ordered-data.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2007 Oracle. All rights reserved.
  4. */
  5. #include <linux/slab.h>
  6. #include <linux/blkdev.h>
  7. #include <linux/writeback.h>
  8. #include <linux/pagevec.h>
  9. #include "ctree.h"
  10. #include "transaction.h"
  11. #include "btrfs_inode.h"
  12. #include "extent_io.h"
  13. #include "disk-io.h"
  14. #include "compression.h"
  15. static struct kmem_cache *btrfs_ordered_extent_cache;
  16. static u64 entry_end(struct btrfs_ordered_extent *entry)
  17. {
  18. if (entry->file_offset + entry->len < entry->file_offset)
  19. return (u64)-1;
  20. return entry->file_offset + entry->len;
  21. }
  22. /* returns NULL if the insertion worked, or it returns the node it did find
  23. * in the tree
  24. */
  25. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  26. struct rb_node *node)
  27. {
  28. struct rb_node **p = &root->rb_node;
  29. struct rb_node *parent = NULL;
  30. struct btrfs_ordered_extent *entry;
  31. while (*p) {
  32. parent = *p;
  33. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  34. if (file_offset < entry->file_offset)
  35. p = &(*p)->rb_left;
  36. else if (file_offset >= entry_end(entry))
  37. p = &(*p)->rb_right;
  38. else
  39. return parent;
  40. }
  41. rb_link_node(node, parent, p);
  42. rb_insert_color(node, root);
  43. return NULL;
  44. }
  45. static void ordered_data_tree_panic(struct inode *inode, int errno,
  46. u64 offset)
  47. {
  48. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  49. btrfs_panic(fs_info, errno,
  50. "Inconsistency in ordered tree at offset %llu", offset);
  51. }
  52. /*
  53. * look for a given offset in the tree, and if it can't be found return the
  54. * first lesser offset
  55. */
  56. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  57. struct rb_node **prev_ret)
  58. {
  59. struct rb_node *n = root->rb_node;
  60. struct rb_node *prev = NULL;
  61. struct rb_node *test;
  62. struct btrfs_ordered_extent *entry;
  63. struct btrfs_ordered_extent *prev_entry = NULL;
  64. while (n) {
  65. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  66. prev = n;
  67. prev_entry = entry;
  68. if (file_offset < entry->file_offset)
  69. n = n->rb_left;
  70. else if (file_offset >= entry_end(entry))
  71. n = n->rb_right;
  72. else
  73. return n;
  74. }
  75. if (!prev_ret)
  76. return NULL;
  77. while (prev && file_offset >= entry_end(prev_entry)) {
  78. test = rb_next(prev);
  79. if (!test)
  80. break;
  81. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  82. rb_node);
  83. if (file_offset < entry_end(prev_entry))
  84. break;
  85. prev = test;
  86. }
  87. if (prev)
  88. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  89. rb_node);
  90. while (prev && file_offset < entry_end(prev_entry)) {
  91. test = rb_prev(prev);
  92. if (!test)
  93. break;
  94. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  95. rb_node);
  96. prev = test;
  97. }
  98. *prev_ret = prev;
  99. return NULL;
  100. }
  101. /*
  102. * helper to check if a given offset is inside a given entry
  103. */
  104. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  105. {
  106. if (file_offset < entry->file_offset ||
  107. entry->file_offset + entry->len <= file_offset)
  108. return 0;
  109. return 1;
  110. }
  111. static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
  112. u64 len)
  113. {
  114. if (file_offset + len <= entry->file_offset ||
  115. entry->file_offset + entry->len <= file_offset)
  116. return 0;
  117. return 1;
  118. }
  119. /*
  120. * look find the first ordered struct that has this offset, otherwise
  121. * the first one less than this offset
  122. */
  123. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  124. u64 file_offset)
  125. {
  126. struct rb_root *root = &tree->tree;
  127. struct rb_node *prev = NULL;
  128. struct rb_node *ret;
  129. struct btrfs_ordered_extent *entry;
  130. if (tree->last) {
  131. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  132. rb_node);
  133. if (offset_in_entry(entry, file_offset))
  134. return tree->last;
  135. }
  136. ret = __tree_search(root, file_offset, &prev);
  137. if (!ret)
  138. ret = prev;
  139. if (ret)
  140. tree->last = ret;
  141. return ret;
  142. }
  143. /* allocate and add a new ordered_extent into the per-inode tree.
  144. * file_offset is the logical offset in the file
  145. *
  146. * start is the disk block number of an extent already reserved in the
  147. * extent allocation tree
  148. *
  149. * len is the length of the extent
  150. *
  151. * The tree is given a single reference on the ordered extent that was
  152. * inserted.
  153. */
  154. static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  155. u64 start, u64 len, u64 disk_len,
  156. int type, int dio, int compress_type)
  157. {
  158. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  159. struct btrfs_root *root = BTRFS_I(inode)->root;
  160. struct btrfs_ordered_inode_tree *tree;
  161. struct rb_node *node;
  162. struct btrfs_ordered_extent *entry;
  163. tree = &BTRFS_I(inode)->ordered_tree;
  164. entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
  165. if (!entry)
  166. return -ENOMEM;
  167. entry->file_offset = file_offset;
  168. entry->start = start;
  169. entry->len = len;
  170. entry->disk_len = disk_len;
  171. entry->bytes_left = len;
  172. entry->inode = igrab(inode);
  173. entry->compress_type = compress_type;
  174. entry->truncated_len = (u64)-1;
  175. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  176. set_bit(type, &entry->flags);
  177. if (dio)
  178. set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
  179. /* one ref for the tree */
  180. refcount_set(&entry->refs, 1);
  181. init_waitqueue_head(&entry->wait);
  182. INIT_LIST_HEAD(&entry->list);
  183. INIT_LIST_HEAD(&entry->root_extent_list);
  184. INIT_LIST_HEAD(&entry->work_list);
  185. init_completion(&entry->completion);
  186. INIT_LIST_HEAD(&entry->log_list);
  187. INIT_LIST_HEAD(&entry->trans_list);
  188. trace_btrfs_ordered_extent_add(inode, entry);
  189. spin_lock_irq(&tree->lock);
  190. node = tree_insert(&tree->tree, file_offset,
  191. &entry->rb_node);
  192. if (node)
  193. ordered_data_tree_panic(inode, -EEXIST, file_offset);
  194. spin_unlock_irq(&tree->lock);
  195. spin_lock(&root->ordered_extent_lock);
  196. list_add_tail(&entry->root_extent_list,
  197. &root->ordered_extents);
  198. root->nr_ordered_extents++;
  199. if (root->nr_ordered_extents == 1) {
  200. spin_lock(&fs_info->ordered_root_lock);
  201. BUG_ON(!list_empty(&root->ordered_root));
  202. list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
  203. spin_unlock(&fs_info->ordered_root_lock);
  204. }
  205. spin_unlock(&root->ordered_extent_lock);
  206. /*
  207. * We don't need the count_max_extents here, we can assume that all of
  208. * that work has been done at higher layers, so this is truly the
  209. * smallest the extent is going to get.
  210. */
  211. spin_lock(&BTRFS_I(inode)->lock);
  212. btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
  213. spin_unlock(&BTRFS_I(inode)->lock);
  214. return 0;
  215. }
  216. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  217. u64 start, u64 len, u64 disk_len, int type)
  218. {
  219. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  220. disk_len, type, 0,
  221. BTRFS_COMPRESS_NONE);
  222. }
  223. int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
  224. u64 start, u64 len, u64 disk_len, int type)
  225. {
  226. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  227. disk_len, type, 1,
  228. BTRFS_COMPRESS_NONE);
  229. }
  230. int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
  231. u64 start, u64 len, u64 disk_len,
  232. int type, int compress_type)
  233. {
  234. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  235. disk_len, type, 0,
  236. compress_type);
  237. }
  238. /*
  239. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  240. * when an ordered extent is finished. If the list covers more than one
  241. * ordered extent, it is split across multiples.
  242. */
  243. void btrfs_add_ordered_sum(struct inode *inode,
  244. struct btrfs_ordered_extent *entry,
  245. struct btrfs_ordered_sum *sum)
  246. {
  247. struct btrfs_ordered_inode_tree *tree;
  248. tree = &BTRFS_I(inode)->ordered_tree;
  249. spin_lock_irq(&tree->lock);
  250. list_add_tail(&sum->list, &entry->list);
  251. spin_unlock_irq(&tree->lock);
  252. }
  253. /*
  254. * this is used to account for finished IO across a given range
  255. * of the file. The IO may span ordered extents. If
  256. * a given ordered_extent is completely done, 1 is returned, otherwise
  257. * 0.
  258. *
  259. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  260. * to make sure this function only returns 1 once for a given ordered extent.
  261. *
  262. * file_offset is updated to one byte past the range that is recorded as
  263. * complete. This allows you to walk forward in the file.
  264. */
  265. int btrfs_dec_test_first_ordered_pending(struct inode *inode,
  266. struct btrfs_ordered_extent **cached,
  267. u64 *file_offset, u64 io_size, int uptodate)
  268. {
  269. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  270. struct btrfs_ordered_inode_tree *tree;
  271. struct rb_node *node;
  272. struct btrfs_ordered_extent *entry = NULL;
  273. int ret;
  274. unsigned long flags;
  275. u64 dec_end;
  276. u64 dec_start;
  277. u64 to_dec;
  278. tree = &BTRFS_I(inode)->ordered_tree;
  279. spin_lock_irqsave(&tree->lock, flags);
  280. node = tree_search(tree, *file_offset);
  281. if (!node) {
  282. ret = 1;
  283. goto out;
  284. }
  285. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  286. if (!offset_in_entry(entry, *file_offset)) {
  287. ret = 1;
  288. goto out;
  289. }
  290. dec_start = max(*file_offset, entry->file_offset);
  291. dec_end = min(*file_offset + io_size, entry->file_offset +
  292. entry->len);
  293. *file_offset = dec_end;
  294. if (dec_start > dec_end) {
  295. btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
  296. dec_start, dec_end);
  297. }
  298. to_dec = dec_end - dec_start;
  299. if (to_dec > entry->bytes_left) {
  300. btrfs_crit(fs_info,
  301. "bad ordered accounting left %llu size %llu",
  302. entry->bytes_left, to_dec);
  303. }
  304. entry->bytes_left -= to_dec;
  305. if (!uptodate)
  306. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  307. if (entry->bytes_left == 0) {
  308. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  309. /* test_and_set_bit implies a barrier */
  310. cond_wake_up_nomb(&entry->wait);
  311. } else {
  312. ret = 1;
  313. }
  314. out:
  315. if (!ret && cached && entry) {
  316. *cached = entry;
  317. refcount_inc(&entry->refs);
  318. }
  319. spin_unlock_irqrestore(&tree->lock, flags);
  320. return ret == 0;
  321. }
  322. /*
  323. * this is used to account for finished IO across a given range
  324. * of the file. The IO should not span ordered extents. If
  325. * a given ordered_extent is completely done, 1 is returned, otherwise
  326. * 0.
  327. *
  328. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  329. * to make sure this function only returns 1 once for a given ordered extent.
  330. */
  331. int btrfs_dec_test_ordered_pending(struct inode *inode,
  332. struct btrfs_ordered_extent **cached,
  333. u64 file_offset, u64 io_size, int uptodate)
  334. {
  335. struct btrfs_ordered_inode_tree *tree;
  336. struct rb_node *node;
  337. struct btrfs_ordered_extent *entry = NULL;
  338. unsigned long flags;
  339. int ret;
  340. tree = &BTRFS_I(inode)->ordered_tree;
  341. spin_lock_irqsave(&tree->lock, flags);
  342. if (cached && *cached) {
  343. entry = *cached;
  344. goto have_entry;
  345. }
  346. node = tree_search(tree, file_offset);
  347. if (!node) {
  348. ret = 1;
  349. goto out;
  350. }
  351. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  352. have_entry:
  353. if (!offset_in_entry(entry, file_offset)) {
  354. ret = 1;
  355. goto out;
  356. }
  357. if (io_size > entry->bytes_left) {
  358. btrfs_crit(BTRFS_I(inode)->root->fs_info,
  359. "bad ordered accounting left %llu size %llu",
  360. entry->bytes_left, io_size);
  361. }
  362. entry->bytes_left -= io_size;
  363. if (!uptodate)
  364. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  365. if (entry->bytes_left == 0) {
  366. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  367. /* test_and_set_bit implies a barrier */
  368. cond_wake_up_nomb(&entry->wait);
  369. } else {
  370. ret = 1;
  371. }
  372. out:
  373. if (!ret && cached && entry) {
  374. *cached = entry;
  375. refcount_inc(&entry->refs);
  376. }
  377. spin_unlock_irqrestore(&tree->lock, flags);
  378. return ret == 0;
  379. }
  380. /* Needs to either be called under a log transaction or the log_mutex */
  381. void btrfs_get_logged_extents(struct btrfs_inode *inode,
  382. struct list_head *logged_list,
  383. const loff_t start,
  384. const loff_t end)
  385. {
  386. struct btrfs_ordered_inode_tree *tree;
  387. struct btrfs_ordered_extent *ordered;
  388. struct rb_node *n;
  389. struct rb_node *prev;
  390. tree = &inode->ordered_tree;
  391. spin_lock_irq(&tree->lock);
  392. n = __tree_search(&tree->tree, end, &prev);
  393. if (!n)
  394. n = prev;
  395. for (; n; n = rb_prev(n)) {
  396. ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  397. if (ordered->file_offset > end)
  398. continue;
  399. if (entry_end(ordered) <= start)
  400. break;
  401. if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
  402. continue;
  403. list_add(&ordered->log_list, logged_list);
  404. refcount_inc(&ordered->refs);
  405. }
  406. spin_unlock_irq(&tree->lock);
  407. }
  408. void btrfs_put_logged_extents(struct list_head *logged_list)
  409. {
  410. struct btrfs_ordered_extent *ordered;
  411. while (!list_empty(logged_list)) {
  412. ordered = list_first_entry(logged_list,
  413. struct btrfs_ordered_extent,
  414. log_list);
  415. list_del_init(&ordered->log_list);
  416. btrfs_put_ordered_extent(ordered);
  417. }
  418. }
  419. void btrfs_submit_logged_extents(struct list_head *logged_list,
  420. struct btrfs_root *log)
  421. {
  422. int index = log->log_transid % 2;
  423. spin_lock_irq(&log->log_extents_lock[index]);
  424. list_splice_tail(logged_list, &log->logged_list[index]);
  425. spin_unlock_irq(&log->log_extents_lock[index]);
  426. }
  427. void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
  428. struct btrfs_root *log, u64 transid)
  429. {
  430. struct btrfs_ordered_extent *ordered;
  431. int index = transid % 2;
  432. spin_lock_irq(&log->log_extents_lock[index]);
  433. while (!list_empty(&log->logged_list[index])) {
  434. struct inode *inode;
  435. ordered = list_first_entry(&log->logged_list[index],
  436. struct btrfs_ordered_extent,
  437. log_list);
  438. list_del_init(&ordered->log_list);
  439. inode = ordered->inode;
  440. spin_unlock_irq(&log->log_extents_lock[index]);
  441. if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
  442. !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
  443. u64 start = ordered->file_offset;
  444. u64 end = ordered->file_offset + ordered->len - 1;
  445. WARN_ON(!inode);
  446. filemap_fdatawrite_range(inode->i_mapping, start, end);
  447. }
  448. wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
  449. &ordered->flags));
  450. /*
  451. * In order to keep us from losing our ordered extent
  452. * information when committing the transaction we have to make
  453. * sure that any logged extents are completed when we go to
  454. * commit the transaction. To do this we simply increase the
  455. * current transactions pending_ordered counter and decrement it
  456. * when the ordered extent completes.
  457. */
  458. if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
  459. struct btrfs_ordered_inode_tree *tree;
  460. tree = &BTRFS_I(inode)->ordered_tree;
  461. spin_lock_irq(&tree->lock);
  462. if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
  463. set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
  464. atomic_inc(&trans->transaction->pending_ordered);
  465. }
  466. spin_unlock_irq(&tree->lock);
  467. }
  468. btrfs_put_ordered_extent(ordered);
  469. spin_lock_irq(&log->log_extents_lock[index]);
  470. }
  471. spin_unlock_irq(&log->log_extents_lock[index]);
  472. }
  473. void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
  474. {
  475. struct btrfs_ordered_extent *ordered;
  476. int index = transid % 2;
  477. spin_lock_irq(&log->log_extents_lock[index]);
  478. while (!list_empty(&log->logged_list[index])) {
  479. ordered = list_first_entry(&log->logged_list[index],
  480. struct btrfs_ordered_extent,
  481. log_list);
  482. list_del_init(&ordered->log_list);
  483. spin_unlock_irq(&log->log_extents_lock[index]);
  484. btrfs_put_ordered_extent(ordered);
  485. spin_lock_irq(&log->log_extents_lock[index]);
  486. }
  487. spin_unlock_irq(&log->log_extents_lock[index]);
  488. }
  489. /*
  490. * used to drop a reference on an ordered extent. This will free
  491. * the extent if the last reference is dropped
  492. */
  493. void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  494. {
  495. struct list_head *cur;
  496. struct btrfs_ordered_sum *sum;
  497. trace_btrfs_ordered_extent_put(entry->inode, entry);
  498. if (refcount_dec_and_test(&entry->refs)) {
  499. ASSERT(list_empty(&entry->log_list));
  500. ASSERT(list_empty(&entry->trans_list));
  501. ASSERT(list_empty(&entry->root_extent_list));
  502. ASSERT(RB_EMPTY_NODE(&entry->rb_node));
  503. if (entry->inode)
  504. btrfs_add_delayed_iput(entry->inode);
  505. while (!list_empty(&entry->list)) {
  506. cur = entry->list.next;
  507. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  508. list_del(&sum->list);
  509. kfree(sum);
  510. }
  511. kmem_cache_free(btrfs_ordered_extent_cache, entry);
  512. }
  513. }
  514. /*
  515. * remove an ordered extent from the tree. No references are dropped
  516. * and waiters are woken up.
  517. */
  518. void btrfs_remove_ordered_extent(struct inode *inode,
  519. struct btrfs_ordered_extent *entry)
  520. {
  521. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  522. struct btrfs_ordered_inode_tree *tree;
  523. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  524. struct btrfs_root *root = btrfs_inode->root;
  525. struct rb_node *node;
  526. bool dec_pending_ordered = false;
  527. /* This is paired with btrfs_add_ordered_extent. */
  528. spin_lock(&btrfs_inode->lock);
  529. btrfs_mod_outstanding_extents(btrfs_inode, -1);
  530. spin_unlock(&btrfs_inode->lock);
  531. if (root != fs_info->tree_root)
  532. btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
  533. tree = &btrfs_inode->ordered_tree;
  534. spin_lock_irq(&tree->lock);
  535. node = &entry->rb_node;
  536. rb_erase(node, &tree->tree);
  537. RB_CLEAR_NODE(node);
  538. if (tree->last == node)
  539. tree->last = NULL;
  540. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  541. if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
  542. dec_pending_ordered = true;
  543. spin_unlock_irq(&tree->lock);
  544. /*
  545. * The current running transaction is waiting on us, we need to let it
  546. * know that we're complete and wake it up.
  547. */
  548. if (dec_pending_ordered) {
  549. struct btrfs_transaction *trans;
  550. /*
  551. * The checks for trans are just a formality, it should be set,
  552. * but if it isn't we don't want to deref/assert under the spin
  553. * lock, so be nice and check if trans is set, but ASSERT() so
  554. * if it isn't set a developer will notice.
  555. */
  556. spin_lock(&fs_info->trans_lock);
  557. trans = fs_info->running_transaction;
  558. if (trans)
  559. refcount_inc(&trans->use_count);
  560. spin_unlock(&fs_info->trans_lock);
  561. ASSERT(trans);
  562. if (trans) {
  563. if (atomic_dec_and_test(&trans->pending_ordered))
  564. wake_up(&trans->pending_wait);
  565. btrfs_put_transaction(trans);
  566. }
  567. }
  568. spin_lock(&root->ordered_extent_lock);
  569. list_del_init(&entry->root_extent_list);
  570. root->nr_ordered_extents--;
  571. trace_btrfs_ordered_extent_remove(inode, entry);
  572. if (!root->nr_ordered_extents) {
  573. spin_lock(&fs_info->ordered_root_lock);
  574. BUG_ON(list_empty(&root->ordered_root));
  575. list_del_init(&root->ordered_root);
  576. spin_unlock(&fs_info->ordered_root_lock);
  577. }
  578. spin_unlock(&root->ordered_extent_lock);
  579. wake_up(&entry->wait);
  580. }
  581. static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
  582. {
  583. struct btrfs_ordered_extent *ordered;
  584. ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
  585. btrfs_start_ordered_extent(ordered->inode, ordered, 1);
  586. complete(&ordered->completion);
  587. }
  588. /*
  589. * wait for all the ordered extents in a root. This is done when balancing
  590. * space between drives.
  591. */
  592. u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
  593. const u64 range_start, const u64 range_len)
  594. {
  595. struct btrfs_fs_info *fs_info = root->fs_info;
  596. LIST_HEAD(splice);
  597. LIST_HEAD(skipped);
  598. LIST_HEAD(works);
  599. struct btrfs_ordered_extent *ordered, *next;
  600. u64 count = 0;
  601. const u64 range_end = range_start + range_len;
  602. mutex_lock(&root->ordered_extent_mutex);
  603. spin_lock(&root->ordered_extent_lock);
  604. list_splice_init(&root->ordered_extents, &splice);
  605. while (!list_empty(&splice) && nr) {
  606. ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
  607. root_extent_list);
  608. if (range_end <= ordered->start ||
  609. ordered->start + ordered->disk_len <= range_start) {
  610. list_move_tail(&ordered->root_extent_list, &skipped);
  611. cond_resched_lock(&root->ordered_extent_lock);
  612. continue;
  613. }
  614. list_move_tail(&ordered->root_extent_list,
  615. &root->ordered_extents);
  616. refcount_inc(&ordered->refs);
  617. spin_unlock(&root->ordered_extent_lock);
  618. btrfs_init_work(&ordered->flush_work,
  619. btrfs_flush_delalloc_helper,
  620. btrfs_run_ordered_extent_work, NULL, NULL);
  621. list_add_tail(&ordered->work_list, &works);
  622. btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
  623. cond_resched();
  624. spin_lock(&root->ordered_extent_lock);
  625. if (nr != U64_MAX)
  626. nr--;
  627. count++;
  628. }
  629. list_splice_tail(&skipped, &root->ordered_extents);
  630. list_splice_tail(&splice, &root->ordered_extents);
  631. spin_unlock(&root->ordered_extent_lock);
  632. list_for_each_entry_safe(ordered, next, &works, work_list) {
  633. list_del_init(&ordered->work_list);
  634. wait_for_completion(&ordered->completion);
  635. btrfs_put_ordered_extent(ordered);
  636. cond_resched();
  637. }
  638. mutex_unlock(&root->ordered_extent_mutex);
  639. return count;
  640. }
  641. u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
  642. const u64 range_start, const u64 range_len)
  643. {
  644. struct btrfs_root *root;
  645. struct list_head splice;
  646. u64 total_done = 0;
  647. u64 done;
  648. INIT_LIST_HEAD(&splice);
  649. mutex_lock(&fs_info->ordered_operations_mutex);
  650. spin_lock(&fs_info->ordered_root_lock);
  651. list_splice_init(&fs_info->ordered_roots, &splice);
  652. while (!list_empty(&splice) && nr) {
  653. root = list_first_entry(&splice, struct btrfs_root,
  654. ordered_root);
  655. root = btrfs_grab_fs_root(root);
  656. BUG_ON(!root);
  657. list_move_tail(&root->ordered_root,
  658. &fs_info->ordered_roots);
  659. spin_unlock(&fs_info->ordered_root_lock);
  660. done = btrfs_wait_ordered_extents(root, nr,
  661. range_start, range_len);
  662. btrfs_put_fs_root(root);
  663. total_done += done;
  664. spin_lock(&fs_info->ordered_root_lock);
  665. if (nr != U64_MAX) {
  666. nr -= done;
  667. }
  668. }
  669. list_splice_tail(&splice, &fs_info->ordered_roots);
  670. spin_unlock(&fs_info->ordered_root_lock);
  671. mutex_unlock(&fs_info->ordered_operations_mutex);
  672. return total_done;
  673. }
  674. /*
  675. * Used to start IO or wait for a given ordered extent to finish.
  676. *
  677. * If wait is one, this effectively waits on page writeback for all the pages
  678. * in the extent, and it waits on the io completion code to insert
  679. * metadata into the btree corresponding to the extent
  680. */
  681. void btrfs_start_ordered_extent(struct inode *inode,
  682. struct btrfs_ordered_extent *entry,
  683. int wait)
  684. {
  685. u64 start = entry->file_offset;
  686. u64 end = start + entry->len - 1;
  687. trace_btrfs_ordered_extent_start(inode, entry);
  688. /*
  689. * pages in the range can be dirty, clean or writeback. We
  690. * start IO on any dirty ones so the wait doesn't stall waiting
  691. * for the flusher thread to find them
  692. */
  693. if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
  694. filemap_fdatawrite_range(inode->i_mapping, start, end);
  695. if (wait) {
  696. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  697. &entry->flags));
  698. }
  699. }
  700. /*
  701. * Used to wait on ordered extents across a large range of bytes.
  702. */
  703. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  704. {
  705. int ret = 0;
  706. int ret_wb = 0;
  707. u64 end;
  708. u64 orig_end;
  709. struct btrfs_ordered_extent *ordered;
  710. if (start + len < start) {
  711. orig_end = INT_LIMIT(loff_t);
  712. } else {
  713. orig_end = start + len - 1;
  714. if (orig_end > INT_LIMIT(loff_t))
  715. orig_end = INT_LIMIT(loff_t);
  716. }
  717. /* start IO across the range first to instantiate any delalloc
  718. * extents
  719. */
  720. ret = btrfs_fdatawrite_range(inode, start, orig_end);
  721. if (ret)
  722. return ret;
  723. /*
  724. * If we have a writeback error don't return immediately. Wait first
  725. * for any ordered extents that haven't completed yet. This is to make
  726. * sure no one can dirty the same page ranges and call writepages()
  727. * before the ordered extents complete - to avoid failures (-EEXIST)
  728. * when adding the new ordered extents to the ordered tree.
  729. */
  730. ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  731. end = orig_end;
  732. while (1) {
  733. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  734. if (!ordered)
  735. break;
  736. if (ordered->file_offset > orig_end) {
  737. btrfs_put_ordered_extent(ordered);
  738. break;
  739. }
  740. if (ordered->file_offset + ordered->len <= start) {
  741. btrfs_put_ordered_extent(ordered);
  742. break;
  743. }
  744. btrfs_start_ordered_extent(inode, ordered, 1);
  745. end = ordered->file_offset;
  746. if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
  747. ret = -EIO;
  748. btrfs_put_ordered_extent(ordered);
  749. if (ret || end == 0 || end == start)
  750. break;
  751. end--;
  752. }
  753. return ret_wb ? ret_wb : ret;
  754. }
  755. /*
  756. * find an ordered extent corresponding to file_offset. return NULL if
  757. * nothing is found, otherwise take a reference on the extent and return it
  758. */
  759. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  760. u64 file_offset)
  761. {
  762. struct btrfs_ordered_inode_tree *tree;
  763. struct rb_node *node;
  764. struct btrfs_ordered_extent *entry = NULL;
  765. tree = &BTRFS_I(inode)->ordered_tree;
  766. spin_lock_irq(&tree->lock);
  767. node = tree_search(tree, file_offset);
  768. if (!node)
  769. goto out;
  770. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  771. if (!offset_in_entry(entry, file_offset))
  772. entry = NULL;
  773. if (entry)
  774. refcount_inc(&entry->refs);
  775. out:
  776. spin_unlock_irq(&tree->lock);
  777. return entry;
  778. }
  779. /* Since the DIO code tries to lock a wide area we need to look for any ordered
  780. * extents that exist in the range, rather than just the start of the range.
  781. */
  782. struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
  783. struct btrfs_inode *inode, u64 file_offset, u64 len)
  784. {
  785. struct btrfs_ordered_inode_tree *tree;
  786. struct rb_node *node;
  787. struct btrfs_ordered_extent *entry = NULL;
  788. tree = &inode->ordered_tree;
  789. spin_lock_irq(&tree->lock);
  790. node = tree_search(tree, file_offset);
  791. if (!node) {
  792. node = tree_search(tree, file_offset + len);
  793. if (!node)
  794. goto out;
  795. }
  796. while (1) {
  797. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  798. if (range_overlaps(entry, file_offset, len))
  799. break;
  800. if (entry->file_offset >= file_offset + len) {
  801. entry = NULL;
  802. break;
  803. }
  804. entry = NULL;
  805. node = rb_next(node);
  806. if (!node)
  807. break;
  808. }
  809. out:
  810. if (entry)
  811. refcount_inc(&entry->refs);
  812. spin_unlock_irq(&tree->lock);
  813. return entry;
  814. }
  815. bool btrfs_have_ordered_extents_in_range(struct inode *inode,
  816. u64 file_offset,
  817. u64 len)
  818. {
  819. struct btrfs_ordered_extent *oe;
  820. oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
  821. if (oe) {
  822. btrfs_put_ordered_extent(oe);
  823. return true;
  824. }
  825. return false;
  826. }
  827. /*
  828. * lookup and return any extent before 'file_offset'. NULL is returned
  829. * if none is found
  830. */
  831. struct btrfs_ordered_extent *
  832. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  833. {
  834. struct btrfs_ordered_inode_tree *tree;
  835. struct rb_node *node;
  836. struct btrfs_ordered_extent *entry = NULL;
  837. tree = &BTRFS_I(inode)->ordered_tree;
  838. spin_lock_irq(&tree->lock);
  839. node = tree_search(tree, file_offset);
  840. if (!node)
  841. goto out;
  842. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  843. refcount_inc(&entry->refs);
  844. out:
  845. spin_unlock_irq(&tree->lock);
  846. return entry;
  847. }
  848. /*
  849. * After an extent is done, call this to conditionally update the on disk
  850. * i_size. i_size is updated to cover any fully written part of the file.
  851. */
  852. int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
  853. struct btrfs_ordered_extent *ordered)
  854. {
  855. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  856. u64 disk_i_size;
  857. u64 new_i_size;
  858. u64 i_size = i_size_read(inode);
  859. struct rb_node *node;
  860. struct rb_node *prev = NULL;
  861. struct btrfs_ordered_extent *test;
  862. int ret = 1;
  863. u64 orig_offset = offset;
  864. spin_lock_irq(&tree->lock);
  865. if (ordered) {
  866. offset = entry_end(ordered);
  867. if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
  868. offset = min(offset,
  869. ordered->file_offset +
  870. ordered->truncated_len);
  871. } else {
  872. offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
  873. }
  874. disk_i_size = BTRFS_I(inode)->disk_i_size;
  875. /*
  876. * truncate file.
  877. * If ordered is not NULL, then this is called from endio and
  878. * disk_i_size will be updated by either truncate itself or any
  879. * in-flight IOs which are inside the disk_i_size.
  880. *
  881. * Because btrfs_setsize() may set i_size with disk_i_size if truncate
  882. * fails somehow, we need to make sure we have a precise disk_i_size by
  883. * updating it as usual.
  884. *
  885. */
  886. if (!ordered && disk_i_size > i_size) {
  887. BTRFS_I(inode)->disk_i_size = orig_offset;
  888. ret = 0;
  889. goto out;
  890. }
  891. /*
  892. * if the disk i_size is already at the inode->i_size, or
  893. * this ordered extent is inside the disk i_size, we're done
  894. */
  895. if (disk_i_size == i_size)
  896. goto out;
  897. /*
  898. * We still need to update disk_i_size if outstanding_isize is greater
  899. * than disk_i_size.
  900. */
  901. if (offset <= disk_i_size &&
  902. (!ordered || ordered->outstanding_isize <= disk_i_size))
  903. goto out;
  904. /*
  905. * walk backward from this ordered extent to disk_i_size.
  906. * if we find an ordered extent then we can't update disk i_size
  907. * yet
  908. */
  909. if (ordered) {
  910. node = rb_prev(&ordered->rb_node);
  911. } else {
  912. prev = tree_search(tree, offset);
  913. /*
  914. * we insert file extents without involving ordered struct,
  915. * so there should be no ordered struct cover this offset
  916. */
  917. if (prev) {
  918. test = rb_entry(prev, struct btrfs_ordered_extent,
  919. rb_node);
  920. BUG_ON(offset_in_entry(test, offset));
  921. }
  922. node = prev;
  923. }
  924. for (; node; node = rb_prev(node)) {
  925. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  926. /* We treat this entry as if it doesn't exist */
  927. if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
  928. continue;
  929. if (entry_end(test) <= disk_i_size)
  930. break;
  931. if (test->file_offset >= i_size)
  932. break;
  933. /*
  934. * We don't update disk_i_size now, so record this undealt
  935. * i_size. Or we will not know the real i_size.
  936. */
  937. if (test->outstanding_isize < offset)
  938. test->outstanding_isize = offset;
  939. if (ordered &&
  940. ordered->outstanding_isize > test->outstanding_isize)
  941. test->outstanding_isize = ordered->outstanding_isize;
  942. goto out;
  943. }
  944. new_i_size = min_t(u64, offset, i_size);
  945. /*
  946. * Some ordered extents may completed before the current one, and
  947. * we hold the real i_size in ->outstanding_isize.
  948. */
  949. if (ordered && ordered->outstanding_isize > new_i_size)
  950. new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
  951. BTRFS_I(inode)->disk_i_size = new_i_size;
  952. ret = 0;
  953. out:
  954. /*
  955. * We need to do this because we can't remove ordered extents until
  956. * after the i_disk_size has been updated and then the inode has been
  957. * updated to reflect the change, so we need to tell anybody who finds
  958. * this ordered extent that we've already done all the real work, we
  959. * just haven't completed all the other work.
  960. */
  961. if (ordered)
  962. set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
  963. spin_unlock_irq(&tree->lock);
  964. return ret;
  965. }
  966. /*
  967. * search the ordered extents for one corresponding to 'offset' and
  968. * try to find a checksum. This is used because we allow pages to
  969. * be reclaimed before their checksum is actually put into the btree
  970. */
  971. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  972. u32 *sum, int len)
  973. {
  974. struct btrfs_ordered_sum *ordered_sum;
  975. struct btrfs_ordered_extent *ordered;
  976. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  977. unsigned long num_sectors;
  978. unsigned long i;
  979. u32 sectorsize = btrfs_inode_sectorsize(inode);
  980. int index = 0;
  981. ordered = btrfs_lookup_ordered_extent(inode, offset);
  982. if (!ordered)
  983. return 0;
  984. spin_lock_irq(&tree->lock);
  985. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  986. if (disk_bytenr >= ordered_sum->bytenr &&
  987. disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
  988. i = (disk_bytenr - ordered_sum->bytenr) >>
  989. inode->i_sb->s_blocksize_bits;
  990. num_sectors = ordered_sum->len >>
  991. inode->i_sb->s_blocksize_bits;
  992. num_sectors = min_t(int, len - index, num_sectors - i);
  993. memcpy(sum + index, ordered_sum->sums + i,
  994. num_sectors);
  995. index += (int)num_sectors;
  996. if (index == len)
  997. goto out;
  998. disk_bytenr += num_sectors * sectorsize;
  999. }
  1000. }
  1001. out:
  1002. spin_unlock_irq(&tree->lock);
  1003. btrfs_put_ordered_extent(ordered);
  1004. return index;
  1005. }
  1006. int __init ordered_data_init(void)
  1007. {
  1008. btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
  1009. sizeof(struct btrfs_ordered_extent), 0,
  1010. SLAB_MEM_SPREAD,
  1011. NULL);
  1012. if (!btrfs_ordered_extent_cache)
  1013. return -ENOMEM;
  1014. return 0;
  1015. }
  1016. void __cold ordered_data_exit(void)
  1017. {
  1018. kmem_cache_destroy(btrfs_ordered_extent_cache);
  1019. }