readahead.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
  1. /*
  2. * mm/readahead.c - address_space-level file readahead.
  3. *
  4. * Copyright (C) 2002, Linus Torvalds
  5. *
  6. * 09Apr2002 Andrew Morton
  7. * Initial version.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/dax.h>
  11. #include <linux/gfp.h>
  12. #include <linux/export.h>
  13. #include <linux/blkdev.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/task_io_accounting_ops.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/pagemap.h>
  18. #include <linux/syscalls.h>
  19. #include <linux/file.h>
  20. #include <linux/mm_inline.h>
  21. #include "internal.h"
  22. /*
  23. * Initialise a struct file's readahead state. Assumes that the caller has
  24. * memset *ra to zero.
  25. */
  26. void
  27. file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
  28. {
  29. ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
  30. ra->prev_pos = -1;
  31. }
  32. EXPORT_SYMBOL_GPL(file_ra_state_init);
  33. /*
  34. * see if a page needs releasing upon read_cache_pages() failure
  35. * - the caller of read_cache_pages() may have set PG_private or PG_fscache
  36. * before calling, such as the NFS fs marking pages that are cached locally
  37. * on disk, thus we need to give the fs a chance to clean up in the event of
  38. * an error
  39. */
  40. static void read_cache_pages_invalidate_page(struct address_space *mapping,
  41. struct page *page)
  42. {
  43. if (page_has_private(page)) {
  44. if (!trylock_page(page))
  45. BUG();
  46. page->mapping = mapping;
  47. do_invalidatepage(page, 0, PAGE_SIZE);
  48. page->mapping = NULL;
  49. unlock_page(page);
  50. }
  51. put_page(page);
  52. }
  53. /*
  54. * release a list of pages, invalidating them first if need be
  55. */
  56. static void read_cache_pages_invalidate_pages(struct address_space *mapping,
  57. struct list_head *pages)
  58. {
  59. struct page *victim;
  60. while (!list_empty(pages)) {
  61. victim = lru_to_page(pages);
  62. list_del(&victim->lru);
  63. read_cache_pages_invalidate_page(mapping, victim);
  64. }
  65. }
  66. /**
  67. * read_cache_pages - populate an address space with some pages & start reads against them
  68. * @mapping: the address_space
  69. * @pages: The address of a list_head which contains the target pages. These
  70. * pages have their ->index populated and are otherwise uninitialised.
  71. * @filler: callback routine for filling a single page.
  72. * @data: private data for the callback routine.
  73. *
  74. * Hides the details of the LRU cache etc from the filesystems.
  75. */
  76. int read_cache_pages(struct address_space *mapping, struct list_head *pages,
  77. int (*filler)(void *, struct page *), void *data)
  78. {
  79. struct page *page;
  80. int ret = 0;
  81. while (!list_empty(pages)) {
  82. page = lru_to_page(pages);
  83. list_del(&page->lru);
  84. if (add_to_page_cache_lru(page, mapping, page->index,
  85. readahead_gfp_mask(mapping))) {
  86. read_cache_pages_invalidate_page(mapping, page);
  87. continue;
  88. }
  89. put_page(page);
  90. ret = filler(data, page);
  91. if (unlikely(ret)) {
  92. read_cache_pages_invalidate_pages(mapping, pages);
  93. break;
  94. }
  95. task_io_account_read(PAGE_SIZE);
  96. }
  97. return ret;
  98. }
  99. EXPORT_SYMBOL(read_cache_pages);
  100. static int read_pages(struct address_space *mapping, struct file *filp,
  101. struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
  102. {
  103. struct blk_plug plug;
  104. unsigned page_idx;
  105. int ret;
  106. blk_start_plug(&plug);
  107. if (mapping->a_ops->readpages) {
  108. ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
  109. /* Clean up the remaining pages */
  110. put_pages_list(pages);
  111. goto out;
  112. }
  113. for (page_idx = 0; page_idx < nr_pages; page_idx++) {
  114. struct page *page = lru_to_page(pages);
  115. list_del(&page->lru);
  116. if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
  117. mapping->a_ops->readpage(filp, page);
  118. put_page(page);
  119. }
  120. ret = 0;
  121. out:
  122. blk_finish_plug(&plug);
  123. return ret;
  124. }
  125. /*
  126. * __do_page_cache_readahead() actually reads a chunk of disk. It allocates
  127. * the pages first, then submits them for I/O. This avoids the very bad
  128. * behaviour which would occur if page allocations are causing VM writeback.
  129. * We really don't want to intermingle reads and writes like that.
  130. *
  131. * Returns the number of pages requested, or the maximum amount of I/O allowed.
  132. */
  133. unsigned int __do_page_cache_readahead(struct address_space *mapping,
  134. struct file *filp, pgoff_t offset, unsigned long nr_to_read,
  135. unsigned long lookahead_size)
  136. {
  137. struct inode *inode = mapping->host;
  138. struct page *page;
  139. unsigned long end_index; /* The last page we want to read */
  140. LIST_HEAD(page_pool);
  141. int page_idx;
  142. unsigned int nr_pages = 0;
  143. loff_t isize = i_size_read(inode);
  144. gfp_t gfp_mask = readahead_gfp_mask(mapping);
  145. if (isize == 0)
  146. goto out;
  147. end_index = ((isize - 1) >> PAGE_SHIFT);
  148. /*
  149. * Preallocate as many pages as we will need.
  150. */
  151. for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
  152. pgoff_t page_offset = offset + page_idx;
  153. if (page_offset > end_index)
  154. break;
  155. rcu_read_lock();
  156. page = radix_tree_lookup(&mapping->i_pages, page_offset);
  157. rcu_read_unlock();
  158. if (page && !radix_tree_exceptional_entry(page)) {
  159. /*
  160. * Page already present? Kick off the current batch of
  161. * contiguous pages before continuing with the next
  162. * batch.
  163. */
  164. if (nr_pages)
  165. read_pages(mapping, filp, &page_pool, nr_pages,
  166. gfp_mask);
  167. nr_pages = 0;
  168. continue;
  169. }
  170. page = __page_cache_alloc(gfp_mask);
  171. if (!page)
  172. break;
  173. page->index = page_offset;
  174. list_add(&page->lru, &page_pool);
  175. if (page_idx == nr_to_read - lookahead_size)
  176. SetPageReadahead(page);
  177. nr_pages++;
  178. }
  179. /*
  180. * Now start the IO. We ignore I/O errors - if the page is not
  181. * uptodate then the caller will launch readpage again, and
  182. * will then handle the error.
  183. */
  184. if (nr_pages)
  185. read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask);
  186. BUG_ON(!list_empty(&page_pool));
  187. out:
  188. return nr_pages;
  189. }
  190. /*
  191. * Chunk the readahead into 2 megabyte units, so that we don't pin too much
  192. * memory at once.
  193. */
  194. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  195. pgoff_t offset, unsigned long nr_to_read)
  196. {
  197. struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
  198. struct file_ra_state *ra = &filp->f_ra;
  199. unsigned long max_pages;
  200. if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
  201. return -EINVAL;
  202. /*
  203. * If the request exceeds the readahead window, allow the read to
  204. * be up to the optimal hardware IO size
  205. */
  206. max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
  207. nr_to_read = min(nr_to_read, max_pages);
  208. while (nr_to_read) {
  209. unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
  210. if (this_chunk > nr_to_read)
  211. this_chunk = nr_to_read;
  212. __do_page_cache_readahead(mapping, filp, offset, this_chunk, 0);
  213. offset += this_chunk;
  214. nr_to_read -= this_chunk;
  215. }
  216. return 0;
  217. }
  218. /*
  219. * Set the initial window size, round to next power of 2 and square
  220. * for small size, x 4 for medium, and x 2 for large
  221. * for 128k (32 page) max ra
  222. * 1-8 page = 32k initial, > 8 page = 128k initial
  223. */
  224. static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
  225. {
  226. unsigned long newsize = roundup_pow_of_two(size);
  227. if (newsize <= max / 32)
  228. newsize = newsize * 4;
  229. else if (newsize <= max / 4)
  230. newsize = newsize * 2;
  231. else
  232. newsize = max;
  233. return newsize;
  234. }
  235. /*
  236. * Get the previous window size, ramp it up, and
  237. * return it as the new window size.
  238. */
  239. static unsigned long get_next_ra_size(struct file_ra_state *ra,
  240. unsigned long max)
  241. {
  242. unsigned long cur = ra->size;
  243. unsigned long newsize;
  244. if (cur < max / 16)
  245. newsize = 4 * cur;
  246. else
  247. newsize = 2 * cur;
  248. return min(newsize, max);
  249. }
  250. /*
  251. * On-demand readahead design.
  252. *
  253. * The fields in struct file_ra_state represent the most-recently-executed
  254. * readahead attempt:
  255. *
  256. * |<----- async_size ---------|
  257. * |------------------- size -------------------->|
  258. * |==================#===========================|
  259. * ^start ^page marked with PG_readahead
  260. *
  261. * To overlap application thinking time and disk I/O time, we do
  262. * `readahead pipelining': Do not wait until the application consumed all
  263. * readahead pages and stalled on the missing page at readahead_index;
  264. * Instead, submit an asynchronous readahead I/O as soon as there are
  265. * only async_size pages left in the readahead window. Normally async_size
  266. * will be equal to size, for maximum pipelining.
  267. *
  268. * In interleaved sequential reads, concurrent streams on the same fd can
  269. * be invalidating each other's readahead state. So we flag the new readahead
  270. * page at (start+size-async_size) with PG_readahead, and use it as readahead
  271. * indicator. The flag won't be set on already cached pages, to avoid the
  272. * readahead-for-nothing fuss, saving pointless page cache lookups.
  273. *
  274. * prev_pos tracks the last visited byte in the _previous_ read request.
  275. * It should be maintained by the caller, and will be used for detecting
  276. * small random reads. Note that the readahead algorithm checks loosely
  277. * for sequential patterns. Hence interleaved reads might be served as
  278. * sequential ones.
  279. *
  280. * There is a special-case: if the first page which the application tries to
  281. * read happens to be the first page of the file, it is assumed that a linear
  282. * read is about to happen and the window is immediately set to the initial size
  283. * based on I/O request size and the max_readahead.
  284. *
  285. * The code ramps up the readahead size aggressively at first, but slow down as
  286. * it approaches max_readhead.
  287. */
  288. /*
  289. * Count contiguously cached pages from @offset-1 to @offset-@max,
  290. * this count is a conservative estimation of
  291. * - length of the sequential read sequence, or
  292. * - thrashing threshold in memory tight systems
  293. */
  294. static pgoff_t count_history_pages(struct address_space *mapping,
  295. pgoff_t offset, unsigned long max)
  296. {
  297. pgoff_t head;
  298. rcu_read_lock();
  299. head = page_cache_prev_hole(mapping, offset - 1, max);
  300. rcu_read_unlock();
  301. return offset - 1 - head;
  302. }
  303. /*
  304. * page cache context based read-ahead
  305. */
  306. static int try_context_readahead(struct address_space *mapping,
  307. struct file_ra_state *ra,
  308. pgoff_t offset,
  309. unsigned long req_size,
  310. unsigned long max)
  311. {
  312. pgoff_t size;
  313. size = count_history_pages(mapping, offset, max);
  314. /*
  315. * not enough history pages:
  316. * it could be a random read
  317. */
  318. if (size <= req_size)
  319. return 0;
  320. /*
  321. * starts from beginning of file:
  322. * it is a strong indication of long-run stream (or whole-file-read)
  323. */
  324. if (size >= offset)
  325. size *= 2;
  326. ra->start = offset;
  327. ra->size = min(size + req_size, max);
  328. ra->async_size = 1;
  329. return 1;
  330. }
  331. /*
  332. * A minimal readahead algorithm for trivial sequential/random reads.
  333. */
  334. static unsigned long
  335. ondemand_readahead(struct address_space *mapping,
  336. struct file_ra_state *ra, struct file *filp,
  337. bool hit_readahead_marker, pgoff_t offset,
  338. unsigned long req_size)
  339. {
  340. struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
  341. unsigned long max_pages = ra->ra_pages;
  342. pgoff_t prev_offset;
  343. /*
  344. * If the request exceeds the readahead window, allow the read to
  345. * be up to the optimal hardware IO size
  346. */
  347. if (req_size > max_pages && bdi->io_pages > max_pages)
  348. max_pages = min(req_size, bdi->io_pages);
  349. /*
  350. * start of file
  351. */
  352. if (!offset)
  353. goto initial_readahead;
  354. /*
  355. * It's the expected callback offset, assume sequential access.
  356. * Ramp up sizes, and push forward the readahead window.
  357. */
  358. if ((offset == (ra->start + ra->size - ra->async_size) ||
  359. offset == (ra->start + ra->size))) {
  360. ra->start += ra->size;
  361. ra->size = get_next_ra_size(ra, max_pages);
  362. ra->async_size = ra->size;
  363. goto readit;
  364. }
  365. /*
  366. * Hit a marked page without valid readahead state.
  367. * E.g. interleaved reads.
  368. * Query the pagecache for async_size, which normally equals to
  369. * readahead size. Ramp it up and use it as the new readahead size.
  370. */
  371. if (hit_readahead_marker) {
  372. pgoff_t start;
  373. rcu_read_lock();
  374. start = page_cache_next_hole(mapping, offset + 1, max_pages);
  375. rcu_read_unlock();
  376. if (!start || start - offset > max_pages)
  377. return 0;
  378. ra->start = start;
  379. ra->size = start - offset; /* old async_size */
  380. ra->size += req_size;
  381. ra->size = get_next_ra_size(ra, max_pages);
  382. ra->async_size = ra->size;
  383. goto readit;
  384. }
  385. /*
  386. * oversize read
  387. */
  388. if (req_size > max_pages)
  389. goto initial_readahead;
  390. /*
  391. * sequential cache miss
  392. * trivial case: (offset - prev_offset) == 1
  393. * unaligned reads: (offset - prev_offset) == 0
  394. */
  395. prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
  396. if (offset - prev_offset <= 1UL)
  397. goto initial_readahead;
  398. /*
  399. * Query the page cache and look for the traces(cached history pages)
  400. * that a sequential stream would leave behind.
  401. */
  402. if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
  403. goto readit;
  404. /*
  405. * standalone, small random read
  406. * Read as is, and do not pollute the readahead state.
  407. */
  408. return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
  409. initial_readahead:
  410. ra->start = offset;
  411. ra->size = get_init_ra_size(req_size, max_pages);
  412. ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
  413. readit:
  414. /*
  415. * Will this read hit the readahead marker made by itself?
  416. * If so, trigger the readahead marker hit now, and merge
  417. * the resulted next readahead window into the current one.
  418. */
  419. if (offset == ra->start && ra->size == ra->async_size) {
  420. ra->async_size = get_next_ra_size(ra, max_pages);
  421. ra->size += ra->async_size;
  422. }
  423. return ra_submit(ra, mapping, filp);
  424. }
  425. /**
  426. * page_cache_sync_readahead - generic file readahead
  427. * @mapping: address_space which holds the pagecache and I/O vectors
  428. * @ra: file_ra_state which holds the readahead state
  429. * @filp: passed on to ->readpage() and ->readpages()
  430. * @offset: start offset into @mapping, in pagecache page-sized units
  431. * @req_size: hint: total size of the read which the caller is performing in
  432. * pagecache pages
  433. *
  434. * page_cache_sync_readahead() should be called when a cache miss happened:
  435. * it will submit the read. The readahead logic may decide to piggyback more
  436. * pages onto the read request if access patterns suggest it will improve
  437. * performance.
  438. */
  439. void page_cache_sync_readahead(struct address_space *mapping,
  440. struct file_ra_state *ra, struct file *filp,
  441. pgoff_t offset, unsigned long req_size)
  442. {
  443. /* no read-ahead */
  444. if (!ra->ra_pages)
  445. return;
  446. /* be dumb */
  447. if (filp && (filp->f_mode & FMODE_RANDOM)) {
  448. force_page_cache_readahead(mapping, filp, offset, req_size);
  449. return;
  450. }
  451. /* do read-ahead */
  452. ondemand_readahead(mapping, ra, filp, false, offset, req_size);
  453. }
  454. EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
  455. /**
  456. * page_cache_async_readahead - file readahead for marked pages
  457. * @mapping: address_space which holds the pagecache and I/O vectors
  458. * @ra: file_ra_state which holds the readahead state
  459. * @filp: passed on to ->readpage() and ->readpages()
  460. * @page: the page at @offset which has the PG_readahead flag set
  461. * @offset: start offset into @mapping, in pagecache page-sized units
  462. * @req_size: hint: total size of the read which the caller is performing in
  463. * pagecache pages
  464. *
  465. * page_cache_async_readahead() should be called when a page is used which
  466. * has the PG_readahead flag; this is a marker to suggest that the application
  467. * has used up enough of the readahead window that we should start pulling in
  468. * more pages.
  469. */
  470. void
  471. page_cache_async_readahead(struct address_space *mapping,
  472. struct file_ra_state *ra, struct file *filp,
  473. struct page *page, pgoff_t offset,
  474. unsigned long req_size)
  475. {
  476. /* no read-ahead */
  477. if (!ra->ra_pages)
  478. return;
  479. /*
  480. * Same bit is used for PG_readahead and PG_reclaim.
  481. */
  482. if (PageWriteback(page))
  483. return;
  484. ClearPageReadahead(page);
  485. /*
  486. * Defer asynchronous read-ahead on IO congestion.
  487. */
  488. if (inode_read_congested(mapping->host))
  489. return;
  490. /* do read-ahead */
  491. ondemand_readahead(mapping, ra, filp, true, offset, req_size);
  492. }
  493. EXPORT_SYMBOL_GPL(page_cache_async_readahead);
  494. static ssize_t
  495. do_readahead(struct address_space *mapping, struct file *filp,
  496. pgoff_t index, unsigned long nr)
  497. {
  498. if (!mapping || !mapping->a_ops)
  499. return -EINVAL;
  500. /*
  501. * Readahead doesn't make sense for DAX inodes, but we don't want it
  502. * to report a failure either. Instead, we just return success and
  503. * don't do any work.
  504. */
  505. if (dax_mapping(mapping))
  506. return 0;
  507. return force_page_cache_readahead(mapping, filp, index, nr);
  508. }
  509. ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
  510. {
  511. ssize_t ret;
  512. struct fd f;
  513. ret = -EBADF;
  514. f = fdget(fd);
  515. if (f.file) {
  516. if (f.file->f_mode & FMODE_READ) {
  517. struct address_space *mapping = f.file->f_mapping;
  518. pgoff_t start = offset >> PAGE_SHIFT;
  519. pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
  520. unsigned long len = end - start + 1;
  521. ret = do_readahead(mapping, f.file, start, len);
  522. }
  523. fdput(f);
  524. }
  525. return ret;
  526. }
  527. SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
  528. {
  529. return ksys_readahead(fd, offset, count);
  530. }