sparse.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * sparse memory mappings.
  4. */
  5. #include <linux/mm.h>
  6. #include <linux/slab.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/bootmem.h>
  9. #include <linux/compiler.h>
  10. #include <linux/highmem.h>
  11. #include <linux/export.h>
  12. #include <linux/spinlock.h>
  13. #include <linux/vmalloc.h>
  14. #include "internal.h"
  15. #include <asm/dma.h>
  16. #include <asm/pgalloc.h>
  17. #include <asm/pgtable.h>
  18. /*
  19. * Permanent SPARSEMEM data:
  20. *
  21. * 1) mem_section - memory sections, mem_map's for valid memory
  22. */
  23. #ifdef CONFIG_SPARSEMEM_EXTREME
  24. struct mem_section **mem_section;
  25. #else
  26. struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
  27. ____cacheline_internodealigned_in_smp;
  28. #endif
  29. EXPORT_SYMBOL(mem_section);
  30. #ifdef NODE_NOT_IN_PAGE_FLAGS
  31. /*
  32. * If we did not store the node number in the page then we have to
  33. * do a lookup in the section_to_node_table in order to find which
  34. * node the page belongs to.
  35. */
  36. #if MAX_NUMNODES <= 256
  37. static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  38. #else
  39. static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  40. #endif
  41. int page_to_nid(const struct page *page)
  42. {
  43. return section_to_node_table[page_to_section(page)];
  44. }
  45. EXPORT_SYMBOL(page_to_nid);
  46. static void set_section_nid(unsigned long section_nr, int nid)
  47. {
  48. section_to_node_table[section_nr] = nid;
  49. }
  50. #else /* !NODE_NOT_IN_PAGE_FLAGS */
  51. static inline void set_section_nid(unsigned long section_nr, int nid)
  52. {
  53. }
  54. #endif
  55. #ifdef CONFIG_SPARSEMEM_EXTREME
  56. static noinline struct mem_section __ref *sparse_index_alloc(int nid)
  57. {
  58. struct mem_section *section = NULL;
  59. unsigned long array_size = SECTIONS_PER_ROOT *
  60. sizeof(struct mem_section);
  61. if (slab_is_available())
  62. section = kzalloc_node(array_size, GFP_KERNEL, nid);
  63. else
  64. section = memblock_virt_alloc_node(array_size, nid);
  65. return section;
  66. }
  67. static int __meminit sparse_index_init(unsigned long section_nr, int nid)
  68. {
  69. unsigned long root = SECTION_NR_TO_ROOT(section_nr);
  70. struct mem_section *section;
  71. if (mem_section[root])
  72. return -EEXIST;
  73. section = sparse_index_alloc(nid);
  74. if (!section)
  75. return -ENOMEM;
  76. mem_section[root] = section;
  77. return 0;
  78. }
  79. #else /* !SPARSEMEM_EXTREME */
  80. static inline int sparse_index_init(unsigned long section_nr, int nid)
  81. {
  82. return 0;
  83. }
  84. #endif
  85. #ifdef CONFIG_SPARSEMEM_EXTREME
  86. int __section_nr(struct mem_section* ms)
  87. {
  88. unsigned long root_nr;
  89. struct mem_section *root = NULL;
  90. for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
  91. root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
  92. if (!root)
  93. continue;
  94. if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
  95. break;
  96. }
  97. VM_BUG_ON(!root);
  98. return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
  99. }
  100. #else
  101. int __section_nr(struct mem_section* ms)
  102. {
  103. return (int)(ms - mem_section[0]);
  104. }
  105. #endif
  106. /*
  107. * During early boot, before section_mem_map is used for an actual
  108. * mem_map, we use section_mem_map to store the section's NUMA
  109. * node. This keeps us from having to use another data structure. The
  110. * node information is cleared just before we store the real mem_map.
  111. */
  112. static inline unsigned long sparse_encode_early_nid(int nid)
  113. {
  114. return (nid << SECTION_NID_SHIFT);
  115. }
  116. static inline int sparse_early_nid(struct mem_section *section)
  117. {
  118. return (section->section_mem_map >> SECTION_NID_SHIFT);
  119. }
  120. /* Validate the physical addressing limitations of the model */
  121. void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
  122. unsigned long *end_pfn)
  123. {
  124. unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
  125. /*
  126. * Sanity checks - do not allow an architecture to pass
  127. * in larger pfns than the maximum scope of sparsemem:
  128. */
  129. if (*start_pfn > max_sparsemem_pfn) {
  130. mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
  131. "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
  132. *start_pfn, *end_pfn, max_sparsemem_pfn);
  133. WARN_ON_ONCE(1);
  134. *start_pfn = max_sparsemem_pfn;
  135. *end_pfn = max_sparsemem_pfn;
  136. } else if (*end_pfn > max_sparsemem_pfn) {
  137. mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
  138. "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
  139. *start_pfn, *end_pfn, max_sparsemem_pfn);
  140. WARN_ON_ONCE(1);
  141. *end_pfn = max_sparsemem_pfn;
  142. }
  143. }
  144. /*
  145. * There are a number of times that we loop over NR_MEM_SECTIONS,
  146. * looking for section_present() on each. But, when we have very
  147. * large physical address spaces, NR_MEM_SECTIONS can also be
  148. * very large which makes the loops quite long.
  149. *
  150. * Keeping track of this gives us an easy way to break out of
  151. * those loops early.
  152. */
  153. int __highest_present_section_nr;
  154. static void section_mark_present(struct mem_section *ms)
  155. {
  156. int section_nr = __section_nr(ms);
  157. if (section_nr > __highest_present_section_nr)
  158. __highest_present_section_nr = section_nr;
  159. ms->section_mem_map |= SECTION_MARKED_PRESENT;
  160. }
  161. static inline int next_present_section_nr(int section_nr)
  162. {
  163. do {
  164. section_nr++;
  165. if (present_section_nr(section_nr))
  166. return section_nr;
  167. } while ((section_nr <= __highest_present_section_nr));
  168. return -1;
  169. }
  170. #define for_each_present_section_nr(start, section_nr) \
  171. for (section_nr = next_present_section_nr(start-1); \
  172. ((section_nr >= 0) && \
  173. (section_nr <= __highest_present_section_nr)); \
  174. section_nr = next_present_section_nr(section_nr))
  175. /* Record a memory area against a node. */
  176. void __init memory_present(int nid, unsigned long start, unsigned long end)
  177. {
  178. unsigned long pfn;
  179. #ifdef CONFIG_SPARSEMEM_EXTREME
  180. if (unlikely(!mem_section)) {
  181. unsigned long size, align;
  182. size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
  183. align = 1 << (INTERNODE_CACHE_SHIFT);
  184. mem_section = memblock_virt_alloc(size, align);
  185. }
  186. #endif
  187. start &= PAGE_SECTION_MASK;
  188. mminit_validate_memmodel_limits(&start, &end);
  189. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
  190. unsigned long section = pfn_to_section_nr(pfn);
  191. struct mem_section *ms;
  192. sparse_index_init(section, nid);
  193. set_section_nid(section, nid);
  194. ms = __nr_to_section(section);
  195. if (!ms->section_mem_map) {
  196. ms->section_mem_map = sparse_encode_early_nid(nid) |
  197. SECTION_IS_ONLINE;
  198. section_mark_present(ms);
  199. }
  200. }
  201. }
  202. /*
  203. * Subtle, we encode the real pfn into the mem_map such that
  204. * the identity pfn - section_mem_map will return the actual
  205. * physical page frame number.
  206. */
  207. static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
  208. {
  209. unsigned long coded_mem_map =
  210. (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
  211. BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
  212. BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
  213. return coded_mem_map;
  214. }
  215. /*
  216. * Decode mem_map from the coded memmap
  217. */
  218. struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
  219. {
  220. /* mask off the extra low bits of information */
  221. coded_mem_map &= SECTION_MAP_MASK;
  222. return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
  223. }
  224. static int __meminit sparse_init_one_section(struct mem_section *ms,
  225. unsigned long pnum, struct page *mem_map,
  226. unsigned long *pageblock_bitmap)
  227. {
  228. if (!present_section(ms))
  229. return -EINVAL;
  230. ms->section_mem_map &= ~SECTION_MAP_MASK;
  231. ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
  232. SECTION_HAS_MEM_MAP;
  233. ms->pageblock_flags = pageblock_bitmap;
  234. return 1;
  235. }
  236. unsigned long usemap_size(void)
  237. {
  238. return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
  239. }
  240. #ifdef CONFIG_MEMORY_HOTPLUG
  241. static unsigned long *__kmalloc_section_usemap(void)
  242. {
  243. return kmalloc(usemap_size(), GFP_KERNEL);
  244. }
  245. #endif /* CONFIG_MEMORY_HOTPLUG */
  246. #ifdef CONFIG_MEMORY_HOTREMOVE
  247. static unsigned long * __init
  248. sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
  249. unsigned long size)
  250. {
  251. unsigned long goal, limit;
  252. unsigned long *p;
  253. int nid;
  254. /*
  255. * A page may contain usemaps for other sections preventing the
  256. * page being freed and making a section unremovable while
  257. * other sections referencing the usemap remain active. Similarly,
  258. * a pgdat can prevent a section being removed. If section A
  259. * contains a pgdat and section B contains the usemap, both
  260. * sections become inter-dependent. This allocates usemaps
  261. * from the same section as the pgdat where possible to avoid
  262. * this problem.
  263. */
  264. goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
  265. limit = goal + (1UL << PA_SECTION_SHIFT);
  266. nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
  267. again:
  268. p = memblock_virt_alloc_try_nid_nopanic(size,
  269. SMP_CACHE_BYTES, goal, limit,
  270. nid);
  271. if (!p && limit) {
  272. limit = 0;
  273. goto again;
  274. }
  275. return p;
  276. }
  277. static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
  278. {
  279. unsigned long usemap_snr, pgdat_snr;
  280. static unsigned long old_usemap_snr;
  281. static unsigned long old_pgdat_snr;
  282. struct pglist_data *pgdat = NODE_DATA(nid);
  283. int usemap_nid;
  284. /* First call */
  285. if (!old_usemap_snr) {
  286. old_usemap_snr = NR_MEM_SECTIONS;
  287. old_pgdat_snr = NR_MEM_SECTIONS;
  288. }
  289. usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
  290. pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
  291. if (usemap_snr == pgdat_snr)
  292. return;
  293. if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
  294. /* skip redundant message */
  295. return;
  296. old_usemap_snr = usemap_snr;
  297. old_pgdat_snr = pgdat_snr;
  298. usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
  299. if (usemap_nid != nid) {
  300. pr_info("node %d must be removed before remove section %ld\n",
  301. nid, usemap_snr);
  302. return;
  303. }
  304. /*
  305. * There is a circular dependency.
  306. * Some platforms allow un-removable section because they will just
  307. * gather other removable sections for dynamic partitioning.
  308. * Just notify un-removable section's number here.
  309. */
  310. pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
  311. usemap_snr, pgdat_snr, nid);
  312. }
  313. #else
  314. static unsigned long * __init
  315. sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
  316. unsigned long size)
  317. {
  318. return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
  319. }
  320. static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
  321. {
  322. }
  323. #endif /* CONFIG_MEMORY_HOTREMOVE */
  324. static void __init sparse_early_usemaps_alloc_node(void *data,
  325. unsigned long pnum_begin,
  326. unsigned long pnum_end,
  327. unsigned long usemap_count, int nodeid)
  328. {
  329. void *usemap;
  330. unsigned long pnum;
  331. unsigned long **usemap_map = (unsigned long **)data;
  332. int size = usemap_size();
  333. usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
  334. size * usemap_count);
  335. if (!usemap) {
  336. pr_warn("%s: allocation failed\n", __func__);
  337. return;
  338. }
  339. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  340. if (!present_section_nr(pnum))
  341. continue;
  342. usemap_map[pnum] = usemap;
  343. usemap += size;
  344. check_usemap_section_nr(nodeid, usemap_map[pnum]);
  345. }
  346. }
  347. #ifndef CONFIG_SPARSEMEM_VMEMMAP
  348. struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
  349. struct vmem_altmap *altmap)
  350. {
  351. struct page *map;
  352. unsigned long size;
  353. size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
  354. map = memblock_virt_alloc_try_nid(size,
  355. PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  356. BOOTMEM_ALLOC_ACCESSIBLE, nid);
  357. return map;
  358. }
  359. void __init sparse_mem_maps_populate_node(struct page **map_map,
  360. unsigned long pnum_begin,
  361. unsigned long pnum_end,
  362. unsigned long map_count, int nodeid)
  363. {
  364. void *map;
  365. unsigned long pnum;
  366. unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
  367. size = PAGE_ALIGN(size);
  368. map = memblock_virt_alloc_try_nid_raw(size * map_count,
  369. PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  370. BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
  371. if (map) {
  372. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  373. if (!present_section_nr(pnum))
  374. continue;
  375. map_map[pnum] = map;
  376. map += size;
  377. }
  378. return;
  379. }
  380. /* fallback */
  381. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  382. struct mem_section *ms;
  383. if (!present_section_nr(pnum))
  384. continue;
  385. map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
  386. if (map_map[pnum])
  387. continue;
  388. ms = __nr_to_section(pnum);
  389. pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
  390. __func__);
  391. ms->section_mem_map = 0;
  392. }
  393. }
  394. #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
  395. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  396. static void __init sparse_early_mem_maps_alloc_node(void *data,
  397. unsigned long pnum_begin,
  398. unsigned long pnum_end,
  399. unsigned long map_count, int nodeid)
  400. {
  401. struct page **map_map = (struct page **)data;
  402. sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
  403. map_count, nodeid);
  404. }
  405. #else
  406. static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
  407. {
  408. struct page *map;
  409. struct mem_section *ms = __nr_to_section(pnum);
  410. int nid = sparse_early_nid(ms);
  411. map = sparse_mem_map_populate(pnum, nid, NULL);
  412. if (map)
  413. return map;
  414. pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
  415. __func__);
  416. ms->section_mem_map = 0;
  417. return NULL;
  418. }
  419. #endif
  420. void __weak __meminit vmemmap_populate_print_last(void)
  421. {
  422. }
  423. /**
  424. * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
  425. * @map: usemap_map for pageblock flags or mmap_map for vmemmap
  426. */
  427. static void __init alloc_usemap_and_memmap(void (*alloc_func)
  428. (void *, unsigned long, unsigned long,
  429. unsigned long, int), void *data)
  430. {
  431. unsigned long pnum;
  432. unsigned long map_count;
  433. int nodeid_begin = 0;
  434. unsigned long pnum_begin = 0;
  435. for_each_present_section_nr(0, pnum) {
  436. struct mem_section *ms;
  437. ms = __nr_to_section(pnum);
  438. nodeid_begin = sparse_early_nid(ms);
  439. pnum_begin = pnum;
  440. break;
  441. }
  442. map_count = 1;
  443. for_each_present_section_nr(pnum_begin + 1, pnum) {
  444. struct mem_section *ms;
  445. int nodeid;
  446. ms = __nr_to_section(pnum);
  447. nodeid = sparse_early_nid(ms);
  448. if (nodeid == nodeid_begin) {
  449. map_count++;
  450. continue;
  451. }
  452. /* ok, we need to take cake of from pnum_begin to pnum - 1*/
  453. alloc_func(data, pnum_begin, pnum,
  454. map_count, nodeid_begin);
  455. /* new start, update count etc*/
  456. nodeid_begin = nodeid;
  457. pnum_begin = pnum;
  458. map_count = 1;
  459. }
  460. /* ok, last chunk */
  461. alloc_func(data, pnum_begin, __highest_present_section_nr+1,
  462. map_count, nodeid_begin);
  463. }
  464. /*
  465. * Allocate the accumulated non-linear sections, allocate a mem_map
  466. * for each and record the physical to section mapping.
  467. */
  468. void __init sparse_init(void)
  469. {
  470. unsigned long pnum;
  471. struct page *map;
  472. unsigned long *usemap;
  473. unsigned long **usemap_map;
  474. int size;
  475. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  476. int size2;
  477. struct page **map_map;
  478. #endif
  479. /* see include/linux/mmzone.h 'struct mem_section' definition */
  480. BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
  481. /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
  482. set_pageblock_order();
  483. /*
  484. * map is using big page (aka 2M in x86 64 bit)
  485. * usemap is less one page (aka 24 bytes)
  486. * so alloc 2M (with 2M align) and 24 bytes in turn will
  487. * make next 2M slip to one more 2M later.
  488. * then in big system, the memory will have a lot of holes...
  489. * here try to allocate 2M pages continuously.
  490. *
  491. * powerpc need to call sparse_init_one_section right after each
  492. * sparse_early_mem_map_alloc, so allocate usemap_map at first.
  493. */
  494. size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
  495. usemap_map = memblock_virt_alloc(size, 0);
  496. if (!usemap_map)
  497. panic("can not allocate usemap_map\n");
  498. alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
  499. (void *)usemap_map);
  500. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  501. size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
  502. map_map = memblock_virt_alloc(size2, 0);
  503. if (!map_map)
  504. panic("can not allocate map_map\n");
  505. alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
  506. (void *)map_map);
  507. #endif
  508. for_each_present_section_nr(0, pnum) {
  509. usemap = usemap_map[pnum];
  510. if (!usemap)
  511. continue;
  512. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  513. map = map_map[pnum];
  514. #else
  515. map = sparse_early_mem_map_alloc(pnum);
  516. #endif
  517. if (!map)
  518. continue;
  519. sparse_init_one_section(__nr_to_section(pnum), pnum, map,
  520. usemap);
  521. }
  522. vmemmap_populate_print_last();
  523. #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
  524. memblock_free_early(__pa(map_map), size2);
  525. #endif
  526. memblock_free_early(__pa(usemap_map), size);
  527. }
  528. #ifdef CONFIG_MEMORY_HOTPLUG
  529. /* Mark all memory sections within the pfn range as online */
  530. void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
  531. {
  532. unsigned long pfn;
  533. for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
  534. unsigned long section_nr = pfn_to_section_nr(pfn);
  535. struct mem_section *ms;
  536. /* onlining code should never touch invalid ranges */
  537. if (WARN_ON(!valid_section_nr(section_nr)))
  538. continue;
  539. ms = __nr_to_section(section_nr);
  540. ms->section_mem_map |= SECTION_IS_ONLINE;
  541. }
  542. }
  543. #ifdef CONFIG_MEMORY_HOTREMOVE
  544. /* Mark all memory sections within the pfn range as online */
  545. void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
  546. {
  547. unsigned long pfn;
  548. for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
  549. unsigned long section_nr = pfn_to_section_nr(pfn);
  550. struct mem_section *ms;
  551. /*
  552. * TODO this needs some double checking. Offlining code makes
  553. * sure to check pfn_valid but those checks might be just bogus
  554. */
  555. if (WARN_ON(!valid_section_nr(section_nr)))
  556. continue;
  557. ms = __nr_to_section(section_nr);
  558. ms->section_mem_map &= ~SECTION_IS_ONLINE;
  559. }
  560. }
  561. #endif
  562. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  563. static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
  564. struct vmem_altmap *altmap)
  565. {
  566. /* This will make the necessary allocations eventually. */
  567. return sparse_mem_map_populate(pnum, nid, altmap);
  568. }
  569. static void __kfree_section_memmap(struct page *memmap,
  570. struct vmem_altmap *altmap)
  571. {
  572. unsigned long start = (unsigned long)memmap;
  573. unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
  574. vmemmap_free(start, end, altmap);
  575. }
  576. #ifdef CONFIG_MEMORY_HOTREMOVE
  577. static void free_map_bootmem(struct page *memmap)
  578. {
  579. unsigned long start = (unsigned long)memmap;
  580. unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
  581. vmemmap_free(start, end, NULL);
  582. }
  583. #endif /* CONFIG_MEMORY_HOTREMOVE */
  584. #else
  585. static struct page *__kmalloc_section_memmap(void)
  586. {
  587. struct page *page, *ret;
  588. unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
  589. page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
  590. if (page)
  591. goto got_map_page;
  592. ret = vmalloc(memmap_size);
  593. if (ret)
  594. goto got_map_ptr;
  595. return NULL;
  596. got_map_page:
  597. ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
  598. got_map_ptr:
  599. return ret;
  600. }
  601. static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
  602. struct vmem_altmap *altmap)
  603. {
  604. return __kmalloc_section_memmap();
  605. }
  606. static void __kfree_section_memmap(struct page *memmap,
  607. struct vmem_altmap *altmap)
  608. {
  609. if (is_vmalloc_addr(memmap))
  610. vfree(memmap);
  611. else
  612. free_pages((unsigned long)memmap,
  613. get_order(sizeof(struct page) * PAGES_PER_SECTION));
  614. }
  615. #ifdef CONFIG_MEMORY_HOTREMOVE
  616. static void free_map_bootmem(struct page *memmap)
  617. {
  618. unsigned long maps_section_nr, removing_section_nr, i;
  619. unsigned long magic, nr_pages;
  620. struct page *page = virt_to_page(memmap);
  621. nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
  622. >> PAGE_SHIFT;
  623. for (i = 0; i < nr_pages; i++, page++) {
  624. magic = (unsigned long) page->freelist;
  625. BUG_ON(magic == NODE_INFO);
  626. maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
  627. removing_section_nr = page_private(page);
  628. /*
  629. * When this function is called, the removing section is
  630. * logical offlined state. This means all pages are isolated
  631. * from page allocator. If removing section's memmap is placed
  632. * on the same section, it must not be freed.
  633. * If it is freed, page allocator may allocate it which will
  634. * be removed physically soon.
  635. */
  636. if (maps_section_nr != removing_section_nr)
  637. put_page_bootmem(page);
  638. }
  639. }
  640. #endif /* CONFIG_MEMORY_HOTREMOVE */
  641. #endif /* CONFIG_SPARSEMEM_VMEMMAP */
  642. /*
  643. * returns the number of sections whose mem_maps were properly
  644. * set. If this is <=0, then that means that the passed-in
  645. * map was not consumed and must be freed.
  646. */
  647. int __meminit sparse_add_one_section(struct pglist_data *pgdat,
  648. unsigned long start_pfn, struct vmem_altmap *altmap)
  649. {
  650. unsigned long section_nr = pfn_to_section_nr(start_pfn);
  651. struct mem_section *ms;
  652. struct page *memmap;
  653. unsigned long *usemap;
  654. unsigned long flags;
  655. int ret;
  656. /*
  657. * no locking for this, because it does its own
  658. * plus, it does a kmalloc
  659. */
  660. ret = sparse_index_init(section_nr, pgdat->node_id);
  661. if (ret < 0 && ret != -EEXIST)
  662. return ret;
  663. memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
  664. if (!memmap)
  665. return -ENOMEM;
  666. usemap = __kmalloc_section_usemap();
  667. if (!usemap) {
  668. __kfree_section_memmap(memmap, altmap);
  669. return -ENOMEM;
  670. }
  671. pgdat_resize_lock(pgdat, &flags);
  672. ms = __pfn_to_section(start_pfn);
  673. if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
  674. ret = -EEXIST;
  675. goto out;
  676. }
  677. #ifdef CONFIG_DEBUG_VM
  678. /*
  679. * Poison uninitialized struct pages in order to catch invalid flags
  680. * combinations.
  681. */
  682. memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
  683. #endif
  684. section_mark_present(ms);
  685. ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
  686. out:
  687. pgdat_resize_unlock(pgdat, &flags);
  688. if (ret <= 0) {
  689. kfree(usemap);
  690. __kfree_section_memmap(memmap, altmap);
  691. }
  692. return ret;
  693. }
  694. #ifdef CONFIG_MEMORY_HOTREMOVE
  695. #ifdef CONFIG_MEMORY_FAILURE
  696. static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
  697. {
  698. int i;
  699. if (!memmap)
  700. return;
  701. for (i = 0; i < nr_pages; i++) {
  702. if (PageHWPoison(&memmap[i])) {
  703. atomic_long_sub(1, &num_poisoned_pages);
  704. ClearPageHWPoison(&memmap[i]);
  705. }
  706. }
  707. }
  708. #else
  709. static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
  710. {
  711. }
  712. #endif
  713. static void free_section_usemap(struct page *memmap, unsigned long *usemap,
  714. struct vmem_altmap *altmap)
  715. {
  716. struct page *usemap_page;
  717. if (!usemap)
  718. return;
  719. usemap_page = virt_to_page(usemap);
  720. /*
  721. * Check to see if allocation came from hot-plug-add
  722. */
  723. if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
  724. kfree(usemap);
  725. if (memmap)
  726. __kfree_section_memmap(memmap, altmap);
  727. return;
  728. }
  729. /*
  730. * The usemap came from bootmem. This is packed with other usemaps
  731. * on the section which has pgdat at boot time. Just keep it as is now.
  732. */
  733. if (memmap)
  734. free_map_bootmem(memmap);
  735. }
  736. void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
  737. unsigned long map_offset, struct vmem_altmap *altmap)
  738. {
  739. struct page *memmap = NULL;
  740. unsigned long *usemap = NULL, flags;
  741. struct pglist_data *pgdat = zone->zone_pgdat;
  742. pgdat_resize_lock(pgdat, &flags);
  743. if (ms->section_mem_map) {
  744. usemap = ms->pageblock_flags;
  745. memmap = sparse_decode_mem_map(ms->section_mem_map,
  746. __section_nr(ms));
  747. ms->section_mem_map = 0;
  748. ms->pageblock_flags = NULL;
  749. }
  750. pgdat_resize_unlock(pgdat, &flags);
  751. clear_hwpoisoned_pages(memmap + map_offset,
  752. PAGES_PER_SECTION - map_offset);
  753. free_section_usemap(memmap, usemap, altmap);
  754. }
  755. #endif /* CONFIG_MEMORY_HOTREMOVE */
  756. #endif /* CONFIG_MEMORY_HOTPLUG */