memory-failure.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11. * failure.
  12. *
  13. * In addition there is a "soft offline" entry point that allows stop using
  14. * not-yet-corrupted-by-suspicious pages without killing anything.
  15. *
  16. * Handles page cache pages in various states. The tricky part
  17. * here is that we can access any page asynchronously in respect to
  18. * other VM users, because memory failures could happen anytime and
  19. * anywhere. This could violate some of their assumptions. This is why
  20. * this code has to be extremely careful. Generally it tries to use
  21. * normal locking rules, as in get the standard locks, even if that means
  22. * the error handling takes potentially a long time.
  23. *
  24. * It can be very tempting to add handling for obscure cases here.
  25. * In general any code for handling new cases should only be added iff:
  26. * - You know how to test it.
  27. * - You have a test that can be added to mce-test
  28. * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29. * - The case actually shows up as a frequent (top 10) page state in
  30. * tools/vm/page-types when running a real workload.
  31. *
  32. * There are several operations here with exponential complexity because
  33. * of unsuitable VM data structures. For example the operation to map back
  34. * from RMAP chains to processes has to walk the complete process list and
  35. * has non linear complexity with the number. But since memory corruptions
  36. * are rare we hope to get away with this. This avoids impacting the core
  37. * VM.
  38. */
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/page-flags.h>
  42. #include <linux/kernel-page-flags.h>
  43. #include <linux/sched/signal.h>
  44. #include <linux/sched/task.h>
  45. #include <linux/ksm.h>
  46. #include <linux/rmap.h>
  47. #include <linux/export.h>
  48. #include <linux/pagemap.h>
  49. #include <linux/swap.h>
  50. #include <linux/backing-dev.h>
  51. #include <linux/migrate.h>
  52. #include <linux/suspend.h>
  53. #include <linux/slab.h>
  54. #include <linux/swapops.h>
  55. #include <linux/hugetlb.h>
  56. #include <linux/memory_hotplug.h>
  57. #include <linux/mm_inline.h>
  58. #include <linux/kfifo.h>
  59. #include <linux/ratelimit.h>
  60. #include "internal.h"
  61. #include "ras/ras_event.h"
  62. int sysctl_memory_failure_early_kill __read_mostly = 0;
  63. int sysctl_memory_failure_recovery __read_mostly = 1;
  64. atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  65. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  66. u32 hwpoison_filter_enable = 0;
  67. u32 hwpoison_filter_dev_major = ~0U;
  68. u32 hwpoison_filter_dev_minor = ~0U;
  69. u64 hwpoison_filter_flags_mask;
  70. u64 hwpoison_filter_flags_value;
  71. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  72. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  73. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  74. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  75. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  76. static int hwpoison_filter_dev(struct page *p)
  77. {
  78. struct address_space *mapping;
  79. dev_t dev;
  80. if (hwpoison_filter_dev_major == ~0U &&
  81. hwpoison_filter_dev_minor == ~0U)
  82. return 0;
  83. /*
  84. * page_mapping() does not accept slab pages.
  85. */
  86. if (PageSlab(p))
  87. return -EINVAL;
  88. mapping = page_mapping(p);
  89. if (mapping == NULL || mapping->host == NULL)
  90. return -EINVAL;
  91. dev = mapping->host->i_sb->s_dev;
  92. if (hwpoison_filter_dev_major != ~0U &&
  93. hwpoison_filter_dev_major != MAJOR(dev))
  94. return -EINVAL;
  95. if (hwpoison_filter_dev_minor != ~0U &&
  96. hwpoison_filter_dev_minor != MINOR(dev))
  97. return -EINVAL;
  98. return 0;
  99. }
  100. static int hwpoison_filter_flags(struct page *p)
  101. {
  102. if (!hwpoison_filter_flags_mask)
  103. return 0;
  104. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  105. hwpoison_filter_flags_value)
  106. return 0;
  107. else
  108. return -EINVAL;
  109. }
  110. /*
  111. * This allows stress tests to limit test scope to a collection of tasks
  112. * by putting them under some memcg. This prevents killing unrelated/important
  113. * processes such as /sbin/init. Note that the target task may share clean
  114. * pages with init (eg. libc text), which is harmless. If the target task
  115. * share _dirty_ pages with another task B, the test scheme must make sure B
  116. * is also included in the memcg. At last, due to race conditions this filter
  117. * can only guarantee that the page either belongs to the memcg tasks, or is
  118. * a freed page.
  119. */
  120. #ifdef CONFIG_MEMCG
  121. u64 hwpoison_filter_memcg;
  122. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  123. static int hwpoison_filter_task(struct page *p)
  124. {
  125. if (!hwpoison_filter_memcg)
  126. return 0;
  127. if (page_cgroup_ino(p) != hwpoison_filter_memcg)
  128. return -EINVAL;
  129. return 0;
  130. }
  131. #else
  132. static int hwpoison_filter_task(struct page *p) { return 0; }
  133. #endif
  134. int hwpoison_filter(struct page *p)
  135. {
  136. if (!hwpoison_filter_enable)
  137. return 0;
  138. if (hwpoison_filter_dev(p))
  139. return -EINVAL;
  140. if (hwpoison_filter_flags(p))
  141. return -EINVAL;
  142. if (hwpoison_filter_task(p))
  143. return -EINVAL;
  144. return 0;
  145. }
  146. #else
  147. int hwpoison_filter(struct page *p)
  148. {
  149. return 0;
  150. }
  151. #endif
  152. EXPORT_SYMBOL_GPL(hwpoison_filter);
  153. /*
  154. * Send all the processes who have the page mapped a signal.
  155. * ``action optional'' if they are not immediately affected by the error
  156. * ``action required'' if error happened in current execution context
  157. */
  158. static int kill_proc(struct task_struct *t, unsigned long addr,
  159. unsigned long pfn, struct page *page, int flags)
  160. {
  161. short addr_lsb;
  162. int ret;
  163. pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
  164. pfn, t->comm, t->pid);
  165. addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
  166. if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
  167. ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr,
  168. addr_lsb, current);
  169. } else {
  170. /*
  171. * Don't use force here, it's convenient if the signal
  172. * can be temporarily blocked.
  173. * This could cause a loop when the user sets SIGBUS
  174. * to SIG_IGN, but hopefully no one will do that?
  175. */
  176. ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr,
  177. addr_lsb, t); /* synchronous? */
  178. }
  179. if (ret < 0)
  180. pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
  181. t->comm, t->pid, ret);
  182. return ret;
  183. }
  184. /*
  185. * When a unknown page type is encountered drain as many buffers as possible
  186. * in the hope to turn the page into a LRU or free page, which we can handle.
  187. */
  188. void shake_page(struct page *p, int access)
  189. {
  190. if (PageHuge(p))
  191. return;
  192. if (!PageSlab(p)) {
  193. lru_add_drain_all();
  194. if (PageLRU(p))
  195. return;
  196. drain_all_pages(page_zone(p));
  197. if (PageLRU(p) || is_free_buddy_page(p))
  198. return;
  199. }
  200. /*
  201. * Only call shrink_node_slabs here (which would also shrink
  202. * other caches) if access is not potentially fatal.
  203. */
  204. if (access)
  205. drop_slab_node(page_to_nid(p));
  206. }
  207. EXPORT_SYMBOL_GPL(shake_page);
  208. /*
  209. * Kill all processes that have a poisoned page mapped and then isolate
  210. * the page.
  211. *
  212. * General strategy:
  213. * Find all processes having the page mapped and kill them.
  214. * But we keep a page reference around so that the page is not
  215. * actually freed yet.
  216. * Then stash the page away
  217. *
  218. * There's no convenient way to get back to mapped processes
  219. * from the VMAs. So do a brute-force search over all
  220. * running processes.
  221. *
  222. * Remember that machine checks are not common (or rather
  223. * if they are common you have other problems), so this shouldn't
  224. * be a performance issue.
  225. *
  226. * Also there are some races possible while we get from the
  227. * error detection to actually handle it.
  228. */
  229. struct to_kill {
  230. struct list_head nd;
  231. struct task_struct *tsk;
  232. unsigned long addr;
  233. char addr_valid;
  234. };
  235. /*
  236. * Failure handling: if we can't find or can't kill a process there's
  237. * not much we can do. We just print a message and ignore otherwise.
  238. */
  239. /*
  240. * Schedule a process for later kill.
  241. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  242. * TBD would GFP_NOIO be enough?
  243. */
  244. static void add_to_kill(struct task_struct *tsk, struct page *p,
  245. struct vm_area_struct *vma,
  246. struct list_head *to_kill,
  247. struct to_kill **tkc)
  248. {
  249. struct to_kill *tk;
  250. if (*tkc) {
  251. tk = *tkc;
  252. *tkc = NULL;
  253. } else {
  254. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  255. if (!tk) {
  256. pr_err("Memory failure: Out of memory while machine check handling\n");
  257. return;
  258. }
  259. }
  260. tk->addr = page_address_in_vma(p, vma);
  261. tk->addr_valid = 1;
  262. /*
  263. * In theory we don't have to kill when the page was
  264. * munmaped. But it could be also a mremap. Since that's
  265. * likely very rare kill anyways just out of paranoia, but use
  266. * a SIGKILL because the error is not contained anymore.
  267. */
  268. if (tk->addr == -EFAULT) {
  269. pr_info("Memory failure: Unable to find user space address %lx in %s\n",
  270. page_to_pfn(p), tsk->comm);
  271. tk->addr_valid = 0;
  272. }
  273. get_task_struct(tsk);
  274. tk->tsk = tsk;
  275. list_add_tail(&tk->nd, to_kill);
  276. }
  277. /*
  278. * Kill the processes that have been collected earlier.
  279. *
  280. * Only do anything when DOIT is set, otherwise just free the list
  281. * (this is used for clean pages which do not need killing)
  282. * Also when FAIL is set do a force kill because something went
  283. * wrong earlier.
  284. */
  285. static void kill_procs(struct list_head *to_kill, int forcekill,
  286. bool fail, struct page *page, unsigned long pfn,
  287. int flags)
  288. {
  289. struct to_kill *tk, *next;
  290. list_for_each_entry_safe (tk, next, to_kill, nd) {
  291. if (forcekill) {
  292. /*
  293. * In case something went wrong with munmapping
  294. * make sure the process doesn't catch the
  295. * signal and then access the memory. Just kill it.
  296. */
  297. if (fail || tk->addr_valid == 0) {
  298. pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  299. pfn, tk->tsk->comm, tk->tsk->pid);
  300. force_sig(SIGKILL, tk->tsk);
  301. }
  302. /*
  303. * In theory the process could have mapped
  304. * something else on the address in-between. We could
  305. * check for that, but we need to tell the
  306. * process anyways.
  307. */
  308. else if (kill_proc(tk->tsk, tk->addr,
  309. pfn, page, flags) < 0)
  310. pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
  311. pfn, tk->tsk->comm, tk->tsk->pid);
  312. }
  313. put_task_struct(tk->tsk);
  314. kfree(tk);
  315. }
  316. }
  317. /*
  318. * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
  319. * on behalf of the thread group. Return task_struct of the (first found)
  320. * dedicated thread if found, and return NULL otherwise.
  321. *
  322. * We already hold read_lock(&tasklist_lock) in the caller, so we don't
  323. * have to call rcu_read_lock/unlock() in this function.
  324. */
  325. static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
  326. {
  327. struct task_struct *t;
  328. for_each_thread(tsk, t)
  329. if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
  330. return t;
  331. return NULL;
  332. }
  333. /*
  334. * Determine whether a given process is "early kill" process which expects
  335. * to be signaled when some page under the process is hwpoisoned.
  336. * Return task_struct of the dedicated thread (main thread unless explicitly
  337. * specified) if the process is "early kill," and otherwise returns NULL.
  338. */
  339. static struct task_struct *task_early_kill(struct task_struct *tsk,
  340. int force_early)
  341. {
  342. struct task_struct *t;
  343. if (!tsk->mm)
  344. return NULL;
  345. if (force_early)
  346. return tsk;
  347. t = find_early_kill_thread(tsk);
  348. if (t)
  349. return t;
  350. if (sysctl_memory_failure_early_kill)
  351. return tsk;
  352. return NULL;
  353. }
  354. /*
  355. * Collect processes when the error hit an anonymous page.
  356. */
  357. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  358. struct to_kill **tkc, int force_early)
  359. {
  360. struct vm_area_struct *vma;
  361. struct task_struct *tsk;
  362. struct anon_vma *av;
  363. pgoff_t pgoff;
  364. av = page_lock_anon_vma_read(page);
  365. if (av == NULL) /* Not actually mapped anymore */
  366. return;
  367. pgoff = page_to_pgoff(page);
  368. read_lock(&tasklist_lock);
  369. for_each_process (tsk) {
  370. struct anon_vma_chain *vmac;
  371. struct task_struct *t = task_early_kill(tsk, force_early);
  372. if (!t)
  373. continue;
  374. anon_vma_interval_tree_foreach(vmac, &av->rb_root,
  375. pgoff, pgoff) {
  376. vma = vmac->vma;
  377. if (!page_mapped_in_vma(page, vma))
  378. continue;
  379. if (vma->vm_mm == t->mm)
  380. add_to_kill(t, page, vma, to_kill, tkc);
  381. }
  382. }
  383. read_unlock(&tasklist_lock);
  384. page_unlock_anon_vma_read(av);
  385. }
  386. /*
  387. * Collect processes when the error hit a file mapped page.
  388. */
  389. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  390. struct to_kill **tkc, int force_early)
  391. {
  392. struct vm_area_struct *vma;
  393. struct task_struct *tsk;
  394. struct address_space *mapping = page->mapping;
  395. i_mmap_lock_read(mapping);
  396. read_lock(&tasklist_lock);
  397. for_each_process(tsk) {
  398. pgoff_t pgoff = page_to_pgoff(page);
  399. struct task_struct *t = task_early_kill(tsk, force_early);
  400. if (!t)
  401. continue;
  402. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
  403. pgoff) {
  404. /*
  405. * Send early kill signal to tasks where a vma covers
  406. * the page but the corrupted page is not necessarily
  407. * mapped it in its pte.
  408. * Assume applications who requested early kill want
  409. * to be informed of all such data corruptions.
  410. */
  411. if (vma->vm_mm == t->mm)
  412. add_to_kill(t, page, vma, to_kill, tkc);
  413. }
  414. }
  415. read_unlock(&tasklist_lock);
  416. i_mmap_unlock_read(mapping);
  417. }
  418. /*
  419. * Collect the processes who have the corrupted page mapped to kill.
  420. * This is done in two steps for locking reasons.
  421. * First preallocate one tokill structure outside the spin locks,
  422. * so that we can kill at least one process reasonably reliable.
  423. */
  424. static void collect_procs(struct page *page, struct list_head *tokill,
  425. int force_early)
  426. {
  427. struct to_kill *tk;
  428. if (!page->mapping)
  429. return;
  430. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  431. if (!tk)
  432. return;
  433. if (PageAnon(page))
  434. collect_procs_anon(page, tokill, &tk, force_early);
  435. else
  436. collect_procs_file(page, tokill, &tk, force_early);
  437. kfree(tk);
  438. }
  439. static const char *action_name[] = {
  440. [MF_IGNORED] = "Ignored",
  441. [MF_FAILED] = "Failed",
  442. [MF_DELAYED] = "Delayed",
  443. [MF_RECOVERED] = "Recovered",
  444. };
  445. static const char * const action_page_types[] = {
  446. [MF_MSG_KERNEL] = "reserved kernel page",
  447. [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
  448. [MF_MSG_SLAB] = "kernel slab page",
  449. [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
  450. [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
  451. [MF_MSG_HUGE] = "huge page",
  452. [MF_MSG_FREE_HUGE] = "free huge page",
  453. [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
  454. [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
  455. [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
  456. [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
  457. [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
  458. [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
  459. [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
  460. [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
  461. [MF_MSG_DIRTY_LRU] = "dirty LRU page",
  462. [MF_MSG_CLEAN_LRU] = "clean LRU page",
  463. [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
  464. [MF_MSG_BUDDY] = "free buddy page",
  465. [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
  466. [MF_MSG_UNKNOWN] = "unknown page",
  467. };
  468. /*
  469. * XXX: It is possible that a page is isolated from LRU cache,
  470. * and then kept in swap cache or failed to remove from page cache.
  471. * The page count will stop it from being freed by unpoison.
  472. * Stress tests should be aware of this memory leak problem.
  473. */
  474. static int delete_from_lru_cache(struct page *p)
  475. {
  476. if (!isolate_lru_page(p)) {
  477. /*
  478. * Clear sensible page flags, so that the buddy system won't
  479. * complain when the page is unpoison-and-freed.
  480. */
  481. ClearPageActive(p);
  482. ClearPageUnevictable(p);
  483. /*
  484. * Poisoned page might never drop its ref count to 0 so we have
  485. * to uncharge it manually from its memcg.
  486. */
  487. mem_cgroup_uncharge(p);
  488. /*
  489. * drop the page count elevated by isolate_lru_page()
  490. */
  491. put_page(p);
  492. return 0;
  493. }
  494. return -EIO;
  495. }
  496. static int truncate_error_page(struct page *p, unsigned long pfn,
  497. struct address_space *mapping)
  498. {
  499. int ret = MF_FAILED;
  500. if (mapping->a_ops->error_remove_page) {
  501. int err = mapping->a_ops->error_remove_page(mapping, p);
  502. if (err != 0) {
  503. pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
  504. pfn, err);
  505. } else if (page_has_private(p) &&
  506. !try_to_release_page(p, GFP_NOIO)) {
  507. pr_info("Memory failure: %#lx: failed to release buffers\n",
  508. pfn);
  509. } else {
  510. ret = MF_RECOVERED;
  511. }
  512. } else {
  513. /*
  514. * If the file system doesn't support it just invalidate
  515. * This fails on dirty or anything with private pages
  516. */
  517. if (invalidate_inode_page(p))
  518. ret = MF_RECOVERED;
  519. else
  520. pr_info("Memory failure: %#lx: Failed to invalidate\n",
  521. pfn);
  522. }
  523. return ret;
  524. }
  525. /*
  526. * Error hit kernel page.
  527. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  528. * could be more sophisticated.
  529. */
  530. static int me_kernel(struct page *p, unsigned long pfn)
  531. {
  532. return MF_IGNORED;
  533. }
  534. /*
  535. * Page in unknown state. Do nothing.
  536. */
  537. static int me_unknown(struct page *p, unsigned long pfn)
  538. {
  539. pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
  540. return MF_FAILED;
  541. }
  542. /*
  543. * Clean (or cleaned) page cache page.
  544. */
  545. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  546. {
  547. struct address_space *mapping;
  548. delete_from_lru_cache(p);
  549. /*
  550. * For anonymous pages we're done the only reference left
  551. * should be the one m_f() holds.
  552. */
  553. if (PageAnon(p))
  554. return MF_RECOVERED;
  555. /*
  556. * Now truncate the page in the page cache. This is really
  557. * more like a "temporary hole punch"
  558. * Don't do this for block devices when someone else
  559. * has a reference, because it could be file system metadata
  560. * and that's not safe to truncate.
  561. */
  562. mapping = page_mapping(p);
  563. if (!mapping) {
  564. /*
  565. * Page has been teared down in the meanwhile
  566. */
  567. return MF_FAILED;
  568. }
  569. /*
  570. * Truncation is a bit tricky. Enable it per file system for now.
  571. *
  572. * Open: to take i_mutex or not for this? Right now we don't.
  573. */
  574. return truncate_error_page(p, pfn, mapping);
  575. }
  576. /*
  577. * Dirty pagecache page
  578. * Issues: when the error hit a hole page the error is not properly
  579. * propagated.
  580. */
  581. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  582. {
  583. struct address_space *mapping = page_mapping(p);
  584. SetPageError(p);
  585. /* TBD: print more information about the file. */
  586. if (mapping) {
  587. /*
  588. * IO error will be reported by write(), fsync(), etc.
  589. * who check the mapping.
  590. * This way the application knows that something went
  591. * wrong with its dirty file data.
  592. *
  593. * There's one open issue:
  594. *
  595. * The EIO will be only reported on the next IO
  596. * operation and then cleared through the IO map.
  597. * Normally Linux has two mechanisms to pass IO error
  598. * first through the AS_EIO flag in the address space
  599. * and then through the PageError flag in the page.
  600. * Since we drop pages on memory failure handling the
  601. * only mechanism open to use is through AS_AIO.
  602. *
  603. * This has the disadvantage that it gets cleared on
  604. * the first operation that returns an error, while
  605. * the PageError bit is more sticky and only cleared
  606. * when the page is reread or dropped. If an
  607. * application assumes it will always get error on
  608. * fsync, but does other operations on the fd before
  609. * and the page is dropped between then the error
  610. * will not be properly reported.
  611. *
  612. * This can already happen even without hwpoisoned
  613. * pages: first on metadata IO errors (which only
  614. * report through AS_EIO) or when the page is dropped
  615. * at the wrong time.
  616. *
  617. * So right now we assume that the application DTRT on
  618. * the first EIO, but we're not worse than other parts
  619. * of the kernel.
  620. */
  621. mapping_set_error(mapping, -EIO);
  622. }
  623. return me_pagecache_clean(p, pfn);
  624. }
  625. /*
  626. * Clean and dirty swap cache.
  627. *
  628. * Dirty swap cache page is tricky to handle. The page could live both in page
  629. * cache and swap cache(ie. page is freshly swapped in). So it could be
  630. * referenced concurrently by 2 types of PTEs:
  631. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  632. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  633. * and then
  634. * - clear dirty bit to prevent IO
  635. * - remove from LRU
  636. * - but keep in the swap cache, so that when we return to it on
  637. * a later page fault, we know the application is accessing
  638. * corrupted data and shall be killed (we installed simple
  639. * interception code in do_swap_page to catch it).
  640. *
  641. * Clean swap cache pages can be directly isolated. A later page fault will
  642. * bring in the known good data from disk.
  643. */
  644. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  645. {
  646. ClearPageDirty(p);
  647. /* Trigger EIO in shmem: */
  648. ClearPageUptodate(p);
  649. if (!delete_from_lru_cache(p))
  650. return MF_DELAYED;
  651. else
  652. return MF_FAILED;
  653. }
  654. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  655. {
  656. delete_from_swap_cache(p);
  657. if (!delete_from_lru_cache(p))
  658. return MF_RECOVERED;
  659. else
  660. return MF_FAILED;
  661. }
  662. /*
  663. * Huge pages. Needs work.
  664. * Issues:
  665. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  666. * To narrow down kill region to one page, we need to break up pmd.
  667. */
  668. static int me_huge_page(struct page *p, unsigned long pfn)
  669. {
  670. int res = 0;
  671. struct page *hpage = compound_head(p);
  672. struct address_space *mapping;
  673. if (!PageHuge(hpage))
  674. return MF_DELAYED;
  675. mapping = page_mapping(hpage);
  676. if (mapping) {
  677. res = truncate_error_page(hpage, pfn, mapping);
  678. } else {
  679. unlock_page(hpage);
  680. /*
  681. * migration entry prevents later access on error anonymous
  682. * hugepage, so we can free and dissolve it into buddy to
  683. * save healthy subpages.
  684. */
  685. if (PageAnon(hpage))
  686. put_page(hpage);
  687. dissolve_free_huge_page(p);
  688. res = MF_RECOVERED;
  689. lock_page(hpage);
  690. }
  691. return res;
  692. }
  693. /*
  694. * Various page states we can handle.
  695. *
  696. * A page state is defined by its current page->flags bits.
  697. * The table matches them in order and calls the right handler.
  698. *
  699. * This is quite tricky because we can access page at any time
  700. * in its live cycle, so all accesses have to be extremely careful.
  701. *
  702. * This is not complete. More states could be added.
  703. * For any missing state don't attempt recovery.
  704. */
  705. #define dirty (1UL << PG_dirty)
  706. #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
  707. #define unevict (1UL << PG_unevictable)
  708. #define mlock (1UL << PG_mlocked)
  709. #define writeback (1UL << PG_writeback)
  710. #define lru (1UL << PG_lru)
  711. #define head (1UL << PG_head)
  712. #define slab (1UL << PG_slab)
  713. #define reserved (1UL << PG_reserved)
  714. static struct page_state {
  715. unsigned long mask;
  716. unsigned long res;
  717. enum mf_action_page_type type;
  718. int (*action)(struct page *p, unsigned long pfn);
  719. } error_states[] = {
  720. { reserved, reserved, MF_MSG_KERNEL, me_kernel },
  721. /*
  722. * free pages are specially detected outside this table:
  723. * PG_buddy pages only make a small fraction of all free pages.
  724. */
  725. /*
  726. * Could in theory check if slab page is free or if we can drop
  727. * currently unused objects without touching them. But just
  728. * treat it as standard kernel for now.
  729. */
  730. { slab, slab, MF_MSG_SLAB, me_kernel },
  731. { head, head, MF_MSG_HUGE, me_huge_page },
  732. { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
  733. { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
  734. { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
  735. { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
  736. { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
  737. { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
  738. { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
  739. { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
  740. /*
  741. * Catchall entry: must be at end.
  742. */
  743. { 0, 0, MF_MSG_UNKNOWN, me_unknown },
  744. };
  745. #undef dirty
  746. #undef sc
  747. #undef unevict
  748. #undef mlock
  749. #undef writeback
  750. #undef lru
  751. #undef head
  752. #undef slab
  753. #undef reserved
  754. /*
  755. * "Dirty/Clean" indication is not 100% accurate due to the possibility of
  756. * setting PG_dirty outside page lock. See also comment above set_page_dirty().
  757. */
  758. static void action_result(unsigned long pfn, enum mf_action_page_type type,
  759. enum mf_result result)
  760. {
  761. trace_memory_failure_event(pfn, type, result);
  762. pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
  763. pfn, action_page_types[type], action_name[result]);
  764. }
  765. static int page_action(struct page_state *ps, struct page *p,
  766. unsigned long pfn)
  767. {
  768. int result;
  769. int count;
  770. result = ps->action(p, pfn);
  771. count = page_count(p) - 1;
  772. if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
  773. count--;
  774. if (count > 0) {
  775. pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
  776. pfn, action_page_types[ps->type], count);
  777. result = MF_FAILED;
  778. }
  779. action_result(pfn, ps->type, result);
  780. /* Could do more checks here if page looks ok */
  781. /*
  782. * Could adjust zone counters here to correct for the missing page.
  783. */
  784. return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
  785. }
  786. /**
  787. * get_hwpoison_page() - Get refcount for memory error handling:
  788. * @page: raw error page (hit by memory error)
  789. *
  790. * Return: return 0 if failed to grab the refcount, otherwise true (some
  791. * non-zero value.)
  792. */
  793. int get_hwpoison_page(struct page *page)
  794. {
  795. struct page *head = compound_head(page);
  796. if (!PageHuge(head) && PageTransHuge(head)) {
  797. /*
  798. * Non anonymous thp exists only in allocation/free time. We
  799. * can't handle such a case correctly, so let's give it up.
  800. * This should be better than triggering BUG_ON when kernel
  801. * tries to touch the "partially handled" page.
  802. */
  803. if (!PageAnon(head)) {
  804. pr_err("Memory failure: %#lx: non anonymous thp\n",
  805. page_to_pfn(page));
  806. return 0;
  807. }
  808. }
  809. if (get_page_unless_zero(head)) {
  810. if (head == compound_head(page))
  811. return 1;
  812. pr_info("Memory failure: %#lx cannot catch tail\n",
  813. page_to_pfn(page));
  814. put_page(head);
  815. }
  816. return 0;
  817. }
  818. EXPORT_SYMBOL_GPL(get_hwpoison_page);
  819. /*
  820. * Do all that is necessary to remove user space mappings. Unmap
  821. * the pages and send SIGBUS to the processes if the data was dirty.
  822. */
  823. static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
  824. int flags, struct page **hpagep)
  825. {
  826. enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  827. struct address_space *mapping;
  828. LIST_HEAD(tokill);
  829. bool unmap_success;
  830. int kill = 1, forcekill;
  831. struct page *hpage = *hpagep;
  832. bool mlocked = PageMlocked(hpage);
  833. /*
  834. * Here we are interested only in user-mapped pages, so skip any
  835. * other types of pages.
  836. */
  837. if (PageReserved(p) || PageSlab(p))
  838. return true;
  839. if (!(PageLRU(hpage) || PageHuge(p)))
  840. return true;
  841. /*
  842. * This check implies we don't kill processes if their pages
  843. * are in the swap cache early. Those are always late kills.
  844. */
  845. if (!page_mapped(hpage))
  846. return true;
  847. if (PageKsm(p)) {
  848. pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
  849. return false;
  850. }
  851. if (PageSwapCache(p)) {
  852. pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
  853. pfn);
  854. ttu |= TTU_IGNORE_HWPOISON;
  855. }
  856. /*
  857. * Propagate the dirty bit from PTEs to struct page first, because we
  858. * need this to decide if we should kill or just drop the page.
  859. * XXX: the dirty test could be racy: set_page_dirty() may not always
  860. * be called inside page lock (it's recommended but not enforced).
  861. */
  862. mapping = page_mapping(hpage);
  863. if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
  864. mapping_cap_writeback_dirty(mapping)) {
  865. if (page_mkclean(hpage)) {
  866. SetPageDirty(hpage);
  867. } else {
  868. kill = 0;
  869. ttu |= TTU_IGNORE_HWPOISON;
  870. pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
  871. pfn);
  872. }
  873. }
  874. /*
  875. * First collect all the processes that have the page
  876. * mapped in dirty form. This has to be done before try_to_unmap,
  877. * because ttu takes the rmap data structures down.
  878. *
  879. * Error handling: We ignore errors here because
  880. * there's nothing that can be done.
  881. */
  882. if (kill)
  883. collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
  884. unmap_success = try_to_unmap(hpage, ttu);
  885. if (!unmap_success)
  886. pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
  887. pfn, page_mapcount(hpage));
  888. /*
  889. * try_to_unmap() might put mlocked page in lru cache, so call
  890. * shake_page() again to ensure that it's flushed.
  891. */
  892. if (mlocked)
  893. shake_page(hpage, 0);
  894. /*
  895. * Now that the dirty bit has been propagated to the
  896. * struct page and all unmaps done we can decide if
  897. * killing is needed or not. Only kill when the page
  898. * was dirty or the process is not restartable,
  899. * otherwise the tokill list is merely
  900. * freed. When there was a problem unmapping earlier
  901. * use a more force-full uncatchable kill to prevent
  902. * any accesses to the poisoned memory.
  903. */
  904. forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
  905. kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
  906. return unmap_success;
  907. }
  908. static int identify_page_state(unsigned long pfn, struct page *p,
  909. unsigned long page_flags)
  910. {
  911. struct page_state *ps;
  912. /*
  913. * The first check uses the current page flags which may not have any
  914. * relevant information. The second check with the saved page flags is
  915. * carried out only if the first check can't determine the page status.
  916. */
  917. for (ps = error_states;; ps++)
  918. if ((p->flags & ps->mask) == ps->res)
  919. break;
  920. page_flags |= (p->flags & (1UL << PG_dirty));
  921. if (!ps->mask)
  922. for (ps = error_states;; ps++)
  923. if ((page_flags & ps->mask) == ps->res)
  924. break;
  925. return page_action(ps, p, pfn);
  926. }
  927. static int memory_failure_hugetlb(unsigned long pfn, int flags)
  928. {
  929. struct page *p = pfn_to_page(pfn);
  930. struct page *head = compound_head(p);
  931. int res;
  932. unsigned long page_flags;
  933. if (TestSetPageHWPoison(head)) {
  934. pr_err("Memory failure: %#lx: already hardware poisoned\n",
  935. pfn);
  936. return 0;
  937. }
  938. num_poisoned_pages_inc();
  939. if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
  940. /*
  941. * Check "filter hit" and "race with other subpage."
  942. */
  943. lock_page(head);
  944. if (PageHWPoison(head)) {
  945. if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
  946. || (p != head && TestSetPageHWPoison(head))) {
  947. num_poisoned_pages_dec();
  948. unlock_page(head);
  949. return 0;
  950. }
  951. }
  952. unlock_page(head);
  953. dissolve_free_huge_page(p);
  954. action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
  955. return 0;
  956. }
  957. lock_page(head);
  958. page_flags = head->flags;
  959. if (!PageHWPoison(head)) {
  960. pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
  961. num_poisoned_pages_dec();
  962. unlock_page(head);
  963. put_hwpoison_page(head);
  964. return 0;
  965. }
  966. /*
  967. * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
  968. * simply disable it. In order to make it work properly, we need
  969. * make sure that:
  970. * - conversion of a pud that maps an error hugetlb into hwpoison
  971. * entry properly works, and
  972. * - other mm code walking over page table is aware of pud-aligned
  973. * hwpoison entries.
  974. */
  975. if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
  976. action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
  977. res = -EBUSY;
  978. goto out;
  979. }
  980. if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
  981. action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
  982. res = -EBUSY;
  983. goto out;
  984. }
  985. res = identify_page_state(pfn, p, page_flags);
  986. out:
  987. unlock_page(head);
  988. return res;
  989. }
  990. /**
  991. * memory_failure - Handle memory failure of a page.
  992. * @pfn: Page Number of the corrupted page
  993. * @flags: fine tune action taken
  994. *
  995. * This function is called by the low level machine check code
  996. * of an architecture when it detects hardware memory corruption
  997. * of a page. It tries its best to recover, which includes
  998. * dropping pages, killing processes etc.
  999. *
  1000. * The function is primarily of use for corruptions that
  1001. * happen outside the current execution context (e.g. when
  1002. * detected by a background scrubber)
  1003. *
  1004. * Must run in process context (e.g. a work queue) with interrupts
  1005. * enabled and no spinlocks hold.
  1006. */
  1007. int memory_failure(unsigned long pfn, int flags)
  1008. {
  1009. struct page *p;
  1010. struct page *hpage;
  1011. struct page *orig_head;
  1012. int res;
  1013. unsigned long page_flags;
  1014. if (!sysctl_memory_failure_recovery)
  1015. panic("Memory failure on page %lx", pfn);
  1016. if (!pfn_valid(pfn)) {
  1017. pr_err("Memory failure: %#lx: memory outside kernel control\n",
  1018. pfn);
  1019. return -ENXIO;
  1020. }
  1021. p = pfn_to_page(pfn);
  1022. if (PageHuge(p))
  1023. return memory_failure_hugetlb(pfn, flags);
  1024. if (TestSetPageHWPoison(p)) {
  1025. pr_err("Memory failure: %#lx: already hardware poisoned\n",
  1026. pfn);
  1027. return 0;
  1028. }
  1029. orig_head = hpage = compound_head(p);
  1030. num_poisoned_pages_inc();
  1031. /*
  1032. * We need/can do nothing about count=0 pages.
  1033. * 1) it's a free page, and therefore in safe hand:
  1034. * prep_new_page() will be the gate keeper.
  1035. * 2) it's part of a non-compound high order page.
  1036. * Implies some kernel user: cannot stop them from
  1037. * R/W the page; let's pray that the page has been
  1038. * used and will be freed some time later.
  1039. * In fact it's dangerous to directly bump up page count from 0,
  1040. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  1041. */
  1042. if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
  1043. if (is_free_buddy_page(p)) {
  1044. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  1045. return 0;
  1046. } else {
  1047. action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
  1048. return -EBUSY;
  1049. }
  1050. }
  1051. if (PageTransHuge(hpage)) {
  1052. lock_page(p);
  1053. if (!PageAnon(p) || unlikely(split_huge_page(p))) {
  1054. unlock_page(p);
  1055. if (!PageAnon(p))
  1056. pr_err("Memory failure: %#lx: non anonymous thp\n",
  1057. pfn);
  1058. else
  1059. pr_err("Memory failure: %#lx: thp split failed\n",
  1060. pfn);
  1061. if (TestClearPageHWPoison(p))
  1062. num_poisoned_pages_dec();
  1063. put_hwpoison_page(p);
  1064. return -EBUSY;
  1065. }
  1066. unlock_page(p);
  1067. VM_BUG_ON_PAGE(!page_count(p), p);
  1068. hpage = compound_head(p);
  1069. }
  1070. /*
  1071. * We ignore non-LRU pages for good reasons.
  1072. * - PG_locked is only well defined for LRU pages and a few others
  1073. * - to avoid races with __SetPageLocked()
  1074. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  1075. * The check (unnecessarily) ignores LRU pages being isolated and
  1076. * walked by the page reclaim code, however that's not a big loss.
  1077. */
  1078. shake_page(p, 0);
  1079. /* shake_page could have turned it free. */
  1080. if (!PageLRU(p) && is_free_buddy_page(p)) {
  1081. if (flags & MF_COUNT_INCREASED)
  1082. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  1083. else
  1084. action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
  1085. return 0;
  1086. }
  1087. lock_page(p);
  1088. /*
  1089. * The page could have changed compound pages during the locking.
  1090. * If this happens just bail out.
  1091. */
  1092. if (PageCompound(p) && compound_head(p) != orig_head) {
  1093. action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
  1094. res = -EBUSY;
  1095. goto out;
  1096. }
  1097. /*
  1098. * We use page flags to determine what action should be taken, but
  1099. * the flags can be modified by the error containment action. One
  1100. * example is an mlocked page, where PG_mlocked is cleared by
  1101. * page_remove_rmap() in try_to_unmap_one(). So to determine page status
  1102. * correctly, we save a copy of the page flags at this time.
  1103. */
  1104. if (PageHuge(p))
  1105. page_flags = hpage->flags;
  1106. else
  1107. page_flags = p->flags;
  1108. /*
  1109. * unpoison always clear PG_hwpoison inside page lock
  1110. */
  1111. if (!PageHWPoison(p)) {
  1112. pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
  1113. num_poisoned_pages_dec();
  1114. unlock_page(p);
  1115. put_hwpoison_page(p);
  1116. return 0;
  1117. }
  1118. if (hwpoison_filter(p)) {
  1119. if (TestClearPageHWPoison(p))
  1120. num_poisoned_pages_dec();
  1121. unlock_page(p);
  1122. put_hwpoison_page(p);
  1123. return 0;
  1124. }
  1125. if (!PageTransTail(p) && !PageLRU(p))
  1126. goto identify_page_state;
  1127. /*
  1128. * It's very difficult to mess with pages currently under IO
  1129. * and in many cases impossible, so we just avoid it here.
  1130. */
  1131. wait_on_page_writeback(p);
  1132. /*
  1133. * Now take care of user space mappings.
  1134. * Abort on fail: __delete_from_page_cache() assumes unmapped page.
  1135. *
  1136. * When the raw error page is thp tail page, hpage points to the raw
  1137. * page after thp split.
  1138. */
  1139. if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
  1140. action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
  1141. res = -EBUSY;
  1142. goto out;
  1143. }
  1144. /*
  1145. * Torn down by someone else?
  1146. */
  1147. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  1148. action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
  1149. res = -EBUSY;
  1150. goto out;
  1151. }
  1152. identify_page_state:
  1153. res = identify_page_state(pfn, p, page_flags);
  1154. out:
  1155. unlock_page(p);
  1156. return res;
  1157. }
  1158. EXPORT_SYMBOL_GPL(memory_failure);
  1159. #define MEMORY_FAILURE_FIFO_ORDER 4
  1160. #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
  1161. struct memory_failure_entry {
  1162. unsigned long pfn;
  1163. int flags;
  1164. };
  1165. struct memory_failure_cpu {
  1166. DECLARE_KFIFO(fifo, struct memory_failure_entry,
  1167. MEMORY_FAILURE_FIFO_SIZE);
  1168. spinlock_t lock;
  1169. struct work_struct work;
  1170. };
  1171. static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
  1172. /**
  1173. * memory_failure_queue - Schedule handling memory failure of a page.
  1174. * @pfn: Page Number of the corrupted page
  1175. * @flags: Flags for memory failure handling
  1176. *
  1177. * This function is called by the low level hardware error handler
  1178. * when it detects hardware memory corruption of a page. It schedules
  1179. * the recovering of error page, including dropping pages, killing
  1180. * processes etc.
  1181. *
  1182. * The function is primarily of use for corruptions that
  1183. * happen outside the current execution context (e.g. when
  1184. * detected by a background scrubber)
  1185. *
  1186. * Can run in IRQ context.
  1187. */
  1188. void memory_failure_queue(unsigned long pfn, int flags)
  1189. {
  1190. struct memory_failure_cpu *mf_cpu;
  1191. unsigned long proc_flags;
  1192. struct memory_failure_entry entry = {
  1193. .pfn = pfn,
  1194. .flags = flags,
  1195. };
  1196. mf_cpu = &get_cpu_var(memory_failure_cpu);
  1197. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1198. if (kfifo_put(&mf_cpu->fifo, entry))
  1199. schedule_work_on(smp_processor_id(), &mf_cpu->work);
  1200. else
  1201. pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
  1202. pfn);
  1203. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1204. put_cpu_var(memory_failure_cpu);
  1205. }
  1206. EXPORT_SYMBOL_GPL(memory_failure_queue);
  1207. static void memory_failure_work_func(struct work_struct *work)
  1208. {
  1209. struct memory_failure_cpu *mf_cpu;
  1210. struct memory_failure_entry entry = { 0, };
  1211. unsigned long proc_flags;
  1212. int gotten;
  1213. mf_cpu = this_cpu_ptr(&memory_failure_cpu);
  1214. for (;;) {
  1215. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1216. gotten = kfifo_get(&mf_cpu->fifo, &entry);
  1217. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1218. if (!gotten)
  1219. break;
  1220. if (entry.flags & MF_SOFT_OFFLINE)
  1221. soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
  1222. else
  1223. memory_failure(entry.pfn, entry.flags);
  1224. }
  1225. }
  1226. static int __init memory_failure_init(void)
  1227. {
  1228. struct memory_failure_cpu *mf_cpu;
  1229. int cpu;
  1230. for_each_possible_cpu(cpu) {
  1231. mf_cpu = &per_cpu(memory_failure_cpu, cpu);
  1232. spin_lock_init(&mf_cpu->lock);
  1233. INIT_KFIFO(mf_cpu->fifo);
  1234. INIT_WORK(&mf_cpu->work, memory_failure_work_func);
  1235. }
  1236. return 0;
  1237. }
  1238. core_initcall(memory_failure_init);
  1239. #define unpoison_pr_info(fmt, pfn, rs) \
  1240. ({ \
  1241. if (__ratelimit(rs)) \
  1242. pr_info(fmt, pfn); \
  1243. })
  1244. /**
  1245. * unpoison_memory - Unpoison a previously poisoned page
  1246. * @pfn: Page number of the to be unpoisoned page
  1247. *
  1248. * Software-unpoison a page that has been poisoned by
  1249. * memory_failure() earlier.
  1250. *
  1251. * This is only done on the software-level, so it only works
  1252. * for linux injected failures, not real hardware failures
  1253. *
  1254. * Returns 0 for success, otherwise -errno.
  1255. */
  1256. int unpoison_memory(unsigned long pfn)
  1257. {
  1258. struct page *page;
  1259. struct page *p;
  1260. int freeit = 0;
  1261. static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
  1262. DEFAULT_RATELIMIT_BURST);
  1263. if (!pfn_valid(pfn))
  1264. return -ENXIO;
  1265. p = pfn_to_page(pfn);
  1266. page = compound_head(p);
  1267. if (!PageHWPoison(p)) {
  1268. unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
  1269. pfn, &unpoison_rs);
  1270. return 0;
  1271. }
  1272. if (page_count(page) > 1) {
  1273. unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
  1274. pfn, &unpoison_rs);
  1275. return 0;
  1276. }
  1277. if (page_mapped(page)) {
  1278. unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
  1279. pfn, &unpoison_rs);
  1280. return 0;
  1281. }
  1282. if (page_mapping(page)) {
  1283. unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
  1284. pfn, &unpoison_rs);
  1285. return 0;
  1286. }
  1287. /*
  1288. * unpoison_memory() can encounter thp only when the thp is being
  1289. * worked by memory_failure() and the page lock is not held yet.
  1290. * In such case, we yield to memory_failure() and make unpoison fail.
  1291. */
  1292. if (!PageHuge(page) && PageTransHuge(page)) {
  1293. unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
  1294. pfn, &unpoison_rs);
  1295. return 0;
  1296. }
  1297. if (!get_hwpoison_page(p)) {
  1298. if (TestClearPageHWPoison(p))
  1299. num_poisoned_pages_dec();
  1300. unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
  1301. pfn, &unpoison_rs);
  1302. return 0;
  1303. }
  1304. lock_page(page);
  1305. /*
  1306. * This test is racy because PG_hwpoison is set outside of page lock.
  1307. * That's acceptable because that won't trigger kernel panic. Instead,
  1308. * the PG_hwpoison page will be caught and isolated on the entrance to
  1309. * the free buddy page pool.
  1310. */
  1311. if (TestClearPageHWPoison(page)) {
  1312. unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
  1313. pfn, &unpoison_rs);
  1314. num_poisoned_pages_dec();
  1315. freeit = 1;
  1316. }
  1317. unlock_page(page);
  1318. put_hwpoison_page(page);
  1319. if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
  1320. put_hwpoison_page(page);
  1321. return 0;
  1322. }
  1323. EXPORT_SYMBOL(unpoison_memory);
  1324. static struct page *new_page(struct page *p, unsigned long private)
  1325. {
  1326. int nid = page_to_nid(p);
  1327. return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
  1328. }
  1329. /*
  1330. * Safely get reference count of an arbitrary page.
  1331. * Returns 0 for a free page, -EIO for a zero refcount page
  1332. * that is not free, and 1 for any other page type.
  1333. * For 1 the page is returned with increased page count, otherwise not.
  1334. */
  1335. static int __get_any_page(struct page *p, unsigned long pfn, int flags)
  1336. {
  1337. int ret;
  1338. if (flags & MF_COUNT_INCREASED)
  1339. return 1;
  1340. /*
  1341. * When the target page is a free hugepage, just remove it
  1342. * from free hugepage list.
  1343. */
  1344. if (!get_hwpoison_page(p)) {
  1345. if (PageHuge(p)) {
  1346. pr_info("%s: %#lx free huge page\n", __func__, pfn);
  1347. ret = 0;
  1348. } else if (is_free_buddy_page(p)) {
  1349. pr_info("%s: %#lx free buddy page\n", __func__, pfn);
  1350. ret = 0;
  1351. } else {
  1352. pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
  1353. __func__, pfn, p->flags);
  1354. ret = -EIO;
  1355. }
  1356. } else {
  1357. /* Not a free page */
  1358. ret = 1;
  1359. }
  1360. return ret;
  1361. }
  1362. static int get_any_page(struct page *page, unsigned long pfn, int flags)
  1363. {
  1364. int ret = __get_any_page(page, pfn, flags);
  1365. if (ret == 1 && !PageHuge(page) &&
  1366. !PageLRU(page) && !__PageMovable(page)) {
  1367. /*
  1368. * Try to free it.
  1369. */
  1370. put_hwpoison_page(page);
  1371. shake_page(page, 1);
  1372. /*
  1373. * Did it turn free?
  1374. */
  1375. ret = __get_any_page(page, pfn, 0);
  1376. if (ret == 1 && !PageLRU(page)) {
  1377. /* Drop page reference which is from __get_any_page() */
  1378. put_hwpoison_page(page);
  1379. pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
  1380. pfn, page->flags, &page->flags);
  1381. return -EIO;
  1382. }
  1383. }
  1384. return ret;
  1385. }
  1386. static int soft_offline_huge_page(struct page *page, int flags)
  1387. {
  1388. int ret;
  1389. unsigned long pfn = page_to_pfn(page);
  1390. struct page *hpage = compound_head(page);
  1391. LIST_HEAD(pagelist);
  1392. /*
  1393. * This double-check of PageHWPoison is to avoid the race with
  1394. * memory_failure(). See also comment in __soft_offline_page().
  1395. */
  1396. lock_page(hpage);
  1397. if (PageHWPoison(hpage)) {
  1398. unlock_page(hpage);
  1399. put_hwpoison_page(hpage);
  1400. pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
  1401. return -EBUSY;
  1402. }
  1403. unlock_page(hpage);
  1404. ret = isolate_huge_page(hpage, &pagelist);
  1405. /*
  1406. * get_any_page() and isolate_huge_page() takes a refcount each,
  1407. * so need to drop one here.
  1408. */
  1409. put_hwpoison_page(hpage);
  1410. if (!ret) {
  1411. pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
  1412. return -EBUSY;
  1413. }
  1414. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1415. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1416. if (ret) {
  1417. pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
  1418. pfn, ret, page->flags, &page->flags);
  1419. if (!list_empty(&pagelist))
  1420. putback_movable_pages(&pagelist);
  1421. if (ret > 0)
  1422. ret = -EIO;
  1423. } else {
  1424. if (PageHuge(page))
  1425. dissolve_free_huge_page(page);
  1426. }
  1427. return ret;
  1428. }
  1429. static int __soft_offline_page(struct page *page, int flags)
  1430. {
  1431. int ret;
  1432. unsigned long pfn = page_to_pfn(page);
  1433. /*
  1434. * Check PageHWPoison again inside page lock because PageHWPoison
  1435. * is set by memory_failure() outside page lock. Note that
  1436. * memory_failure() also double-checks PageHWPoison inside page lock,
  1437. * so there's no race between soft_offline_page() and memory_failure().
  1438. */
  1439. lock_page(page);
  1440. wait_on_page_writeback(page);
  1441. if (PageHWPoison(page)) {
  1442. unlock_page(page);
  1443. put_hwpoison_page(page);
  1444. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1445. return -EBUSY;
  1446. }
  1447. /*
  1448. * Try to invalidate first. This should work for
  1449. * non dirty unmapped page cache pages.
  1450. */
  1451. ret = invalidate_inode_page(page);
  1452. unlock_page(page);
  1453. /*
  1454. * RED-PEN would be better to keep it isolated here, but we
  1455. * would need to fix isolation locking first.
  1456. */
  1457. if (ret == 1) {
  1458. put_hwpoison_page(page);
  1459. pr_info("soft_offline: %#lx: invalidated\n", pfn);
  1460. SetPageHWPoison(page);
  1461. num_poisoned_pages_inc();
  1462. return 0;
  1463. }
  1464. /*
  1465. * Simple invalidation didn't work.
  1466. * Try to migrate to a new page instead. migrate.c
  1467. * handles a large number of cases for us.
  1468. */
  1469. if (PageLRU(page))
  1470. ret = isolate_lru_page(page);
  1471. else
  1472. ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
  1473. /*
  1474. * Drop page reference which is came from get_any_page()
  1475. * successful isolate_lru_page() already took another one.
  1476. */
  1477. put_hwpoison_page(page);
  1478. if (!ret) {
  1479. LIST_HEAD(pagelist);
  1480. /*
  1481. * After isolated lru page, the PageLRU will be cleared,
  1482. * so use !__PageMovable instead for LRU page's mapping
  1483. * cannot have PAGE_MAPPING_MOVABLE.
  1484. */
  1485. if (!__PageMovable(page))
  1486. inc_node_page_state(page, NR_ISOLATED_ANON +
  1487. page_is_file_cache(page));
  1488. list_add(&page->lru, &pagelist);
  1489. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1490. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1491. if (ret) {
  1492. if (!list_empty(&pagelist))
  1493. putback_movable_pages(&pagelist);
  1494. pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
  1495. pfn, ret, page->flags, &page->flags);
  1496. if (ret > 0)
  1497. ret = -EIO;
  1498. }
  1499. } else {
  1500. pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
  1501. pfn, ret, page_count(page), page->flags, &page->flags);
  1502. }
  1503. return ret;
  1504. }
  1505. static int soft_offline_in_use_page(struct page *page, int flags)
  1506. {
  1507. int ret;
  1508. struct page *hpage = compound_head(page);
  1509. if (!PageHuge(page) && PageTransHuge(hpage)) {
  1510. lock_page(hpage);
  1511. if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
  1512. unlock_page(hpage);
  1513. if (!PageAnon(hpage))
  1514. pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
  1515. else
  1516. pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
  1517. put_hwpoison_page(hpage);
  1518. return -EBUSY;
  1519. }
  1520. unlock_page(hpage);
  1521. get_hwpoison_page(page);
  1522. put_hwpoison_page(hpage);
  1523. }
  1524. if (PageHuge(page))
  1525. ret = soft_offline_huge_page(page, flags);
  1526. else
  1527. ret = __soft_offline_page(page, flags);
  1528. return ret;
  1529. }
  1530. static void soft_offline_free_page(struct page *page)
  1531. {
  1532. struct page *head = compound_head(page);
  1533. if (!TestSetPageHWPoison(head)) {
  1534. num_poisoned_pages_inc();
  1535. if (PageHuge(head))
  1536. dissolve_free_huge_page(page);
  1537. }
  1538. }
  1539. /**
  1540. * soft_offline_page - Soft offline a page.
  1541. * @page: page to offline
  1542. * @flags: flags. Same as memory_failure().
  1543. *
  1544. * Returns 0 on success, otherwise negated errno.
  1545. *
  1546. * Soft offline a page, by migration or invalidation,
  1547. * without killing anything. This is for the case when
  1548. * a page is not corrupted yet (so it's still valid to access),
  1549. * but has had a number of corrected errors and is better taken
  1550. * out.
  1551. *
  1552. * The actual policy on when to do that is maintained by
  1553. * user space.
  1554. *
  1555. * This should never impact any application or cause data loss,
  1556. * however it might take some time.
  1557. *
  1558. * This is not a 100% solution for all memory, but tries to be
  1559. * ``good enough'' for the majority of memory.
  1560. */
  1561. int soft_offline_page(struct page *page, int flags)
  1562. {
  1563. int ret;
  1564. unsigned long pfn = page_to_pfn(page);
  1565. if (PageHWPoison(page)) {
  1566. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1567. if (flags & MF_COUNT_INCREASED)
  1568. put_hwpoison_page(page);
  1569. return -EBUSY;
  1570. }
  1571. get_online_mems();
  1572. ret = get_any_page(page, pfn, flags);
  1573. put_online_mems();
  1574. if (ret > 0)
  1575. ret = soft_offline_in_use_page(page, flags);
  1576. else if (ret == 0)
  1577. soft_offline_free_page(page);
  1578. return ret;
  1579. }