slab.c 111 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * linux/mm/slab.c
  4. * Written by Mark Hemment, 1996/97.
  5. * (markhe@nextd.demon.co.uk)
  6. *
  7. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  8. *
  9. * Major cleanup, different bufctl logic, per-cpu arrays
  10. * (c) 2000 Manfred Spraul
  11. *
  12. * Cleanup, make the head arrays unconditional, preparation for NUMA
  13. * (c) 2002 Manfred Spraul
  14. *
  15. * An implementation of the Slab Allocator as described in outline in;
  16. * UNIX Internals: The New Frontiers by Uresh Vahalia
  17. * Pub: Prentice Hall ISBN 0-13-101908-2
  18. * or with a little more detail in;
  19. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20. * Jeff Bonwick (Sun Microsystems).
  21. * Presented at: USENIX Summer 1994 Technical Conference
  22. *
  23. * The memory is organized in caches, one cache for each object type.
  24. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25. * Each cache consists out of many slabs (they are small (usually one
  26. * page long) and always contiguous), and each slab contains multiple
  27. * initialized objects.
  28. *
  29. * This means, that your constructor is used only for newly allocated
  30. * slabs and you must pass objects with the same initializations to
  31. * kmem_cache_free.
  32. *
  33. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34. * normal). If you need a special memory type, then must create a new
  35. * cache for that memory type.
  36. *
  37. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38. * full slabs with 0 free objects
  39. * partial slabs
  40. * empty slabs with no allocated objects
  41. *
  42. * If partial slabs exist, then new allocations come from these slabs,
  43. * otherwise from empty slabs or new slabs are allocated.
  44. *
  45. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47. *
  48. * Each cache has a short per-cpu head array, most allocs
  49. * and frees go into that array, and if that array overflows, then 1/2
  50. * of the entries in the array are given back into the global cache.
  51. * The head array is strictly LIFO and should improve the cache hit rates.
  52. * On SMP, it additionally reduces the spinlock operations.
  53. *
  54. * The c_cpuarray may not be read with enabled local interrupts -
  55. * it's changed with a smp_call_function().
  56. *
  57. * SMP synchronization:
  58. * constructors and destructors are called without any locking.
  59. * Several members in struct kmem_cache and struct slab never change, they
  60. * are accessed without any locking.
  61. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62. * and local interrupts are disabled so slab code is preempt-safe.
  63. * The non-constant members are protected with a per-cache irq spinlock.
  64. *
  65. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66. * in 2000 - many ideas in the current implementation are derived from
  67. * his patch.
  68. *
  69. * Further notes from the original documentation:
  70. *
  71. * 11 April '97. Started multi-threading - markhe
  72. * The global cache-chain is protected by the mutex 'slab_mutex'.
  73. * The sem is only needed when accessing/extending the cache-chain, which
  74. * can never happen inside an interrupt (kmem_cache_create(),
  75. * kmem_cache_shrink() and kmem_cache_reap()).
  76. *
  77. * At present, each engine can be growing a cache. This should be blocked.
  78. *
  79. * 15 March 2005. NUMA slab allocator.
  80. * Shai Fultheim <shai@scalex86.org>.
  81. * Shobhit Dayal <shobhit@calsoftinc.com>
  82. * Alok N Kataria <alokk@calsoftinc.com>
  83. * Christoph Lameter <christoph@lameter.com>
  84. *
  85. * Modified the slab allocator to be node aware on NUMA systems.
  86. * Each node has its own list of partial, free and full slabs.
  87. * All object allocations for a node occur from node specific slab lists.
  88. */
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/poison.h>
  92. #include <linux/swap.h>
  93. #include <linux/cache.h>
  94. #include <linux/interrupt.h>
  95. #include <linux/init.h>
  96. #include <linux/compiler.h>
  97. #include <linux/cpuset.h>
  98. #include <linux/proc_fs.h>
  99. #include <linux/seq_file.h>
  100. #include <linux/notifier.h>
  101. #include <linux/kallsyms.h>
  102. #include <linux/cpu.h>
  103. #include <linux/sysctl.h>
  104. #include <linux/module.h>
  105. #include <linux/rcupdate.h>
  106. #include <linux/string.h>
  107. #include <linux/uaccess.h>
  108. #include <linux/nodemask.h>
  109. #include <linux/kmemleak.h>
  110. #include <linux/mempolicy.h>
  111. #include <linux/mutex.h>
  112. #include <linux/fault-inject.h>
  113. #include <linux/rtmutex.h>
  114. #include <linux/reciprocal_div.h>
  115. #include <linux/debugobjects.h>
  116. #include <linux/memory.h>
  117. #include <linux/prefetch.h>
  118. #include <linux/sched/task_stack.h>
  119. #include <net/sock.h>
  120. #include <asm/cacheflush.h>
  121. #include <asm/tlbflush.h>
  122. #include <asm/page.h>
  123. #include <trace/events/kmem.h>
  124. #include "internal.h"
  125. #include "slab.h"
  126. /*
  127. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  128. * 0 for faster, smaller code (especially in the critical paths).
  129. *
  130. * STATS - 1 to collect stats for /proc/slabinfo.
  131. * 0 for faster, smaller code (especially in the critical paths).
  132. *
  133. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  134. */
  135. #ifdef CONFIG_DEBUG_SLAB
  136. #define DEBUG 1
  137. #define STATS 1
  138. #define FORCED_DEBUG 1
  139. #else
  140. #define DEBUG 0
  141. #define STATS 0
  142. #define FORCED_DEBUG 0
  143. #endif
  144. /* Shouldn't this be in a header file somewhere? */
  145. #define BYTES_PER_WORD sizeof(void *)
  146. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  147. #ifndef ARCH_KMALLOC_FLAGS
  148. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  149. #endif
  150. #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
  151. <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
  152. #if FREELIST_BYTE_INDEX
  153. typedef unsigned char freelist_idx_t;
  154. #else
  155. typedef unsigned short freelist_idx_t;
  156. #endif
  157. #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
  158. /*
  159. * struct array_cache
  160. *
  161. * Purpose:
  162. * - LIFO ordering, to hand out cache-warm objects from _alloc
  163. * - reduce the number of linked list operations
  164. * - reduce spinlock operations
  165. *
  166. * The limit is stored in the per-cpu structure to reduce the data cache
  167. * footprint.
  168. *
  169. */
  170. struct array_cache {
  171. unsigned int avail;
  172. unsigned int limit;
  173. unsigned int batchcount;
  174. unsigned int touched;
  175. void *entry[]; /*
  176. * Must have this definition in here for the proper
  177. * alignment of array_cache. Also simplifies accessing
  178. * the entries.
  179. */
  180. };
  181. struct alien_cache {
  182. spinlock_t lock;
  183. struct array_cache ac;
  184. };
  185. /*
  186. * Need this for bootstrapping a per node allocator.
  187. */
  188. #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
  189. static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
  190. #define CACHE_CACHE 0
  191. #define SIZE_NODE (MAX_NUMNODES)
  192. static int drain_freelist(struct kmem_cache *cache,
  193. struct kmem_cache_node *n, int tofree);
  194. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  195. int node, struct list_head *list);
  196. static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
  197. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  198. static void cache_reap(struct work_struct *unused);
  199. static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
  200. void **list);
  201. static inline void fixup_slab_list(struct kmem_cache *cachep,
  202. struct kmem_cache_node *n, struct page *page,
  203. void **list);
  204. static int slab_early_init = 1;
  205. #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
  206. static void kmem_cache_node_init(struct kmem_cache_node *parent)
  207. {
  208. INIT_LIST_HEAD(&parent->slabs_full);
  209. INIT_LIST_HEAD(&parent->slabs_partial);
  210. INIT_LIST_HEAD(&parent->slabs_free);
  211. parent->total_slabs = 0;
  212. parent->free_slabs = 0;
  213. parent->shared = NULL;
  214. parent->alien = NULL;
  215. parent->colour_next = 0;
  216. spin_lock_init(&parent->list_lock);
  217. parent->free_objects = 0;
  218. parent->free_touched = 0;
  219. }
  220. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  221. do { \
  222. INIT_LIST_HEAD(listp); \
  223. list_splice(&get_node(cachep, nodeid)->slab, listp); \
  224. } while (0)
  225. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  226. do { \
  227. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  228. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  229. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  230. } while (0)
  231. #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
  232. #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
  233. #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
  234. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  235. #define BATCHREFILL_LIMIT 16
  236. /*
  237. * Optimization question: fewer reaps means less probability for unnessary
  238. * cpucache drain/refill cycles.
  239. *
  240. * OTOH the cpuarrays can contain lots of objects,
  241. * which could lock up otherwise freeable slabs.
  242. */
  243. #define REAPTIMEOUT_AC (2*HZ)
  244. #define REAPTIMEOUT_NODE (4*HZ)
  245. #if STATS
  246. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  247. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  248. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  249. #define STATS_INC_GROWN(x) ((x)->grown++)
  250. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  251. #define STATS_SET_HIGH(x) \
  252. do { \
  253. if ((x)->num_active > (x)->high_mark) \
  254. (x)->high_mark = (x)->num_active; \
  255. } while (0)
  256. #define STATS_INC_ERR(x) ((x)->errors++)
  257. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  258. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  259. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  260. #define STATS_SET_FREEABLE(x, i) \
  261. do { \
  262. if ((x)->max_freeable < i) \
  263. (x)->max_freeable = i; \
  264. } while (0)
  265. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  266. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  267. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  268. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  269. #else
  270. #define STATS_INC_ACTIVE(x) do { } while (0)
  271. #define STATS_DEC_ACTIVE(x) do { } while (0)
  272. #define STATS_INC_ALLOCED(x) do { } while (0)
  273. #define STATS_INC_GROWN(x) do { } while (0)
  274. #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
  275. #define STATS_SET_HIGH(x) do { } while (0)
  276. #define STATS_INC_ERR(x) do { } while (0)
  277. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  278. #define STATS_INC_NODEFREES(x) do { } while (0)
  279. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  280. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  281. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  282. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  283. #define STATS_INC_FREEHIT(x) do { } while (0)
  284. #define STATS_INC_FREEMISS(x) do { } while (0)
  285. #endif
  286. #if DEBUG
  287. /*
  288. * memory layout of objects:
  289. * 0 : objp
  290. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  291. * the end of an object is aligned with the end of the real
  292. * allocation. Catches writes behind the end of the allocation.
  293. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  294. * redzone word.
  295. * cachep->obj_offset: The real object.
  296. * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  297. * cachep->size - 1* BYTES_PER_WORD: last caller address
  298. * [BYTES_PER_WORD long]
  299. */
  300. static int obj_offset(struct kmem_cache *cachep)
  301. {
  302. return cachep->obj_offset;
  303. }
  304. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  305. {
  306. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  307. return (unsigned long long*) (objp + obj_offset(cachep) -
  308. sizeof(unsigned long long));
  309. }
  310. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  311. {
  312. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  313. if (cachep->flags & SLAB_STORE_USER)
  314. return (unsigned long long *)(objp + cachep->size -
  315. sizeof(unsigned long long) -
  316. REDZONE_ALIGN);
  317. return (unsigned long long *) (objp + cachep->size -
  318. sizeof(unsigned long long));
  319. }
  320. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  321. {
  322. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  323. return (void **)(objp + cachep->size - BYTES_PER_WORD);
  324. }
  325. #else
  326. #define obj_offset(x) 0
  327. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  328. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  329. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  330. #endif
  331. #ifdef CONFIG_DEBUG_SLAB_LEAK
  332. static inline bool is_store_user_clean(struct kmem_cache *cachep)
  333. {
  334. return atomic_read(&cachep->store_user_clean) == 1;
  335. }
  336. static inline void set_store_user_clean(struct kmem_cache *cachep)
  337. {
  338. atomic_set(&cachep->store_user_clean, 1);
  339. }
  340. static inline void set_store_user_dirty(struct kmem_cache *cachep)
  341. {
  342. if (is_store_user_clean(cachep))
  343. atomic_set(&cachep->store_user_clean, 0);
  344. }
  345. #else
  346. static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
  347. #endif
  348. /*
  349. * Do not go above this order unless 0 objects fit into the slab or
  350. * overridden on the command line.
  351. */
  352. #define SLAB_MAX_ORDER_HI 1
  353. #define SLAB_MAX_ORDER_LO 0
  354. static int slab_max_order = SLAB_MAX_ORDER_LO;
  355. static bool slab_max_order_set __initdata;
  356. static inline struct kmem_cache *virt_to_cache(const void *obj)
  357. {
  358. struct page *page = virt_to_head_page(obj);
  359. return page->slab_cache;
  360. }
  361. static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
  362. unsigned int idx)
  363. {
  364. return page->s_mem + cache->size * idx;
  365. }
  366. /*
  367. * We want to avoid an expensive divide : (offset / cache->size)
  368. * Using the fact that size is a constant for a particular cache,
  369. * we can replace (offset / cache->size) by
  370. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  371. */
  372. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  373. const struct page *page, void *obj)
  374. {
  375. u32 offset = (obj - page->s_mem);
  376. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  377. }
  378. #define BOOT_CPUCACHE_ENTRIES 1
  379. /* internal cache of cache description objs */
  380. static struct kmem_cache kmem_cache_boot = {
  381. .batchcount = 1,
  382. .limit = BOOT_CPUCACHE_ENTRIES,
  383. .shared = 1,
  384. .size = sizeof(struct kmem_cache),
  385. .name = "kmem_cache",
  386. };
  387. static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
  388. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  389. {
  390. return this_cpu_ptr(cachep->cpu_cache);
  391. }
  392. /*
  393. * Calculate the number of objects and left-over bytes for a given buffer size.
  394. */
  395. static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
  396. slab_flags_t flags, size_t *left_over)
  397. {
  398. unsigned int num;
  399. size_t slab_size = PAGE_SIZE << gfporder;
  400. /*
  401. * The slab management structure can be either off the slab or
  402. * on it. For the latter case, the memory allocated for a
  403. * slab is used for:
  404. *
  405. * - @buffer_size bytes for each object
  406. * - One freelist_idx_t for each object
  407. *
  408. * We don't need to consider alignment of freelist because
  409. * freelist will be at the end of slab page. The objects will be
  410. * at the correct alignment.
  411. *
  412. * If the slab management structure is off the slab, then the
  413. * alignment will already be calculated into the size. Because
  414. * the slabs are all pages aligned, the objects will be at the
  415. * correct alignment when allocated.
  416. */
  417. if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
  418. num = slab_size / buffer_size;
  419. *left_over = slab_size % buffer_size;
  420. } else {
  421. num = slab_size / (buffer_size + sizeof(freelist_idx_t));
  422. *left_over = slab_size %
  423. (buffer_size + sizeof(freelist_idx_t));
  424. }
  425. return num;
  426. }
  427. #if DEBUG
  428. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  429. static void __slab_error(const char *function, struct kmem_cache *cachep,
  430. char *msg)
  431. {
  432. pr_err("slab error in %s(): cache `%s': %s\n",
  433. function, cachep->name, msg);
  434. dump_stack();
  435. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  436. }
  437. #endif
  438. /*
  439. * By default on NUMA we use alien caches to stage the freeing of
  440. * objects allocated from other nodes. This causes massive memory
  441. * inefficiencies when using fake NUMA setup to split memory into a
  442. * large number of small nodes, so it can be disabled on the command
  443. * line
  444. */
  445. static int use_alien_caches __read_mostly = 1;
  446. static int __init noaliencache_setup(char *s)
  447. {
  448. use_alien_caches = 0;
  449. return 1;
  450. }
  451. __setup("noaliencache", noaliencache_setup);
  452. static int __init slab_max_order_setup(char *str)
  453. {
  454. get_option(&str, &slab_max_order);
  455. slab_max_order = slab_max_order < 0 ? 0 :
  456. min(slab_max_order, MAX_ORDER - 1);
  457. slab_max_order_set = true;
  458. return 1;
  459. }
  460. __setup("slab_max_order=", slab_max_order_setup);
  461. #ifdef CONFIG_NUMA
  462. /*
  463. * Special reaping functions for NUMA systems called from cache_reap().
  464. * These take care of doing round robin flushing of alien caches (containing
  465. * objects freed on different nodes from which they were allocated) and the
  466. * flushing of remote pcps by calling drain_node_pages.
  467. */
  468. static DEFINE_PER_CPU(unsigned long, slab_reap_node);
  469. static void init_reap_node(int cpu)
  470. {
  471. per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
  472. node_online_map);
  473. }
  474. static void next_reap_node(void)
  475. {
  476. int node = __this_cpu_read(slab_reap_node);
  477. node = next_node_in(node, node_online_map);
  478. __this_cpu_write(slab_reap_node, node);
  479. }
  480. #else
  481. #define init_reap_node(cpu) do { } while (0)
  482. #define next_reap_node(void) do { } while (0)
  483. #endif
  484. /*
  485. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  486. * via the workqueue/eventd.
  487. * Add the CPU number into the expiration time to minimize the possibility of
  488. * the CPUs getting into lockstep and contending for the global cache chain
  489. * lock.
  490. */
  491. static void start_cpu_timer(int cpu)
  492. {
  493. struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
  494. if (reap_work->work.func == NULL) {
  495. init_reap_node(cpu);
  496. INIT_DEFERRABLE_WORK(reap_work, cache_reap);
  497. schedule_delayed_work_on(cpu, reap_work,
  498. __round_jiffies_relative(HZ, cpu));
  499. }
  500. }
  501. static void init_arraycache(struct array_cache *ac, int limit, int batch)
  502. {
  503. /*
  504. * The array_cache structures contain pointers to free object.
  505. * However, when such objects are allocated or transferred to another
  506. * cache the pointers are not cleared and they could be counted as
  507. * valid references during a kmemleak scan. Therefore, kmemleak must
  508. * not scan such objects.
  509. */
  510. kmemleak_no_scan(ac);
  511. if (ac) {
  512. ac->avail = 0;
  513. ac->limit = limit;
  514. ac->batchcount = batch;
  515. ac->touched = 0;
  516. }
  517. }
  518. static struct array_cache *alloc_arraycache(int node, int entries,
  519. int batchcount, gfp_t gfp)
  520. {
  521. size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  522. struct array_cache *ac = NULL;
  523. ac = kmalloc_node(memsize, gfp, node);
  524. init_arraycache(ac, entries, batchcount);
  525. return ac;
  526. }
  527. static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
  528. struct page *page, void *objp)
  529. {
  530. struct kmem_cache_node *n;
  531. int page_node;
  532. LIST_HEAD(list);
  533. page_node = page_to_nid(page);
  534. n = get_node(cachep, page_node);
  535. spin_lock(&n->list_lock);
  536. free_block(cachep, &objp, 1, page_node, &list);
  537. spin_unlock(&n->list_lock);
  538. slabs_destroy(cachep, &list);
  539. }
  540. /*
  541. * Transfer objects in one arraycache to another.
  542. * Locking must be handled by the caller.
  543. *
  544. * Return the number of entries transferred.
  545. */
  546. static int transfer_objects(struct array_cache *to,
  547. struct array_cache *from, unsigned int max)
  548. {
  549. /* Figure out how many entries to transfer */
  550. int nr = min3(from->avail, max, to->limit - to->avail);
  551. if (!nr)
  552. return 0;
  553. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  554. sizeof(void *) *nr);
  555. from->avail -= nr;
  556. to->avail += nr;
  557. return nr;
  558. }
  559. #ifndef CONFIG_NUMA
  560. #define drain_alien_cache(cachep, alien) do { } while (0)
  561. #define reap_alien(cachep, n) do { } while (0)
  562. static inline struct alien_cache **alloc_alien_cache(int node,
  563. int limit, gfp_t gfp)
  564. {
  565. return NULL;
  566. }
  567. static inline void free_alien_cache(struct alien_cache **ac_ptr)
  568. {
  569. }
  570. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  571. {
  572. return 0;
  573. }
  574. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  575. gfp_t flags)
  576. {
  577. return NULL;
  578. }
  579. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  580. gfp_t flags, int nodeid)
  581. {
  582. return NULL;
  583. }
  584. static inline gfp_t gfp_exact_node(gfp_t flags)
  585. {
  586. return flags & ~__GFP_NOFAIL;
  587. }
  588. #else /* CONFIG_NUMA */
  589. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  590. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  591. static struct alien_cache *__alloc_alien_cache(int node, int entries,
  592. int batch, gfp_t gfp)
  593. {
  594. size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
  595. struct alien_cache *alc = NULL;
  596. alc = kmalloc_node(memsize, gfp, node);
  597. init_arraycache(&alc->ac, entries, batch);
  598. spin_lock_init(&alc->lock);
  599. return alc;
  600. }
  601. static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  602. {
  603. struct alien_cache **alc_ptr;
  604. size_t memsize = sizeof(void *) * nr_node_ids;
  605. int i;
  606. if (limit > 1)
  607. limit = 12;
  608. alc_ptr = kzalloc_node(memsize, gfp, node);
  609. if (!alc_ptr)
  610. return NULL;
  611. for_each_node(i) {
  612. if (i == node || !node_online(i))
  613. continue;
  614. alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
  615. if (!alc_ptr[i]) {
  616. for (i--; i >= 0; i--)
  617. kfree(alc_ptr[i]);
  618. kfree(alc_ptr);
  619. return NULL;
  620. }
  621. }
  622. return alc_ptr;
  623. }
  624. static void free_alien_cache(struct alien_cache **alc_ptr)
  625. {
  626. int i;
  627. if (!alc_ptr)
  628. return;
  629. for_each_node(i)
  630. kfree(alc_ptr[i]);
  631. kfree(alc_ptr);
  632. }
  633. static void __drain_alien_cache(struct kmem_cache *cachep,
  634. struct array_cache *ac, int node,
  635. struct list_head *list)
  636. {
  637. struct kmem_cache_node *n = get_node(cachep, node);
  638. if (ac->avail) {
  639. spin_lock(&n->list_lock);
  640. /*
  641. * Stuff objects into the remote nodes shared array first.
  642. * That way we could avoid the overhead of putting the objects
  643. * into the free lists and getting them back later.
  644. */
  645. if (n->shared)
  646. transfer_objects(n->shared, ac, ac->limit);
  647. free_block(cachep, ac->entry, ac->avail, node, list);
  648. ac->avail = 0;
  649. spin_unlock(&n->list_lock);
  650. }
  651. }
  652. /*
  653. * Called from cache_reap() to regularly drain alien caches round robin.
  654. */
  655. static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
  656. {
  657. int node = __this_cpu_read(slab_reap_node);
  658. if (n->alien) {
  659. struct alien_cache *alc = n->alien[node];
  660. struct array_cache *ac;
  661. if (alc) {
  662. ac = &alc->ac;
  663. if (ac->avail && spin_trylock_irq(&alc->lock)) {
  664. LIST_HEAD(list);
  665. __drain_alien_cache(cachep, ac, node, &list);
  666. spin_unlock_irq(&alc->lock);
  667. slabs_destroy(cachep, &list);
  668. }
  669. }
  670. }
  671. }
  672. static void drain_alien_cache(struct kmem_cache *cachep,
  673. struct alien_cache **alien)
  674. {
  675. int i = 0;
  676. struct alien_cache *alc;
  677. struct array_cache *ac;
  678. unsigned long flags;
  679. for_each_online_node(i) {
  680. alc = alien[i];
  681. if (alc) {
  682. LIST_HEAD(list);
  683. ac = &alc->ac;
  684. spin_lock_irqsave(&alc->lock, flags);
  685. __drain_alien_cache(cachep, ac, i, &list);
  686. spin_unlock_irqrestore(&alc->lock, flags);
  687. slabs_destroy(cachep, &list);
  688. }
  689. }
  690. }
  691. static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
  692. int node, int page_node)
  693. {
  694. struct kmem_cache_node *n;
  695. struct alien_cache *alien = NULL;
  696. struct array_cache *ac;
  697. LIST_HEAD(list);
  698. n = get_node(cachep, node);
  699. STATS_INC_NODEFREES(cachep);
  700. if (n->alien && n->alien[page_node]) {
  701. alien = n->alien[page_node];
  702. ac = &alien->ac;
  703. spin_lock(&alien->lock);
  704. if (unlikely(ac->avail == ac->limit)) {
  705. STATS_INC_ACOVERFLOW(cachep);
  706. __drain_alien_cache(cachep, ac, page_node, &list);
  707. }
  708. ac->entry[ac->avail++] = objp;
  709. spin_unlock(&alien->lock);
  710. slabs_destroy(cachep, &list);
  711. } else {
  712. n = get_node(cachep, page_node);
  713. spin_lock(&n->list_lock);
  714. free_block(cachep, &objp, 1, page_node, &list);
  715. spin_unlock(&n->list_lock);
  716. slabs_destroy(cachep, &list);
  717. }
  718. return 1;
  719. }
  720. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  721. {
  722. int page_node = page_to_nid(virt_to_page(objp));
  723. int node = numa_mem_id();
  724. /*
  725. * Make sure we are not freeing a object from another node to the array
  726. * cache on this cpu.
  727. */
  728. if (likely(node == page_node))
  729. return 0;
  730. return __cache_free_alien(cachep, objp, node, page_node);
  731. }
  732. /*
  733. * Construct gfp mask to allocate from a specific node but do not reclaim or
  734. * warn about failures.
  735. */
  736. static inline gfp_t gfp_exact_node(gfp_t flags)
  737. {
  738. return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
  739. }
  740. #endif
  741. static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
  742. {
  743. struct kmem_cache_node *n;
  744. /*
  745. * Set up the kmem_cache_node for cpu before we can
  746. * begin anything. Make sure some other cpu on this
  747. * node has not already allocated this
  748. */
  749. n = get_node(cachep, node);
  750. if (n) {
  751. spin_lock_irq(&n->list_lock);
  752. n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
  753. cachep->num;
  754. spin_unlock_irq(&n->list_lock);
  755. return 0;
  756. }
  757. n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
  758. if (!n)
  759. return -ENOMEM;
  760. kmem_cache_node_init(n);
  761. n->next_reap = jiffies + REAPTIMEOUT_NODE +
  762. ((unsigned long)cachep) % REAPTIMEOUT_NODE;
  763. n->free_limit =
  764. (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
  765. /*
  766. * The kmem_cache_nodes don't come and go as CPUs
  767. * come and go. slab_mutex is sufficient
  768. * protection here.
  769. */
  770. cachep->node[node] = n;
  771. return 0;
  772. }
  773. #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
  774. /*
  775. * Allocates and initializes node for a node on each slab cache, used for
  776. * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
  777. * will be allocated off-node since memory is not yet online for the new node.
  778. * When hotplugging memory or a cpu, existing node are not replaced if
  779. * already in use.
  780. *
  781. * Must hold slab_mutex.
  782. */
  783. static int init_cache_node_node(int node)
  784. {
  785. int ret;
  786. struct kmem_cache *cachep;
  787. list_for_each_entry(cachep, &slab_caches, list) {
  788. ret = init_cache_node(cachep, node, GFP_KERNEL);
  789. if (ret)
  790. return ret;
  791. }
  792. return 0;
  793. }
  794. #endif
  795. static int setup_kmem_cache_node(struct kmem_cache *cachep,
  796. int node, gfp_t gfp, bool force_change)
  797. {
  798. int ret = -ENOMEM;
  799. struct kmem_cache_node *n;
  800. struct array_cache *old_shared = NULL;
  801. struct array_cache *new_shared = NULL;
  802. struct alien_cache **new_alien = NULL;
  803. LIST_HEAD(list);
  804. if (use_alien_caches) {
  805. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  806. if (!new_alien)
  807. goto fail;
  808. }
  809. if (cachep->shared) {
  810. new_shared = alloc_arraycache(node,
  811. cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
  812. if (!new_shared)
  813. goto fail;
  814. }
  815. ret = init_cache_node(cachep, node, gfp);
  816. if (ret)
  817. goto fail;
  818. n = get_node(cachep, node);
  819. spin_lock_irq(&n->list_lock);
  820. if (n->shared && force_change) {
  821. free_block(cachep, n->shared->entry,
  822. n->shared->avail, node, &list);
  823. n->shared->avail = 0;
  824. }
  825. if (!n->shared || force_change) {
  826. old_shared = n->shared;
  827. n->shared = new_shared;
  828. new_shared = NULL;
  829. }
  830. if (!n->alien) {
  831. n->alien = new_alien;
  832. new_alien = NULL;
  833. }
  834. spin_unlock_irq(&n->list_lock);
  835. slabs_destroy(cachep, &list);
  836. /*
  837. * To protect lockless access to n->shared during irq disabled context.
  838. * If n->shared isn't NULL in irq disabled context, accessing to it is
  839. * guaranteed to be valid until irq is re-enabled, because it will be
  840. * freed after synchronize_sched().
  841. */
  842. if (old_shared && force_change)
  843. synchronize_sched();
  844. fail:
  845. kfree(old_shared);
  846. kfree(new_shared);
  847. free_alien_cache(new_alien);
  848. return ret;
  849. }
  850. #ifdef CONFIG_SMP
  851. static void cpuup_canceled(long cpu)
  852. {
  853. struct kmem_cache *cachep;
  854. struct kmem_cache_node *n = NULL;
  855. int node = cpu_to_mem(cpu);
  856. const struct cpumask *mask = cpumask_of_node(node);
  857. list_for_each_entry(cachep, &slab_caches, list) {
  858. struct array_cache *nc;
  859. struct array_cache *shared;
  860. struct alien_cache **alien;
  861. LIST_HEAD(list);
  862. n = get_node(cachep, node);
  863. if (!n)
  864. continue;
  865. spin_lock_irq(&n->list_lock);
  866. /* Free limit for this kmem_cache_node */
  867. n->free_limit -= cachep->batchcount;
  868. /* cpu is dead; no one can alloc from it. */
  869. nc = per_cpu_ptr(cachep->cpu_cache, cpu);
  870. if (nc) {
  871. free_block(cachep, nc->entry, nc->avail, node, &list);
  872. nc->avail = 0;
  873. }
  874. if (!cpumask_empty(mask)) {
  875. spin_unlock_irq(&n->list_lock);
  876. goto free_slab;
  877. }
  878. shared = n->shared;
  879. if (shared) {
  880. free_block(cachep, shared->entry,
  881. shared->avail, node, &list);
  882. n->shared = NULL;
  883. }
  884. alien = n->alien;
  885. n->alien = NULL;
  886. spin_unlock_irq(&n->list_lock);
  887. kfree(shared);
  888. if (alien) {
  889. drain_alien_cache(cachep, alien);
  890. free_alien_cache(alien);
  891. }
  892. free_slab:
  893. slabs_destroy(cachep, &list);
  894. }
  895. /*
  896. * In the previous loop, all the objects were freed to
  897. * the respective cache's slabs, now we can go ahead and
  898. * shrink each nodelist to its limit.
  899. */
  900. list_for_each_entry(cachep, &slab_caches, list) {
  901. n = get_node(cachep, node);
  902. if (!n)
  903. continue;
  904. drain_freelist(cachep, n, INT_MAX);
  905. }
  906. }
  907. static int cpuup_prepare(long cpu)
  908. {
  909. struct kmem_cache *cachep;
  910. int node = cpu_to_mem(cpu);
  911. int err;
  912. /*
  913. * We need to do this right in the beginning since
  914. * alloc_arraycache's are going to use this list.
  915. * kmalloc_node allows us to add the slab to the right
  916. * kmem_cache_node and not this cpu's kmem_cache_node
  917. */
  918. err = init_cache_node_node(node);
  919. if (err < 0)
  920. goto bad;
  921. /*
  922. * Now we can go ahead with allocating the shared arrays and
  923. * array caches
  924. */
  925. list_for_each_entry(cachep, &slab_caches, list) {
  926. err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
  927. if (err)
  928. goto bad;
  929. }
  930. return 0;
  931. bad:
  932. cpuup_canceled(cpu);
  933. return -ENOMEM;
  934. }
  935. int slab_prepare_cpu(unsigned int cpu)
  936. {
  937. int err;
  938. mutex_lock(&slab_mutex);
  939. err = cpuup_prepare(cpu);
  940. mutex_unlock(&slab_mutex);
  941. return err;
  942. }
  943. /*
  944. * This is called for a failed online attempt and for a successful
  945. * offline.
  946. *
  947. * Even if all the cpus of a node are down, we don't free the
  948. * kmem_list3 of any cache. This to avoid a race between cpu_down, and
  949. * a kmalloc allocation from another cpu for memory from the node of
  950. * the cpu going down. The list3 structure is usually allocated from
  951. * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
  952. */
  953. int slab_dead_cpu(unsigned int cpu)
  954. {
  955. mutex_lock(&slab_mutex);
  956. cpuup_canceled(cpu);
  957. mutex_unlock(&slab_mutex);
  958. return 0;
  959. }
  960. #endif
  961. static int slab_online_cpu(unsigned int cpu)
  962. {
  963. start_cpu_timer(cpu);
  964. return 0;
  965. }
  966. static int slab_offline_cpu(unsigned int cpu)
  967. {
  968. /*
  969. * Shutdown cache reaper. Note that the slab_mutex is held so
  970. * that if cache_reap() is invoked it cannot do anything
  971. * expensive but will only modify reap_work and reschedule the
  972. * timer.
  973. */
  974. cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
  975. /* Now the cache_reaper is guaranteed to be not running. */
  976. per_cpu(slab_reap_work, cpu).work.func = NULL;
  977. return 0;
  978. }
  979. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  980. /*
  981. * Drains freelist for a node on each slab cache, used for memory hot-remove.
  982. * Returns -EBUSY if all objects cannot be drained so that the node is not
  983. * removed.
  984. *
  985. * Must hold slab_mutex.
  986. */
  987. static int __meminit drain_cache_node_node(int node)
  988. {
  989. struct kmem_cache *cachep;
  990. int ret = 0;
  991. list_for_each_entry(cachep, &slab_caches, list) {
  992. struct kmem_cache_node *n;
  993. n = get_node(cachep, node);
  994. if (!n)
  995. continue;
  996. drain_freelist(cachep, n, INT_MAX);
  997. if (!list_empty(&n->slabs_full) ||
  998. !list_empty(&n->slabs_partial)) {
  999. ret = -EBUSY;
  1000. break;
  1001. }
  1002. }
  1003. return ret;
  1004. }
  1005. static int __meminit slab_memory_callback(struct notifier_block *self,
  1006. unsigned long action, void *arg)
  1007. {
  1008. struct memory_notify *mnb = arg;
  1009. int ret = 0;
  1010. int nid;
  1011. nid = mnb->status_change_nid;
  1012. if (nid < 0)
  1013. goto out;
  1014. switch (action) {
  1015. case MEM_GOING_ONLINE:
  1016. mutex_lock(&slab_mutex);
  1017. ret = init_cache_node_node(nid);
  1018. mutex_unlock(&slab_mutex);
  1019. break;
  1020. case MEM_GOING_OFFLINE:
  1021. mutex_lock(&slab_mutex);
  1022. ret = drain_cache_node_node(nid);
  1023. mutex_unlock(&slab_mutex);
  1024. break;
  1025. case MEM_ONLINE:
  1026. case MEM_OFFLINE:
  1027. case MEM_CANCEL_ONLINE:
  1028. case MEM_CANCEL_OFFLINE:
  1029. break;
  1030. }
  1031. out:
  1032. return notifier_from_errno(ret);
  1033. }
  1034. #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
  1035. /*
  1036. * swap the static kmem_cache_node with kmalloced memory
  1037. */
  1038. static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
  1039. int nodeid)
  1040. {
  1041. struct kmem_cache_node *ptr;
  1042. ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
  1043. BUG_ON(!ptr);
  1044. memcpy(ptr, list, sizeof(struct kmem_cache_node));
  1045. /*
  1046. * Do not assume that spinlocks can be initialized via memcpy:
  1047. */
  1048. spin_lock_init(&ptr->list_lock);
  1049. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1050. cachep->node[nodeid] = ptr;
  1051. }
  1052. /*
  1053. * For setting up all the kmem_cache_node for cache whose buffer_size is same as
  1054. * size of kmem_cache_node.
  1055. */
  1056. static void __init set_up_node(struct kmem_cache *cachep, int index)
  1057. {
  1058. int node;
  1059. for_each_online_node(node) {
  1060. cachep->node[node] = &init_kmem_cache_node[index + node];
  1061. cachep->node[node]->next_reap = jiffies +
  1062. REAPTIMEOUT_NODE +
  1063. ((unsigned long)cachep) % REAPTIMEOUT_NODE;
  1064. }
  1065. }
  1066. /*
  1067. * Initialisation. Called after the page allocator have been initialised and
  1068. * before smp_init().
  1069. */
  1070. void __init kmem_cache_init(void)
  1071. {
  1072. int i;
  1073. kmem_cache = &kmem_cache_boot;
  1074. if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
  1075. use_alien_caches = 0;
  1076. for (i = 0; i < NUM_INIT_LISTS; i++)
  1077. kmem_cache_node_init(&init_kmem_cache_node[i]);
  1078. /*
  1079. * Fragmentation resistance on low memory - only use bigger
  1080. * page orders on machines with more than 32MB of memory if
  1081. * not overridden on the command line.
  1082. */
  1083. if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
  1084. slab_max_order = SLAB_MAX_ORDER_HI;
  1085. /* Bootstrap is tricky, because several objects are allocated
  1086. * from caches that do not exist yet:
  1087. * 1) initialize the kmem_cache cache: it contains the struct
  1088. * kmem_cache structures of all caches, except kmem_cache itself:
  1089. * kmem_cache is statically allocated.
  1090. * Initially an __init data area is used for the head array and the
  1091. * kmem_cache_node structures, it's replaced with a kmalloc allocated
  1092. * array at the end of the bootstrap.
  1093. * 2) Create the first kmalloc cache.
  1094. * The struct kmem_cache for the new cache is allocated normally.
  1095. * An __init data area is used for the head array.
  1096. * 3) Create the remaining kmalloc caches, with minimally sized
  1097. * head arrays.
  1098. * 4) Replace the __init data head arrays for kmem_cache and the first
  1099. * kmalloc cache with kmalloc allocated arrays.
  1100. * 5) Replace the __init data for kmem_cache_node for kmem_cache and
  1101. * the other cache's with kmalloc allocated memory.
  1102. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1103. */
  1104. /* 1) create the kmem_cache */
  1105. /*
  1106. * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
  1107. */
  1108. create_boot_cache(kmem_cache, "kmem_cache",
  1109. offsetof(struct kmem_cache, node) +
  1110. nr_node_ids * sizeof(struct kmem_cache_node *),
  1111. SLAB_HWCACHE_ALIGN, 0, 0);
  1112. list_add(&kmem_cache->list, &slab_caches);
  1113. memcg_link_cache(kmem_cache);
  1114. slab_state = PARTIAL;
  1115. /*
  1116. * Initialize the caches that provide memory for the kmem_cache_node
  1117. * structures first. Without this, further allocations will bug.
  1118. */
  1119. kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
  1120. kmalloc_info[INDEX_NODE].name,
  1121. kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
  1122. 0, kmalloc_size(INDEX_NODE));
  1123. slab_state = PARTIAL_NODE;
  1124. setup_kmalloc_cache_index_table();
  1125. slab_early_init = 0;
  1126. /* 5) Replace the bootstrap kmem_cache_node */
  1127. {
  1128. int nid;
  1129. for_each_online_node(nid) {
  1130. init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
  1131. init_list(kmalloc_caches[INDEX_NODE],
  1132. &init_kmem_cache_node[SIZE_NODE + nid], nid);
  1133. }
  1134. }
  1135. create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
  1136. }
  1137. void __init kmem_cache_init_late(void)
  1138. {
  1139. struct kmem_cache *cachep;
  1140. /* 6) resize the head arrays to their final sizes */
  1141. mutex_lock(&slab_mutex);
  1142. list_for_each_entry(cachep, &slab_caches, list)
  1143. if (enable_cpucache(cachep, GFP_NOWAIT))
  1144. BUG();
  1145. mutex_unlock(&slab_mutex);
  1146. /* Done! */
  1147. slab_state = FULL;
  1148. #ifdef CONFIG_NUMA
  1149. /*
  1150. * Register a memory hotplug callback that initializes and frees
  1151. * node.
  1152. */
  1153. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  1154. #endif
  1155. /*
  1156. * The reap timers are started later, with a module init call: That part
  1157. * of the kernel is not yet operational.
  1158. */
  1159. }
  1160. static int __init cpucache_init(void)
  1161. {
  1162. int ret;
  1163. /*
  1164. * Register the timers that return unneeded pages to the page allocator
  1165. */
  1166. ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
  1167. slab_online_cpu, slab_offline_cpu);
  1168. WARN_ON(ret < 0);
  1169. return 0;
  1170. }
  1171. __initcall(cpucache_init);
  1172. static noinline void
  1173. slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
  1174. {
  1175. #if DEBUG
  1176. struct kmem_cache_node *n;
  1177. unsigned long flags;
  1178. int node;
  1179. static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  1180. DEFAULT_RATELIMIT_BURST);
  1181. if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
  1182. return;
  1183. pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
  1184. nodeid, gfpflags, &gfpflags);
  1185. pr_warn(" cache: %s, object size: %d, order: %d\n",
  1186. cachep->name, cachep->size, cachep->gfporder);
  1187. for_each_kmem_cache_node(cachep, node, n) {
  1188. unsigned long total_slabs, free_slabs, free_objs;
  1189. spin_lock_irqsave(&n->list_lock, flags);
  1190. total_slabs = n->total_slabs;
  1191. free_slabs = n->free_slabs;
  1192. free_objs = n->free_objects;
  1193. spin_unlock_irqrestore(&n->list_lock, flags);
  1194. pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
  1195. node, total_slabs - free_slabs, total_slabs,
  1196. (total_slabs * cachep->num) - free_objs,
  1197. total_slabs * cachep->num);
  1198. }
  1199. #endif
  1200. }
  1201. /*
  1202. * Interface to system's page allocator. No need to hold the
  1203. * kmem_cache_node ->list_lock.
  1204. *
  1205. * If we requested dmaable memory, we will get it. Even if we
  1206. * did not request dmaable memory, we might get it, but that
  1207. * would be relatively rare and ignorable.
  1208. */
  1209. static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
  1210. int nodeid)
  1211. {
  1212. struct page *page;
  1213. int nr_pages;
  1214. flags |= cachep->allocflags;
  1215. page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
  1216. if (!page) {
  1217. slab_out_of_memory(cachep, flags, nodeid);
  1218. return NULL;
  1219. }
  1220. if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
  1221. __free_pages(page, cachep->gfporder);
  1222. return NULL;
  1223. }
  1224. nr_pages = (1 << cachep->gfporder);
  1225. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1226. mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
  1227. else
  1228. mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
  1229. __SetPageSlab(page);
  1230. /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
  1231. if (sk_memalloc_socks() && page_is_pfmemalloc(page))
  1232. SetPageSlabPfmemalloc(page);
  1233. return page;
  1234. }
  1235. /*
  1236. * Interface to system's page release.
  1237. */
  1238. static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
  1239. {
  1240. int order = cachep->gfporder;
  1241. unsigned long nr_freed = (1 << order);
  1242. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1243. mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
  1244. else
  1245. mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
  1246. BUG_ON(!PageSlab(page));
  1247. __ClearPageSlabPfmemalloc(page);
  1248. __ClearPageSlab(page);
  1249. page_mapcount_reset(page);
  1250. page->mapping = NULL;
  1251. if (current->reclaim_state)
  1252. current->reclaim_state->reclaimed_slab += nr_freed;
  1253. memcg_uncharge_slab(page, order, cachep);
  1254. __free_pages(page, order);
  1255. }
  1256. static void kmem_rcu_free(struct rcu_head *head)
  1257. {
  1258. struct kmem_cache *cachep;
  1259. struct page *page;
  1260. page = container_of(head, struct page, rcu_head);
  1261. cachep = page->slab_cache;
  1262. kmem_freepages(cachep, page);
  1263. }
  1264. #if DEBUG
  1265. static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
  1266. {
  1267. if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
  1268. (cachep->size % PAGE_SIZE) == 0)
  1269. return true;
  1270. return false;
  1271. }
  1272. #ifdef CONFIG_DEBUG_PAGEALLOC
  1273. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1274. unsigned long caller)
  1275. {
  1276. int size = cachep->object_size;
  1277. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1278. if (size < 5 * sizeof(unsigned long))
  1279. return;
  1280. *addr++ = 0x12345678;
  1281. *addr++ = caller;
  1282. *addr++ = smp_processor_id();
  1283. size -= 3 * sizeof(unsigned long);
  1284. {
  1285. unsigned long *sptr = &caller;
  1286. unsigned long svalue;
  1287. while (!kstack_end(sptr)) {
  1288. svalue = *sptr++;
  1289. if (kernel_text_address(svalue)) {
  1290. *addr++ = svalue;
  1291. size -= sizeof(unsigned long);
  1292. if (size <= sizeof(unsigned long))
  1293. break;
  1294. }
  1295. }
  1296. }
  1297. *addr++ = 0x87654321;
  1298. }
  1299. static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
  1300. int map, unsigned long caller)
  1301. {
  1302. if (!is_debug_pagealloc_cache(cachep))
  1303. return;
  1304. if (caller)
  1305. store_stackinfo(cachep, objp, caller);
  1306. kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
  1307. }
  1308. #else
  1309. static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
  1310. int map, unsigned long caller) {}
  1311. #endif
  1312. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1313. {
  1314. int size = cachep->object_size;
  1315. addr = &((char *)addr)[obj_offset(cachep)];
  1316. memset(addr, val, size);
  1317. *(unsigned char *)(addr + size - 1) = POISON_END;
  1318. }
  1319. static void dump_line(char *data, int offset, int limit)
  1320. {
  1321. int i;
  1322. unsigned char error = 0;
  1323. int bad_count = 0;
  1324. pr_err("%03x: ", offset);
  1325. for (i = 0; i < limit; i++) {
  1326. if (data[offset + i] != POISON_FREE) {
  1327. error = data[offset + i];
  1328. bad_count++;
  1329. }
  1330. }
  1331. print_hex_dump(KERN_CONT, "", 0, 16, 1,
  1332. &data[offset], limit, 1);
  1333. if (bad_count == 1) {
  1334. error ^= POISON_FREE;
  1335. if (!(error & (error - 1))) {
  1336. pr_err("Single bit error detected. Probably bad RAM.\n");
  1337. #ifdef CONFIG_X86
  1338. pr_err("Run memtest86+ or a similar memory test tool.\n");
  1339. #else
  1340. pr_err("Run a memory test tool.\n");
  1341. #endif
  1342. }
  1343. }
  1344. }
  1345. #endif
  1346. #if DEBUG
  1347. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1348. {
  1349. int i, size;
  1350. char *realobj;
  1351. if (cachep->flags & SLAB_RED_ZONE) {
  1352. pr_err("Redzone: 0x%llx/0x%llx\n",
  1353. *dbg_redzone1(cachep, objp),
  1354. *dbg_redzone2(cachep, objp));
  1355. }
  1356. if (cachep->flags & SLAB_STORE_USER)
  1357. pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
  1358. realobj = (char *)objp + obj_offset(cachep);
  1359. size = cachep->object_size;
  1360. for (i = 0; i < size && lines; i += 16, lines--) {
  1361. int limit;
  1362. limit = 16;
  1363. if (i + limit > size)
  1364. limit = size - i;
  1365. dump_line(realobj, i, limit);
  1366. }
  1367. }
  1368. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1369. {
  1370. char *realobj;
  1371. int size, i;
  1372. int lines = 0;
  1373. if (is_debug_pagealloc_cache(cachep))
  1374. return;
  1375. realobj = (char *)objp + obj_offset(cachep);
  1376. size = cachep->object_size;
  1377. for (i = 0; i < size; i++) {
  1378. char exp = POISON_FREE;
  1379. if (i == size - 1)
  1380. exp = POISON_END;
  1381. if (realobj[i] != exp) {
  1382. int limit;
  1383. /* Mismatch ! */
  1384. /* Print header */
  1385. if (lines == 0) {
  1386. pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
  1387. print_tainted(), cachep->name,
  1388. realobj, size);
  1389. print_objinfo(cachep, objp, 0);
  1390. }
  1391. /* Hexdump the affected line */
  1392. i = (i / 16) * 16;
  1393. limit = 16;
  1394. if (i + limit > size)
  1395. limit = size - i;
  1396. dump_line(realobj, i, limit);
  1397. i += 16;
  1398. lines++;
  1399. /* Limit to 5 lines */
  1400. if (lines > 5)
  1401. break;
  1402. }
  1403. }
  1404. if (lines != 0) {
  1405. /* Print some data about the neighboring objects, if they
  1406. * exist:
  1407. */
  1408. struct page *page = virt_to_head_page(objp);
  1409. unsigned int objnr;
  1410. objnr = obj_to_index(cachep, page, objp);
  1411. if (objnr) {
  1412. objp = index_to_obj(cachep, page, objnr - 1);
  1413. realobj = (char *)objp + obj_offset(cachep);
  1414. pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
  1415. print_objinfo(cachep, objp, 2);
  1416. }
  1417. if (objnr + 1 < cachep->num) {
  1418. objp = index_to_obj(cachep, page, objnr + 1);
  1419. realobj = (char *)objp + obj_offset(cachep);
  1420. pr_err("Next obj: start=%px, len=%d\n", realobj, size);
  1421. print_objinfo(cachep, objp, 2);
  1422. }
  1423. }
  1424. }
  1425. #endif
  1426. #if DEBUG
  1427. static void slab_destroy_debugcheck(struct kmem_cache *cachep,
  1428. struct page *page)
  1429. {
  1430. int i;
  1431. if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
  1432. poison_obj(cachep, page->freelist - obj_offset(cachep),
  1433. POISON_FREE);
  1434. }
  1435. for (i = 0; i < cachep->num; i++) {
  1436. void *objp = index_to_obj(cachep, page, i);
  1437. if (cachep->flags & SLAB_POISON) {
  1438. check_poison_obj(cachep, objp);
  1439. slab_kernel_map(cachep, objp, 1, 0);
  1440. }
  1441. if (cachep->flags & SLAB_RED_ZONE) {
  1442. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1443. slab_error(cachep, "start of a freed object was overwritten");
  1444. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1445. slab_error(cachep, "end of a freed object was overwritten");
  1446. }
  1447. }
  1448. }
  1449. #else
  1450. static void slab_destroy_debugcheck(struct kmem_cache *cachep,
  1451. struct page *page)
  1452. {
  1453. }
  1454. #endif
  1455. /**
  1456. * slab_destroy - destroy and release all objects in a slab
  1457. * @cachep: cache pointer being destroyed
  1458. * @page: page pointer being destroyed
  1459. *
  1460. * Destroy all the objs in a slab page, and release the mem back to the system.
  1461. * Before calling the slab page must have been unlinked from the cache. The
  1462. * kmem_cache_node ->list_lock is not held/needed.
  1463. */
  1464. static void slab_destroy(struct kmem_cache *cachep, struct page *page)
  1465. {
  1466. void *freelist;
  1467. freelist = page->freelist;
  1468. slab_destroy_debugcheck(cachep, page);
  1469. if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
  1470. call_rcu(&page->rcu_head, kmem_rcu_free);
  1471. else
  1472. kmem_freepages(cachep, page);
  1473. /*
  1474. * From now on, we don't use freelist
  1475. * although actual page can be freed in rcu context
  1476. */
  1477. if (OFF_SLAB(cachep))
  1478. kmem_cache_free(cachep->freelist_cache, freelist);
  1479. }
  1480. static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
  1481. {
  1482. struct page *page, *n;
  1483. list_for_each_entry_safe(page, n, list, lru) {
  1484. list_del(&page->lru);
  1485. slab_destroy(cachep, page);
  1486. }
  1487. }
  1488. /**
  1489. * calculate_slab_order - calculate size (page order) of slabs
  1490. * @cachep: pointer to the cache that is being created
  1491. * @size: size of objects to be created in this cache.
  1492. * @flags: slab allocation flags
  1493. *
  1494. * Also calculates the number of objects per slab.
  1495. *
  1496. * This could be made much more intelligent. For now, try to avoid using
  1497. * high order pages for slabs. When the gfp() functions are more friendly
  1498. * towards high-order requests, this should be changed.
  1499. */
  1500. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1501. size_t size, slab_flags_t flags)
  1502. {
  1503. size_t left_over = 0;
  1504. int gfporder;
  1505. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1506. unsigned int num;
  1507. size_t remainder;
  1508. num = cache_estimate(gfporder, size, flags, &remainder);
  1509. if (!num)
  1510. continue;
  1511. /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
  1512. if (num > SLAB_OBJ_MAX_NUM)
  1513. break;
  1514. if (flags & CFLGS_OFF_SLAB) {
  1515. struct kmem_cache *freelist_cache;
  1516. size_t freelist_size;
  1517. freelist_size = num * sizeof(freelist_idx_t);
  1518. freelist_cache = kmalloc_slab(freelist_size, 0u);
  1519. if (!freelist_cache)
  1520. continue;
  1521. /*
  1522. * Needed to avoid possible looping condition
  1523. * in cache_grow_begin()
  1524. */
  1525. if (OFF_SLAB(freelist_cache))
  1526. continue;
  1527. /* check if off slab has enough benefit */
  1528. if (freelist_cache->size > cachep->size / 2)
  1529. continue;
  1530. }
  1531. /* Found something acceptable - save it away */
  1532. cachep->num = num;
  1533. cachep->gfporder = gfporder;
  1534. left_over = remainder;
  1535. /*
  1536. * A VFS-reclaimable slab tends to have most allocations
  1537. * as GFP_NOFS and we really don't want to have to be allocating
  1538. * higher-order pages when we are unable to shrink dcache.
  1539. */
  1540. if (flags & SLAB_RECLAIM_ACCOUNT)
  1541. break;
  1542. /*
  1543. * Large number of objects is good, but very large slabs are
  1544. * currently bad for the gfp()s.
  1545. */
  1546. if (gfporder >= slab_max_order)
  1547. break;
  1548. /*
  1549. * Acceptable internal fragmentation?
  1550. */
  1551. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1552. break;
  1553. }
  1554. return left_over;
  1555. }
  1556. static struct array_cache __percpu *alloc_kmem_cache_cpus(
  1557. struct kmem_cache *cachep, int entries, int batchcount)
  1558. {
  1559. int cpu;
  1560. size_t size;
  1561. struct array_cache __percpu *cpu_cache;
  1562. size = sizeof(void *) * entries + sizeof(struct array_cache);
  1563. cpu_cache = __alloc_percpu(size, sizeof(void *));
  1564. if (!cpu_cache)
  1565. return NULL;
  1566. for_each_possible_cpu(cpu) {
  1567. init_arraycache(per_cpu_ptr(cpu_cache, cpu),
  1568. entries, batchcount);
  1569. }
  1570. return cpu_cache;
  1571. }
  1572. static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1573. {
  1574. if (slab_state >= FULL)
  1575. return enable_cpucache(cachep, gfp);
  1576. cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
  1577. if (!cachep->cpu_cache)
  1578. return 1;
  1579. if (slab_state == DOWN) {
  1580. /* Creation of first cache (kmem_cache). */
  1581. set_up_node(kmem_cache, CACHE_CACHE);
  1582. } else if (slab_state == PARTIAL) {
  1583. /* For kmem_cache_node */
  1584. set_up_node(cachep, SIZE_NODE);
  1585. } else {
  1586. int node;
  1587. for_each_online_node(node) {
  1588. cachep->node[node] = kmalloc_node(
  1589. sizeof(struct kmem_cache_node), gfp, node);
  1590. BUG_ON(!cachep->node[node]);
  1591. kmem_cache_node_init(cachep->node[node]);
  1592. }
  1593. }
  1594. cachep->node[numa_mem_id()]->next_reap =
  1595. jiffies + REAPTIMEOUT_NODE +
  1596. ((unsigned long)cachep) % REAPTIMEOUT_NODE;
  1597. cpu_cache_get(cachep)->avail = 0;
  1598. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1599. cpu_cache_get(cachep)->batchcount = 1;
  1600. cpu_cache_get(cachep)->touched = 0;
  1601. cachep->batchcount = 1;
  1602. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1603. return 0;
  1604. }
  1605. slab_flags_t kmem_cache_flags(unsigned int object_size,
  1606. slab_flags_t flags, const char *name,
  1607. void (*ctor)(void *))
  1608. {
  1609. return flags;
  1610. }
  1611. struct kmem_cache *
  1612. __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
  1613. slab_flags_t flags, void (*ctor)(void *))
  1614. {
  1615. struct kmem_cache *cachep;
  1616. cachep = find_mergeable(size, align, flags, name, ctor);
  1617. if (cachep) {
  1618. cachep->refcount++;
  1619. /*
  1620. * Adjust the object sizes so that we clear
  1621. * the complete object on kzalloc.
  1622. */
  1623. cachep->object_size = max_t(int, cachep->object_size, size);
  1624. }
  1625. return cachep;
  1626. }
  1627. static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
  1628. size_t size, slab_flags_t flags)
  1629. {
  1630. size_t left;
  1631. cachep->num = 0;
  1632. if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
  1633. return false;
  1634. left = calculate_slab_order(cachep, size,
  1635. flags | CFLGS_OBJFREELIST_SLAB);
  1636. if (!cachep->num)
  1637. return false;
  1638. if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
  1639. return false;
  1640. cachep->colour = left / cachep->colour_off;
  1641. return true;
  1642. }
  1643. static bool set_off_slab_cache(struct kmem_cache *cachep,
  1644. size_t size, slab_flags_t flags)
  1645. {
  1646. size_t left;
  1647. cachep->num = 0;
  1648. /*
  1649. * Always use on-slab management when SLAB_NOLEAKTRACE
  1650. * to avoid recursive calls into kmemleak.
  1651. */
  1652. if (flags & SLAB_NOLEAKTRACE)
  1653. return false;
  1654. /*
  1655. * Size is large, assume best to place the slab management obj
  1656. * off-slab (should allow better packing of objs).
  1657. */
  1658. left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
  1659. if (!cachep->num)
  1660. return false;
  1661. /*
  1662. * If the slab has been placed off-slab, and we have enough space then
  1663. * move it on-slab. This is at the expense of any extra colouring.
  1664. */
  1665. if (left >= cachep->num * sizeof(freelist_idx_t))
  1666. return false;
  1667. cachep->colour = left / cachep->colour_off;
  1668. return true;
  1669. }
  1670. static bool set_on_slab_cache(struct kmem_cache *cachep,
  1671. size_t size, slab_flags_t flags)
  1672. {
  1673. size_t left;
  1674. cachep->num = 0;
  1675. left = calculate_slab_order(cachep, size, flags);
  1676. if (!cachep->num)
  1677. return false;
  1678. cachep->colour = left / cachep->colour_off;
  1679. return true;
  1680. }
  1681. /**
  1682. * __kmem_cache_create - Create a cache.
  1683. * @cachep: cache management descriptor
  1684. * @flags: SLAB flags
  1685. *
  1686. * Returns a ptr to the cache on success, NULL on failure.
  1687. * Cannot be called within a int, but can be interrupted.
  1688. * The @ctor is run when new pages are allocated by the cache.
  1689. *
  1690. * The flags are
  1691. *
  1692. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1693. * to catch references to uninitialised memory.
  1694. *
  1695. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1696. * for buffer overruns.
  1697. *
  1698. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1699. * cacheline. This can be beneficial if you're counting cycles as closely
  1700. * as davem.
  1701. */
  1702. int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
  1703. {
  1704. size_t ralign = BYTES_PER_WORD;
  1705. gfp_t gfp;
  1706. int err;
  1707. unsigned int size = cachep->size;
  1708. #if DEBUG
  1709. #if FORCED_DEBUG
  1710. /*
  1711. * Enable redzoning and last user accounting, except for caches with
  1712. * large objects, if the increased size would increase the object size
  1713. * above the next power of two: caches with object sizes just above a
  1714. * power of two have a significant amount of internal fragmentation.
  1715. */
  1716. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1717. 2 * sizeof(unsigned long long)))
  1718. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1719. if (!(flags & SLAB_TYPESAFE_BY_RCU))
  1720. flags |= SLAB_POISON;
  1721. #endif
  1722. #endif
  1723. /*
  1724. * Check that size is in terms of words. This is needed to avoid
  1725. * unaligned accesses for some archs when redzoning is used, and makes
  1726. * sure any on-slab bufctl's are also correctly aligned.
  1727. */
  1728. size = ALIGN(size, BYTES_PER_WORD);
  1729. if (flags & SLAB_RED_ZONE) {
  1730. ralign = REDZONE_ALIGN;
  1731. /* If redzoning, ensure that the second redzone is suitably
  1732. * aligned, by adjusting the object size accordingly. */
  1733. size = ALIGN(size, REDZONE_ALIGN);
  1734. }
  1735. /* 3) caller mandated alignment */
  1736. if (ralign < cachep->align) {
  1737. ralign = cachep->align;
  1738. }
  1739. /* disable debug if necessary */
  1740. if (ralign > __alignof__(unsigned long long))
  1741. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1742. /*
  1743. * 4) Store it.
  1744. */
  1745. cachep->align = ralign;
  1746. cachep->colour_off = cache_line_size();
  1747. /* Offset must be a multiple of the alignment. */
  1748. if (cachep->colour_off < cachep->align)
  1749. cachep->colour_off = cachep->align;
  1750. if (slab_is_available())
  1751. gfp = GFP_KERNEL;
  1752. else
  1753. gfp = GFP_NOWAIT;
  1754. #if DEBUG
  1755. /*
  1756. * Both debugging options require word-alignment which is calculated
  1757. * into align above.
  1758. */
  1759. if (flags & SLAB_RED_ZONE) {
  1760. /* add space for red zone words */
  1761. cachep->obj_offset += sizeof(unsigned long long);
  1762. size += 2 * sizeof(unsigned long long);
  1763. }
  1764. if (flags & SLAB_STORE_USER) {
  1765. /* user store requires one word storage behind the end of
  1766. * the real object. But if the second red zone needs to be
  1767. * aligned to 64 bits, we must allow that much space.
  1768. */
  1769. if (flags & SLAB_RED_ZONE)
  1770. size += REDZONE_ALIGN;
  1771. else
  1772. size += BYTES_PER_WORD;
  1773. }
  1774. #endif
  1775. kasan_cache_create(cachep, &size, &flags);
  1776. size = ALIGN(size, cachep->align);
  1777. /*
  1778. * We should restrict the number of objects in a slab to implement
  1779. * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
  1780. */
  1781. if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
  1782. size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
  1783. #if DEBUG
  1784. /*
  1785. * To activate debug pagealloc, off-slab management is necessary
  1786. * requirement. In early phase of initialization, small sized slab
  1787. * doesn't get initialized so it would not be possible. So, we need
  1788. * to check size >= 256. It guarantees that all necessary small
  1789. * sized slab is initialized in current slab initialization sequence.
  1790. */
  1791. if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
  1792. size >= 256 && cachep->object_size > cache_line_size()) {
  1793. if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
  1794. size_t tmp_size = ALIGN(size, PAGE_SIZE);
  1795. if (set_off_slab_cache(cachep, tmp_size, flags)) {
  1796. flags |= CFLGS_OFF_SLAB;
  1797. cachep->obj_offset += tmp_size - size;
  1798. size = tmp_size;
  1799. goto done;
  1800. }
  1801. }
  1802. }
  1803. #endif
  1804. if (set_objfreelist_slab_cache(cachep, size, flags)) {
  1805. flags |= CFLGS_OBJFREELIST_SLAB;
  1806. goto done;
  1807. }
  1808. if (set_off_slab_cache(cachep, size, flags)) {
  1809. flags |= CFLGS_OFF_SLAB;
  1810. goto done;
  1811. }
  1812. if (set_on_slab_cache(cachep, size, flags))
  1813. goto done;
  1814. return -E2BIG;
  1815. done:
  1816. cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
  1817. cachep->flags = flags;
  1818. cachep->allocflags = __GFP_COMP;
  1819. if (flags & SLAB_CACHE_DMA)
  1820. cachep->allocflags |= GFP_DMA;
  1821. if (flags & SLAB_RECLAIM_ACCOUNT)
  1822. cachep->allocflags |= __GFP_RECLAIMABLE;
  1823. cachep->size = size;
  1824. cachep->reciprocal_buffer_size = reciprocal_value(size);
  1825. #if DEBUG
  1826. /*
  1827. * If we're going to use the generic kernel_map_pages()
  1828. * poisoning, then it's going to smash the contents of
  1829. * the redzone and userword anyhow, so switch them off.
  1830. */
  1831. if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
  1832. (cachep->flags & SLAB_POISON) &&
  1833. is_debug_pagealloc_cache(cachep))
  1834. cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1835. #endif
  1836. if (OFF_SLAB(cachep)) {
  1837. cachep->freelist_cache =
  1838. kmalloc_slab(cachep->freelist_size, 0u);
  1839. }
  1840. err = setup_cpu_cache(cachep, gfp);
  1841. if (err) {
  1842. __kmem_cache_release(cachep);
  1843. return err;
  1844. }
  1845. return 0;
  1846. }
  1847. #if DEBUG
  1848. static void check_irq_off(void)
  1849. {
  1850. BUG_ON(!irqs_disabled());
  1851. }
  1852. static void check_irq_on(void)
  1853. {
  1854. BUG_ON(irqs_disabled());
  1855. }
  1856. static void check_mutex_acquired(void)
  1857. {
  1858. BUG_ON(!mutex_is_locked(&slab_mutex));
  1859. }
  1860. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1861. {
  1862. #ifdef CONFIG_SMP
  1863. check_irq_off();
  1864. assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
  1865. #endif
  1866. }
  1867. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1868. {
  1869. #ifdef CONFIG_SMP
  1870. check_irq_off();
  1871. assert_spin_locked(&get_node(cachep, node)->list_lock);
  1872. #endif
  1873. }
  1874. #else
  1875. #define check_irq_off() do { } while(0)
  1876. #define check_irq_on() do { } while(0)
  1877. #define check_mutex_acquired() do { } while(0)
  1878. #define check_spinlock_acquired(x) do { } while(0)
  1879. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1880. #endif
  1881. static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
  1882. int node, bool free_all, struct list_head *list)
  1883. {
  1884. int tofree;
  1885. if (!ac || !ac->avail)
  1886. return;
  1887. tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
  1888. if (tofree > ac->avail)
  1889. tofree = (ac->avail + 1) / 2;
  1890. free_block(cachep, ac->entry, tofree, node, list);
  1891. ac->avail -= tofree;
  1892. memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
  1893. }
  1894. static void do_drain(void *arg)
  1895. {
  1896. struct kmem_cache *cachep = arg;
  1897. struct array_cache *ac;
  1898. int node = numa_mem_id();
  1899. struct kmem_cache_node *n;
  1900. LIST_HEAD(list);
  1901. check_irq_off();
  1902. ac = cpu_cache_get(cachep);
  1903. n = get_node(cachep, node);
  1904. spin_lock(&n->list_lock);
  1905. free_block(cachep, ac->entry, ac->avail, node, &list);
  1906. spin_unlock(&n->list_lock);
  1907. slabs_destroy(cachep, &list);
  1908. ac->avail = 0;
  1909. }
  1910. static void drain_cpu_caches(struct kmem_cache *cachep)
  1911. {
  1912. struct kmem_cache_node *n;
  1913. int node;
  1914. LIST_HEAD(list);
  1915. on_each_cpu(do_drain, cachep, 1);
  1916. check_irq_on();
  1917. for_each_kmem_cache_node(cachep, node, n)
  1918. if (n->alien)
  1919. drain_alien_cache(cachep, n->alien);
  1920. for_each_kmem_cache_node(cachep, node, n) {
  1921. spin_lock_irq(&n->list_lock);
  1922. drain_array_locked(cachep, n->shared, node, true, &list);
  1923. spin_unlock_irq(&n->list_lock);
  1924. slabs_destroy(cachep, &list);
  1925. }
  1926. }
  1927. /*
  1928. * Remove slabs from the list of free slabs.
  1929. * Specify the number of slabs to drain in tofree.
  1930. *
  1931. * Returns the actual number of slabs released.
  1932. */
  1933. static int drain_freelist(struct kmem_cache *cache,
  1934. struct kmem_cache_node *n, int tofree)
  1935. {
  1936. struct list_head *p;
  1937. int nr_freed;
  1938. struct page *page;
  1939. nr_freed = 0;
  1940. while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
  1941. spin_lock_irq(&n->list_lock);
  1942. p = n->slabs_free.prev;
  1943. if (p == &n->slabs_free) {
  1944. spin_unlock_irq(&n->list_lock);
  1945. goto out;
  1946. }
  1947. page = list_entry(p, struct page, lru);
  1948. list_del(&page->lru);
  1949. n->free_slabs--;
  1950. n->total_slabs--;
  1951. /*
  1952. * Safe to drop the lock. The slab is no longer linked
  1953. * to the cache.
  1954. */
  1955. n->free_objects -= cache->num;
  1956. spin_unlock_irq(&n->list_lock);
  1957. slab_destroy(cache, page);
  1958. nr_freed++;
  1959. }
  1960. out:
  1961. return nr_freed;
  1962. }
  1963. bool __kmem_cache_empty(struct kmem_cache *s)
  1964. {
  1965. int node;
  1966. struct kmem_cache_node *n;
  1967. for_each_kmem_cache_node(s, node, n)
  1968. if (!list_empty(&n->slabs_full) ||
  1969. !list_empty(&n->slabs_partial))
  1970. return false;
  1971. return true;
  1972. }
  1973. int __kmem_cache_shrink(struct kmem_cache *cachep)
  1974. {
  1975. int ret = 0;
  1976. int node;
  1977. struct kmem_cache_node *n;
  1978. drain_cpu_caches(cachep);
  1979. check_irq_on();
  1980. for_each_kmem_cache_node(cachep, node, n) {
  1981. drain_freelist(cachep, n, INT_MAX);
  1982. ret += !list_empty(&n->slabs_full) ||
  1983. !list_empty(&n->slabs_partial);
  1984. }
  1985. return (ret ? 1 : 0);
  1986. }
  1987. #ifdef CONFIG_MEMCG
  1988. void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
  1989. {
  1990. __kmem_cache_shrink(cachep);
  1991. }
  1992. #endif
  1993. int __kmem_cache_shutdown(struct kmem_cache *cachep)
  1994. {
  1995. return __kmem_cache_shrink(cachep);
  1996. }
  1997. void __kmem_cache_release(struct kmem_cache *cachep)
  1998. {
  1999. int i;
  2000. struct kmem_cache_node *n;
  2001. cache_random_seq_destroy(cachep);
  2002. free_percpu(cachep->cpu_cache);
  2003. /* NUMA: free the node structures */
  2004. for_each_kmem_cache_node(cachep, i, n) {
  2005. kfree(n->shared);
  2006. free_alien_cache(n->alien);
  2007. kfree(n);
  2008. cachep->node[i] = NULL;
  2009. }
  2010. }
  2011. /*
  2012. * Get the memory for a slab management obj.
  2013. *
  2014. * For a slab cache when the slab descriptor is off-slab, the
  2015. * slab descriptor can't come from the same cache which is being created,
  2016. * Because if it is the case, that means we defer the creation of
  2017. * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
  2018. * And we eventually call down to __kmem_cache_create(), which
  2019. * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
  2020. * This is a "chicken-and-egg" problem.
  2021. *
  2022. * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
  2023. * which are all initialized during kmem_cache_init().
  2024. */
  2025. static void *alloc_slabmgmt(struct kmem_cache *cachep,
  2026. struct page *page, int colour_off,
  2027. gfp_t local_flags, int nodeid)
  2028. {
  2029. void *freelist;
  2030. void *addr = page_address(page);
  2031. page->s_mem = addr + colour_off;
  2032. page->active = 0;
  2033. if (OBJFREELIST_SLAB(cachep))
  2034. freelist = NULL;
  2035. else if (OFF_SLAB(cachep)) {
  2036. /* Slab management obj is off-slab. */
  2037. freelist = kmem_cache_alloc_node(cachep->freelist_cache,
  2038. local_flags, nodeid);
  2039. if (!freelist)
  2040. return NULL;
  2041. } else {
  2042. /* We will use last bytes at the slab for freelist */
  2043. freelist = addr + (PAGE_SIZE << cachep->gfporder) -
  2044. cachep->freelist_size;
  2045. }
  2046. return freelist;
  2047. }
  2048. static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
  2049. {
  2050. return ((freelist_idx_t *)page->freelist)[idx];
  2051. }
  2052. static inline void set_free_obj(struct page *page,
  2053. unsigned int idx, freelist_idx_t val)
  2054. {
  2055. ((freelist_idx_t *)(page->freelist))[idx] = val;
  2056. }
  2057. static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
  2058. {
  2059. #if DEBUG
  2060. int i;
  2061. for (i = 0; i < cachep->num; i++) {
  2062. void *objp = index_to_obj(cachep, page, i);
  2063. if (cachep->flags & SLAB_STORE_USER)
  2064. *dbg_userword(cachep, objp) = NULL;
  2065. if (cachep->flags & SLAB_RED_ZONE) {
  2066. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2067. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2068. }
  2069. /*
  2070. * Constructors are not allowed to allocate memory from the same
  2071. * cache which they are a constructor for. Otherwise, deadlock.
  2072. * They must also be threaded.
  2073. */
  2074. if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
  2075. kasan_unpoison_object_data(cachep,
  2076. objp + obj_offset(cachep));
  2077. cachep->ctor(objp + obj_offset(cachep));
  2078. kasan_poison_object_data(
  2079. cachep, objp + obj_offset(cachep));
  2080. }
  2081. if (cachep->flags & SLAB_RED_ZONE) {
  2082. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2083. slab_error(cachep, "constructor overwrote the end of an object");
  2084. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2085. slab_error(cachep, "constructor overwrote the start of an object");
  2086. }
  2087. /* need to poison the objs? */
  2088. if (cachep->flags & SLAB_POISON) {
  2089. poison_obj(cachep, objp, POISON_FREE);
  2090. slab_kernel_map(cachep, objp, 0, 0);
  2091. }
  2092. }
  2093. #endif
  2094. }
  2095. #ifdef CONFIG_SLAB_FREELIST_RANDOM
  2096. /* Hold information during a freelist initialization */
  2097. union freelist_init_state {
  2098. struct {
  2099. unsigned int pos;
  2100. unsigned int *list;
  2101. unsigned int count;
  2102. };
  2103. struct rnd_state rnd_state;
  2104. };
  2105. /*
  2106. * Initialize the state based on the randomization methode available.
  2107. * return true if the pre-computed list is available, false otherwize.
  2108. */
  2109. static bool freelist_state_initialize(union freelist_init_state *state,
  2110. struct kmem_cache *cachep,
  2111. unsigned int count)
  2112. {
  2113. bool ret;
  2114. unsigned int rand;
  2115. /* Use best entropy available to define a random shift */
  2116. rand = get_random_int();
  2117. /* Use a random state if the pre-computed list is not available */
  2118. if (!cachep->random_seq) {
  2119. prandom_seed_state(&state->rnd_state, rand);
  2120. ret = false;
  2121. } else {
  2122. state->list = cachep->random_seq;
  2123. state->count = count;
  2124. state->pos = rand % count;
  2125. ret = true;
  2126. }
  2127. return ret;
  2128. }
  2129. /* Get the next entry on the list and randomize it using a random shift */
  2130. static freelist_idx_t next_random_slot(union freelist_init_state *state)
  2131. {
  2132. if (state->pos >= state->count)
  2133. state->pos = 0;
  2134. return state->list[state->pos++];
  2135. }
  2136. /* Swap two freelist entries */
  2137. static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
  2138. {
  2139. swap(((freelist_idx_t *)page->freelist)[a],
  2140. ((freelist_idx_t *)page->freelist)[b]);
  2141. }
  2142. /*
  2143. * Shuffle the freelist initialization state based on pre-computed lists.
  2144. * return true if the list was successfully shuffled, false otherwise.
  2145. */
  2146. static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
  2147. {
  2148. unsigned int objfreelist = 0, i, rand, count = cachep->num;
  2149. union freelist_init_state state;
  2150. bool precomputed;
  2151. if (count < 2)
  2152. return false;
  2153. precomputed = freelist_state_initialize(&state, cachep, count);
  2154. /* Take a random entry as the objfreelist */
  2155. if (OBJFREELIST_SLAB(cachep)) {
  2156. if (!precomputed)
  2157. objfreelist = count - 1;
  2158. else
  2159. objfreelist = next_random_slot(&state);
  2160. page->freelist = index_to_obj(cachep, page, objfreelist) +
  2161. obj_offset(cachep);
  2162. count--;
  2163. }
  2164. /*
  2165. * On early boot, generate the list dynamically.
  2166. * Later use a pre-computed list for speed.
  2167. */
  2168. if (!precomputed) {
  2169. for (i = 0; i < count; i++)
  2170. set_free_obj(page, i, i);
  2171. /* Fisher-Yates shuffle */
  2172. for (i = count - 1; i > 0; i--) {
  2173. rand = prandom_u32_state(&state.rnd_state);
  2174. rand %= (i + 1);
  2175. swap_free_obj(page, i, rand);
  2176. }
  2177. } else {
  2178. for (i = 0; i < count; i++)
  2179. set_free_obj(page, i, next_random_slot(&state));
  2180. }
  2181. if (OBJFREELIST_SLAB(cachep))
  2182. set_free_obj(page, cachep->num - 1, objfreelist);
  2183. return true;
  2184. }
  2185. #else
  2186. static inline bool shuffle_freelist(struct kmem_cache *cachep,
  2187. struct page *page)
  2188. {
  2189. return false;
  2190. }
  2191. #endif /* CONFIG_SLAB_FREELIST_RANDOM */
  2192. static void cache_init_objs(struct kmem_cache *cachep,
  2193. struct page *page)
  2194. {
  2195. int i;
  2196. void *objp;
  2197. bool shuffled;
  2198. cache_init_objs_debug(cachep, page);
  2199. /* Try to randomize the freelist if enabled */
  2200. shuffled = shuffle_freelist(cachep, page);
  2201. if (!shuffled && OBJFREELIST_SLAB(cachep)) {
  2202. page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
  2203. obj_offset(cachep);
  2204. }
  2205. for (i = 0; i < cachep->num; i++) {
  2206. objp = index_to_obj(cachep, page, i);
  2207. kasan_init_slab_obj(cachep, objp);
  2208. /* constructor could break poison info */
  2209. if (DEBUG == 0 && cachep->ctor) {
  2210. kasan_unpoison_object_data(cachep, objp);
  2211. cachep->ctor(objp);
  2212. kasan_poison_object_data(cachep, objp);
  2213. }
  2214. if (!shuffled)
  2215. set_free_obj(page, i, i);
  2216. }
  2217. }
  2218. static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
  2219. {
  2220. void *objp;
  2221. objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
  2222. page->active++;
  2223. #if DEBUG
  2224. if (cachep->flags & SLAB_STORE_USER)
  2225. set_store_user_dirty(cachep);
  2226. #endif
  2227. return objp;
  2228. }
  2229. static void slab_put_obj(struct kmem_cache *cachep,
  2230. struct page *page, void *objp)
  2231. {
  2232. unsigned int objnr = obj_to_index(cachep, page, objp);
  2233. #if DEBUG
  2234. unsigned int i;
  2235. /* Verify double free bug */
  2236. for (i = page->active; i < cachep->num; i++) {
  2237. if (get_free_obj(page, i) == objnr) {
  2238. pr_err("slab: double free detected in cache '%s', objp %px\n",
  2239. cachep->name, objp);
  2240. BUG();
  2241. }
  2242. }
  2243. #endif
  2244. page->active--;
  2245. if (!page->freelist)
  2246. page->freelist = objp + obj_offset(cachep);
  2247. set_free_obj(page, page->active, objnr);
  2248. }
  2249. /*
  2250. * Map pages beginning at addr to the given cache and slab. This is required
  2251. * for the slab allocator to be able to lookup the cache and slab of a
  2252. * virtual address for kfree, ksize, and slab debugging.
  2253. */
  2254. static void slab_map_pages(struct kmem_cache *cache, struct page *page,
  2255. void *freelist)
  2256. {
  2257. page->slab_cache = cache;
  2258. page->freelist = freelist;
  2259. }
  2260. /*
  2261. * Grow (by 1) the number of slabs within a cache. This is called by
  2262. * kmem_cache_alloc() when there are no active objs left in a cache.
  2263. */
  2264. static struct page *cache_grow_begin(struct kmem_cache *cachep,
  2265. gfp_t flags, int nodeid)
  2266. {
  2267. void *freelist;
  2268. size_t offset;
  2269. gfp_t local_flags;
  2270. int page_node;
  2271. struct kmem_cache_node *n;
  2272. struct page *page;
  2273. /*
  2274. * Be lazy and only check for valid flags here, keeping it out of the
  2275. * critical path in kmem_cache_alloc().
  2276. */
  2277. if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
  2278. gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
  2279. flags &= ~GFP_SLAB_BUG_MASK;
  2280. pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
  2281. invalid_mask, &invalid_mask, flags, &flags);
  2282. dump_stack();
  2283. }
  2284. WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
  2285. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2286. check_irq_off();
  2287. if (gfpflags_allow_blocking(local_flags))
  2288. local_irq_enable();
  2289. /*
  2290. * Get mem for the objs. Attempt to allocate a physical page from
  2291. * 'nodeid'.
  2292. */
  2293. page = kmem_getpages(cachep, local_flags, nodeid);
  2294. if (!page)
  2295. goto failed;
  2296. page_node = page_to_nid(page);
  2297. n = get_node(cachep, page_node);
  2298. /* Get colour for the slab, and cal the next value. */
  2299. n->colour_next++;
  2300. if (n->colour_next >= cachep->colour)
  2301. n->colour_next = 0;
  2302. offset = n->colour_next;
  2303. if (offset >= cachep->colour)
  2304. offset = 0;
  2305. offset *= cachep->colour_off;
  2306. /* Get slab management. */
  2307. freelist = alloc_slabmgmt(cachep, page, offset,
  2308. local_flags & ~GFP_CONSTRAINT_MASK, page_node);
  2309. if (OFF_SLAB(cachep) && !freelist)
  2310. goto opps1;
  2311. slab_map_pages(cachep, page, freelist);
  2312. kasan_poison_slab(page);
  2313. cache_init_objs(cachep, page);
  2314. if (gfpflags_allow_blocking(local_flags))
  2315. local_irq_disable();
  2316. return page;
  2317. opps1:
  2318. kmem_freepages(cachep, page);
  2319. failed:
  2320. if (gfpflags_allow_blocking(local_flags))
  2321. local_irq_disable();
  2322. return NULL;
  2323. }
  2324. static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
  2325. {
  2326. struct kmem_cache_node *n;
  2327. void *list = NULL;
  2328. check_irq_off();
  2329. if (!page)
  2330. return;
  2331. INIT_LIST_HEAD(&page->lru);
  2332. n = get_node(cachep, page_to_nid(page));
  2333. spin_lock(&n->list_lock);
  2334. n->total_slabs++;
  2335. if (!page->active) {
  2336. list_add_tail(&page->lru, &(n->slabs_free));
  2337. n->free_slabs++;
  2338. } else
  2339. fixup_slab_list(cachep, n, page, &list);
  2340. STATS_INC_GROWN(cachep);
  2341. n->free_objects += cachep->num - page->active;
  2342. spin_unlock(&n->list_lock);
  2343. fixup_objfreelist_debug(cachep, &list);
  2344. }
  2345. #if DEBUG
  2346. /*
  2347. * Perform extra freeing checks:
  2348. * - detect bad pointers.
  2349. * - POISON/RED_ZONE checking
  2350. */
  2351. static void kfree_debugcheck(const void *objp)
  2352. {
  2353. if (!virt_addr_valid(objp)) {
  2354. pr_err("kfree_debugcheck: out of range ptr %lxh\n",
  2355. (unsigned long)objp);
  2356. BUG();
  2357. }
  2358. }
  2359. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2360. {
  2361. unsigned long long redzone1, redzone2;
  2362. redzone1 = *dbg_redzone1(cache, obj);
  2363. redzone2 = *dbg_redzone2(cache, obj);
  2364. /*
  2365. * Redzone is ok.
  2366. */
  2367. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2368. return;
  2369. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2370. slab_error(cache, "double free detected");
  2371. else
  2372. slab_error(cache, "memory outside object was overwritten");
  2373. pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2374. obj, redzone1, redzone2);
  2375. }
  2376. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2377. unsigned long caller)
  2378. {
  2379. unsigned int objnr;
  2380. struct page *page;
  2381. BUG_ON(virt_to_cache(objp) != cachep);
  2382. objp -= obj_offset(cachep);
  2383. kfree_debugcheck(objp);
  2384. page = virt_to_head_page(objp);
  2385. if (cachep->flags & SLAB_RED_ZONE) {
  2386. verify_redzone_free(cachep, objp);
  2387. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2388. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2389. }
  2390. if (cachep->flags & SLAB_STORE_USER) {
  2391. set_store_user_dirty(cachep);
  2392. *dbg_userword(cachep, objp) = (void *)caller;
  2393. }
  2394. objnr = obj_to_index(cachep, page, objp);
  2395. BUG_ON(objnr >= cachep->num);
  2396. BUG_ON(objp != index_to_obj(cachep, page, objnr));
  2397. if (cachep->flags & SLAB_POISON) {
  2398. poison_obj(cachep, objp, POISON_FREE);
  2399. slab_kernel_map(cachep, objp, 0, caller);
  2400. }
  2401. return objp;
  2402. }
  2403. #else
  2404. #define kfree_debugcheck(x) do { } while(0)
  2405. #define cache_free_debugcheck(x,objp,z) (objp)
  2406. #endif
  2407. static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
  2408. void **list)
  2409. {
  2410. #if DEBUG
  2411. void *next = *list;
  2412. void *objp;
  2413. while (next) {
  2414. objp = next - obj_offset(cachep);
  2415. next = *(void **)next;
  2416. poison_obj(cachep, objp, POISON_FREE);
  2417. }
  2418. #endif
  2419. }
  2420. static inline void fixup_slab_list(struct kmem_cache *cachep,
  2421. struct kmem_cache_node *n, struct page *page,
  2422. void **list)
  2423. {
  2424. /* move slabp to correct slabp list: */
  2425. list_del(&page->lru);
  2426. if (page->active == cachep->num) {
  2427. list_add(&page->lru, &n->slabs_full);
  2428. if (OBJFREELIST_SLAB(cachep)) {
  2429. #if DEBUG
  2430. /* Poisoning will be done without holding the lock */
  2431. if (cachep->flags & SLAB_POISON) {
  2432. void **objp = page->freelist;
  2433. *objp = *list;
  2434. *list = objp;
  2435. }
  2436. #endif
  2437. page->freelist = NULL;
  2438. }
  2439. } else
  2440. list_add(&page->lru, &n->slabs_partial);
  2441. }
  2442. /* Try to find non-pfmemalloc slab if needed */
  2443. static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
  2444. struct page *page, bool pfmemalloc)
  2445. {
  2446. if (!page)
  2447. return NULL;
  2448. if (pfmemalloc)
  2449. return page;
  2450. if (!PageSlabPfmemalloc(page))
  2451. return page;
  2452. /* No need to keep pfmemalloc slab if we have enough free objects */
  2453. if (n->free_objects > n->free_limit) {
  2454. ClearPageSlabPfmemalloc(page);
  2455. return page;
  2456. }
  2457. /* Move pfmemalloc slab to the end of list to speed up next search */
  2458. list_del(&page->lru);
  2459. if (!page->active) {
  2460. list_add_tail(&page->lru, &n->slabs_free);
  2461. n->free_slabs++;
  2462. } else
  2463. list_add_tail(&page->lru, &n->slabs_partial);
  2464. list_for_each_entry(page, &n->slabs_partial, lru) {
  2465. if (!PageSlabPfmemalloc(page))
  2466. return page;
  2467. }
  2468. n->free_touched = 1;
  2469. list_for_each_entry(page, &n->slabs_free, lru) {
  2470. if (!PageSlabPfmemalloc(page)) {
  2471. n->free_slabs--;
  2472. return page;
  2473. }
  2474. }
  2475. return NULL;
  2476. }
  2477. static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
  2478. {
  2479. struct page *page;
  2480. assert_spin_locked(&n->list_lock);
  2481. page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
  2482. if (!page) {
  2483. n->free_touched = 1;
  2484. page = list_first_entry_or_null(&n->slabs_free, struct page,
  2485. lru);
  2486. if (page)
  2487. n->free_slabs--;
  2488. }
  2489. if (sk_memalloc_socks())
  2490. page = get_valid_first_slab(n, page, pfmemalloc);
  2491. return page;
  2492. }
  2493. static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
  2494. struct kmem_cache_node *n, gfp_t flags)
  2495. {
  2496. struct page *page;
  2497. void *obj;
  2498. void *list = NULL;
  2499. if (!gfp_pfmemalloc_allowed(flags))
  2500. return NULL;
  2501. spin_lock(&n->list_lock);
  2502. page = get_first_slab(n, true);
  2503. if (!page) {
  2504. spin_unlock(&n->list_lock);
  2505. return NULL;
  2506. }
  2507. obj = slab_get_obj(cachep, page);
  2508. n->free_objects--;
  2509. fixup_slab_list(cachep, n, page, &list);
  2510. spin_unlock(&n->list_lock);
  2511. fixup_objfreelist_debug(cachep, &list);
  2512. return obj;
  2513. }
  2514. /*
  2515. * Slab list should be fixed up by fixup_slab_list() for existing slab
  2516. * or cache_grow_end() for new slab
  2517. */
  2518. static __always_inline int alloc_block(struct kmem_cache *cachep,
  2519. struct array_cache *ac, struct page *page, int batchcount)
  2520. {
  2521. /*
  2522. * There must be at least one object available for
  2523. * allocation.
  2524. */
  2525. BUG_ON(page->active >= cachep->num);
  2526. while (page->active < cachep->num && batchcount--) {
  2527. STATS_INC_ALLOCED(cachep);
  2528. STATS_INC_ACTIVE(cachep);
  2529. STATS_SET_HIGH(cachep);
  2530. ac->entry[ac->avail++] = slab_get_obj(cachep, page);
  2531. }
  2532. return batchcount;
  2533. }
  2534. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2535. {
  2536. int batchcount;
  2537. struct kmem_cache_node *n;
  2538. struct array_cache *ac, *shared;
  2539. int node;
  2540. void *list = NULL;
  2541. struct page *page;
  2542. check_irq_off();
  2543. node = numa_mem_id();
  2544. ac = cpu_cache_get(cachep);
  2545. batchcount = ac->batchcount;
  2546. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2547. /*
  2548. * If there was little recent activity on this cache, then
  2549. * perform only a partial refill. Otherwise we could generate
  2550. * refill bouncing.
  2551. */
  2552. batchcount = BATCHREFILL_LIMIT;
  2553. }
  2554. n = get_node(cachep, node);
  2555. BUG_ON(ac->avail > 0 || !n);
  2556. shared = READ_ONCE(n->shared);
  2557. if (!n->free_objects && (!shared || !shared->avail))
  2558. goto direct_grow;
  2559. spin_lock(&n->list_lock);
  2560. shared = READ_ONCE(n->shared);
  2561. /* See if we can refill from the shared array */
  2562. if (shared && transfer_objects(ac, shared, batchcount)) {
  2563. shared->touched = 1;
  2564. goto alloc_done;
  2565. }
  2566. while (batchcount > 0) {
  2567. /* Get slab alloc is to come from. */
  2568. page = get_first_slab(n, false);
  2569. if (!page)
  2570. goto must_grow;
  2571. check_spinlock_acquired(cachep);
  2572. batchcount = alloc_block(cachep, ac, page, batchcount);
  2573. fixup_slab_list(cachep, n, page, &list);
  2574. }
  2575. must_grow:
  2576. n->free_objects -= ac->avail;
  2577. alloc_done:
  2578. spin_unlock(&n->list_lock);
  2579. fixup_objfreelist_debug(cachep, &list);
  2580. direct_grow:
  2581. if (unlikely(!ac->avail)) {
  2582. /* Check if we can use obj in pfmemalloc slab */
  2583. if (sk_memalloc_socks()) {
  2584. void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
  2585. if (obj)
  2586. return obj;
  2587. }
  2588. page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
  2589. /*
  2590. * cache_grow_begin() can reenable interrupts,
  2591. * then ac could change.
  2592. */
  2593. ac = cpu_cache_get(cachep);
  2594. if (!ac->avail && page)
  2595. alloc_block(cachep, ac, page, batchcount);
  2596. cache_grow_end(cachep, page);
  2597. if (!ac->avail)
  2598. return NULL;
  2599. }
  2600. ac->touched = 1;
  2601. return ac->entry[--ac->avail];
  2602. }
  2603. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2604. gfp_t flags)
  2605. {
  2606. might_sleep_if(gfpflags_allow_blocking(flags));
  2607. }
  2608. #if DEBUG
  2609. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2610. gfp_t flags, void *objp, unsigned long caller)
  2611. {
  2612. WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
  2613. if (!objp)
  2614. return objp;
  2615. if (cachep->flags & SLAB_POISON) {
  2616. check_poison_obj(cachep, objp);
  2617. slab_kernel_map(cachep, objp, 1, 0);
  2618. poison_obj(cachep, objp, POISON_INUSE);
  2619. }
  2620. if (cachep->flags & SLAB_STORE_USER)
  2621. *dbg_userword(cachep, objp) = (void *)caller;
  2622. if (cachep->flags & SLAB_RED_ZONE) {
  2623. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2624. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2625. slab_error(cachep, "double free, or memory outside object was overwritten");
  2626. pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2627. objp, *dbg_redzone1(cachep, objp),
  2628. *dbg_redzone2(cachep, objp));
  2629. }
  2630. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2631. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2632. }
  2633. objp += obj_offset(cachep);
  2634. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2635. cachep->ctor(objp);
  2636. if (ARCH_SLAB_MINALIGN &&
  2637. ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
  2638. pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2639. objp, (int)ARCH_SLAB_MINALIGN);
  2640. }
  2641. return objp;
  2642. }
  2643. #else
  2644. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2645. #endif
  2646. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2647. {
  2648. void *objp;
  2649. struct array_cache *ac;
  2650. check_irq_off();
  2651. ac = cpu_cache_get(cachep);
  2652. if (likely(ac->avail)) {
  2653. ac->touched = 1;
  2654. objp = ac->entry[--ac->avail];
  2655. STATS_INC_ALLOCHIT(cachep);
  2656. goto out;
  2657. }
  2658. STATS_INC_ALLOCMISS(cachep);
  2659. objp = cache_alloc_refill(cachep, flags);
  2660. /*
  2661. * the 'ac' may be updated by cache_alloc_refill(),
  2662. * and kmemleak_erase() requires its correct value.
  2663. */
  2664. ac = cpu_cache_get(cachep);
  2665. out:
  2666. /*
  2667. * To avoid a false negative, if an object that is in one of the
  2668. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2669. * treat the array pointers as a reference to the object.
  2670. */
  2671. if (objp)
  2672. kmemleak_erase(&ac->entry[ac->avail]);
  2673. return objp;
  2674. }
  2675. #ifdef CONFIG_NUMA
  2676. /*
  2677. * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
  2678. *
  2679. * If we are in_interrupt, then process context, including cpusets and
  2680. * mempolicy, may not apply and should not be used for allocation policy.
  2681. */
  2682. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2683. {
  2684. int nid_alloc, nid_here;
  2685. if (in_interrupt() || (flags & __GFP_THISNODE))
  2686. return NULL;
  2687. nid_alloc = nid_here = numa_mem_id();
  2688. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2689. nid_alloc = cpuset_slab_spread_node();
  2690. else if (current->mempolicy)
  2691. nid_alloc = mempolicy_slab_node();
  2692. if (nid_alloc != nid_here)
  2693. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2694. return NULL;
  2695. }
  2696. /*
  2697. * Fallback function if there was no memory available and no objects on a
  2698. * certain node and fall back is permitted. First we scan all the
  2699. * available node for available objects. If that fails then we
  2700. * perform an allocation without specifying a node. This allows the page
  2701. * allocator to do its reclaim / fallback magic. We then insert the
  2702. * slab into the proper nodelist and then allocate from it.
  2703. */
  2704. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2705. {
  2706. struct zonelist *zonelist;
  2707. struct zoneref *z;
  2708. struct zone *zone;
  2709. enum zone_type high_zoneidx = gfp_zone(flags);
  2710. void *obj = NULL;
  2711. struct page *page;
  2712. int nid;
  2713. unsigned int cpuset_mems_cookie;
  2714. if (flags & __GFP_THISNODE)
  2715. return NULL;
  2716. retry_cpuset:
  2717. cpuset_mems_cookie = read_mems_allowed_begin();
  2718. zonelist = node_zonelist(mempolicy_slab_node(), flags);
  2719. retry:
  2720. /*
  2721. * Look through allowed nodes for objects available
  2722. * from existing per node queues.
  2723. */
  2724. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2725. nid = zone_to_nid(zone);
  2726. if (cpuset_zone_allowed(zone, flags) &&
  2727. get_node(cache, nid) &&
  2728. get_node(cache, nid)->free_objects) {
  2729. obj = ____cache_alloc_node(cache,
  2730. gfp_exact_node(flags), nid);
  2731. if (obj)
  2732. break;
  2733. }
  2734. }
  2735. if (!obj) {
  2736. /*
  2737. * This allocation will be performed within the constraints
  2738. * of the current cpuset / memory policy requirements.
  2739. * We may trigger various forms of reclaim on the allowed
  2740. * set and go into memory reserves if necessary.
  2741. */
  2742. page = cache_grow_begin(cache, flags, numa_mem_id());
  2743. cache_grow_end(cache, page);
  2744. if (page) {
  2745. nid = page_to_nid(page);
  2746. obj = ____cache_alloc_node(cache,
  2747. gfp_exact_node(flags), nid);
  2748. /*
  2749. * Another processor may allocate the objects in
  2750. * the slab since we are not holding any locks.
  2751. */
  2752. if (!obj)
  2753. goto retry;
  2754. }
  2755. }
  2756. if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
  2757. goto retry_cpuset;
  2758. return obj;
  2759. }
  2760. /*
  2761. * A interface to enable slab creation on nodeid
  2762. */
  2763. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2764. int nodeid)
  2765. {
  2766. struct page *page;
  2767. struct kmem_cache_node *n;
  2768. void *obj = NULL;
  2769. void *list = NULL;
  2770. VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
  2771. n = get_node(cachep, nodeid);
  2772. BUG_ON(!n);
  2773. check_irq_off();
  2774. spin_lock(&n->list_lock);
  2775. page = get_first_slab(n, false);
  2776. if (!page)
  2777. goto must_grow;
  2778. check_spinlock_acquired_node(cachep, nodeid);
  2779. STATS_INC_NODEALLOCS(cachep);
  2780. STATS_INC_ACTIVE(cachep);
  2781. STATS_SET_HIGH(cachep);
  2782. BUG_ON(page->active == cachep->num);
  2783. obj = slab_get_obj(cachep, page);
  2784. n->free_objects--;
  2785. fixup_slab_list(cachep, n, page, &list);
  2786. spin_unlock(&n->list_lock);
  2787. fixup_objfreelist_debug(cachep, &list);
  2788. return obj;
  2789. must_grow:
  2790. spin_unlock(&n->list_lock);
  2791. page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
  2792. if (page) {
  2793. /* This slab isn't counted yet so don't update free_objects */
  2794. obj = slab_get_obj(cachep, page);
  2795. }
  2796. cache_grow_end(cachep, page);
  2797. return obj ? obj : fallback_alloc(cachep, flags);
  2798. }
  2799. static __always_inline void *
  2800. slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2801. unsigned long caller)
  2802. {
  2803. unsigned long save_flags;
  2804. void *ptr;
  2805. int slab_node = numa_mem_id();
  2806. flags &= gfp_allowed_mask;
  2807. cachep = slab_pre_alloc_hook(cachep, flags);
  2808. if (unlikely(!cachep))
  2809. return NULL;
  2810. cache_alloc_debugcheck_before(cachep, flags);
  2811. local_irq_save(save_flags);
  2812. if (nodeid == NUMA_NO_NODE)
  2813. nodeid = slab_node;
  2814. if (unlikely(!get_node(cachep, nodeid))) {
  2815. /* Node not bootstrapped yet */
  2816. ptr = fallback_alloc(cachep, flags);
  2817. goto out;
  2818. }
  2819. if (nodeid == slab_node) {
  2820. /*
  2821. * Use the locally cached objects if possible.
  2822. * However ____cache_alloc does not allow fallback
  2823. * to other nodes. It may fail while we still have
  2824. * objects on other nodes available.
  2825. */
  2826. ptr = ____cache_alloc(cachep, flags);
  2827. if (ptr)
  2828. goto out;
  2829. }
  2830. /* ___cache_alloc_node can fall back to other nodes */
  2831. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  2832. out:
  2833. local_irq_restore(save_flags);
  2834. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  2835. if (unlikely(flags & __GFP_ZERO) && ptr)
  2836. memset(ptr, 0, cachep->object_size);
  2837. slab_post_alloc_hook(cachep, flags, 1, &ptr);
  2838. return ptr;
  2839. }
  2840. static __always_inline void *
  2841. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  2842. {
  2843. void *objp;
  2844. if (current->mempolicy || cpuset_do_slab_mem_spread()) {
  2845. objp = alternate_node_alloc(cache, flags);
  2846. if (objp)
  2847. goto out;
  2848. }
  2849. objp = ____cache_alloc(cache, flags);
  2850. /*
  2851. * We may just have run out of memory on the local node.
  2852. * ____cache_alloc_node() knows how to locate memory on other nodes
  2853. */
  2854. if (!objp)
  2855. objp = ____cache_alloc_node(cache, flags, numa_mem_id());
  2856. out:
  2857. return objp;
  2858. }
  2859. #else
  2860. static __always_inline void *
  2861. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2862. {
  2863. return ____cache_alloc(cachep, flags);
  2864. }
  2865. #endif /* CONFIG_NUMA */
  2866. static __always_inline void *
  2867. slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
  2868. {
  2869. unsigned long save_flags;
  2870. void *objp;
  2871. flags &= gfp_allowed_mask;
  2872. cachep = slab_pre_alloc_hook(cachep, flags);
  2873. if (unlikely(!cachep))
  2874. return NULL;
  2875. cache_alloc_debugcheck_before(cachep, flags);
  2876. local_irq_save(save_flags);
  2877. objp = __do_cache_alloc(cachep, flags);
  2878. local_irq_restore(save_flags);
  2879. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  2880. prefetchw(objp);
  2881. if (unlikely(flags & __GFP_ZERO) && objp)
  2882. memset(objp, 0, cachep->object_size);
  2883. slab_post_alloc_hook(cachep, flags, 1, &objp);
  2884. return objp;
  2885. }
  2886. /*
  2887. * Caller needs to acquire correct kmem_cache_node's list_lock
  2888. * @list: List of detached free slabs should be freed by caller
  2889. */
  2890. static void free_block(struct kmem_cache *cachep, void **objpp,
  2891. int nr_objects, int node, struct list_head *list)
  2892. {
  2893. int i;
  2894. struct kmem_cache_node *n = get_node(cachep, node);
  2895. struct page *page;
  2896. n->free_objects += nr_objects;
  2897. for (i = 0; i < nr_objects; i++) {
  2898. void *objp;
  2899. struct page *page;
  2900. objp = objpp[i];
  2901. page = virt_to_head_page(objp);
  2902. list_del(&page->lru);
  2903. check_spinlock_acquired_node(cachep, node);
  2904. slab_put_obj(cachep, page, objp);
  2905. STATS_DEC_ACTIVE(cachep);
  2906. /* fixup slab chains */
  2907. if (page->active == 0) {
  2908. list_add(&page->lru, &n->slabs_free);
  2909. n->free_slabs++;
  2910. } else {
  2911. /* Unconditionally move a slab to the end of the
  2912. * partial list on free - maximum time for the
  2913. * other objects to be freed, too.
  2914. */
  2915. list_add_tail(&page->lru, &n->slabs_partial);
  2916. }
  2917. }
  2918. while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
  2919. n->free_objects -= cachep->num;
  2920. page = list_last_entry(&n->slabs_free, struct page, lru);
  2921. list_move(&page->lru, list);
  2922. n->free_slabs--;
  2923. n->total_slabs--;
  2924. }
  2925. }
  2926. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2927. {
  2928. int batchcount;
  2929. struct kmem_cache_node *n;
  2930. int node = numa_mem_id();
  2931. LIST_HEAD(list);
  2932. batchcount = ac->batchcount;
  2933. check_irq_off();
  2934. n = get_node(cachep, node);
  2935. spin_lock(&n->list_lock);
  2936. if (n->shared) {
  2937. struct array_cache *shared_array = n->shared;
  2938. int max = shared_array->limit - shared_array->avail;
  2939. if (max) {
  2940. if (batchcount > max)
  2941. batchcount = max;
  2942. memcpy(&(shared_array->entry[shared_array->avail]),
  2943. ac->entry, sizeof(void *) * batchcount);
  2944. shared_array->avail += batchcount;
  2945. goto free_done;
  2946. }
  2947. }
  2948. free_block(cachep, ac->entry, batchcount, node, &list);
  2949. free_done:
  2950. #if STATS
  2951. {
  2952. int i = 0;
  2953. struct page *page;
  2954. list_for_each_entry(page, &n->slabs_free, lru) {
  2955. BUG_ON(page->active);
  2956. i++;
  2957. }
  2958. STATS_SET_FREEABLE(cachep, i);
  2959. }
  2960. #endif
  2961. spin_unlock(&n->list_lock);
  2962. slabs_destroy(cachep, &list);
  2963. ac->avail -= batchcount;
  2964. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2965. }
  2966. /*
  2967. * Release an obj back to its cache. If the obj has a constructed state, it must
  2968. * be in this state _before_ it is released. Called with disabled ints.
  2969. */
  2970. static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
  2971. unsigned long caller)
  2972. {
  2973. /* Put the object into the quarantine, don't touch it for now. */
  2974. if (kasan_slab_free(cachep, objp, _RET_IP_))
  2975. return;
  2976. ___cache_free(cachep, objp, caller);
  2977. }
  2978. void ___cache_free(struct kmem_cache *cachep, void *objp,
  2979. unsigned long caller)
  2980. {
  2981. struct array_cache *ac = cpu_cache_get(cachep);
  2982. check_irq_off();
  2983. kmemleak_free_recursive(objp, cachep->flags);
  2984. objp = cache_free_debugcheck(cachep, objp, caller);
  2985. /*
  2986. * Skip calling cache_free_alien() when the platform is not numa.
  2987. * This will avoid cache misses that happen while accessing slabp (which
  2988. * is per page memory reference) to get nodeid. Instead use a global
  2989. * variable to skip the call, which is mostly likely to be present in
  2990. * the cache.
  2991. */
  2992. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  2993. return;
  2994. if (ac->avail < ac->limit) {
  2995. STATS_INC_FREEHIT(cachep);
  2996. } else {
  2997. STATS_INC_FREEMISS(cachep);
  2998. cache_flusharray(cachep, ac);
  2999. }
  3000. if (sk_memalloc_socks()) {
  3001. struct page *page = virt_to_head_page(objp);
  3002. if (unlikely(PageSlabPfmemalloc(page))) {
  3003. cache_free_pfmemalloc(cachep, page, objp);
  3004. return;
  3005. }
  3006. }
  3007. ac->entry[ac->avail++] = objp;
  3008. }
  3009. /**
  3010. * kmem_cache_alloc - Allocate an object
  3011. * @cachep: The cache to allocate from.
  3012. * @flags: See kmalloc().
  3013. *
  3014. * Allocate an object from this cache. The flags are only relevant
  3015. * if the cache has no available objects.
  3016. */
  3017. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3018. {
  3019. void *ret = slab_alloc(cachep, flags, _RET_IP_);
  3020. kasan_slab_alloc(cachep, ret, flags);
  3021. trace_kmem_cache_alloc(_RET_IP_, ret,
  3022. cachep->object_size, cachep->size, flags);
  3023. return ret;
  3024. }
  3025. EXPORT_SYMBOL(kmem_cache_alloc);
  3026. static __always_inline void
  3027. cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
  3028. size_t size, void **p, unsigned long caller)
  3029. {
  3030. size_t i;
  3031. for (i = 0; i < size; i++)
  3032. p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
  3033. }
  3034. int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
  3035. void **p)
  3036. {
  3037. size_t i;
  3038. s = slab_pre_alloc_hook(s, flags);
  3039. if (!s)
  3040. return 0;
  3041. cache_alloc_debugcheck_before(s, flags);
  3042. local_irq_disable();
  3043. for (i = 0; i < size; i++) {
  3044. void *objp = __do_cache_alloc(s, flags);
  3045. if (unlikely(!objp))
  3046. goto error;
  3047. p[i] = objp;
  3048. }
  3049. local_irq_enable();
  3050. cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
  3051. /* Clear memory outside IRQ disabled section */
  3052. if (unlikely(flags & __GFP_ZERO))
  3053. for (i = 0; i < size; i++)
  3054. memset(p[i], 0, s->object_size);
  3055. slab_post_alloc_hook(s, flags, size, p);
  3056. /* FIXME: Trace call missing. Christoph would like a bulk variant */
  3057. return size;
  3058. error:
  3059. local_irq_enable();
  3060. cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
  3061. slab_post_alloc_hook(s, flags, i, p);
  3062. __kmem_cache_free_bulk(s, i, p);
  3063. return 0;
  3064. }
  3065. EXPORT_SYMBOL(kmem_cache_alloc_bulk);
  3066. #ifdef CONFIG_TRACING
  3067. void *
  3068. kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
  3069. {
  3070. void *ret;
  3071. ret = slab_alloc(cachep, flags, _RET_IP_);
  3072. kasan_kmalloc(cachep, ret, size, flags);
  3073. trace_kmalloc(_RET_IP_, ret,
  3074. size, cachep->size, flags);
  3075. return ret;
  3076. }
  3077. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  3078. #endif
  3079. #ifdef CONFIG_NUMA
  3080. /**
  3081. * kmem_cache_alloc_node - Allocate an object on the specified node
  3082. * @cachep: The cache to allocate from.
  3083. * @flags: See kmalloc().
  3084. * @nodeid: node number of the target node.
  3085. *
  3086. * Identical to kmem_cache_alloc but it will allocate memory on the given
  3087. * node, which can improve the performance for cpu bound structures.
  3088. *
  3089. * Fallback to other node is possible if __GFP_THISNODE is not set.
  3090. */
  3091. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3092. {
  3093. void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
  3094. kasan_slab_alloc(cachep, ret, flags);
  3095. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3096. cachep->object_size, cachep->size,
  3097. flags, nodeid);
  3098. return ret;
  3099. }
  3100. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3101. #ifdef CONFIG_TRACING
  3102. void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
  3103. gfp_t flags,
  3104. int nodeid,
  3105. size_t size)
  3106. {
  3107. void *ret;
  3108. ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
  3109. kasan_kmalloc(cachep, ret, size, flags);
  3110. trace_kmalloc_node(_RET_IP_, ret,
  3111. size, cachep->size,
  3112. flags, nodeid);
  3113. return ret;
  3114. }
  3115. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  3116. #endif
  3117. static __always_inline void *
  3118. __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
  3119. {
  3120. struct kmem_cache *cachep;
  3121. void *ret;
  3122. cachep = kmalloc_slab(size, flags);
  3123. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3124. return cachep;
  3125. ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
  3126. kasan_kmalloc(cachep, ret, size, flags);
  3127. return ret;
  3128. }
  3129. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3130. {
  3131. return __do_kmalloc_node(size, flags, node, _RET_IP_);
  3132. }
  3133. EXPORT_SYMBOL(__kmalloc_node);
  3134. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3135. int node, unsigned long caller)
  3136. {
  3137. return __do_kmalloc_node(size, flags, node, caller);
  3138. }
  3139. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3140. #endif /* CONFIG_NUMA */
  3141. /**
  3142. * __do_kmalloc - allocate memory
  3143. * @size: how many bytes of memory are required.
  3144. * @flags: the type of memory to allocate (see kmalloc).
  3145. * @caller: function caller for debug tracking of the caller
  3146. */
  3147. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3148. unsigned long caller)
  3149. {
  3150. struct kmem_cache *cachep;
  3151. void *ret;
  3152. cachep = kmalloc_slab(size, flags);
  3153. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3154. return cachep;
  3155. ret = slab_alloc(cachep, flags, caller);
  3156. kasan_kmalloc(cachep, ret, size, flags);
  3157. trace_kmalloc(caller, ret,
  3158. size, cachep->size, flags);
  3159. return ret;
  3160. }
  3161. void *__kmalloc(size_t size, gfp_t flags)
  3162. {
  3163. return __do_kmalloc(size, flags, _RET_IP_);
  3164. }
  3165. EXPORT_SYMBOL(__kmalloc);
  3166. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3167. {
  3168. return __do_kmalloc(size, flags, caller);
  3169. }
  3170. EXPORT_SYMBOL(__kmalloc_track_caller);
  3171. /**
  3172. * kmem_cache_free - Deallocate an object
  3173. * @cachep: The cache the allocation was from.
  3174. * @objp: The previously allocated object.
  3175. *
  3176. * Free an object which was previously allocated from this
  3177. * cache.
  3178. */
  3179. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3180. {
  3181. unsigned long flags;
  3182. cachep = cache_from_obj(cachep, objp);
  3183. if (!cachep)
  3184. return;
  3185. local_irq_save(flags);
  3186. debug_check_no_locks_freed(objp, cachep->object_size);
  3187. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3188. debug_check_no_obj_freed(objp, cachep->object_size);
  3189. __cache_free(cachep, objp, _RET_IP_);
  3190. local_irq_restore(flags);
  3191. trace_kmem_cache_free(_RET_IP_, objp);
  3192. }
  3193. EXPORT_SYMBOL(kmem_cache_free);
  3194. void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
  3195. {
  3196. struct kmem_cache *s;
  3197. size_t i;
  3198. local_irq_disable();
  3199. for (i = 0; i < size; i++) {
  3200. void *objp = p[i];
  3201. if (!orig_s) /* called via kfree_bulk */
  3202. s = virt_to_cache(objp);
  3203. else
  3204. s = cache_from_obj(orig_s, objp);
  3205. debug_check_no_locks_freed(objp, s->object_size);
  3206. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  3207. debug_check_no_obj_freed(objp, s->object_size);
  3208. __cache_free(s, objp, _RET_IP_);
  3209. }
  3210. local_irq_enable();
  3211. /* FIXME: add tracing */
  3212. }
  3213. EXPORT_SYMBOL(kmem_cache_free_bulk);
  3214. /**
  3215. * kfree - free previously allocated memory
  3216. * @objp: pointer returned by kmalloc.
  3217. *
  3218. * If @objp is NULL, no operation is performed.
  3219. *
  3220. * Don't free memory not originally allocated by kmalloc()
  3221. * or you will run into trouble.
  3222. */
  3223. void kfree(const void *objp)
  3224. {
  3225. struct kmem_cache *c;
  3226. unsigned long flags;
  3227. trace_kfree(_RET_IP_, objp);
  3228. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3229. return;
  3230. local_irq_save(flags);
  3231. kfree_debugcheck(objp);
  3232. c = virt_to_cache(objp);
  3233. debug_check_no_locks_freed(objp, c->object_size);
  3234. debug_check_no_obj_freed(objp, c->object_size);
  3235. __cache_free(c, (void *)objp, _RET_IP_);
  3236. local_irq_restore(flags);
  3237. }
  3238. EXPORT_SYMBOL(kfree);
  3239. /*
  3240. * This initializes kmem_cache_node or resizes various caches for all nodes.
  3241. */
  3242. static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
  3243. {
  3244. int ret;
  3245. int node;
  3246. struct kmem_cache_node *n;
  3247. for_each_online_node(node) {
  3248. ret = setup_kmem_cache_node(cachep, node, gfp, true);
  3249. if (ret)
  3250. goto fail;
  3251. }
  3252. return 0;
  3253. fail:
  3254. if (!cachep->list.next) {
  3255. /* Cache is not active yet. Roll back what we did */
  3256. node--;
  3257. while (node >= 0) {
  3258. n = get_node(cachep, node);
  3259. if (n) {
  3260. kfree(n->shared);
  3261. free_alien_cache(n->alien);
  3262. kfree(n);
  3263. cachep->node[node] = NULL;
  3264. }
  3265. node--;
  3266. }
  3267. }
  3268. return -ENOMEM;
  3269. }
  3270. /* Always called with the slab_mutex held */
  3271. static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3272. int batchcount, int shared, gfp_t gfp)
  3273. {
  3274. struct array_cache __percpu *cpu_cache, *prev;
  3275. int cpu;
  3276. cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
  3277. if (!cpu_cache)
  3278. return -ENOMEM;
  3279. prev = cachep->cpu_cache;
  3280. cachep->cpu_cache = cpu_cache;
  3281. /*
  3282. * Without a previous cpu_cache there's no need to synchronize remote
  3283. * cpus, so skip the IPIs.
  3284. */
  3285. if (prev)
  3286. kick_all_cpus_sync();
  3287. check_irq_on();
  3288. cachep->batchcount = batchcount;
  3289. cachep->limit = limit;
  3290. cachep->shared = shared;
  3291. if (!prev)
  3292. goto setup_node;
  3293. for_each_online_cpu(cpu) {
  3294. LIST_HEAD(list);
  3295. int node;
  3296. struct kmem_cache_node *n;
  3297. struct array_cache *ac = per_cpu_ptr(prev, cpu);
  3298. node = cpu_to_mem(cpu);
  3299. n = get_node(cachep, node);
  3300. spin_lock_irq(&n->list_lock);
  3301. free_block(cachep, ac->entry, ac->avail, node, &list);
  3302. spin_unlock_irq(&n->list_lock);
  3303. slabs_destroy(cachep, &list);
  3304. }
  3305. free_percpu(prev);
  3306. setup_node:
  3307. return setup_kmem_cache_nodes(cachep, gfp);
  3308. }
  3309. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3310. int batchcount, int shared, gfp_t gfp)
  3311. {
  3312. int ret;
  3313. struct kmem_cache *c;
  3314. ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
  3315. if (slab_state < FULL)
  3316. return ret;
  3317. if ((ret < 0) || !is_root_cache(cachep))
  3318. return ret;
  3319. lockdep_assert_held(&slab_mutex);
  3320. for_each_memcg_cache(c, cachep) {
  3321. /* return value determined by the root cache only */
  3322. __do_tune_cpucache(c, limit, batchcount, shared, gfp);
  3323. }
  3324. return ret;
  3325. }
  3326. /* Called with slab_mutex held always */
  3327. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3328. {
  3329. int err;
  3330. int limit = 0;
  3331. int shared = 0;
  3332. int batchcount = 0;
  3333. err = cache_random_seq_create(cachep, cachep->num, gfp);
  3334. if (err)
  3335. goto end;
  3336. if (!is_root_cache(cachep)) {
  3337. struct kmem_cache *root = memcg_root_cache(cachep);
  3338. limit = root->limit;
  3339. shared = root->shared;
  3340. batchcount = root->batchcount;
  3341. }
  3342. if (limit && shared && batchcount)
  3343. goto skip_setup;
  3344. /*
  3345. * The head array serves three purposes:
  3346. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3347. * - reduce the number of spinlock operations.
  3348. * - reduce the number of linked list operations on the slab and
  3349. * bufctl chains: array operations are cheaper.
  3350. * The numbers are guessed, we should auto-tune as described by
  3351. * Bonwick.
  3352. */
  3353. if (cachep->size > 131072)
  3354. limit = 1;
  3355. else if (cachep->size > PAGE_SIZE)
  3356. limit = 8;
  3357. else if (cachep->size > 1024)
  3358. limit = 24;
  3359. else if (cachep->size > 256)
  3360. limit = 54;
  3361. else
  3362. limit = 120;
  3363. /*
  3364. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3365. * allocation behaviour: Most allocs on one cpu, most free operations
  3366. * on another cpu. For these cases, an efficient object passing between
  3367. * cpus is necessary. This is provided by a shared array. The array
  3368. * replaces Bonwick's magazine layer.
  3369. * On uniprocessor, it's functionally equivalent (but less efficient)
  3370. * to a larger limit. Thus disabled by default.
  3371. */
  3372. shared = 0;
  3373. if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
  3374. shared = 8;
  3375. #if DEBUG
  3376. /*
  3377. * With debugging enabled, large batchcount lead to excessively long
  3378. * periods with disabled local interrupts. Limit the batchcount
  3379. */
  3380. if (limit > 32)
  3381. limit = 32;
  3382. #endif
  3383. batchcount = (limit + 1) / 2;
  3384. skip_setup:
  3385. err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
  3386. end:
  3387. if (err)
  3388. pr_err("enable_cpucache failed for %s, error %d\n",
  3389. cachep->name, -err);
  3390. return err;
  3391. }
  3392. /*
  3393. * Drain an array if it contains any elements taking the node lock only if
  3394. * necessary. Note that the node listlock also protects the array_cache
  3395. * if drain_array() is used on the shared array.
  3396. */
  3397. static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
  3398. struct array_cache *ac, int node)
  3399. {
  3400. LIST_HEAD(list);
  3401. /* ac from n->shared can be freed if we don't hold the slab_mutex. */
  3402. check_mutex_acquired();
  3403. if (!ac || !ac->avail)
  3404. return;
  3405. if (ac->touched) {
  3406. ac->touched = 0;
  3407. return;
  3408. }
  3409. spin_lock_irq(&n->list_lock);
  3410. drain_array_locked(cachep, ac, node, false, &list);
  3411. spin_unlock_irq(&n->list_lock);
  3412. slabs_destroy(cachep, &list);
  3413. }
  3414. /**
  3415. * cache_reap - Reclaim memory from caches.
  3416. * @w: work descriptor
  3417. *
  3418. * Called from workqueue/eventd every few seconds.
  3419. * Purpose:
  3420. * - clear the per-cpu caches for this CPU.
  3421. * - return freeable pages to the main free memory pool.
  3422. *
  3423. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3424. * again on the next iteration.
  3425. */
  3426. static void cache_reap(struct work_struct *w)
  3427. {
  3428. struct kmem_cache *searchp;
  3429. struct kmem_cache_node *n;
  3430. int node = numa_mem_id();
  3431. struct delayed_work *work = to_delayed_work(w);
  3432. if (!mutex_trylock(&slab_mutex))
  3433. /* Give up. Setup the next iteration. */
  3434. goto out;
  3435. list_for_each_entry(searchp, &slab_caches, list) {
  3436. check_irq_on();
  3437. /*
  3438. * We only take the node lock if absolutely necessary and we
  3439. * have established with reasonable certainty that
  3440. * we can do some work if the lock was obtained.
  3441. */
  3442. n = get_node(searchp, node);
  3443. reap_alien(searchp, n);
  3444. drain_array(searchp, n, cpu_cache_get(searchp), node);
  3445. /*
  3446. * These are racy checks but it does not matter
  3447. * if we skip one check or scan twice.
  3448. */
  3449. if (time_after(n->next_reap, jiffies))
  3450. goto next;
  3451. n->next_reap = jiffies + REAPTIMEOUT_NODE;
  3452. drain_array(searchp, n, n->shared, node);
  3453. if (n->free_touched)
  3454. n->free_touched = 0;
  3455. else {
  3456. int freed;
  3457. freed = drain_freelist(searchp, n, (n->free_limit +
  3458. 5 * searchp->num - 1) / (5 * searchp->num));
  3459. STATS_ADD_REAPED(searchp, freed);
  3460. }
  3461. next:
  3462. cond_resched();
  3463. }
  3464. check_irq_on();
  3465. mutex_unlock(&slab_mutex);
  3466. next_reap_node();
  3467. out:
  3468. /* Set up the next iteration */
  3469. schedule_delayed_work_on(smp_processor_id(), work,
  3470. round_jiffies_relative(REAPTIMEOUT_AC));
  3471. }
  3472. void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
  3473. {
  3474. unsigned long active_objs, num_objs, active_slabs;
  3475. unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
  3476. unsigned long free_slabs = 0;
  3477. int node;
  3478. struct kmem_cache_node *n;
  3479. for_each_kmem_cache_node(cachep, node, n) {
  3480. check_irq_on();
  3481. spin_lock_irq(&n->list_lock);
  3482. total_slabs += n->total_slabs;
  3483. free_slabs += n->free_slabs;
  3484. free_objs += n->free_objects;
  3485. if (n->shared)
  3486. shared_avail += n->shared->avail;
  3487. spin_unlock_irq(&n->list_lock);
  3488. }
  3489. num_objs = total_slabs * cachep->num;
  3490. active_slabs = total_slabs - free_slabs;
  3491. active_objs = num_objs - free_objs;
  3492. sinfo->active_objs = active_objs;
  3493. sinfo->num_objs = num_objs;
  3494. sinfo->active_slabs = active_slabs;
  3495. sinfo->num_slabs = total_slabs;
  3496. sinfo->shared_avail = shared_avail;
  3497. sinfo->limit = cachep->limit;
  3498. sinfo->batchcount = cachep->batchcount;
  3499. sinfo->shared = cachep->shared;
  3500. sinfo->objects_per_slab = cachep->num;
  3501. sinfo->cache_order = cachep->gfporder;
  3502. }
  3503. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
  3504. {
  3505. #if STATS
  3506. { /* node stats */
  3507. unsigned long high = cachep->high_mark;
  3508. unsigned long allocs = cachep->num_allocations;
  3509. unsigned long grown = cachep->grown;
  3510. unsigned long reaped = cachep->reaped;
  3511. unsigned long errors = cachep->errors;
  3512. unsigned long max_freeable = cachep->max_freeable;
  3513. unsigned long node_allocs = cachep->node_allocs;
  3514. unsigned long node_frees = cachep->node_frees;
  3515. unsigned long overflows = cachep->node_overflow;
  3516. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
  3517. allocs, high, grown,
  3518. reaped, errors, max_freeable, node_allocs,
  3519. node_frees, overflows);
  3520. }
  3521. /* cpu stats */
  3522. {
  3523. unsigned long allochit = atomic_read(&cachep->allochit);
  3524. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3525. unsigned long freehit = atomic_read(&cachep->freehit);
  3526. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3527. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3528. allochit, allocmiss, freehit, freemiss);
  3529. }
  3530. #endif
  3531. }
  3532. #define MAX_SLABINFO_WRITE 128
  3533. /**
  3534. * slabinfo_write - Tuning for the slab allocator
  3535. * @file: unused
  3536. * @buffer: user buffer
  3537. * @count: data length
  3538. * @ppos: unused
  3539. */
  3540. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  3541. size_t count, loff_t *ppos)
  3542. {
  3543. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3544. int limit, batchcount, shared, res;
  3545. struct kmem_cache *cachep;
  3546. if (count > MAX_SLABINFO_WRITE)
  3547. return -EINVAL;
  3548. if (copy_from_user(&kbuf, buffer, count))
  3549. return -EFAULT;
  3550. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3551. tmp = strchr(kbuf, ' ');
  3552. if (!tmp)
  3553. return -EINVAL;
  3554. *tmp = '\0';
  3555. tmp++;
  3556. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3557. return -EINVAL;
  3558. /* Find the cache in the chain of caches. */
  3559. mutex_lock(&slab_mutex);
  3560. res = -EINVAL;
  3561. list_for_each_entry(cachep, &slab_caches, list) {
  3562. if (!strcmp(cachep->name, kbuf)) {
  3563. if (limit < 1 || batchcount < 1 ||
  3564. batchcount > limit || shared < 0) {
  3565. res = 0;
  3566. } else {
  3567. res = do_tune_cpucache(cachep, limit,
  3568. batchcount, shared,
  3569. GFP_KERNEL);
  3570. }
  3571. break;
  3572. }
  3573. }
  3574. mutex_unlock(&slab_mutex);
  3575. if (res >= 0)
  3576. res = count;
  3577. return res;
  3578. }
  3579. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3580. static inline int add_caller(unsigned long *n, unsigned long v)
  3581. {
  3582. unsigned long *p;
  3583. int l;
  3584. if (!v)
  3585. return 1;
  3586. l = n[1];
  3587. p = n + 2;
  3588. while (l) {
  3589. int i = l/2;
  3590. unsigned long *q = p + 2 * i;
  3591. if (*q == v) {
  3592. q[1]++;
  3593. return 1;
  3594. }
  3595. if (*q > v) {
  3596. l = i;
  3597. } else {
  3598. p = q + 2;
  3599. l -= i + 1;
  3600. }
  3601. }
  3602. if (++n[1] == n[0])
  3603. return 0;
  3604. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3605. p[0] = v;
  3606. p[1] = 1;
  3607. return 1;
  3608. }
  3609. static void handle_slab(unsigned long *n, struct kmem_cache *c,
  3610. struct page *page)
  3611. {
  3612. void *p;
  3613. int i, j;
  3614. unsigned long v;
  3615. if (n[0] == n[1])
  3616. return;
  3617. for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
  3618. bool active = true;
  3619. for (j = page->active; j < c->num; j++) {
  3620. if (get_free_obj(page, j) == i) {
  3621. active = false;
  3622. break;
  3623. }
  3624. }
  3625. if (!active)
  3626. continue;
  3627. /*
  3628. * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
  3629. * mapping is established when actual object allocation and
  3630. * we could mistakenly access the unmapped object in the cpu
  3631. * cache.
  3632. */
  3633. if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
  3634. continue;
  3635. if (!add_caller(n, v))
  3636. return;
  3637. }
  3638. }
  3639. static void show_symbol(struct seq_file *m, unsigned long address)
  3640. {
  3641. #ifdef CONFIG_KALLSYMS
  3642. unsigned long offset, size;
  3643. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3644. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3645. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3646. if (modname[0])
  3647. seq_printf(m, " [%s]", modname);
  3648. return;
  3649. }
  3650. #endif
  3651. seq_printf(m, "%px", (void *)address);
  3652. }
  3653. static int leaks_show(struct seq_file *m, void *p)
  3654. {
  3655. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
  3656. struct page *page;
  3657. struct kmem_cache_node *n;
  3658. const char *name;
  3659. unsigned long *x = m->private;
  3660. int node;
  3661. int i;
  3662. if (!(cachep->flags & SLAB_STORE_USER))
  3663. return 0;
  3664. if (!(cachep->flags & SLAB_RED_ZONE))
  3665. return 0;
  3666. /*
  3667. * Set store_user_clean and start to grab stored user information
  3668. * for all objects on this cache. If some alloc/free requests comes
  3669. * during the processing, information would be wrong so restart
  3670. * whole processing.
  3671. */
  3672. do {
  3673. set_store_user_clean(cachep);
  3674. drain_cpu_caches(cachep);
  3675. x[1] = 0;
  3676. for_each_kmem_cache_node(cachep, node, n) {
  3677. check_irq_on();
  3678. spin_lock_irq(&n->list_lock);
  3679. list_for_each_entry(page, &n->slabs_full, lru)
  3680. handle_slab(x, cachep, page);
  3681. list_for_each_entry(page, &n->slabs_partial, lru)
  3682. handle_slab(x, cachep, page);
  3683. spin_unlock_irq(&n->list_lock);
  3684. }
  3685. } while (!is_store_user_clean(cachep));
  3686. name = cachep->name;
  3687. if (x[0] == x[1]) {
  3688. /* Increase the buffer size */
  3689. mutex_unlock(&slab_mutex);
  3690. m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
  3691. GFP_KERNEL);
  3692. if (!m->private) {
  3693. /* Too bad, we are really out */
  3694. m->private = x;
  3695. mutex_lock(&slab_mutex);
  3696. return -ENOMEM;
  3697. }
  3698. *(unsigned long *)m->private = x[0] * 2;
  3699. kfree(x);
  3700. mutex_lock(&slab_mutex);
  3701. /* Now make sure this entry will be retried */
  3702. m->count = m->size;
  3703. return 0;
  3704. }
  3705. for (i = 0; i < x[1]; i++) {
  3706. seq_printf(m, "%s: %lu ", name, x[2*i+3]);
  3707. show_symbol(m, x[2*i+2]);
  3708. seq_putc(m, '\n');
  3709. }
  3710. return 0;
  3711. }
  3712. static const struct seq_operations slabstats_op = {
  3713. .start = slab_start,
  3714. .next = slab_next,
  3715. .stop = slab_stop,
  3716. .show = leaks_show,
  3717. };
  3718. static int slabstats_open(struct inode *inode, struct file *file)
  3719. {
  3720. unsigned long *n;
  3721. n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
  3722. if (!n)
  3723. return -ENOMEM;
  3724. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3725. return 0;
  3726. }
  3727. static const struct file_operations proc_slabstats_operations = {
  3728. .open = slabstats_open,
  3729. .read = seq_read,
  3730. .llseek = seq_lseek,
  3731. .release = seq_release_private,
  3732. };
  3733. #endif
  3734. static int __init slab_proc_init(void)
  3735. {
  3736. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3737. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  3738. #endif
  3739. return 0;
  3740. }
  3741. module_init(slab_proc_init);
  3742. #ifdef CONFIG_HARDENED_USERCOPY
  3743. /*
  3744. * Rejects incorrectly sized objects and objects that are to be copied
  3745. * to/from userspace but do not fall entirely within the containing slab
  3746. * cache's usercopy region.
  3747. *
  3748. * Returns NULL if check passes, otherwise const char * to name of cache
  3749. * to indicate an error.
  3750. */
  3751. void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
  3752. bool to_user)
  3753. {
  3754. struct kmem_cache *cachep;
  3755. unsigned int objnr;
  3756. unsigned long offset;
  3757. /* Find and validate object. */
  3758. cachep = page->slab_cache;
  3759. objnr = obj_to_index(cachep, page, (void *)ptr);
  3760. BUG_ON(objnr >= cachep->num);
  3761. /* Find offset within object. */
  3762. offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
  3763. /* Allow address range falling entirely within usercopy region. */
  3764. if (offset >= cachep->useroffset &&
  3765. offset - cachep->useroffset <= cachep->usersize &&
  3766. n <= cachep->useroffset - offset + cachep->usersize)
  3767. return;
  3768. /*
  3769. * If the copy is still within the allocated object, produce
  3770. * a warning instead of rejecting the copy. This is intended
  3771. * to be a temporary method to find any missing usercopy
  3772. * whitelists.
  3773. */
  3774. if (usercopy_fallback &&
  3775. offset <= cachep->object_size &&
  3776. n <= cachep->object_size - offset) {
  3777. usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
  3778. return;
  3779. }
  3780. usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
  3781. }
  3782. #endif /* CONFIG_HARDENED_USERCOPY */
  3783. /**
  3784. * ksize - get the actual amount of memory allocated for a given object
  3785. * @objp: Pointer to the object
  3786. *
  3787. * kmalloc may internally round up allocations and return more memory
  3788. * than requested. ksize() can be used to determine the actual amount of
  3789. * memory allocated. The caller may use this additional memory, even though
  3790. * a smaller amount of memory was initially specified with the kmalloc call.
  3791. * The caller must guarantee that objp points to a valid object previously
  3792. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3793. * must not be freed during the duration of the call.
  3794. */
  3795. size_t ksize(const void *objp)
  3796. {
  3797. size_t size;
  3798. BUG_ON(!objp);
  3799. if (unlikely(objp == ZERO_SIZE_PTR))
  3800. return 0;
  3801. size = virt_to_cache(objp)->object_size;
  3802. /* We assume that ksize callers could use the whole allocated area,
  3803. * so we need to unpoison this area.
  3804. */
  3805. kasan_unpoison_shadow(objp, size);
  3806. return size;
  3807. }
  3808. EXPORT_SYMBOL(ksize);