>
  39. #include <linux/module.h>
  40. /* People can turn this off for buggy TCP's found in printers etc. */
  41. int sysctl_tcp_retrans_collapse __read_mostly = 1;
  42. /* People can turn this on to work with those rare, broken TCPs that
  43. * interpret the window field as a signed quantity.
  44. */
  45. int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
  46. /* Default TSQ limit of four TSO segments */
  47. int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
  48. /* This limits the percentage of the congestion window which we
  49. * will allow a single TSO frame to consume. Building TSO frames
  50. * which are too large can cause TCP streams to be bursty.
  51. */
  52. int sysctl_tcp_tso_win_divisor __read_mostly = 3;
  53. /* By default, RFC2861 behavior. */
  54. int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
  55. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  56. int push_one, gfp_t gfp);
  57. /* Account for new data that has been sent to the network. */
  58. static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
  59. {
  60. struct inet_connection_sock *icsk = inet_csk(sk);
  61. struct tcp_sock *tp = tcp_sk(sk);
  62. unsigned int prior_packets = tp->packets_out;
  63. tcp_advance_send_head(sk, skb);
  64. tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  65. tp->packets_out += tcp_skb_pcount(skb);
  66. if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  67. tcp_rearm_rto(sk);
  68. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  69. tcp_skb_pcount(skb));
  70. }
  71. /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  72. * window scaling factor due to loss of precision.
  73. * If window has been shrunk, what should we make? It is not clear at all.
  74. * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  75. * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  76. * invalid. OK, let's make this for now:
  77. */
  78. static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  79. {
  80. const struct tcp_sock *tp = tcp_sk(sk);
  81. if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  82. (tp->rx_opt.wscale_ok &&
  83. ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
  84. return tp->snd_nxt;
  85. else
  86. return tcp_wnd_end(tp);
  87. }
  88. /* Calculate mss to advertise in SYN segment.
  89. * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
  90. *
  91. * 1. It is independent of path mtu.
  92. * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
  93. * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
  94. * attached devices, because some buggy hosts are confused by
  95. * large MSS.
  96. * 4. We do not make 3, we advertise MSS, calculated from first
  97. * hop device mtu, but allow to raise it to ip_rt_min_advmss.
  98. * This may be overridden via information stored in routing table.
  99. * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
  100. * probably even Jumbo".
  101. */
  102. static __u16 tcp_advertise_mss(struct sock *sk)
  103. {
  104. struct tcp_sock *tp = tcp_sk(sk);
  105. const struct dst_entry *dst = __sk_dst_get(sk);
  106. int mss = tp->advmss;
  107. if (dst) {
  108. unsigned int metric = dst_metric_advmss(dst);
  109. if (metric < mss) {
  110. mss = metric;
  111. tp->advmss = mss;
  112. }
  113. }
  114. return (__u16)mss;
  115. }
  116. /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
  117. * This is the first part of cwnd validation mechanism.
  118. */
  119. void tcp_cwnd_restart(struct sock *sk, s32 delta)
  120. {
  121. struct tcp_sock *tp = tcp_sk(sk);
  122. u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
  123. u32 cwnd = tp->snd_cwnd;
  124. tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
  125. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  126. restart_cwnd = min(restart_cwnd, cwnd);
  127. while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
  128. cwnd >>= 1;
  129. tp->snd_cwnd = max(cwnd, restart_cwnd);
  130. tp->snd_cwnd_stamp = tcp_jiffies32;
  131. tp->snd_cwnd_used = 0;
  132. }
  133. /* Congestion state accounting after a packet has been sent. */
  134. static void tcp_event_data_sent(struct tcp_sock *tp,
  135. struct sock *sk)
  136. {
  137. struct inet_connection_sock *icsk = inet_csk(sk);
  138. const u32 now = tcp_jiffies32;
  139. if (tcp_packets_in_flight(tp) == 0)
  140. tcp_ca_event(sk, CA_EVENT_TX_START);
  141. tp->lsndtime = now;
  142. /* If it is a reply for ato after last received
  143. * packet, enter pingpong mode.
  144. */
  145. if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
  146. icsk->icsk_ack.pingpong = 1;
  147. }
  148. /* Account for an ACK we sent. */
  149. static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
  150. {
  151. tcp_dec_quickack_mode(sk, pkts);
  152. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  153. }
  154. u32 tcp_default_init_rwnd(u32 mss)
  155. {
  156. /* Initial receive window should be twice of TCP_INIT_CWND to
  157. * enable proper sending of new unsent data during fast recovery
  158. * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
  159. * limit when mss is larger than 1460.
  160. */
  161. u32 init_rwnd = TCP_INIT_CWND * 2;
  162. if (mss > 1460)
  163. init_rwnd = max((1460 * init_rwnd) / mss, 2U);
  164. return init_rwnd;
  165. }
  166. /* Determine a window scaling and initial window to offer.
  167. * Based on the assumption that the given amount of space
  168. * will be offered. Store the results in the tp structure.
  169. * NOTE: for smooth operation initial space offering should
  170. * be a multiple of mss if possible. We assume here that mss >= 1.
  171. * This MUST be enforced by all callers.
  172. */
  173. void tcp_select_initial_window(int __space, __u32 mss,
  174. __u32 *rcv_wnd, __u32 *window_clamp,
  175. int wscale_ok, __u8 *rcv_wscale,
  176. __u32 init_rcv_wnd)
  177. {
  178. unsigned int space = (__space < 0 ? 0 : __space);
  179. /* If no clamp set the clamp to the max possible scaled window */
  180. if (*window_clamp == 0)
  181. (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
  182. space = min(*window_clamp, space);
  183. /* Quantize space offering to a multiple of mss if possible. */
  184. if (space > mss)
  185. space = rounddown(space, mss);
  186. /* NOTE: offering an initial window larger than 32767
  187. * will break some buggy TCP stacks. If the admin tells us
  188. * it is likely we could be speaking with such a buggy stack
  189. * we will truncate our initial window offering to 32K-1
  190. * unless the remote has sent us a window scaling option,
  191. * which we interpret as a sign the remote TCP is not
  192. * misinterpreting the window field as a signed quantity.
  193. */
  194. if (sysctl_tcp_workaround_signed_windows)
  195. (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
  196. else
  197. (*rcv_wnd) = space;
  198. (*rcv_wscale) = 0;
  199. if (wscale_ok) {
  200. /* Set window scaling on max possible window */
  201. space = max_t(u32, space, sysctl_tcp_rmem[2]);
  202. space = max_t(u32, space, sysctl_rmem_max);
  203. space = min_t(u32, space, *window_clamp);
  204. while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
  205. space >>= 1;
  206. (*rcv_wscale)++;
  207. }
  208. }
  209. if (mss > (1 << *rcv_wscale)) {
  210. if (!init_rcv_wnd) /* Use default unless specified otherwise */
  211. init_rcv_wnd = tcp_default_init_rwnd(mss);
  212. *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
  213. }
  214. /* Set the clamp no higher than max representable value */
  215. (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
  216. }
  217. EXPORT_SYMBOL(tcp_select_initial_window);
  218. /* Chose a new window to advertise, update state in tcp_sock for the
  219. * socket, and return result with RFC1323 scaling applied. The return
  220. * value can be stuffed directly into th->window for an outgoing
  221. * frame.
  222. */
  223. static u16 tcp_select_window(struct sock *sk)
  224. {
  225. struct tcp_sock *tp = tcp_sk(sk);
  226. u32 old_win = tp->rcv_wnd;
  227. u32 cur_win = tcp_receive_window(tp);
  228. u32 new_win = __tcp_select_window(sk);
  229. /* Never shrink the offered window */
  230. if (new_win < cur_win) {
  231. /* Danger Will Robinson!
  232. * Don't update rcv_wup/rcv_wnd here or else
  233. * we will not be able to advertise a zero
  234. * window in time. --DaveM
  235. *
  236. * Relax Will Robinson.
  237. */
  238. if (new_win == 0)
  239. NET_INC_STATS(sock_net(sk),
  240. LINUX_MIB_TCPWANTZEROWINDOWADV);
  241. new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
  242. }
  243. tp->rcv_wnd = new_win;
  244. tp->rcv_wup = tp->rcv_nxt;
  245. /* Make sure we do not exceed the maximum possible
  246. * scaled window.
  247. */
  248. if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
  249. new_win = min(new_win, MAX_TCP_WINDOW);
  250. else
  251. new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
  252. /* RFC1323 scaling applied */
  253. new_win >>= tp->rx_opt.rcv_wscale;
  254. /* If we advertise zero window, disable fast path. */
  255. if (new_win == 0) {
  256. tp->pred_flags = 0;
  257. if (old_win)
  258. NET_INC_STATS(sock_net(sk),
  259. LINUX_MIB_TCPTOZEROWINDOWADV);
  260. } else if (old_win == 0) {
  261. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
  262. }
  263. return new_win;
  264. }
  265. /* Packet ECN state for a SYN-ACK */
  266. static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
  267. {
  268. const struct tcp_sock *tp = tcp_sk(sk);
  269. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
  270. if (!(tp->ecn_flags & TCP_ECN_OK))
  271. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
  272. else if (tcp_ca_needs_ecn(sk) ||
  273. tcp_bpf_ca_needs_ecn(sk))
  274. INET_ECN_xmit(sk);
  275. }
  276. /* Packet ECN state for a SYN. */
  277. static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
  278. {
  279. struct tcp_sock *tp = tcp_sk(sk);
  280. bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
  281. bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
  282. tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
  283. if (!use_ecn) {
  284. const struct dst_entry *dst = __sk_dst_get(sk);
  285. if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
  286. use_ecn = true;
  287. }
  288. tp->ecn_flags = 0;
  289. if (use_ecn) {
  290. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
  291. tp->ecn_flags = TCP_ECN_OK;
  292. if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
  293. INET_ECN_xmit(sk);
  294. }
  295. }
  296. static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
  297. {
  298. if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
  299. /* tp->ecn_flags are cleared at a later point in time when
  300. * SYN ACK is ultimatively being received.
  301. */
  302. TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
  303. }
  304. static void
  305. tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
  306. {
  307. if (inet_rsk(req)->ecn_ok)
  308. th->ece = 1;
  309. }
  310. /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
  311. * be sent.
  312. */
  313. static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
  314. struct tcphdr *th, int tcp_header_len)
  315. {
  316. struct tcp_sock *tp = tcp_sk(sk);
  317. if (tp->ecn_flags & TCP_ECN_OK) {
  318. /* Not-retransmitted data segment: set ECT and inject CWR. */
  319. if (skb->len != tcp_header_len &&
  320. !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
  321. INET_ECN_xmit(sk);
  322. if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
  323. tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
  324. th->cwr = 1;
  325. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  326. }
  327. } else if (!tcp_ca_needs_ecn(sk)) {
  328. /* ACK or retransmitted segment: clear ECT|CE */
  329. INET_ECN_dontxmit(sk);
  330. }
  331. if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
  332. th->ece = 1;
  333. }
  334. }
  335. /* Constructs common control bits of non-data skb. If SYN/FIN is present,
  336. * auto increment end seqno.
  337. */
  338. static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
  339. {
  340. skb->ip_summed = CHECKSUM_PARTIAL;
  341. skb->csum = 0;
  342. TCP_SKB_CB(skb)->tcp_flags = flags;
  343. TCP_SKB_CB(skb)->sacked = 0;
  344. tcp_skb_pcount_set(skb, 1);
  345. TCP_SKB_CB(skb)->seq = seq;
  346. if (flags & (TCPHDR_SYN | TCPHDR_FIN))
  347. seq++;
  348. TCP_SKB_CB(skb)->end_seq = seq;
  349. }
  350. static inline bool tcp_urg_mode(const struct tcp_sock *tp)
  351. {
  352. return tp->snd_una != tp->snd_up;
  353. }
  354. #define OPTION_SACK_ADVERTISE (1 << 0)
  355. #define OPTION_TS (1 << 1)
  356. #define OPTION_MD5 (1 << 2)
  357. #define OPTION_WSCALE (1 << 3)
  358. #define OPTION_FAST_OPEN_COOKIE (1 << 8)
  359. struct tcp_out_options {
  360. u16 options; /* bit field of OPTION_* */
  361. u16 mss; /* 0 to disable */
  362. u8 ws; /* window scale, 0 to disable */
  363. u8 num_sack_blocks; /* number of SACK blocks to include */
  364. u8 hash_size; /* bytes in hash_location */
  365. __u8 *hash_location; /* temporary pointer, overloaded */
  366. __u32 tsval, tsecr; /* need to include OPTION_TS */
  367. struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
  368. };
  369. /* Write previously computed TCP options to the packet.
  370. *
  371. * Beware: Something in the Internet is very sensitive to the ordering of
  372. * TCP options, we learned this through the hard way, so be careful here.
  373. * Luckily we can at least blame others for their non-compliance but from
  374. * inter-operability perspective it seems that we're somewhat stuck with
  375. * the ordering which we have been using if we want to keep working with
  376. * those broken things (not that it currently hurts anybody as there isn't
  377. * particular reason why the ordering would need to be changed).
  378. *
  379. * At least SACK_PERM as the first option is known to lead to a disaster
  380. * (but it may well be that other scenarios fail similarly).
  381. */
  382. static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
  383. struct tcp_out_options *opts)
  384. {
  385. u16 options = opts->options; /* mungable copy */
  386. if (unlikely(OPTION_MD5 & options)) {
  387. *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
  388. (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
  389. /* overload cookie hash location */
  390. opts->hash_location = (__u8 *)ptr;
  391. ptr += 4;
  392. }
  393. if (unlikely(opts->mss)) {
  394. *ptr++ = htonl((TCPOPT_MSS << 24) |
  395. (TCPOLEN_MSS << 16) |
  396. opts->mss);
  397. }
  398. if (likely(OPTION_TS & options)) {
  399. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  400. *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
  401. (TCPOLEN_SACK_PERM << 16) |
  402. (TCPOPT_TIMESTAMP << 8) |
  403. TCPOLEN_TIMESTAMP);
  404. options &= ~OPTION_SACK_ADVERTISE;
  405. } else {
  406. *ptr++ = htonl((TCPOPT_NOP << 24) |
  407. (TCPOPT_NOP << 16) |
  408. (TCPOPT_TIMESTAMP << 8) |
  409. TCPOLEN_TIMESTAMP);
  410. }
  411. *ptr++ = htonl(opts->tsval);
  412. *ptr++ = htonl(opts->tsecr);
  413. }
  414. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  415. *ptr++ = htonl((TCPOPT_NOP << 24) |
  416. (TCPOPT_NOP << 16) |
  417. (TCPOPT_SACK_PERM << 8) |
  418. TCPOLEN_SACK_PERM);
  419. }
  420. if (unlikely(OPTION_WSCALE & options)) {
  421. *ptr++ = htonl((TCPOPT_NOP << 24) |
  422. (TCPOPT_WINDOW << 16) |
  423. (TCPOLEN_WINDOW << 8) |
  424. opts->ws);
  425. }
  426. if (unlikely(opts->num_sack_blocks)) {
  427. struct tcp_sack_block *sp = tp->rx_opt.dsack ?
  428. tp->duplicate_sack : tp->selective_acks;
  429. int this_sack;
  430. *ptr++ = htonl((TCPOPT_NOP << 24) |
  431. (TCPOPT_NOP << 16) |
  432. (TCPOPT_SACK << 8) |
  433. (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
  434. TCPOLEN_SACK_PERBLOCK)));
  435. for (this_sack = 0; this_sack < opts->num_sack_blocks;
  436. ++this_sack) {
  437. *ptr++ = htonl(sp[this_sack].start_seq);
  438. *ptr++ = htonl(sp[this_sack].end_seq);
  439. }
  440. tp->rx_opt.dsack = 0;
  441. }
  442. if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
  443. struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
  444. u8 *p = (u8 *)ptr;
  445. u32 len; /* Fast Open option length */
  446. if (foc->exp) {
  447. len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
  448. *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
  449. TCPOPT_FASTOPEN_MAGIC);
  450. p += TCPOLEN_EXP_FASTOPEN_BASE;
  451. } else {
  452. len = TCPOLEN_FASTOPEN_BASE + foc->len;
  453. *p++ = TCPOPT_FASTOPEN;
  454. *p++ = len;
  455. }
  456. memcpy(p, foc->val, foc->len);
  457. if ((len & 3) == 2) {
  458. p[foc->len] = TCPOPT_NOP;
  459. p[foc->len + 1] = TCPOPT_NOP;
  460. }
  461. ptr += (len + 3) >> 2;
  462. }
  463. }
  464. /* Compute TCP options for SYN packets. This is not the final
  465. * network wire format yet.
  466. */
  467. static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
  468. struct tcp_out_options *opts,
  469. struct tcp_md5sig_key **md5)
  470. {
  471. struct tcp_sock *tp = tcp_sk(sk);
  472. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  473. struct tcp_fastopen_request *fastopen = tp->fastopen_req;
  474. #ifdef CONFIG_TCP_MD5SIG
  475. *md5 = tp->af_specific->md5_lookup(sk, sk);
  476. if (*md5) {
  477. opts->options |= OPTION_MD5;
  478. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  479. }
  480. #else
  481. *md5 = NULL;
  482. #endif
  483. /* We always get an MSS option. The option bytes which will be seen in
  484. * normal data packets should timestamps be used, must be in the MSS
  485. * advertised. But we subtract them from tp->mss_cache so that
  486. * calculations in tcp_sendmsg are simpler etc. So account for this
  487. * fact here if necessary. If we don't do this correctly, as a
  488. * receiver we won't recognize data packets as being full sized when we
  489. * should, and thus we won't abide by the delayed ACK rules correctly.
  490. * SACKs don't matter, we never delay an ACK when we have any of those
  491. * going out. */
  492. opts->mss = tcp_advertise_mss(sk);
  493. remaining -= TCPOLEN_MSS_ALIGNED;
  494. if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
  495. opts->options |= OPTION_TS;
  496. opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
  497. opts->tsecr = tp->rx_opt.ts_recent;
  498. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  499. }
  500. if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
  501. opts->ws = tp->rx_opt.rcv_wscale;
  502. opts->options |= OPTION_WSCALE;
  503. remaining -= TCPOLEN_WSCALE_ALIGNED;
  504. }
  505. if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
  506. opts->options |= OPTION_SACK_ADVERTISE;
  507. if (unlikely(!(OPTION_TS & opts->options)))
  508. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  509. }
  510. if (fastopen && fastopen->cookie.len >= 0) {
  511. u32 need = fastopen->cookie.len;
  512. need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  513. TCPOLEN_FASTOPEN_BASE;
  514. need = (need + 3) & ~3U; /* Align to 32 bits */
  515. if (remaining >= need) {
  516. opts->options |= OPTION_FAST_OPEN_COOKIE;
  517. opts->fastopen_cookie = &fastopen->cookie;
  518. remaining -= need;
  519. tp->syn_fastopen = 1;
  520. tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
  521. }
  522. }
  523. return MAX_TCP_OPTION_SPACE - remaining;
  524. }
  525. /* Set up TCP options for SYN-ACKs. */
  526. static unsigned int tcp_synack_options(struct request_sock *req,
  527. unsigned int mss, struct sk_buff *skb,
  528. struct tcp_out_options *opts,
  529. const struct tcp_md5sig_key *md5,
  530. struct tcp_fastopen_cookie *foc)
  531. {
  532. struct inet_request_sock *ireq = inet_rsk(req);
  533. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  534. #ifdef CONFIG_TCP_MD5SIG
  535. if (md5) {
  536. opts->options |= OPTION_MD5;
  537. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  538. /* We can't fit any SACK blocks in a packet with MD5 + TS
  539. * options. There was discussion about disabling SACK
  540. * rather than TS in order to fit in better with old,
  541. * buggy kernels, but that was deemed to be unnecessary.
  542. */
  543. ireq->tstamp_ok &= !ireq->sack_ok;
  544. }
  545. #endif
  546. /* We always send an MSS option. */
  547. opts->mss = mss;
  548. remaining -= TCPOLEN_MSS_ALIGNED;
  549. if (likely(ireq->wscale_ok)) {
  550. opts->ws = ireq->rcv_wscale;
  551. opts->options |= OPTION_WSCALE;
  552. remaining -= TCPOLEN_WSCALE_ALIGNED;
  553. }
  554. if (likely(ireq->tstamp_ok)) {
  555. opts->options |= OPTION_TS;
  556. opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
  557. opts->tsecr = req->ts_recent;
  558. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  559. }
  560. if (likely(ireq->sack_ok)) {
  561. opts->options |= OPTION_SACK_ADVERTISE;
  562. if (unlikely(!ireq->tstamp_ok))
  563. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  564. }
  565. if (foc != NULL && foc->len >= 0) {
  566. u32 need = foc->len;
  567. need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  568. TCPOLEN_FASTOPEN_BASE;
  569. need = (need + 3) & ~3U; /* Align to 32 bits */
  570. if (remaining >= need) {
  571. opts->options |= OPTION_FAST_OPEN_COOKIE;
  572. opts->fastopen_cookie = foc;
  573. remaining -= need;
  574. }
  575. }
  576. return MAX_TCP_OPTION_SPACE - remaining;
  577. }
  578. /* Compute TCP options for ESTABLISHED sockets. This is not the
  579. * final wire format yet.
  580. */
  581. static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
  582. struct tcp_out_options *opts,
  583. struct tcp_md5sig_key **md5)
  584. {
  585. struct tcp_sock *tp = tcp_sk(sk);
  586. unsigned int size = 0;
  587. unsigned int eff_sacks;
  588. opts->options = 0;
  589. #ifdef CONFIG_TCP_MD5SIG
  590. *md5 = tp->af_specific->md5_lookup(sk, sk);
  591. if (unlikely(*md5)) {
  592. opts->options |= OPTION_MD5;
  593. size += TCPOLEN_MD5SIG_ALIGNED;
  594. }
  595. #else
  596. *md5 = NULL;
  597. #endif
  598. if (likely(tp->rx_opt.tstamp_ok)) {
  599. opts->options |= OPTION_TS;
  600. opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
  601. opts->tsecr = tp->rx_opt.ts_recent;
  602. size += TCPOLEN_TSTAMP_ALIGNED;
  603. }
  604. eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  605. if (unlikely(eff_sacks)) {
  606. const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
  607. opts->num_sack_blocks =
  608. min_t(unsigned int, eff_sacks,
  609. (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
  610. TCPOLEN_SACK_PERBLOCK);
  611. size += TCPOLEN_SACK_BASE_ALIGNED +
  612. opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
  613. }
  614. return size;
  615. }
  616. /* TCP SMALL QUEUES (TSQ)
  617. *
  618. * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
  619. * to reduce RTT and bufferbloat.
  620. * We do this using a special skb destructor (tcp_wfree).
  621. *
  622. * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
  623. * needs to be reallocated in a driver.
  624. * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
  625. *
  626. * Since transmit from skb destructor is forbidden, we use a tasklet
  627. * to process all sockets that eventually need to send more skbs.
  628. * We use one tasklet per cpu, with its own queue of sockets.
  629. */
  630. struct tsq_tasklet {
  631. struct tasklet_struct tasklet;
  632. struct list_head head; /* queue of tcp sockets */
  633. };
  634. static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
  635. static void tcp_tsq_handler(struct sock *sk)
  636. {
  637. if ((1 << sk->sk_state) &
  638. (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
  639. TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
  640. struct tcp_sock *tp = tcp_sk(sk);
  641. if (tp->lost_out > tp->retrans_out &&
  642. tp->snd_cwnd > tcp_packets_in_flight(tp))
  643. tcp_xmit_retransmit_queue(sk);
  644. tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
  645. 0, GFP_ATOMIC);
  646. }
  647. }
  648. /*
  649. * One tasklet per cpu tries to send more skbs.
  650. * We run in tasklet context but need to disable irqs when
  651. * transferring tsq->head because tcp_wfree() might
  652. * interrupt us (non NAPI drivers)
  653. */
  654. static void tcp_tasklet_func(unsigned long data)
  655. {
  656. struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
  657. LIST_HEAD(list);
  658. unsigned long flags;
  659. struct list_head *q, *n;
  660. struct tcp_sock *tp;
  661. struct sock *sk;
  662. local_irq_save(flags);
  663. list_splice_init(&tsq->head, &list);
  664. local_irq_restore(flags);
  665. list_for_each_safe(q, n, &list) {
  666. tp = list_entry(q, struct tcp_sock, tsq_node);
  667. list_del(&tp->tsq_node);
  668. sk = (struct sock *)tp;
  669. smp_mb__before_atomic();
  670. clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
  671. if (!sk->sk_lock.owned &&
  672. test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
  673. bh_lock_sock(sk);
  674. if (!sock_owned_by_user(sk)) {
  675. clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
  676. tcp_tsq_handler(sk);
  677. }
  678. bh_unlock_sock(sk);
  679. }
  680. sk_free(sk);
  681. }
  682. }
  683. #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
  684. TCPF_WRITE_TIMER_DEFERRED | \
  685. TCPF_DELACK_TIMER_DEFERRED | \
  686. TCPF_MTU_REDUCED_DEFERRED)
  687. /**
  688. * tcp_release_cb - tcp release_sock() callback
  689. * @sk: socket
  690. *
  691. * called from release_sock() to perform protocol dependent
  692. * actions before socket release.
  693. */
  694. void tcp_release_cb(struct sock *sk)
  695. {
  696. unsigned long flags, nflags;
  697. /* perform an atomic operation only if at least one flag is set */
  698. do {
  699. flags = sk->sk_tsq_flags;
  700. if (!(flags & TCP_DEFERRED_ALL))
  701. return;
  702. nflags = flags & ~TCP_DEFERRED_ALL;
  703. } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
  704. if (flags & TCPF_TSQ_DEFERRED)
  705. tcp_tsq_handler(sk);
  706. /* Here begins the tricky part :
  707. * We are called from release_sock() with :
  708. * 1) BH disabled
  709. * 2) sk_lock.slock spinlock held
  710. * 3) socket owned by us (sk->sk_lock.owned == 1)
  711. *
  712. * But following code is meant to be called from BH handlers,
  713. * so we should keep BH disabled, but early release socket ownership
  714. */
  715. sock_release_ownership(sk);
  716. if (flags & TCPF_WRITE_TIMER_DEFERRED) {
  717. tcp_write_timer_handler(sk);
  718. __sock_put(sk);
  719. }
  720. if (flags & TCPF_DELACK_TIMER_DEFERRED) {
  721. tcp_delack_timer_handler(sk);
  722. __sock_put(sk);
  723. }
  724. if (flags & TCPF_MTU_REDUCED_DEFERRED) {
  725. inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
  726. __sock_put(sk);
  727. }
  728. }
  729. EXPORT_SYMBOL(tcp_release_cb);
  730. void __init tcp_tasklet_init(void)
  731. {
  732. int i;
  733. for_each_possible_cpu(i) {
  734. struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
  735. INIT_LIST_HEAD(&tsq->head);
  736. tasklet_init(&tsq->tasklet,
  737. tcp_tasklet_func,
  738. (unsigned long)tsq);
  739. }
  740. }
  741. /*
  742. * Write buffer destructor automatically called from kfree_skb.
  743. * We can't xmit new skbs from this context, as we might already
  744. * hold qdisc lock.
  745. */
  746. void tcp_wfree(struct sk_buff *skb)
  747. {
  748. struct sock *sk = skb->sk;
  749. struct tcp_sock *tp = tcp_sk(sk);
  750. unsigned long flags, nval, oval;
  751. /* Keep one reference on sk_wmem_alloc.
  752. * Will be released by sk_free() from here or tcp_tasklet_func()
  753. */
  754. WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
  755. /* If this softirq is serviced by ksoftirqd, we are likely under stress.
  756. * Wait until our queues (qdisc + devices) are drained.
  757. * This gives :
  758. * - less callbacks to tcp_write_xmit(), reducing stress (batches)
  759. * - chance for incoming ACK (processed by another cpu maybe)
  760. * to migrate this flow (skb->ooo_okay will be eventually set)
  761. */
  762. if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
  763. goto out;
  764. for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
  765. struct tsq_tasklet *tsq;
  766. bool empty;
  767. if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
  768. goto out;
  769. nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
  770. nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
  771. if (nval != oval)
  772. continue;
  773. /* queue this socket to tasklet queue */
  774. local_irq_save(flags);
  775. tsq = this_cpu_ptr(&tsq_tasklet);
  776. empty = list_empty(&tsq->head);
  777. list_add(&tp->tsq_node, &tsq->head);
  778. if (empty)
  779. tasklet_schedule(&tsq->tasklet);
  780. local_irq_restore(flags);
  781. return;
  782. }
  783. out:
  784. sk_free(sk);
  785. }
  786. /* Note: Called under hard irq.
  787. * We can not call TCP stack right away.
  788. */
  789. enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
  790. {
  791. struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
  792. struct sock *sk = (struct sock *)tp;
  793. unsigned long nval, oval;
  794. for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
  795. struct tsq_tasklet *tsq;
  796. bool empty;
  797. if (oval & TSQF_QUEUED)
  798. break;
  799. nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
  800. nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
  801. if (nval != oval)
  802. continue;
  803. if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
  804. break;
  805. /* queue this socket to tasklet queue */
  806. tsq = this_cpu_ptr(&tsq_tasklet);
  807. empty = list_empty(&tsq->head);
  808. list_add(&tp->tsq_node, &tsq->head);
  809. if (empty)
  810. tasklet_schedule(&tsq->tasklet);
  811. break;
  812. }
  813. return HRTIMER_NORESTART;
  814. }
  815. /* BBR congestion control needs pacing.
  816. * Same remark for SO_MAX_PACING_RATE.
  817. * sch_fq packet scheduler is efficiently handling pacing,
  818. * but is not always installed/used.
  819. * Return true if TCP stack should pace packets itself.
  820. */
  821. static bool tcp_needs_internal_pacing(const struct sock *sk)
  822. {
  823. return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
  824. }
  825. static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
  826. {
  827. u64 len_ns;
  828. u32 rate;
  829. if (!tcp_needs_internal_pacing(sk))
  830. return;
  831. rate = sk->sk_pacing_rate;
  832. if (!rate || rate == ~0U)
  833. return;
  834. /* Should account for header sizes as sch_fq does,
  835. * but lets make things simple.
  836. */
  837. len_ns = (u64)skb->len * NSEC_PER_SEC;
  838. do_div(len_ns, rate);
  839. hrtimer_start(&tcp_sk(sk)->pacing_timer,
  840. ktime_add_ns(ktime_get(), len_ns),
  841. HRTIMER_MODE_ABS_PINNED);
  842. }
  843. /* This routine actually transmits TCP packets queued in by
  844. * tcp_do_sendmsg(). This is used by both the initial
  845. * transmission and possible later retransmissions.
  846. * All SKB's seen here are completely headerless. It is our
  847. * job to build the TCP header, and pass the packet down to
  848. * IP so it can do the same plus pass the packet off to the
  849. * device.
  850. *
  851. * We are working here with either a clone of the original
  852. * SKB, or a fresh unique copy made by the retransmit engine.
  853. */
  854. static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
  855. gfp_t gfp_mask)
  856. {
  857. const struct inet_connection_sock *icsk = inet_csk(sk);
  858. struct inet_sock *inet;
  859. struct tcp_sock *tp;
  860. struct tcp_skb_cb *tcb;
  861. struct tcp_out_options opts;
  862. unsigned int tcp_options_size, tcp_header_size;
  863. struct tcp_md5sig_key *md5;
  864. struct tcphdr *th;
  865. int err;
  866. BUG_ON(!skb || !tcp_skb_pcount(skb));
  867. tp = tcp_sk(sk);
  868. skb->skb_mstamp = tp->tcp_mstamp;
  869. if (clone_it) {
  870. TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
  871. - tp->snd_una;
  872. tcp_rate_skb_sent(sk, skb);
  873. if (unlikely(skb_cloned(skb)))
  874. skb = pskb_copy(skb, gfp_mask);
  875. else
  876. skb = skb_clone(skb, gfp_mask);
  877. if (unlikely(!skb))
  878. return -ENOBUFS;
  879. }
  880. inet = inet_sk(sk);
  881. tcb = TCP_SKB_CB(skb);
  882. memset(&opts, 0, sizeof(opts));
  883. if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
  884. tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
  885. else
  886. tcp_options_size = tcp_established_options(sk, skb, &opts,
  887. &md5);
  888. tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
  889. /* if no packet is in qdisc/device queue, then allow XPS to select
  890. * another queue. We can be called from tcp_tsq_handler()
  891. * which holds one reference to sk_wmem_alloc.
  892. *
  893. * TODO: Ideally, in-flight pure ACK packets should not matter here.
  894. * One way to get this would be to set skb->truesize = 2 on them.
  895. */
  896. skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
  897. /* If we had to use memory reserve to allocate this skb,
  898. * this might cause drops if packet is looped back :
  899. * Other socket might not have SOCK_MEMALLOC.
  900. * Packets not looped back do not care about pfmemalloc.
  901. */
  902. skb->pfmemalloc = 0;
  903. skb_push(skb, tcp_header_size);
  904. skb_reset_transport_header(skb);
  905. skb_orphan(skb);
  906. skb->sk = sk;
  907. skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
  908. skb_set_hash_from_sk(skb, sk);
  909. refcount_add(skb->truesize, &sk->sk_wmem_alloc);
  910. skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
  911. /* Build TCP header and checksum it. */
  912. th = (struct tcphdr *)skb->data;
  913. th->source = inet->inet_sport;
  914. th->dest = inet->inet_dport;
  915. th->seq = htonl(tcb->seq);
  916. th->ack_seq = htonl(tp->rcv_nxt);
  917. *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
  918. tcb->tcp_flags);
  919. th->check = 0;
  920. th->urg_ptr = 0;
  921. /* The urg_mode check is necessary during a below snd_una win probe */
  922. if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
  923. if (before(tp->snd_up, tcb->seq + 0x10000)) {
  924. th->urg_ptr = htons(tp->snd_up - tcb->seq);
  925. th->urg = 1;
  926. } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
  927. th->urg_ptr = htons(0xFFFF);
  928. th->urg = 1;
  929. }
  930. }
  931. tcp_options_write((__be32 *)(th + 1), tp, &opts);
  932. skb_shinfo(skb)->gso_type = sk->sk_gso_type;
  933. if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
  934. th->window = htons(tcp_select_window(sk));
  935. tcp_ecn_send(sk, skb, th, tcp_header_size);
  936. } else {
  937. /* RFC1323: The window in SYN & SYN/ACK segments
  938. * is never scaled.
  939. */
  940. th->window = htons(min(tp->rcv_wnd, 65535U));
  941. }
  942. #ifdef CONFIG_TCP_MD5SIG
  943. /* Calculate the MD5 hash, as we have all we need now */
  944. if (md5) {
  945. sk_nocaps_add(sk, NETIF_F_GSO_MASK);
  946. tp->af_specific->calc_md5_hash(opts.hash_location,
  947. md5, sk, skb);
  948. }
  949. #endif
  950. icsk->icsk_af_ops->send_check(sk, skb);
  951. if (likely(tcb->tcp_flags & TCPHDR_ACK))
  952. tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
  953. if (skb->len != tcp_header_size) {
  954. tcp_event_data_sent(tp, sk);
  955. tp->data_segs_out += tcp_skb_pcount(skb);
  956. tcp_internal_pacing(sk, skb);
  957. }
  958. if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
  959. TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
  960. tcp_skb_pcount(skb));
  961. tp->segs_out += tcp_skb_pcount(skb);
  962. /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
  963. skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
  964. skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
  965. /* Our usage of tstamp should remain private */
  966. skb->tstamp = 0;
  967. /* Cleanup our debris for IP stacks */
  968. memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
  969. sizeof(struct inet6_skb_parm)));
  970. err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
  971. if (likely(err <= 0))
  972. return err;
  973. tcp_enter_cwr(sk);
  974. return net_xmit_eval(err);
  975. }
  976. /* This routine just queues the buffer for sending.
  977. *
  978. * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
  979. * otherwise socket can stall.
  980. */
  981. static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
  982. {
  983. struct tcp_sock *tp = tcp_sk(sk);
  984. /* Advance write_seq and place onto the write_queue. */
  985. tp->write_seq = TCP_SKB_CB(skb)->end_seq;
  986. __skb_header_release(skb);
  987. tcp_add_write_queue_tail(sk, skb);
  988. sk->sk_wmem_queued += skb->truesize;
  989. sk_mem_charge(sk, skb->truesize);
  990. }
  991. /* Initialize TSO segments for a packet. */
  992. static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  993. {
  994. if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
  995. /* Avoid the costly divide in the normal
  996. * non-TSO case.
  997. */
  998. tcp_skb_pcount_set(skb, 1);
  999. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1000. } else {
  1001. tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
  1002. TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
  1003. }
  1004. }
  1005. /* When a modification to fackets out becomes necessary, we need to check
  1006. * skb is counted to fackets_out or not.
  1007. */
  1008. static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
  1009. int decr)
  1010. {
  1011. struct tcp_sock *tp = tcp_sk(sk);
  1012. if (!tp->sacked_out || tcp_is_reno(tp))
  1013. return;
  1014. if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
  1015. tp->fackets_out -= decr;
  1016. }
  1017. /* Pcount in the middle of the write queue got changed, we need to do various
  1018. * tweaks to fix counters
  1019. */
  1020. static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
  1021. {
  1022. struct tcp_sock *tp = tcp_sk(sk);
  1023. tp->packets_out -= decr;
  1024. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1025. tp->sacked_out -= decr;
  1026. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1027. tp->retrans_out -= decr;
  1028. if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
  1029. tp->lost_out -= decr;
  1030. /* Reno case is special. Sigh... */
  1031. if (tcp_is_reno(tp) && decr > 0)
  1032. tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
  1033. tcp_adjust_fackets_out(sk, skb, decr);
  1034. if (tp->lost_skb_hint &&
  1035. before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
  1036. (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
  1037. tp->lost_cnt_hint -= decr;
  1038. tcp_verify_left_out(tp);
  1039. }
  1040. static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
  1041. {
  1042. return TCP_SKB_CB(skb)->txstamp_ack ||
  1043. (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
  1044. }
  1045. static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
  1046. {
  1047. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1048. if (unlikely(tcp_has_tx_tstamp(skb)) &&
  1049. !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
  1050. struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
  1051. u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  1052. shinfo->tx_flags &= ~tsflags;
  1053. shinfo2->tx_flags |= tsflags;
  1054. swap(shinfo->tskey, shinfo2->tskey);
  1055. TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
  1056. TCP_SKB_CB(skb)->txstamp_ack = 0;
  1057. }
  1058. }
  1059. static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
  1060. {
  1061. TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
  1062. TCP_SKB_CB(skb)->eor = 0;
  1063. }
  1064. /* Function to create two new TCP segments. Shrinks the given segment
  1065. * to the specified size and appends a new segment with the rest of the
  1066. * packet to the list. This won't be called frequently, I hope.
  1067. * Remember, these are still headerless SKBs at this point.
  1068. */
  1069. int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
  1070. unsigned int mss_now, gfp_t gfp)
  1071. {
  1072. struct tcp_sock *tp = tcp_sk(sk);
  1073. struct sk_buff *buff;
  1074. int nsize, old_factor;
  1075. int nlen;
  1076. u8 flags;
  1077. if (WARN_ON(len > skb->len))
  1078. return -EINVAL;
  1079. nsize = skb_headlen(skb) - len;
  1080. if (nsize < 0)
  1081. nsize = 0;
  1082. if (skb_unclone(skb, gfp))
  1083. return -ENOMEM;
  1084. /* Get a new skb... force flag on. */
  1085. buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
  1086. if (!buff)
  1087. return -ENOMEM; /* We'll just try again later. */
  1088. sk->sk_wmem_queued += buff->truesize;
  1089. sk_mem_charge(sk, buff->truesize);
  1090. nlen = skb->len - len - nsize;
  1091. buff->truesize += nlen;
  1092. skb->truesize -= nlen;
  1093. /* Correct the sequence numbers. */
  1094. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1095. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1096. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1097. /* PSH and FIN should only be set in the second packet. */
  1098. flags = TCP_SKB_CB(skb)->tcp_flags;
  1099. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1100. TCP_SKB_CB(buff)->tcp_flags = flags;
  1101. TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
  1102. tcp_skb_fragment_eor(skb, buff);
  1103. if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
  1104. /* Copy and checksum data tail into the new buffer. */
  1105. buff->csum = csum_partial_copy_nocheck(skb->data + len,
  1106. skb_put(buff, nsize),
  1107. nsize, 0);
  1108. skb_trim(skb, len);
  1109. skb->csum = csum_block_sub(skb->csum, buff->csum, len);
  1110. } else {
  1111. skb->ip_summed = CHECKSUM_PARTIAL;
  1112. skb_split(skb, buff, len);
  1113. }
  1114. buff->ip_summed = skb->ip_summed;
  1115. buff->tstamp = skb->tstamp;
  1116. tcp_fragment_tstamp(skb, buff);
  1117. old_factor = tcp_skb_pcount(skb);
  1118. /* Fix up tso_factor for both original and new SKB. */
  1119. tcp_set_skb_tso_segs(skb, mss_now);
  1120. tcp_set_skb_tso_segs(buff, mss_now);
  1121. /* Update delivered info for the new segment */
  1122. TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
  1123. /* If this packet has been sent out already, we must
  1124. * adjust the various packet counters.
  1125. */
  1126. if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
  1127. int diff = old_factor - tcp_skb_pcount(skb) -
  1128. tcp_skb_pcount(buff);
  1129. if (diff)
  1130. tcp_adjust_pcount(sk, skb, diff);
  1131. }
  1132. /* Link BUFF into the send queue. */
  1133. __skb_header_release(buff);
  1134. tcp_insert_write_queue_after(skb, buff, sk);
  1135. return 0;
  1136. }
  1137. /* This is similar to __pskb_pull_tail(). The difference is that pulled
  1138. * data is not copied, but immediately discarded.
  1139. */
  1140. static int __pskb_trim_head(struct sk_buff *skb, int len)
  1141. {
  1142. struct skb_shared_info *shinfo;
  1143. int i, k, eat;
  1144. eat = min_t(int, len, skb_headlen(skb));
  1145. if (eat) {
  1146. __skb_pull(skb, eat);
  1147. len -= eat;
  1148. if (!len)
  1149. return 0;
  1150. }
  1151. eat = len;
  1152. k = 0;
  1153. shinfo = skb_shinfo(skb);
  1154. for (i = 0; i < shinfo->nr_frags; i++) {
  1155. int size = skb_frag_size(&shinfo->frags[i]);
  1156. if (size <= eat) {
  1157. skb_frag_unref(skb, i);
  1158. eat -= size;
  1159. } else {
  1160. shinfo->frags[k] = shinfo->frags[i];
  1161. if (eat) {
  1162. shinfo->frags[k].page_offset += eat;
  1163. skb_frag_size_sub(&shinfo->frags[k], eat);
  1164. eat = 0;
  1165. }
  1166. k++;
  1167. }
  1168. }
  1169. shinfo->nr_frags = k;
  1170. skb->data_len -= len;
  1171. skb->len = skb->data_len;
  1172. return len;
  1173. }
  1174. /* Remove acked data from a packet in the transmit queue. */
  1175. int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
  1176. {
  1177. u32 delta_truesize;
  1178. if (skb_unclone(skb, GFP_ATOMIC))
  1179. return -ENOMEM;
  1180. delta_truesize = __pskb_trim_head(skb, len);
  1181. TCP_SKB_CB(skb)->seq += len;
  1182. skb->ip_summed = CHECKSUM_PARTIAL;
  1183. if (delta_truesize) {
  1184. skb->truesize -= delta_truesize;
  1185. sk->sk_wmem_queued -= delta_truesize;
  1186. sk_mem_uncharge(sk, delta_truesize);
  1187. sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
  1188. }
  1189. /* Any change of skb->len requires recalculation of tso factor. */
  1190. if (tcp_skb_pcount(skb) > 1)
  1191. tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
  1192. return 0;
  1193. }
  1194. /* Calculate MSS not accounting any TCP options. */
  1195. static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1196. {
  1197. const struct tcp_sock *tp = tcp_sk(sk);
  1198. const struct inet_connection_sock *icsk = inet_csk(sk);
  1199. int mss_now;
  1200. /* Calculate base mss without TCP options:
  1201. It is MMS_S - sizeof(tcphdr) of rfc1122
  1202. */
  1203. mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
  1204. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1205. if (icsk->icsk_af_ops->net_frag_header_len) {
  1206. const struct dst_entry *dst = __sk_dst_get(sk);
  1207. if (dst && dst_allfrag(dst))
  1208. mss_now -= icsk->icsk_af_ops->net_frag_header_len;
  1209. }
  1210. /* Clamp it (mss_clamp does not include tcp options) */
  1211. if (mss_now > tp->rx_opt.mss_clamp)
  1212. mss_now = tp->rx_opt.mss_clamp;
  1213. /* Now subtract optional transport overhead */
  1214. mss_now -= icsk->icsk_ext_hdr_len;
  1215. /* Then reserve room for full set of TCP options and 8 bytes of data */
  1216. if (mss_now < 48)
  1217. mss_now = 48;
  1218. return mss_now;
  1219. }
  1220. /* Calculate MSS. Not accounting for SACKs here. */
  1221. int tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1222. {
  1223. /* Subtract TCP options size, not including SACKs */
  1224. return __tcp_mtu_to_mss(sk, pmtu) -
  1225. (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
  1226. }
  1227. /* Inverse of above */
  1228. int tcp_mss_to_mtu(struct sock *sk, int mss)
  1229. {
  1230. const struct tcp_sock *tp = tcp_sk(sk);
  1231. const struct inet_connection_sock *icsk = inet_csk(sk);
  1232. int mtu;
  1233. mtu = mss +
  1234. tp->tcp_header_len +
  1235. icsk->icsk_ext_hdr_len +
  1236. icsk->icsk_af_ops->net_header_len;
  1237. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1238. if (icsk->icsk_af_ops->net_frag_header_len) {
  1239. const struct dst_entry *dst = __sk_dst_get(sk);
  1240. if (dst && dst_allfrag(dst))
  1241. mtu += icsk->icsk_af_ops->net_frag_header_len;
  1242. }
  1243. return mtu;
  1244. }
  1245. EXPORT_SYMBOL(tcp_mss_to_mtu);
  1246. /* MTU probing init per socket */
  1247. void tcp_mtup_init(struct sock *sk)
  1248. {
  1249. struct tcp_sock *tp = tcp_sk(sk);
  1250. struct inet_connection_sock *icsk = inet_csk(sk);
  1251. struct net *net = sock_net(sk);
  1252. icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
  1253. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
  1254. icsk->icsk_af_ops->net_header_len;
  1255. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
  1256. icsk->icsk_mtup.probe_size = 0;
  1257. if (icsk->icsk_mtup.enabled)
  1258. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1259. }
  1260. EXPORT_SYMBOL(tcp_mtup_init);
  1261. /* This function synchronize snd mss to current pmtu/exthdr set.
  1262. tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
  1263. for TCP options, but includes only bare TCP header.
  1264. tp->rx_opt.mss_clamp is mss negotiated at connection setup.
  1265. It is minimum of user_mss and mss received with SYN.
  1266. It also does not include TCP options.
  1267. inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
  1268. tp->mss_cache is current effective sending mss, including
  1269. all tcp options except for SACKs. It is evaluated,
  1270. taking into account current pmtu, but never exceeds
  1271. tp->rx_opt.mss_clamp.
  1272. NOTE1. rfc1122 clearly states that advertised MSS
  1273. DOES NOT include either tcp or ip options.
  1274. NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
  1275. are READ ONLY outside this function. --ANK (980731)
  1276. */
  1277. unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
  1278. {
  1279. struct tcp_sock *tp = tcp_sk(sk);
  1280. struct inet_connection_sock *icsk = inet_csk(sk);
  1281. int mss_now;
  1282. if (icsk->icsk_mtup.search_high > pmtu)
  1283. icsk->icsk_mtup.search_high = pmtu;
  1284. mss_now = tcp_mtu_to_mss(sk, pmtu);
  1285. mss_now = tcp_bound_to_half_wnd(tp, mss_now);
  1286. /* And store cached results */
  1287. icsk->icsk_pmtu_cookie = pmtu;
  1288. if (icsk->icsk_mtup.enabled)
  1289. mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
  1290. tp->mss_cache = mss_now;
  1291. return mss_now;
  1292. }
  1293. EXPORT_SYMBOL(tcp_sync_mss);
  1294. /* Compute the current effective MSS, taking SACKs and IP options,
  1295. * and even PMTU discovery events into account.
  1296. */
  1297. unsigned int tcp_current_mss(struct sock *sk)
  1298. {
  1299. const struct tcp_sock *tp = tcp_sk(sk);
  1300. const struct dst_entry *dst = __sk_dst_get(sk);
  1301. u32 mss_now;
  1302. unsigned int header_len;
  1303. struct tcp_out_options opts;
  1304. struct tcp_md5sig_key *md5;
  1305. mss_now = tp->mss_cache;
  1306. if (dst) {
  1307. u32 mtu = dst_mtu(dst);
  1308. if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
  1309. mss_now = tcp_sync_mss(sk, mtu);
  1310. }
  1311. header_len = tcp_established_options(sk, NULL, &opts, &md5) +
  1312. sizeof(struct tcphdr);
  1313. /* The mss_cache is sized based on tp->tcp_header_len, which assumes
  1314. * some common options. If this is an odd packet (because we have SACK
  1315. * blocks etc) then our calculated header_len will be different, and
  1316. * we have to adjust mss_now correspondingly */
  1317. if (header_len != tp->tcp_header_len) {
  1318. int delta = (int) header_len - tp->tcp_header_len;
  1319. mss_now -= delta;
  1320. }
  1321. return mss_now;
  1322. }
  1323. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  1324. * As additional protections, we do not touch cwnd in retransmission phases,
  1325. * and if application hit its sndbuf limit recently.
  1326. */
  1327. static void tcp_cwnd_application_limited(struct sock *sk)
  1328. {
  1329. struct tcp_sock *tp = tcp_sk(sk);
  1330. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  1331. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1332. /* Limited by application or receiver window. */
  1333. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  1334. u32 win_used = max(tp->snd_cwnd_used, init_win);
  1335. if (win_used < tp->snd_cwnd) {
  1336. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  1337. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  1338. }
  1339. tp->snd_cwnd_used = 0;
  1340. }
  1341. tp->snd_cwnd_stamp = tcp_jiffies32;
  1342. }
  1343. static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
  1344. {
  1345. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1346. struct tcp_sock *tp = tcp_sk(sk);
  1347. /* Track the maximum number of outstanding packets in each
  1348. * window, and remember whether we were cwnd-limited then.
  1349. */
  1350. if (!before(tp->snd_una, tp->max_packets_seq) ||
  1351. tp->packets_out > tp->max_packets_out) {
  1352. tp->max_packets_out = tp->packets_out;
  1353. tp->max_packets_seq = tp->snd_nxt;
  1354. tp->is_cwnd_limited = is_cwnd_limited;
  1355. }
  1356. if (tcp_is_cwnd_limited(sk)) {
  1357. /* Network is feed fully. */
  1358. tp->snd_cwnd_used = 0;
  1359. tp->snd_cwnd_stamp = tcp_jiffies32;
  1360. } else {
  1361. /* Network starves. */
  1362. if (tp->packets_out > tp->snd_cwnd_used)
  1363. tp->snd_cwnd_used = tp->packets_out;
  1364. if (sysctl_tcp_slow_start_after_idle &&
  1365. (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
  1366. !ca_ops->cong_control)
  1367. tcp_cwnd_application_limited(sk);
  1368. /* The following conditions together indicate the starvation
  1369. * is caused by insufficient sender buffer:
  1370. * 1) just sent some data (see tcp_write_xmit)
  1371. * 2) not cwnd limited (this else condition)
  1372. * 3) no more data to send (null tcp_send_head )
  1373. * 4) application is hitting buffer limit (SOCK_NOSPACE)
  1374. */
  1375. if (!tcp_send_head(sk) && sk->sk_socket &&
  1376. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
  1377. (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  1378. tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
  1379. }
  1380. }
  1381. /* Minshall's variant of the Nagle send check. */
  1382. static bool tcp_minshall_check(const struct tcp_sock *tp)
  1383. {
  1384. return after(tp->snd_sml, tp->snd_una) &&
  1385. !after(tp->snd_sml, tp->snd_nxt);
  1386. }
  1387. /* Update snd_sml if this skb is under mss
  1388. * Note that a TSO packet might end with a sub-mss segment
  1389. * The test is really :
  1390. * if ((skb->len % mss) != 0)
  1391. * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1392. * But we can avoid doing the divide again given we already have
  1393. * skb_pcount = skb->len / mss_now
  1394. */
  1395. static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
  1396. const struct sk_buff *skb)
  1397. {
  1398. if (skb->len < tcp_skb_pcount(skb) * mss_now)
  1399. tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1400. }
  1401. /* Return false, if packet can be sent now without violation Nagle's rules:
  1402. * 1. It is full sized. (provided by caller in %partial bool)
  1403. * 2. Or it contains FIN. (already checked by caller)
  1404. * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
  1405. * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
  1406. * With Minshall's modification: all sent small packets are ACKed.
  1407. */
  1408. static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
  1409. int nonagle)
  1410. {
  1411. return partial &&
  1412. ((nonagle & TCP_NAGLE_CORK) ||
  1413. (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
  1414. }
  1415. /* Return how many segs we'd like on a TSO packet,
  1416. * to send one TSO packet per ms
  1417. */
  1418. u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
  1419. int min_tso_segs)
  1420. {
  1421. u32 bytes, segs;
  1422. bytes = min(sk->sk_pacing_rate >> 10,
  1423. sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
  1424. /* Goal is to send at least one packet per ms,
  1425. * not one big TSO packet every 100 ms.
  1426. * This preserves ACK clocking and is consistent
  1427. * with tcp_tso_should_defer() heuristic.
  1428. */
  1429. segs = max_t(u32, bytes / mss_now, min_tso_segs);
  1430. return min_t(u32, segs, sk->sk_gso_max_segs);
  1431. }
  1432. EXPORT_SYMBOL(tcp_tso_autosize);
  1433. /* Return the number of segments we want in the skb we are transmitting.
  1434. * See if congestion control module wants to decide; otherwise, autosize.
  1435. */
  1436. static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
  1437. {
  1438. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1439. u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
  1440. return tso_segs ? :
  1441. tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
  1442. }
  1443. /* Returns the portion of skb which can be sent right away */
  1444. static unsigned int tcp_mss_split_point(const struct sock *sk,
  1445. const struct sk_buff *skb,
  1446. unsigned int mss_now,
  1447. unsigned int max_segs,
  1448. int nonagle)
  1449. {
  1450. const struct tcp_sock *tp = tcp_sk(sk);
  1451. u32 partial, needed, window, max_len;
  1452. window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1453. max_len = mss_now * max_segs;
  1454. if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
  1455. return max_len;
  1456. needed = min(skb->len, window);
  1457. if (max_len <= needed)
  1458. return max_len;
  1459. partial = needed % mss_now;
  1460. /* If last segment is not a full MSS, check if Nagle rules allow us
  1461. * to include this last segment in this skb.
  1462. * Otherwise, we'll split the skb at last MSS boundary
  1463. */
  1464. if (tcp_nagle_check(partial != 0, tp, nonagle))
  1465. return needed - partial;
  1466. return needed;
  1467. }
  1468. /* Can at least one segment of SKB be sent right now, according to the
  1469. * congestion window rules? If so, return how many segments are allowed.
  1470. */
  1471. static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
  1472. const struct sk_buff *skb)
  1473. {
  1474. u32 in_flight, cwnd, halfcwnd;
  1475. /* Don't be strict about the congestion window for the final FIN. */
  1476. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
  1477. tcp_skb_pcount(skb) == 1)
  1478. return 1;
  1479. in_flight = tcp_packets_in_flight(tp);
  1480. cwnd = tp->snd_cwnd;
  1481. if (in_flight >= cwnd)
  1482. return 0;
  1483. /* For better scheduling, ensure we have at least
  1484. * 2 GSO packets in flight.
  1485. */
  1486. halfcwnd = max(cwnd >> 1, 1U);
  1487. return min(halfcwnd, cwnd - in_flight);
  1488. }
  1489. /* Initialize TSO state of a skb.
  1490. * This must be invoked the first time we consider transmitting
  1491. * SKB onto the wire.
  1492. */
  1493. static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1494. {
  1495. int tso_segs = tcp_skb_pcount(skb);
  1496. if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
  1497. tcp_set_skb_tso_segs(skb, mss_now);
  1498. tso_segs = tcp_skb_pcount(skb);
  1499. }
  1500. return tso_segs;
  1501. }
  1502. /* Return true if the Nagle test allows this packet to be
  1503. * sent now.
  1504. */
  1505. static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
  1506. unsigned int cur_mss, int nonagle)
  1507. {
  1508. /* Nagle rule does not apply to frames, which sit in the middle of the
  1509. * write_queue (they have no chances to get new data).
  1510. *
  1511. * This is implemented in the callers, where they modify the 'nonagle'
  1512. * argument based upon the location of SKB in the send queue.
  1513. */
  1514. if (nonagle & TCP_NAGLE_PUSH)
  1515. return true;
  1516. /* Don't use the nagle rule for urgent data (or for the final FIN). */
  1517. if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
  1518. return true;
  1519. if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
  1520. return true;
  1521. return false;
  1522. }
  1523. /* Does at least the first segment of SKB fit into the send window? */
  1524. static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
  1525. const struct sk_buff *skb,
  1526. unsigned int cur_mss)
  1527. {
  1528. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  1529. if (skb->len > cur_mss)
  1530. end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
  1531. return !after(end_seq, tcp_wnd_end(tp));
  1532. }
  1533. /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
  1534. * should be put on the wire right now. If so, it returns the number of
  1535. * packets allowed by the congestion window.
  1536. */
  1537. static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
  1538. unsigned int cur_mss, int nonagle)
  1539. {
  1540. const struct tcp_sock *tp = tcp_sk(sk);
  1541. unsigned int cwnd_quota;
  1542. tcp_init_tso_segs(skb, cur_mss);
  1543. if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
  1544. return 0;
  1545. cwnd_quota = tcp_cwnd_test(tp, skb);
  1546. if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
  1547. cwnd_quota = 0;
  1548. return cwnd_quota;
  1549. }
  1550. /* Test if sending is allowed right now. */
  1551. bool tcp_may_send_now(struct sock *sk)
  1552. {
  1553. const struct tcp_sock *tp = tcp_sk(sk);
  1554. struct sk_buff *skb = tcp_send_head(sk);
  1555. return skb &&
  1556. tcp_snd_test(sk, skb, tcp_current_mss(sk),
  1557. (tcp_skb_is_last(sk, skb) ?
  1558. tp->nonagle : TCP_NAGLE_PUSH));
  1559. }
  1560. /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
  1561. * which is put after SKB on the list. It is very much like
  1562. * tcp_fragment() except that it may make several kinds of assumptions
  1563. * in order to speed up the splitting operation. In particular, we
  1564. * know that all the data is in scatter-gather pages, and that the
  1565. * packet has never been sent out before (and thus is not cloned).
  1566. */
  1567. static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
  1568. unsigned int mss_now, gfp_t gfp)
  1569. {
  1570. struct sk_buff *buff;
  1571. int nlen = skb->len - len;
  1572. u8 flags;
  1573. /* All of a TSO frame must be composed of paged data. */
  1574. if (skb->len != skb->data_len)
  1575. return tcp_fragment(sk, skb, len, mss_now, gfp);
  1576. buff = sk_stream_alloc_skb(sk, 0, gfp, true);
  1577. if (unlikely(!buff))
  1578. return -ENOMEM;
  1579. sk->sk_wmem_queued += buff->truesize;
  1580. sk_mem_charge(sk, buff->truesize);
  1581. buff->truesize += nlen;
  1582. skb->truesize -= nlen;
  1583. /* Correct the sequence numbers. */
  1584. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1585. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1586. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1587. /* PSH and FIN should only be set in the second packet. */
  1588. flags = TCP_SKB_CB(skb)->tcp_flags;
  1589. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1590. TCP_SKB_CB(buff)->tcp_flags = flags;
  1591. /* This packet was never sent out yet, so no SACK bits. */
  1592. TCP_SKB_CB(buff)->sacked = 0;
  1593. tcp_skb_fragment_eor(skb, buff);
  1594. buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
  1595. skb_split(skb, buff, len);
  1596. tcp_fragment_tstamp(skb, buff);
  1597. /* Fix up tso_factor for both original and new SKB. */
  1598. tcp_set_skb_tso_segs(skb, mss_now);
  1599. tcp_set_skb_tso_segs(buff, mss_now);
  1600. /* Link BUFF into the send queue. */
  1601. __skb_header_release(buff);
  1602. tcp_insert_write_queue_after(skb, buff, sk);
  1603. return 0;
  1604. }
  1605. /* Try to defer sending, if possible, in order to minimize the amount
  1606. * of TSO splitting we do. View it as a kind of TSO Nagle test.
  1607. *
  1608. * This algorithm is from John Heffner.
  1609. */
  1610. static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
  1611. bool *is_cwnd_limited, u32 max_segs)
  1612. {
  1613. const struct inet_connection_sock *icsk = inet_csk(sk);
  1614. u32 age, send_win, cong_win, limit, in_flight;
  1615. struct tcp_sock *tp = tcp_sk(sk);
  1616. struct sk_buff *head;
  1617. int win_divisor;
  1618. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1619. goto send_now;
  1620. if (icsk->icsk_ca_state >= TCP_CA_Recovery)
  1621. goto send_now;
  1622. /* Avoid bursty behavior by allowing defer
  1623. * only if the last write was recent.
  1624. */
  1625. if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
  1626. goto send_now;
  1627. in_flight = tcp_packets_in_flight(tp);
  1628. BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
  1629. send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1630. /* From in_flight test above, we know that cwnd > in_flight. */
  1631. cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
  1632. limit = min(send_win, cong_win);
  1633. /* If a full-sized TSO skb can be sent, do it. */
  1634. if (limit >= max_segs * tp->mss_cache)
  1635. goto send_now;
  1636. /* Middle in queue won't get any more data, full sendable already? */
  1637. if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
  1638. goto send_now;
  1639. win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
  1640. if (win_divisor) {
  1641. u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
  1642. /* If at least some fraction of a window is available,
  1643. * just use it.
  1644. */
  1645. chunk /= win_divisor;
  1646. if (limit >= chunk)
  1647. goto send_now;
  1648. } else {
  1649. /* Different approach, try not to defer past a single
  1650. * ACK. Receiver should ACK every other full sized
  1651. * frame, so if we have space for more than 3 frames
  1652. * then send now.
  1653. */
  1654. if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
  1655. goto send_now;
  1656. }
  1657. head = tcp_write_queue_head(sk);
  1658. age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
  1659. /* If next ACK is likely to come too late (half srtt), do not defer */
  1660. if (age < (tp->srtt_us >> 4))
  1661. goto send_now;
  1662. /* Ok, it looks like it is advisable to defer. */
  1663. if (cong_win < send_win && cong_win <= skb->len)
  1664. *is_cwnd_limited = true;
  1665. return true;
  1666. send_now:
  1667. return false;
  1668. }
  1669. static inline void tcp_mtu_check_reprobe(struct sock *sk)
  1670. {
  1671. struct inet_connection_sock *icsk = inet_csk(sk);
  1672. struct tcp_sock *tp = tcp_sk(sk);
  1673. struct net *net = sock_net(sk);
  1674. u32 interval;
  1675. s32 delta;
  1676. interval = net->ipv4.sysctl_tcp_probe_interval;
  1677. delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
  1678. if (unlikely(delta >= interval * HZ)) {
  1679. int mss = tcp_current_mss(sk);
  1680. /* Update current search range */
  1681. icsk->icsk_mtup.probe_size = 0;
  1682. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
  1683. sizeof(struct tcphdr) +
  1684. icsk->icsk_af_ops->net_header_len;
  1685. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
  1686. /* Update probe time stamp */
  1687. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1688. }
  1689. }
  1690. /* Create a new MTU probe if we are ready.
  1691. * MTU probe is regularly attempting to increase the path MTU by
  1692. * deliberately sending larger packets. This discovers routing
  1693. * changes resulting in larger path MTUs.
  1694. *
  1695. * Returns 0 if we should wait to probe (no cwnd available),
  1696. * 1 if a probe was sent,
  1697. * -1 otherwise
  1698. */
  1699. static int tcp_mtu_probe(struct sock *sk)
  1700. {
  1701. struct inet_connection_sock *icsk = inet_csk(sk);
  1702. struct tcp_sock *tp = tcp_sk(sk);
  1703. struct sk_buff *skb, *nskb, *next;
  1704. struct net *net = sock_net(sk);
  1705. int probe_size;
  1706. int size_needed;
  1707. int copy, len;
  1708. int mss_now;
  1709. int interval;
  1710. /* Not currently probing/verifying,
  1711. * not in recovery,
  1712. * have enough cwnd, and
  1713. * not SACKing (the variable headers throw things off)
  1714. */
  1715. if (likely(!icsk->icsk_mtup.enabled ||
  1716. icsk->icsk_mtup.probe_size ||
  1717. inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
  1718. tp->snd_cwnd < 11 ||
  1719. tp->rx_opt.num_sacks || tp->rx_opt.dsack))
  1720. return -1;
  1721. /* Use binary search for probe_size between tcp_mss_base,
  1722. * and current mss_clamp. if (search_high - search_low)
  1723. * smaller than a threshold, backoff from probing.
  1724. */
  1725. mss_now = tcp_current_mss(sk);
  1726. probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
  1727. icsk->icsk_mtup.search_low) >> 1);
  1728. size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
  1729. interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
  1730. /* When misfortune happens, we are reprobing actively,
  1731. * and then reprobe timer has expired. We stick with current
  1732. * probing process by not resetting search range to its orignal.
  1733. */
  1734. if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
  1735. interval < net->ipv4.sysctl_tcp_probe_threshold) {
  1736. /* Check whether enough time has elaplased for
  1737. * another round of probing.
  1738. */
  1739. tcp_mtu_check_reprobe(sk);
  1740. return -1;
  1741. }
  1742. /* Have enough data in the send queue to probe? */
  1743. if (tp->write_seq - tp->snd_nxt < size_needed)
  1744. return -1;
  1745. if (tp->snd_wnd < size_needed)
  1746. return -1;
  1747. if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
  1748. return 0;
  1749. /* Do we need to wait to drain cwnd? With none in flight, don't stall */
  1750. if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
  1751. if (!tcp_packets_in_flight(tp))
  1752. return -1;
  1753. else
  1754. return 0;
  1755. }
  1756. /* We're allowed to probe. Build it now. */
  1757. nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
  1758. if (!nskb)
  1759. return -1;
  1760. sk->sk_wmem_queued += nskb->truesize;
  1761. sk_mem_charge(sk, nskb->truesize);
  1762. skb = tcp_send_head(sk);
  1763. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
  1764. TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
  1765. TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
  1766. TCP_SKB_CB(nskb)->sacked = 0;
  1767. nskb->csum = 0;
  1768. nskb->ip_summed = skb->ip_summed;
  1769. tcp_insert_write_queue_before(nskb, skb, sk);
  1770. len = 0;
  1771. tcp_for_write_queue_from_safe(skb, next, sk) {
  1772. copy = min_t(int, skb->len, probe_size - len);
  1773. if (nskb->ip_summed) {
  1774. skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
  1775. } else {
  1776. __wsum csum = skb_copy_and_csum_bits(skb, 0,
  1777. skb_put(nskb, copy),
  1778. copy, 0);
  1779. nskb->csum = csum_block_add(nskb->csum, csum, len);
  1780. }
  1781. if (skb->len <= copy) {
  1782. /* We've eaten all the data from this skb.
  1783. * Throw it away. */
  1784. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1785. tcp_unlink_write_queue(skb, sk);
  1786. sk_wmem_free_skb(sk, skb);
  1787. } else {
  1788. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
  1789. ~(TCPHDR_FIN|TCPHDR_PSH);
  1790. if (!skb_shinfo(skb)->nr_frags) {
  1791. skb_pull(skb, copy);
  1792. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1793. skb->csum = csum_partial(skb->data,
  1794. skb->len, 0);
  1795. } else {
  1796. __pskb_trim_head(skb, copy);
  1797. tcp_set_skb_tso_segs(skb, mss_now);
  1798. }
  1799. TCP_SKB_CB(skb)->seq += copy;
  1800. }
  1801. len += copy;
  1802. if (len >= probe_size)
  1803. break;
  1804. }
  1805. tcp_init_tso_segs(nskb, nskb->len);
  1806. /* We're ready to send. If this fails, the probe will
  1807. * be resegmented into mss-sized pieces by tcp_write_xmit().
  1808. */
  1809. if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
  1810. /* Decrement cwnd here because we are sending
  1811. * effectively two packets. */
  1812. tp->snd_cwnd--;
  1813. tcp_event_new_data_sent(sk, nskb);
  1814. icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
  1815. tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
  1816. tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
  1817. return 1;
  1818. }
  1819. return -1;
  1820. }
  1821. static bool tcp_pacing_check(const struct sock *sk)
  1822. {
  1823. return tcp_needs_internal_pacing(sk) &&
  1824. hrtimer_active(&tcp_sk(sk)->pacing_timer);
  1825. }
  1826. /* TCP Small Queues :
  1827. * Control number of packets in qdisc/devices to two packets / or ~1 ms.
  1828. * (These limits are doubled for retransmits)
  1829. * This allows for :
  1830. * - better RTT estimation and ACK scheduling
  1831. * - faster recovery
  1832. * - high rates
  1833. * Alas, some drivers / subsystems require a fair amount
  1834. * of queued bytes to ensure line rate.
  1835. * One example is wifi aggregation (802.11 AMPDU)
  1836. */
  1837. static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
  1838. unsigned int factor)
  1839. {
  1840. unsigned int limit;
  1841. limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
  1842. limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
  1843. limit <<= factor;
  1844. if (refcount_read(&sk->sk_wmem_alloc) > limit) {
  1845. /* Always send the 1st or 2nd skb in write queue.
  1846. * No need to wait for TX completion to call us back,
  1847. * after softirq/tasklet schedule.
  1848. * This helps when TX completions are delayed too much.
  1849. */
  1850. if (skb == sk->sk_write_queue.next ||
  1851. skb->prev == sk->sk_write_queue.next)
  1852. return false;
  1853. set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
  1854. /* It is possible TX completion already happened
  1855. * before we set TSQ_THROTTLED, so we must
  1856. * test again the condition.
  1857. */
  1858. smp_mb__after_atomic();
  1859. if (refcount_read(&sk->sk_wmem_alloc) > limit)
  1860. return true;
  1861. }
  1862. return false;
  1863. }
  1864. static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
  1865. {
  1866. const u32 now = tcp_jiffies32;
  1867. if (tp->chrono_type > TCP_CHRONO_UNSPEC)
  1868. tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
  1869. tp->chrono_start = now;
  1870. tp->chrono_type = new;
  1871. }
  1872. void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
  1873. {
  1874. struct tcp_sock *tp = tcp_sk(sk);
  1875. /* If there are multiple conditions worthy of tracking in a
  1876. * chronograph then the highest priority enum takes precedence
  1877. * over the other conditions. So that if something "more interesting"
  1878. * starts happening, stop the previous chrono and start a new one.
  1879. */
  1880. if (type > tp->chrono_type)
  1881. tcp_chrono_set(tp, type);
  1882. }
  1883. void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
  1884. {
  1885. struct tcp_sock *tp = tcp_sk(sk);
  1886. /* There are multiple conditions worthy of tracking in a
  1887. * chronograph, so that the highest priority enum takes
  1888. * precedence over the other conditions (see tcp_chrono_start).
  1889. * If a condition stops, we only stop chrono tracking if
  1890. * it's the "most interesting" or current chrono we are
  1891. * tracking and starts busy chrono if we have pending data.
  1892. */
  1893. if (tcp_write_queue_empty(sk))
  1894. tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
  1895. else if (type == tp->chrono_type)
  1896. tcp_chrono_set(tp, TCP_CHRONO_BUSY);
  1897. }
  1898. /* This routine writes packets to the network. It advances the
  1899. * send_head. This happens as incoming acks open up the remote
  1900. * window for us.
  1901. *
  1902. * LARGESEND note: !tcp_urg_mode is overkill, only frames between
  1903. * snd_up-64k-mss .. snd_up cannot be large. However, taking into
  1904. * account rare use of URG, this is not a big flaw.
  1905. *
  1906. * Send at most one packet when push_one > 0. Temporarily ignore
  1907. * cwnd limit to force at most one packet out when push_one == 2.
  1908. * Returns true, if no segments are in flight and we have queued segments,
  1909. * but cannot send anything now because of SWS or another problem.
  1910. */
  1911. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  1912. int push_one, gfp_t gfp)
  1913. {
  1914. struct tcp_sock *tp = tcp_sk(sk);
  1915. struct sk_buff *skb;
  1916. unsigned int tso_segs, sent_pkts;
  1917. int cwnd_quota;
  1918. int result;
  1919. bool is_cwnd_limited = false, is_rwnd_limited = false;
  1920. u32 max_segs;
  1921. sent_pkts = 0;
  1922. if (!push_one) {
  1923. /* Do MTU probing. */
  1924. result = tcp_mtu_probe(sk);
  1925. if (!result) {
  1926. return false;
  1927. } else if (result > 0) {
  1928. sent_pkts = 1;
  1929. }
  1930. }
  1931. max_segs = tcp_tso_segs(sk, mss_now);
  1932. tcp_mstamp_refresh(tp);
  1933. while ((skb = tcp_send_head(sk))) {
  1934. unsigned int limit;
  1935. if (tcp_pacing_check(sk))
  1936. break;
  1937. tso_segs = tcp_init_tso_segs(skb, mss_now);
  1938. BUG_ON(!tso_segs);
  1939. if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
  1940. /* "skb_mstamp" is used as a start point for the retransmit timer */
  1941. skb->skb_mstamp = tp->tcp_mstamp;
  1942. goto repair; /* Skip network transmission */
  1943. }
  1944. cwnd_quota = tcp_cwnd_test(tp, skb);
  1945. if (!cwnd_quota) {
  1946. if (push_one == 2)
  1947. /* Force out a loss probe pkt. */
  1948. cwnd_quota = 1;
  1949. else
  1950. break;
  1951. }
  1952. if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
  1953. is_rwnd_limited = true;
  1954. break;
  1955. }
  1956. if (tso_segs == 1) {
  1957. if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
  1958. (tcp_skb_is_last(sk, skb) ?
  1959. nonagle : TCP_NAGLE_PUSH))))
  1960. break;
  1961. } else {
  1962. if (!push_one &&
  1963. tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
  1964. max_segs))
  1965. break;
  1966. }
  1967. limit = mss_now;
  1968. if (tso_segs > 1 && !tcp_urg_mode(tp))
  1969. limit = tcp_mss_split_point(sk, skb, mss_now,
  1970. min_t(unsigned int,
  1971. cwnd_quota,
  1972. max_segs),
  1973. nonagle);
  1974. if (skb->len > limit &&
  1975. unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
  1976. break;
  1977. if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
  1978. clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
  1979. if (tcp_small_queue_check(sk, skb, 0))
  1980. break;
  1981. if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
  1982. break;
  1983. repair:
  1984. /* Advance the send_head. This one is sent out.
  1985. * This call will increment packets_out.
  1986. */
  1987. tcp_event_new_data_sent(sk, skb);
  1988. tcp_minshall_update(tp, mss_now, skb);
  1989. sent_pkts += tcp_skb_pcount(skb);
  1990. if (push_one)
  1991. break;
  1992. }
  1993. if (is_rwnd_limited)
  1994. tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
  1995. else
  1996. tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
  1997. if (likely(sent_pkts)) {
  1998. if (tcp_in_cwnd_reduction(sk))
  1999. tp->prr_out += sent_pkts;
  2000. /* Send one loss probe per tail loss episode. */
  2001. if (push_one != 2)
  2002. tcp_schedule_loss_probe(sk);
  2003. is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
  2004. tcp_cwnd_validate(sk, is_cwnd_limited);
  2005. return false;
  2006. }
  2007. return !tp->packets_out && tcp_send_head(sk);
  2008. }
  2009. bool tcp_schedule_loss_probe(struct sock *sk)
  2010. {
  2011. struct inet_connection_sock *icsk = inet_csk(sk);
  2012. struct tcp_sock *tp = tcp_sk(sk);
  2013. u32 timeout, tlp_time_stamp, rto_time_stamp;
  2014. u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
  2015. /* No consecutive loss probes. */
  2016. if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
  2017. tcp_rearm_rto(sk);
  2018. return false;
  2019. }
  2020. /* Don't do any loss probe on a Fast Open connection before 3WHS
  2021. * finishes.
  2022. */
  2023. if (tp->fastopen_rsk)
  2024. return false;
  2025. /* TLP is only scheduled when next timer event is RTO. */
  2026. if (icsk->icsk_pending != ICSK_TIME_RETRANS)
  2027. return false;
  2028. /* Schedule a loss probe in 2*RTT for SACK capable connections
  2029. * in Open state, that are either limited by cwnd or application.
  2030. */
  2031. if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
  2032. !tp->packets_out || !tcp_is_sack(tp) ||
  2033. icsk->icsk_ca_state != TCP_CA_Open)
  2034. return false;
  2035. if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
  2036. tcp_send_head(sk))
  2037. return false;
  2038. /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
  2039. * for delayed ack when there's one outstanding packet. If no RTT
  2040. * sample is available then probe after TCP_TIMEOUT_INIT.
  2041. */
  2042. timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
  2043. if (tp->packets_out == 1)
  2044. timeout = max_t(u32, timeout,
  2045. (rtt + (rtt >> 1) + TCP_DELACK_MAX));
  2046. timeout = max_t(u32, timeout, msecs_to_jiffies(10));
  2047. /* If RTO is shorter, just schedule TLP in its place. */
  2048. tlp_time_stamp = tcp_jiffies32 + timeout;
  2049. rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
  2050. if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
  2051. s32 delta = rto_time_stamp - tcp_jiffies32;
  2052. if (delta > 0)
  2053. timeout = delta;
  2054. }
  2055. inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
  2056. TCP_RTO_MAX);
  2057. return true;
  2058. }
  2059. /* Thanks to skb fast clones, we can detect if a prior transmit of
  2060. * a packet is still in a qdisc or driver queue.
  2061. * In this case, there is very little point doing a retransmit !
  2062. */
  2063. static bool skb_still_in_host_queue(const struct sock *sk,
  2064. const struct sk_buff *skb)
  2065. {
  2066. if (unlikely(skb_fclone_busy(sk, skb))) {
  2067. NET_INC_STATS(sock_net(sk),
  2068. LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
  2069. return true;
  2070. }
  2071. return false;
  2072. }
  2073. /* When probe timeout (PTO) fires, try send a new segment if possible, else
  2074. * retransmit the last segment.
  2075. */
  2076. void tcp_send_loss_probe(struct sock *sk)
  2077. {
  2078. struct tcp_sock *tp = tcp_sk(sk);
  2079. struct sk_buff *skb;
  2080. int pcount;
  2081. int mss = tcp_current_mss(sk);
  2082. skb = tcp_send_head(sk);
  2083. if (skb) {
  2084. if (tcp_snd_wnd_test(tp, skb, mss)) {
  2085. pcount = tp->packets_out;
  2086. tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
  2087. if (tp->packets_out > pcount)
  2088. goto probe_sent;
  2089. goto rearm_timer;
  2090. }
  2091. skb = tcp_write_queue_prev(sk, skb);
  2092. } else {
  2093. skb = tcp_write_queue_tail(sk);
  2094. }
  2095. /* At most one outstanding TLP retransmission. */
  2096. if (tp->tlp_high_seq)
  2097. goto rearm_timer;
  2098. /* Retransmit last segment. */
  2099. if (WARN_ON(!skb))
  2100. goto rearm_timer;
  2101. if (skb_still_in_host_queue(sk, skb))
  2102. goto rearm_timer;
  2103. pcount = tcp_skb_pcount(skb);
  2104. if (WARN_ON(!pcount))
  2105. goto rearm_timer;
  2106. if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
  2107. if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
  2108. GFP_ATOMIC)))
  2109. goto rearm_timer;
  2110. skb = tcp_write_queue_next(sk, skb);
  2111. }
  2112. if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
  2113. goto rearm_timer;
  2114. if (__tcp_retransmit_skb(sk, skb, 1))
  2115. goto rearm_timer;
  2116. /* Record snd_nxt for loss detection. */
  2117. tp->tlp_high_seq = tp->snd_nxt;
  2118. probe_sent:
  2119. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
  2120. /* Reset s.t. tcp_rearm_rto will restart timer from now */
  2121. inet_csk(sk)->icsk_pending = 0;
  2122. rearm_timer:
  2123. tcp_rearm_rto(sk);
  2124. }
  2125. /* Push out any pending frames which were held back due to
  2126. * TCP_CORK or attempt at coalescing tiny packets.
  2127. * The socket must be locked by the caller.
  2128. */
  2129. void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
  2130. int nonagle)
  2131. {
  2132. /* If we are closed, the bytes will have to remain here.
  2133. * In time closedown will finish, we empty the write queue and
  2134. * all will be happy.
  2135. */
  2136. if (unlikely(sk->sk_state == TCP_CLOSE))
  2137. return;
  2138. if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
  2139. sk_gfp_mask(sk, GFP_ATOMIC)))
  2140. tcp_check_probe_timer(sk);
  2141. }
  2142. /* Send _single_ skb sitting at the send head. This function requires
  2143. * true push pending frames to setup probe timer etc.
  2144. */
  2145. void tcp_push_one(struct sock *sk, unsigned int mss_now)
  2146. {
  2147. struct sk_buff *skb = tcp_send_head(sk);
  2148. BUG_ON(!skb || skb->len < mss_now);
  2149. tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
  2150. }
  2151. /* This function returns the amount that we can raise the
  2152. * usable window based on the following constraints
  2153. *
  2154. * 1. The window can never be shrunk once it is offered (RFC 793)
  2155. * 2. We limit memory per socket
  2156. *
  2157. * RFC 1122:
  2158. * "the suggested [SWS] avoidance algorithm for the receiver is to keep
  2159. * RECV.NEXT + RCV.WIN fixed until:
  2160. * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
  2161. *
  2162. * i.e. don't raise the right edge of the window until you can raise
  2163. * it at least MSS bytes.
  2164. *
  2165. * Unfortunately, the recommended algorithm breaks header prediction,
  2166. * since header prediction assumes th->window stays fixed.
  2167. *
  2168. * Strictly speaking, keeping th->window fixed violates the receiver
  2169. * side SWS prevention criteria. The problem is that under this rule
  2170. * a stream of single byte packets will cause the right side of the
  2171. * window to always advance by a single byte.
  2172. *
  2173. * Of course, if the sender implements sender side SWS prevention
  2174. * then this will not be a problem.
  2175. *
  2176. * BSD seems to make the following compromise:
  2177. *
  2178. * If the free space is less than the 1/4 of the maximum
  2179. * space available and the free space is less than 1/2 mss,
  2180. * then set the window to 0.
  2181. * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
  2182. * Otherwise, just prevent the window from shrinking
  2183. * and from being larger than the largest representable value.
  2184. *
  2185. * This prevents incremental opening of the window in the regime
  2186. * where TCP is limited by the speed of the reader side taking
  2187. * data out of the TCP receive queue. It does nothing about
  2188. * those cases where the window is constrained on the sender side
  2189. * because the pipeline is full.
  2190. *
  2191. * BSD also seems to "accidentally" limit itself to windows that are a
  2192. * multiple of MSS, at least until the free space gets quite small.
  2193. * This would appear to be a side effect of the mbuf implementation.
  2194. * Combining these two algorithms results in the observed behavior
  2195. * of having a fixed window size at almost all times.
  2196. *
  2197. * Below we obtain similar behavior by forcing the offered window to
  2198. * a multiple of the mss when it is feasible to do so.
  2199. *
  2200. * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
  2201. * Regular options like TIMESTAMP are taken into account.
  2202. */
  2203. u32 __tcp_select_window(struct sock *sk)
  2204. {
  2205. struct inet_connection_sock *icsk = inet_csk(sk);
  2206. struct tcp_sock *tp = tcp_sk(sk);
  2207. /* MSS for the peer's data. Previous versions used mss_clamp
  2208. * here. I don't know if the value based on our guesses
  2209. * of peer's MSS is better for the performance. It's more correct
  2210. * but may be worse for the performance because of rcv_mss
  2211. * fluctuations. --SAW 1998/11/1
  2212. */
  2213. int mss = icsk->icsk_ack.rcv_mss;
  2214. int free_space = tcp_space(sk);
  2215. int allowed_space = tcp_full_space(sk);
  2216. int full_space = min_t(int, tp->window_clamp, allowed_space);
  2217. int window;
  2218. if (unlikely(mss > full_space)) {
  2219. mss = full_space;
  2220. if (mss <= 0)
  2221. return 0;
  2222. }
  2223. if (free_space < (full_space >> 1)) {
  2224. icsk->icsk_ack.quick = 0;
  2225. if (tcp_under_memory_pressure(sk))
  2226. tp->rcv_ssthresh = min(tp->rcv_ssthresh,
  2227. 4U * tp->advmss);
  2228. /* free_space might become our new window, make sure we don't
  2229. * increase it due to wscale.
  2230. */
  2231. free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
  2232. /* if free space is less than mss estimate, or is below 1/16th
  2233. * of the maximum allowed, try to move to zero-window, else
  2234. * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
  2235. * new incoming data is dropped due to memory limits.
  2236. * With large window, mss test triggers way too late in order
  2237. * to announce zero window in time before rmem limit kicks in.
  2238. */
  2239. if (free_space < (allowed_space >> 4) || free_space < mss)
  2240. return 0;
  2241. }
  2242. if (free_space > tp->rcv_ssthresh)
  2243. free_space = tp->rcv_ssthresh;
  2244. /* Don't do rounding if we are using window scaling, since the
  2245. * scaled window will not line up with the MSS boundary anyway.
  2246. */
  2247. if (tp->rx_opt.rcv_wscale) {
  2248. window = free_space;
  2249. /* Advertise enough space so that it won't get scaled away.
  2250. * Import case: prevent zero window announcement if
  2251. * 1<<rcv_wscale > mss.
  2252. */
  2253. window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
  2254. } else {
  2255. window = tp->rcv_wnd;
  2256. /* Get the largest window that is a nice multiple of mss.
  2257. * Window clamp already applied above.
  2258. * If our current window offering is within 1 mss of the
  2259. * free space we just keep it. This prevents the divide
  2260. * and multiply from happening most of the time.
  2261. * We also don't do any window rounding when the free space
  2262. * is too small.
  2263. */
  2264. if (window <= free_space - mss || window > free_space)
  2265. window = rounddown(free_space, mss);
  2266. else if (mss == full_space &&
  2267. free_space > window + (full_space >> 1))
  2268. window = free_space;
  2269. }
  2270. return window;
  2271. }
  2272. void tcp_skb_collapse_tstamp(struct sk_buff *skb,
  2273. const struct sk_buff *next_skb)
  2274. {
  2275. if (unlikely(tcp_has_tx_tstamp(next_skb))) {
  2276. const struct skb_shared_info *next_shinfo =
  2277. skb_shinfo(next_skb);
  2278. struct skb_shared_info *shinfo = skb_shinfo(skb);
  2279. shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  2280. shinfo->tskey = next_shinfo->tskey;
  2281. TCP_SKB_CB(skb)->txstamp_ack |=
  2282. TCP_SKB_CB(next_skb)->txstamp_ack;
  2283. }
  2284. }
  2285. /* Collapses two adjacent SKB's during retransmission. */
  2286. static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
  2287. {
  2288. struct tcp_sock *tp = tcp_sk(sk);
  2289. struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
  2290. int skb_size, next_skb_size;
  2291. skb_size = skb->len;
  2292. next_skb_size = next_skb->len;
  2293. BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
  2294. if (next_skb_size) {
  2295. if (next_skb_size <= skb_availroom(skb))
  2296. skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
  2297. next_skb_size);
  2298. else if (!skb_shift(skb, next_skb, next_skb_size))
  2299. return false;
  2300. }
  2301. tcp_highest_sack_combine(sk, next_skb, skb);
  2302. tcp_unlink_write_queue(next_skb, sk);
  2303. if (next_skb->ip_summed == CHECKSUM_PARTIAL)
  2304. skb->ip_summed = CHECKSUM_PARTIAL;
  2305. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2306. skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
  2307. /* Update sequence range on original skb. */
  2308. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
  2309. /* Merge over control information. This moves PSH/FIN etc. over */
  2310. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
  2311. /* All done, get rid of second SKB and account for it so
  2312. * packet counting does not break.
  2313. */
  2314. TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
  2315. TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
  2316. /* changed transmit queue under us so clear hints */
  2317. tcp_clear_retrans_hints_partial(tp);
  2318. if (next_skb == tp->retransmit_skb_hint)
  2319. tp->retransmit_skb_hint = skb;
  2320. tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
  2321. tcp_skb_collapse_tstamp(skb, next_skb);
  2322. sk_wmem_free_skb(sk, next_skb);
  2323. return true;
  2324. }
  2325. /* Check if coalescing SKBs is legal. */
  2326. static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
  2327. {
  2328. if (tcp_skb_pcount(skb) > 1)
  2329. return false;
  2330. if (skb_cloned(skb))
  2331. return false;
  2332. if (skb == tcp_send_head(sk))
  2333. return false;
  2334. /* Some heuristics for collapsing over SACK'd could be invented */
  2335. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  2336. return false;
  2337. return true;
  2338. }
  2339. /* Collapse packets in the retransmit queue to make to create
  2340. * less packets on the wire. This is only done on retransmission.
  2341. */
  2342. static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
  2343. int space)
  2344. {
  2345. struct tcp_sock *tp = tcp_sk(sk);
  2346. struct sk_buff *skb = to, *tmp;
  2347. bool first = true;
  2348. if (!sysctl_tcp_retrans_collapse)
  2349. return;
  2350. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2351. return;
  2352. tcp_for_write_queue_from_safe(skb, tmp, sk) {
  2353. if (!tcp_can_collapse(sk, skb))
  2354. break;
  2355. if (!tcp_skb_can_collapse_to(to))
  2356. break;
  2357. space -= skb->len;
  2358. if (first) {
  2359. first = false;
  2360. continue;
  2361. }
  2362. if (space < 0)
  2363. break;
  2364. if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
  2365. break;
  2366. if (!tcp_collapse_retrans(sk, to))
  2367. break;
  2368. }
  2369. }
  2370. /* This retransmits one SKB. Policy decisions and retransmit queue
  2371. * state updates are done by the caller. Returns non-zero if an
  2372. * error occurred which prevented the send.
  2373. */
  2374. int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2375. {
  2376. struct inet_connection_sock *icsk = inet_csk(sk);
  2377. struct tcp_sock *tp = tcp_sk(sk);
  2378. unsigned int cur_mss;
  2379. int diff, len, err;
  2380. /* Inconclusive MTU probe */
  2381. if (icsk->icsk_mtup.probe_size)
  2382. icsk->icsk_mtup.probe_size = 0;
  2383. /* Do not sent more than we queued. 1/4 is reserved for possible
  2384. * copying overhead: fragmentation, tunneling, mangling etc.
  2385. */
  2386. if (refcount_read(&sk->sk_wmem_alloc) >
  2387. min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
  2388. sk->sk_sndbuf))
  2389. return -EAGAIN;
  2390. if (skb_still_in_host_queue(sk, skb))
  2391. return -EBUSY;
  2392. if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
  2393. if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  2394. BUG();
  2395. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2396. return -ENOMEM;
  2397. }
  2398. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2399. return -EHOSTUNREACH; /* Routing failure or similar. */
  2400. cur_mss = tcp_current_mss(sk);
  2401. /* If receiver has shrunk his window, and skb is out of
  2402. * new window, do not retransmit it. The exception is the
  2403. * case, when window is shrunk to zero. In this case
  2404. * our retransmit serves as a zero window probe.
  2405. */
  2406. if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
  2407. TCP_SKB_CB(skb)->seq != tp->snd_una)
  2408. return -EAGAIN;
  2409. len = cur_mss * segs;
  2410. if (skb->len > len) {
  2411. if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
  2412. return -ENOMEM; /* We'll try again later. */
  2413. } else {
  2414. if (skb_unclone(skb, GFP_ATOMIC))
  2415. return -ENOMEM;
  2416. diff = tcp_skb_pcount(skb);
  2417. tcp_set_skb_tso_segs(skb, cur_mss);
  2418. diff -= tcp_skb_pcount(skb);
  2419. if (diff)
  2420. tcp_adjust_pcount(sk, skb, diff);
  2421. if (skb->len < cur_mss)
  2422. tcp_retrans_try_collapse(sk, skb, cur_mss);
  2423. }
  2424. /* RFC3168, section 6.1.1.1. ECN fallback */
  2425. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
  2426. tcp_ecn_clear_syn(sk, skb);
  2427. /* Update global and local TCP statistics. */
  2428. segs = tcp_skb_pcount(skb);
  2429. TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
  2430. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2431. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  2432. tp->total_retrans += segs;
  2433. /* make sure skb->data is aligned on arches that require it
  2434. * and check if ack-trimming & collapsing extended the headroom
  2435. * beyond what csum_start can cover.
  2436. */
  2437. if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
  2438. skb_headroom(skb) >= 0xFFFF)) {
  2439. struct sk_buff *nskb;
  2440. skb->skb_mstamp = tp->tcp_mstamp;
  2441. nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
  2442. err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
  2443. -ENOBUFS;
  2444. } else {
  2445. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2446. }
  2447. if (likely(!err)) {
  2448. TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
  2449. } else if (err != -EBUSY) {
  2450. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
  2451. }
  2452. return err;
  2453. }
  2454. int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2455. {
  2456. struct tcp_sock *tp = tcp_sk(sk);
  2457. int err = __tcp_retransmit_skb(sk, skb, segs);
  2458. if (err == 0) {
  2459. #if FASTRETRANS_DEBUG > 0
  2460. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2461. net_dbg_ratelimited("retrans_out leaked\n");
  2462. }
  2463. #endif
  2464. TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
  2465. tp->retrans_out += tcp_skb_pcount(skb);
  2466. /* Save stamp of the first retransmit. */
  2467. if (!tp->retrans_stamp)
  2468. tp->retrans_stamp = tcp_skb_timestamp(skb);
  2469. }
  2470. if (tp->undo_retrans < 0)
  2471. tp->undo_retrans = 0;
  2472. tp->undo_retrans += tcp_skb_pcount(skb);
  2473. return err;
  2474. }
  2475. /* This gets called after a retransmit timeout, and the initially
  2476. * retransmitted data is acknowledged. It tries to continue
  2477. * resending the rest of the retransmit queue, until either
  2478. * we've sent it all or the congestion window limit is reached.
  2479. * If doing SACK, the first ACK which comes back for a timeout
  2480. * based retransmit packet might feed us FACK information again.
  2481. * If so, we use it to avoid unnecessarily retransmissions.
  2482. */
  2483. void tcp_xmit_retransmit_queue(struct sock *sk)
  2484. {
  2485. const struct inet_connection_sock *icsk = inet_csk(sk);
  2486. struct tcp_sock *tp = tcp_sk(sk);
  2487. struct sk_buff *skb;
  2488. struct sk_buff *hole = NULL;
  2489. u32 max_segs;
  2490. int mib_idx;
  2491. if (!tp->packets_out)
  2492. return;
  2493. if (tp->retransmit_skb_hint) {
  2494. skb = tp->retransmit_skb_hint;
  2495. } else {
  2496. skb = tcp_write_queue_head(sk);
  2497. }
  2498. max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
  2499. tcp_for_write_queue_from(skb, sk) {
  2500. __u8 sacked;
  2501. int segs;
  2502. if (skb == tcp_send_head(sk))
  2503. break;
  2504. if (tcp_pacing_check(sk))
  2505. break;
  2506. /* we could do better than to assign each time */
  2507. if (!hole)
  2508. tp->retransmit_skb_hint = skb;
  2509. segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
  2510. if (segs <= 0)
  2511. return;
  2512. sacked = TCP_SKB_CB(skb)->sacked;
  2513. /* In case tcp_shift_skb_data() have aggregated large skbs,
  2514. * we need to make sure not sending too bigs TSO packets
  2515. */
  2516. segs = min_t(int, segs, max_segs);
  2517. if (tp->retrans_out >= tp->lost_out) {
  2518. break;
  2519. } else if (!(sacked & TCPCB_LOST)) {
  2520. if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
  2521. hole = skb;
  2522. continue;
  2523. } else {
  2524. if (icsk->icsk_ca_state != TCP_CA_Loss)
  2525. mib_idx = LINUX_MIB_TCPFASTRETRANS;
  2526. else
  2527. mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
  2528. }
  2529. if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
  2530. continue;
  2531. if (tcp_small_queue_check(sk, skb, 1))
  2532. return;
  2533. if (tcp_retransmit_skb(sk, skb, segs))
  2534. return;
  2535. NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
  2536. if (tcp_in_cwnd_reduction(sk))
  2537. tp->prr_out += tcp_skb_pcount(skb);
  2538. if (skb == tcp_write_queue_head(sk) &&
  2539. icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
  2540. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2541. inet_csk(sk)->icsk_rto,
  2542. TCP_RTO_MAX);
  2543. }
  2544. }
  2545. /* We allow to exceed memory limits for FIN packets to expedite
  2546. * connection tear down and (memory) recovery.
  2547. * Otherwise tcp_send_fin() could be tempted to either delay FIN
  2548. * or even be forced to close flow without any FIN.
  2549. * In general, we want to allow one skb per socket to avoid hangs
  2550. * with edge trigger epoll()
  2551. */
  2552. void sk_forced_mem_schedule(struct sock *sk, int size)
  2553. {
  2554. int amt;
  2555. if (size <= sk->sk_forward_alloc)
  2556. return;
  2557. amt = sk_mem_pages(size);
  2558. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  2559. sk_memory_allocated_add(sk, amt);
  2560. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  2561. mem_cgroup_charge_skmem(sk->sk_memcg, amt);
  2562. }
  2563. /* Send a FIN. The caller locks the socket for us.
  2564. * We should try to send a FIN packet really hard, but eventually give up.
  2565. */
  2566. void tcp_send_fin(struct sock *sk)
  2567. {
  2568. struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
  2569. struct tcp_sock *tp = tcp_sk(sk);
  2570. /* Optimization, tack on the FIN if we have one skb in write queue and
  2571. * this skb was not yet sent, or we are under memory pressure.
  2572. * Note: in the latter case, FIN packet will be sent after a timeout,
  2573. * as TCP stack thinks it has already been transmitted.
  2574. */
  2575. if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
  2576. coalesce:
  2577. TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
  2578. TCP_SKB_CB(tskb)->end_seq++;
  2579. tp->write_seq++;
  2580. if (!tcp_send_head(sk)) {
  2581. /* This means tskb was already sent.
  2582. * Pretend we included the FIN on previous transmit.
  2583. * We need to set tp->snd_nxt to the value it would have
  2584. * if FIN had been sent. This is because retransmit path
  2585. * does not change tp->snd_nxt.
  2586. */
  2587. tp->snd_nxt++;
  2588. return;
  2589. }
  2590. } else {
  2591. skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
  2592. if (unlikely(!skb)) {
  2593. if (tskb)
  2594. goto coalesce;
  2595. return;
  2596. }
  2597. skb_reserve(skb, MAX_TCP_HEADER);
  2598. sk_forced_mem_schedule(sk, skb->truesize);
  2599. /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
  2600. tcp_init_nondata_skb(skb, tp->write_seq,
  2601. TCPHDR_ACK | TCPHDR_FIN);
  2602. tcp_queue_skb(sk, skb);
  2603. }
  2604. __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
  2605. }
  2606. /* We get here when a process closes a file descriptor (either due to
  2607. * an explicit close() or as a byproduct of exit()'ing) and there
  2608. * was unread data in the receive queue. This behavior is recommended
  2609. * by RFC 2525, section 2.17. -DaveM
  2610. */
  2611. void tcp_send_active_reset(struct sock *sk, gfp_t priority)
  2612. {
  2613. struct sk_buff *skb;
  2614. TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
  2615. /* NOTE: No TCP options attached and we never retransmit this. */
  2616. skb = alloc_skb(MAX_TCP_HEADER, priority);
  2617. if (!skb) {
  2618. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2619. return;
  2620. }
  2621. /* Reserve space for headers and prepare control bits. */
  2622. skb_reserve(skb, MAX_TCP_HEADER);
  2623. tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
  2624. TCPHDR_ACK | TCPHDR_RST);
  2625. tcp_mstamp_refresh(tcp_sk(sk));
  2626. /* Send it off. */
  2627. if (tcp_transmit_skb(sk, skb, 0, priority))
  2628. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2629. }
  2630. /* Send a crossed SYN-ACK during socket establishment.
  2631. * WARNING: This routine must only be called when we have already sent
  2632. * a SYN packet that crossed the incoming SYN that caused this routine
  2633. * to get called. If this assumption fails then the initial rcv_wnd
  2634. * and rcv_wscale values will not be correct.
  2635. */
  2636. int tcp_send_synack(struct sock *sk)
  2637. {
  2638. struct sk_buff *skb;
  2639. skb = tcp_write_queue_head(sk);
  2640. if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
  2641. pr_debug("%s: wrong queue state\n", __func__);
  2642. return -EFAULT;
  2643. }
  2644. if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
  2645. if (skb_cloned(skb)) {
  2646. struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
  2647. if (!nskb)
  2648. return -ENOMEM;
  2649. tcp_unlink_write_queue(skb, sk);
  2650. __skb_header_release(nskb);
  2651. __tcp_add_write_queue_head(sk, nskb);
  2652. sk_wmem_free_skb(sk, skb);
  2653. sk->sk_wmem_queued += nskb->truesize;
  2654. sk_mem_charge(sk, nskb->truesize);
  2655. skb = nskb;
  2656. }
  2657. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
  2658. tcp_ecn_send_synack(sk, skb);
  2659. }
  2660. return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2661. }
  2662. /**
  2663. * tcp_make_synack - Prepare a SYN-ACK.
  2664. * sk: listener socket
  2665. * dst: dst entry attached to the SYNACK
  2666. * req: request_sock pointer
  2667. *
  2668. * Allocate one skb and build a SYNACK packet.
  2669. * @dst is consumed : Caller should not use it again.
  2670. */
  2671. struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
  2672. struct request_sock *req,
  2673. struct tcp_fastopen_cookie *foc,
  2674. enum tcp_synack_type synack_type)
  2675. {
  2676. struct inet_request_sock *ireq = inet_rsk(req);
  2677. const struct tcp_sock *tp = tcp_sk(sk);
  2678. struct tcp_md5sig_key *md5 = NULL;
  2679. struct tcp_out_options opts;
  2680. struct sk_buff *skb;
  2681. int tcp_header_size;
  2682. struct tcphdr *th;
  2683. int mss;
  2684. skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
  2685. if (unlikely(!skb)) {
  2686. dst_release(dst);
  2687. return NULL;
  2688. }
  2689. /* Reserve space for headers. */
  2690. skb_reserve(skb, MAX_TCP_HEADER);
  2691. switch (synack_type) {
  2692. case TCP_SYNACK_NORMAL:
  2693. skb_set_owner_w(skb, req_to_sk(req));
  2694. break;
  2695. case TCP_SYNACK_COOKIE:
  2696. /* Under synflood, we do not attach skb to a socket,
  2697. * to avoid false sharing.
  2698. */
  2699. break;
  2700. case TCP_SYNACK_FASTOPEN:
  2701. /* sk is a const pointer, because we want to express multiple
  2702. * cpu might call us concurrently.
  2703. * sk->sk_wmem_alloc in an atomic, we can promote to rw.
  2704. */
  2705. skb_set_owner_w(skb, (struct sock *)sk);
  2706. break;
  2707. }
  2708. skb_dst_set(skb, dst);
  2709. mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2710. memset(&opts, 0, sizeof(opts));
  2711. #ifdef CONFIG_SYN_COOKIES
  2712. if (unlikely(req->cookie_ts))
  2713. skb->skb_mstamp = cookie_init_timestamp(req);
  2714. else
  2715. #endif
  2716. skb->skb_mstamp = tcp_clock_us();
  2717. #ifdef CONFIG_TCP_MD5SIG
  2718. rcu_read_lock();
  2719. md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
  2720. #endif
  2721. skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
  2722. tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
  2723. sizeof(*th);
  2724. skb_push(skb, tcp_header_size);
  2725. skb_reset_transport_header(skb);
  2726. th = (struct tcphdr *)skb->data;
  2727. memset(th, 0, sizeof(struct tcphdr));
  2728. th->syn = 1;
  2729. th->ack = 1;
  2730. tcp_ecn_make_synack(req, th);
  2731. th->source = htons(ireq->ir_num);
  2732. th->dest = ireq->ir_rmt_port;
  2733. skb->mark = ireq->ir_mark;
  2734. /* Setting of flags are superfluous here for callers (and ECE is
  2735. * not even correctly set)
  2736. */
  2737. tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
  2738. TCPHDR_SYN | TCPHDR_ACK);
  2739. th->seq = htonl(TCP_SKB_CB(skb)->seq);
  2740. /* XXX data is queued and acked as is. No buffer/window check */
  2741. th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
  2742. /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
  2743. th->window = htons(min(req->rsk_rcv_wnd, 65535U));
  2744. tcp_options_write((__be32 *)(th + 1), NULL, &opts);
  2745. th->doff = (tcp_header_size >> 2);
  2746. __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
  2747. #ifdef CONFIG_TCP_MD5SIG
  2748. /* Okay, we have all we need - do the md5 hash if needed */
  2749. if (md5)
  2750. tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
  2751. md5, req_to_sk(req), skb);
  2752. rcu_read_unlock();
  2753. #endif
  2754. /* Do not fool tcpdump (if any), clean our debris */
  2755. skb->tstamp = 0;
  2756. return skb;
  2757. }
  2758. EXPORT_SYMBOL(tcp_make_synack);
  2759. static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
  2760. {
  2761. struct inet_connection_sock *icsk = inet_csk(sk);
  2762. const struct tcp_congestion_ops *ca;
  2763. u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
  2764. if (ca_key == TCP_CA_UNSPEC)
  2765. return;
  2766. rcu_read_lock();
  2767. ca = tcp_ca_find_key(ca_key);
  2768. if (likely(ca && try_module_get(ca->owner))) {
  2769. module_put(icsk->icsk_ca_ops->owner);
  2770. icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
  2771. icsk->icsk_ca_ops = ca;
  2772. }
  2773. rcu_read_unlock();
  2774. }
  2775. /* Do all connect socket setups that can be done AF independent. */
  2776. static void tcp_connect_init(struct sock *sk)
  2777. {
  2778. const struct dst_entry *dst = __sk_dst_get(sk);
  2779. struct tcp_sock *tp = tcp_sk(sk);
  2780. __u8 rcv_wscale;
  2781. u32 rcv_wnd;
  2782. /* We'll fix this up when we get a response from the other end.
  2783. * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
  2784. */
  2785. tp->tcp_header_len = sizeof(struct tcphdr);
  2786. if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
  2787. tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
  2788. #ifdef CONFIG_TCP_MD5SIG
  2789. if (tp->af_specific->md5_lookup(sk, sk))
  2790. tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
  2791. #endif
  2792. /* If user gave his TCP_MAXSEG, record it to clamp */
  2793. if (tp->rx_opt.user_mss)
  2794. tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
  2795. tp->max_window = 0;
  2796. tcp_mtup_init(sk);
  2797. tcp_sync_mss(sk, dst_mtu(dst));
  2798. tcp_ca_dst_init(sk, dst);
  2799. if (!tp->window_clamp)
  2800. tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
  2801. tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2802. tcp_initialize_rcv_mss(sk);
  2803. /* limit the window selection if the user enforce a smaller rx buffer */
  2804. if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
  2805. (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
  2806. tp->window_clamp = tcp_full_space(sk);
  2807. rcv_wnd = tcp_rwnd_init_bpf(sk);
  2808. if (rcv_wnd == 0)
  2809. rcv_wnd = dst_metric(dst, RTAX_INITRWND);
  2810. tcp_select_initial_window(tcp_full_space(sk),
  2811. tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
  2812. &tp->rcv_wnd,
  2813. &tp->window_clamp,
  2814. sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
  2815. &rcv_wscale,
  2816. rcv_wnd);
  2817. tp->rx_opt.rcv_wscale = rcv_wscale;
  2818. tp->rcv_ssthresh = tp->rcv_wnd;
  2819. sk->sk_err = 0;
  2820. sock_reset_flag(sk, SOCK_DONE);
  2821. tp->snd_wnd = 0;
  2822. tcp_init_wl(tp, 0);
  2823. tp->snd_una = tp->write_seq;
  2824. tp->snd_sml = tp->write_seq;
  2825. tp->snd_up = tp->write_seq;
  2826. tp->snd_nxt = tp->write_seq;
  2827. if (likely(!tp->repair))
  2828. tp->rcv_nxt = 0;
  2829. else
  2830. tp->rcv_tstamp = tcp_jiffies32;
  2831. tp->rcv_wup = tp->rcv_nxt;
  2832. tp->copied_seq = tp->rcv_nxt;
  2833. inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
  2834. inet_csk(sk)->icsk_retransmits = 0;
  2835. tcp_clear_retrans(tp);
  2836. }
  2837. static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
  2838. {
  2839. struct tcp_sock *tp = tcp_sk(sk);
  2840. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  2841. tcb->end_seq += skb->len;
  2842. __skb_header_release(skb);
  2843. __tcp_add_write_queue_tail(sk, skb);
  2844. sk->sk_wmem_queued += skb->truesize;
  2845. sk_mem_charge(sk, skb->truesize);
  2846. tp->write_seq = tcb->end_seq;
  2847. tp->packets_out += tcp_skb_pcount(skb);
  2848. }
  2849. /* Build and send a SYN with data and (cached) Fast Open cookie. However,
  2850. * queue a data-only packet after the regular SYN, such that regular SYNs
  2851. * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
  2852. * only the SYN sequence, the data are retransmitted in the first ACK.
  2853. * If cookie is not cached or other error occurs, falls back to send a
  2854. * regular SYN with Fast Open cookie request option.
  2855. */
  2856. static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
  2857. {
  2858. struct tcp_sock *tp = tcp_sk(sk);
  2859. struct tcp_fastopen_request *fo = tp->fastopen_req;
  2860. int space, err = 0;
  2861. struct sk_buff *syn_data;
  2862. tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
  2863. if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
  2864. goto fallback;
  2865. /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
  2866. * user-MSS. Reserve maximum option space for middleboxes that add
  2867. * private TCP options. The cost is reduced data space in SYN :(
  2868. */
  2869. tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
  2870. space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
  2871. MAX_TCP_OPTION_SPACE;
  2872. space = min_t(size_t, space, fo->size);
  2873. /* limit to order-0 allocations */
  2874. space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
  2875. syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
  2876. if (!syn_data)
  2877. goto fallback;
  2878. syn_data->ip_summed = CHECKSUM_PARTIAL;
  2879. memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
  2880. if (space) {
  2881. int copied = copy_from_iter(skb_put(syn_data, space), space,
  2882. &fo->data->msg_iter);
  2883. if (unlikely(!copied)) {
  2884. kfree_skb(syn_data);
  2885. goto fallback;
  2886. }
  2887. if (copied != space) {
  2888. skb_trim(syn_data, copied);
  2889. space = copied;
  2890. }
  2891. }
  2892. /* No more data pending in inet_wait_for_connect() */
  2893. if (space == fo->size)
  2894. fo->data = NULL;
  2895. fo->copied = space;
  2896. tcp_connect_queue_skb(sk, syn_data);
  2897. if (syn_data->len)
  2898. tcp_chrono_start(sk, TCP_CHRONO_BUSY);
  2899. err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
  2900. syn->skb_mstamp = syn_data->skb_mstamp;
  2901. /* Now full SYN+DATA was cloned and sent (or not),
  2902. * remove the SYN from the original skb (syn_data)
  2903. * we keep in write queue in case of a retransmit, as we
  2904. * also have the SYN packet (with no data) in the same queue.
  2905. */
  2906. TCP_SKB_CB(syn_data)->seq++;
  2907. TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
  2908. if (!err) {
  2909. tp->syn_data = (fo->copied > 0);
  2910. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
  2911. goto done;
  2912. }
  2913. fallback:
  2914. /* Send a regular SYN with Fast Open cookie request option */
  2915. if (fo->cookie.len > 0)
  2916. fo->cookie.len = 0;
  2917. err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
  2918. if (err)
  2919. tp->syn_fastopen = 0;
  2920. done:
  2921. fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
  2922. return err;
  2923. }
  2924. /* Build a SYN and send it off. */
  2925. int tcp_connect(struct sock *sk)
  2926. {
  2927. struct tcp_sock *tp = tcp_sk(sk);
  2928. struct sk_buff *buff;
  2929. int err;
  2930. tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
  2931. tcp_connect_init(sk);
  2932. if (unlikely(tp->repair)) {
  2933. tcp_finish_connect(sk, NULL);
  2934. return 0;
  2935. }
  2936. buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
  2937. if (unlikely(!buff))
  2938. return -ENOBUFS;
  2939. tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
  2940. tcp_mstamp_refresh(tp);
  2941. tp->retrans_stamp = tcp_time_stamp(tp);
  2942. tcp_connect_queue_skb(sk, buff);
  2943. tcp_ecn_send_syn(sk, buff);
  2944. /* Send off SYN; include data in Fast Open. */
  2945. err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
  2946. tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
  2947. if (err == -ECONNREFUSED)
  2948. return err;
  2949. /* We change tp->snd_nxt after the tcp_transmit_skb() call
  2950. * in order to make this packet get counted in tcpOutSegs.
  2951. */
  2952. tp->snd_nxt = tp->write_seq;
  2953. tp->pushed_seq = tp->write_seq;
  2954. TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
  2955. /* Timer for repeating the SYN until an answer. */
  2956. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2957. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2958. return 0;
  2959. }
  2960. EXPORT_SYMBOL(tcp_connect);
  2961. /* Send out a delayed ack, the caller does the policy checking
  2962. * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
  2963. * for details.
  2964. */
  2965. void tcp_send_delayed_ack(struct sock *sk)
  2966. {
  2967. struct inet_connection_sock *icsk = inet_csk(sk);
  2968. int ato = icsk->icsk_ack.ato;
  2969. unsigned long timeout;
  2970. tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
  2971. if (ato > TCP_DELACK_MIN) {
  2972. const struct tcp_sock *tp = tcp_sk(sk);
  2973. int max_ato = HZ / 2;
  2974. if (icsk->icsk_ack.pingpong ||
  2975. (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
  2976. max_ato = TCP_DELACK_MAX;
  2977. /* Slow path, intersegment interval is "high". */
  2978. /* If some rtt estimate is known, use it to bound delayed ack.
  2979. * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
  2980. * directly.
  2981. */
  2982. if (tp->srtt_us) {
  2983. int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
  2984. TCP_DELACK_MIN);
  2985. if (rtt < max_ato)
  2986. max_ato = rtt;
  2987. }
  2988. ato = min(ato, max_ato);
  2989. }
  2990. /* Stay within the limit we were given */
  2991. timeout = jiffies + ato;
  2992. /* Use new timeout only if there wasn't a older one earlier. */
  2993. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  2994. /* If delack timer was blocked or is about to expire,
  2995. * send ACK now.
  2996. */
  2997. if (icsk->icsk_ack.blocked ||
  2998. time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
  2999. tcp_send_ack(sk);
  3000. return;
  3001. }
  3002. if (!time_before(timeout, icsk->icsk_ack.timeout))
  3003. timeout = icsk->icsk_ack.timeout;
  3004. }
  3005. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  3006. icsk->icsk_ack.timeout = timeout;
  3007. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  3008. }
  3009. /* This routine sends an ack and also updates the window. */
  3010. void tcp_send_ack(struct sock *sk)
  3011. {
  3012. struct sk_buff *buff;
  3013. /* If we have been reset, we may not send again. */
  3014. if (sk->sk_state == TCP_CLOSE)
  3015. return;
  3016. tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
  3017. /* We are not putting this on the write queue, so
  3018. * tcp_transmit_skb() will set the ownership to this
  3019. * sock.
  3020. */
  3021. buff = alloc_skb(MAX_TCP_HEADER,
  3022. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3023. if (unlikely(!buff)) {
  3024. inet_csk_schedule_ack(sk);
  3025. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  3026. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  3027. TCP_DELACK_MAX, TCP_RTO_MAX);
  3028. return;
  3029. }
  3030. /* Reserve space for headers and prepare control bits. */
  3031. skb_reserve(buff, MAX_TCP_HEADER);
  3032. tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
  3033. /* We do not want pure acks influencing TCP Small Queues or fq/pacing
  3034. * too much.
  3035. * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
  3036. */
  3037. skb_set_tcp_pure_ack(buff);
  3038. /* Send it off, this clears delayed acks for us. */
  3039. tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
  3040. }
  3041. EXPORT_SYMBOL_GPL(tcp_send_ack);
  3042. /* This routine sends a packet with an out of date sequence
  3043. * number. It assumes the other end will try to ack it.
  3044. *
  3045. * Question: what should we make while urgent mode?
  3046. * 4.4BSD forces sending single byte of data. We cannot send
  3047. * out of window data, because we have SND.NXT==SND.MAX...
  3048. *
  3049. * Current solution: to send TWO zero-length segments in urgent mode:
  3050. * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
  3051. * out-of-date with SND.UNA-1 to probe window.
  3052. */
  3053. static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
  3054. {
  3055. struct tcp_sock *tp = tcp_sk(sk);
  3056. struct sk_buff *skb;
  3057. /* We don't queue it, tcp_transmit_skb() sets ownership. */
  3058. skb = alloc_skb(MAX_TCP_HEADER,
  3059. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3060. if (!skb)
  3061. return -1;
  3062. /* Reserve space for headers and set control bits. */
  3063. skb_reserve(skb, MAX_TCP_HEADER);
  3064. /* Use a previous sequence. This should cause the other
  3065. * end to send an ack. Don't queue or clone SKB, just
  3066. * send it.
  3067. */
  3068. tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
  3069. NET_INC_STATS(sock_net(sk), mib);
  3070. return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
  3071. }
  3072. /* Called from setsockopt( ... TCP_REPAIR ) */
  3073. void tcp_send_window_probe(struct sock *sk)
  3074. {
  3075. if (sk->sk_state == TCP_ESTABLISHED) {
  3076. tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
  3077. tcp_mstamp_refresh(tcp_sk(sk));
  3078. tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
  3079. }
  3080. }
  3081. /* Initiate keepalive or window probe from timer. */
  3082. int tcp_write_wakeup(struct sock *sk, int mib)
  3083. {
  3084. struct tcp_sock *tp = tcp_sk(sk);
  3085. struct sk_buff *skb;
  3086. if (sk->sk_state == TCP_CLOSE)
  3087. return -1;
  3088. skb = tcp_send_head(sk);
  3089. if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
  3090. int err;
  3091. unsigned int mss = tcp_current_mss(sk);
  3092. unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  3093. if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
  3094. tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
  3095. /* We are probing the opening of a window
  3096. * but the window size is != 0
  3097. * must have been a result SWS avoidance ( sender )
  3098. */
  3099. if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
  3100. skb->len > mss) {
  3101. seg_size = min(seg_size, mss);
  3102. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3103. if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
  3104. return -1;
  3105. } else if (!tcp_skb_pcount(skb))
  3106. tcp_set_skb_tso_segs(skb, mss);
  3107. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3108. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  3109. if (!err)
  3110. tcp_event_new_data_sent(sk, skb);
  3111. return err;
  3112. } else {
  3113. if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
  3114. tcp_xmit_probe_skb(sk, 1, mib);
  3115. return tcp_xmit_probe_skb(sk, 0, mib);
  3116. }
  3117. }
  3118. /* A window probe timeout has occurred. If window is not closed send
  3119. * a partial packet else a zero probe.
  3120. */
  3121. void tcp_send_probe0(struct sock *sk)
  3122. {
  3123. struct inet_connection_sock *icsk = inet_csk(sk);
  3124. struct tcp_sock *tp = tcp_sk(sk);
  3125. struct net *net = sock_net(sk);
  3126. unsigned long probe_max;
  3127. int err;
  3128. err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
  3129. if (tp->packets_out || !tcp_send_head(sk)) {
  3130. /* Cancel probe timer, if it is not required. */
  3131. icsk->icsk_probes_out = 0;
  3132. icsk->icsk_backoff = 0;
  3133. return;
  3134. }
  3135. if (err <= 0) {
  3136. if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
  3137. icsk->icsk_backoff++;
  3138. icsk->icsk_probes_out++;
  3139. probe_max = TCP_RTO_MAX;
  3140. } else {
  3141. /* If packet was not sent due to local congestion,
  3142. * do not backoff and do not remember icsk_probes_out.
  3143. * Let local senders to fight for local resources.
  3144. *
  3145. * Use accumulated backoff yet.
  3146. */
  3147. if (!icsk->icsk_probes_out)
  3148. icsk->icsk_probes_out = 1;
  3149. probe_max = TCP_RESOURCE_PROBE_INTERVAL;
  3150. }
  3151. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3152. tcp_probe0_when(sk, probe_max),
  3153. TCP_RTO_MAX);
  3154. }
  3155. int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
  3156. {
  3157. const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
  3158. struct flowi fl;
  3159. int res;
  3160. tcp_rsk(req)->txhash = net_tx_rndhash();
  3161. res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
  3162. if (!res) {
  3163. __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
  3164. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  3165. if (unlikely(tcp_passive_fastopen(sk)))
  3166. tcp_sk(sk)->total_retrans++;
  3167. }
  3168. return res;
  3169. }
  3170. EXPORT_SYMBOL(tcp_rtx_synack);