intel_psr.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996
  1. /*
  2. * Copyright © 2014 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. */
  23. /**
  24. * DOC: Panel Self Refresh (PSR/SRD)
  25. *
  26. * Since Haswell Display controller supports Panel Self-Refresh on display
  27. * panels witch have a remote frame buffer (RFB) implemented according to PSR
  28. * spec in eDP1.3. PSR feature allows the display to go to lower standby states
  29. * when system is idle but display is on as it eliminates display refresh
  30. * request to DDR memory completely as long as the frame buffer for that
  31. * display is unchanged.
  32. *
  33. * Panel Self Refresh must be supported by both Hardware (source) and
  34. * Panel (sink).
  35. *
  36. * PSR saves power by caching the framebuffer in the panel RFB, which allows us
  37. * to power down the link and memory controller. For DSI panels the same idea
  38. * is called "manual mode".
  39. *
  40. * The implementation uses the hardware-based PSR support which automatically
  41. * enters/exits self-refresh mode. The hardware takes care of sending the
  42. * required DP aux message and could even retrain the link (that part isn't
  43. * enabled yet though). The hardware also keeps track of any frontbuffer
  44. * changes to know when to exit self-refresh mode again. Unfortunately that
  45. * part doesn't work too well, hence why the i915 PSR support uses the
  46. * software frontbuffer tracking to make sure it doesn't miss a screen
  47. * update. For this integration intel_psr_invalidate() and intel_psr_flush()
  48. * get called by the frontbuffer tracking code. Note that because of locking
  49. * issues the self-refresh re-enable code is done from a work queue, which
  50. * must be correctly synchronized/cancelled when shutting down the pipe."
  51. */
  52. #include <drm/drmP.h>
  53. #include "intel_drv.h"
  54. #include "i915_drv.h"
  55. static inline enum intel_display_power_domain
  56. psr_aux_domain(struct intel_dp *intel_dp)
  57. {
  58. /* CNL HW requires corresponding AUX IOs to be powered up for PSR.
  59. * However, for non-A AUX ports the corresponding non-EDP transcoders
  60. * would have already enabled power well 2 and DC_OFF. This means we can
  61. * acquire a wider POWER_DOMAIN_AUX_{B,C,D,F} reference instead of a
  62. * specific AUX_IO reference without powering up any extra wells.
  63. * Note that PSR is enabled only on Port A even though this function
  64. * returns the correct domain for other ports too.
  65. */
  66. return intel_dp->aux_ch == AUX_CH_A ? POWER_DOMAIN_AUX_IO_A :
  67. intel_dp->aux_power_domain;
  68. }
  69. static void psr_aux_io_power_get(struct intel_dp *intel_dp)
  70. {
  71. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  72. struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
  73. if (INTEL_GEN(dev_priv) < 10)
  74. return;
  75. intel_display_power_get(dev_priv, psr_aux_domain(intel_dp));
  76. }
  77. static void psr_aux_io_power_put(struct intel_dp *intel_dp)
  78. {
  79. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  80. struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
  81. if (INTEL_GEN(dev_priv) < 10)
  82. return;
  83. intel_display_power_put(dev_priv, psr_aux_domain(intel_dp));
  84. }
  85. void intel_psr_irq_control(struct drm_i915_private *dev_priv, bool debug)
  86. {
  87. u32 debug_mask, mask;
  88. mask = EDP_PSR_ERROR(TRANSCODER_EDP);
  89. debug_mask = EDP_PSR_POST_EXIT(TRANSCODER_EDP) |
  90. EDP_PSR_PRE_ENTRY(TRANSCODER_EDP);
  91. if (INTEL_GEN(dev_priv) >= 8) {
  92. mask |= EDP_PSR_ERROR(TRANSCODER_A) |
  93. EDP_PSR_ERROR(TRANSCODER_B) |
  94. EDP_PSR_ERROR(TRANSCODER_C);
  95. debug_mask |= EDP_PSR_POST_EXIT(TRANSCODER_A) |
  96. EDP_PSR_PRE_ENTRY(TRANSCODER_A) |
  97. EDP_PSR_POST_EXIT(TRANSCODER_B) |
  98. EDP_PSR_PRE_ENTRY(TRANSCODER_B) |
  99. EDP_PSR_POST_EXIT(TRANSCODER_C) |
  100. EDP_PSR_PRE_ENTRY(TRANSCODER_C);
  101. }
  102. if (debug)
  103. mask |= debug_mask;
  104. WRITE_ONCE(dev_priv->psr.debug, debug);
  105. I915_WRITE(EDP_PSR_IMR, ~mask);
  106. }
  107. static void psr_event_print(u32 val, bool psr2_enabled)
  108. {
  109. DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
  110. if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
  111. DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
  112. if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
  113. DRM_DEBUG_KMS("\tPSR2 disabled\n");
  114. if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
  115. DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
  116. if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
  117. DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
  118. if (val & PSR_EVENT_GRAPHICS_RESET)
  119. DRM_DEBUG_KMS("\tGraphics reset\n");
  120. if (val & PSR_EVENT_PCH_INTERRUPT)
  121. DRM_DEBUG_KMS("\tPCH interrupt\n");
  122. if (val & PSR_EVENT_MEMORY_UP)
  123. DRM_DEBUG_KMS("\tMemory up\n");
  124. if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
  125. DRM_DEBUG_KMS("\tFront buffer modification\n");
  126. if (val & PSR_EVENT_WD_TIMER_EXPIRE)
  127. DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
  128. if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
  129. DRM_DEBUG_KMS("\tPIPE registers updated\n");
  130. if (val & PSR_EVENT_REGISTER_UPDATE)
  131. DRM_DEBUG_KMS("\tRegister updated\n");
  132. if (val & PSR_EVENT_HDCP_ENABLE)
  133. DRM_DEBUG_KMS("\tHDCP enabled\n");
  134. if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
  135. DRM_DEBUG_KMS("\tKVMR session enabled\n");
  136. if (val & PSR_EVENT_VBI_ENABLE)
  137. DRM_DEBUG_KMS("\tVBI enabled\n");
  138. if (val & PSR_EVENT_LPSP_MODE_EXIT)
  139. DRM_DEBUG_KMS("\tLPSP mode exited\n");
  140. if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
  141. DRM_DEBUG_KMS("\tPSR disabled\n");
  142. }
  143. void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
  144. {
  145. u32 transcoders = BIT(TRANSCODER_EDP);
  146. enum transcoder cpu_transcoder;
  147. ktime_t time_ns = ktime_get();
  148. if (INTEL_GEN(dev_priv) >= 8)
  149. transcoders |= BIT(TRANSCODER_A) |
  150. BIT(TRANSCODER_B) |
  151. BIT(TRANSCODER_C);
  152. for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
  153. /* FIXME: Exit PSR and link train manually when this happens. */
  154. if (psr_iir & EDP_PSR_ERROR(cpu_transcoder))
  155. DRM_DEBUG_KMS("[transcoder %s] PSR aux error\n",
  156. transcoder_name(cpu_transcoder));
  157. if (psr_iir & EDP_PSR_PRE_ENTRY(cpu_transcoder)) {
  158. dev_priv->psr.last_entry_attempt = time_ns;
  159. DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
  160. transcoder_name(cpu_transcoder));
  161. }
  162. if (psr_iir & EDP_PSR_POST_EXIT(cpu_transcoder)) {
  163. dev_priv->psr.last_exit = time_ns;
  164. DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
  165. transcoder_name(cpu_transcoder));
  166. if (INTEL_GEN(dev_priv) >= 9) {
  167. u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
  168. bool psr2_enabled = dev_priv->psr.psr2_enabled;
  169. I915_WRITE(PSR_EVENT(cpu_transcoder), val);
  170. psr_event_print(val, psr2_enabled);
  171. }
  172. }
  173. }
  174. }
  175. static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
  176. {
  177. uint8_t dprx = 0;
  178. if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
  179. &dprx) != 1)
  180. return false;
  181. return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
  182. }
  183. static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
  184. {
  185. uint8_t alpm_caps = 0;
  186. if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
  187. &alpm_caps) != 1)
  188. return false;
  189. return alpm_caps & DP_ALPM_CAP;
  190. }
  191. static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
  192. {
  193. u8 val = 8; /* assume the worst if we can't read the value */
  194. if (drm_dp_dpcd_readb(&intel_dp->aux,
  195. DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
  196. val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
  197. else
  198. DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
  199. return val;
  200. }
  201. void intel_psr_init_dpcd(struct intel_dp *intel_dp)
  202. {
  203. struct drm_i915_private *dev_priv =
  204. to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
  205. drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
  206. sizeof(intel_dp->psr_dpcd));
  207. if (!intel_dp->psr_dpcd[0])
  208. return;
  209. DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
  210. intel_dp->psr_dpcd[0]);
  211. if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
  212. DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
  213. return;
  214. }
  215. dev_priv->psr.sink_support = true;
  216. dev_priv->psr.sink_sync_latency =
  217. intel_dp_get_sink_sync_latency(intel_dp);
  218. if (INTEL_GEN(dev_priv) >= 9 &&
  219. (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
  220. bool y_req = intel_dp->psr_dpcd[1] &
  221. DP_PSR2_SU_Y_COORDINATE_REQUIRED;
  222. bool alpm = intel_dp_get_alpm_status(intel_dp);
  223. /*
  224. * All panels that supports PSR version 03h (PSR2 +
  225. * Y-coordinate) can handle Y-coordinates in VSC but we are
  226. * only sure that it is going to be used when required by the
  227. * panel. This way panel is capable to do selective update
  228. * without a aux frame sync.
  229. *
  230. * To support PSR version 02h and PSR version 03h without
  231. * Y-coordinate requirement panels we would need to enable
  232. * GTC first.
  233. */
  234. dev_priv->psr.sink_psr2_support = y_req && alpm;
  235. DRM_DEBUG_KMS("PSR2 %ssupported\n",
  236. dev_priv->psr.sink_psr2_support ? "" : "not ");
  237. if (dev_priv->psr.sink_psr2_support) {
  238. dev_priv->psr.colorimetry_support =
  239. intel_dp_get_colorimetry_status(intel_dp);
  240. }
  241. }
  242. }
  243. static void hsw_psr_setup_vsc(struct intel_dp *intel_dp,
  244. const struct intel_crtc_state *crtc_state)
  245. {
  246. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  247. struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
  248. struct edp_vsc_psr psr_vsc;
  249. if (dev_priv->psr.psr2_enabled) {
  250. /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
  251. memset(&psr_vsc, 0, sizeof(psr_vsc));
  252. psr_vsc.sdp_header.HB0 = 0;
  253. psr_vsc.sdp_header.HB1 = 0x7;
  254. if (dev_priv->psr.colorimetry_support) {
  255. psr_vsc.sdp_header.HB2 = 0x5;
  256. psr_vsc.sdp_header.HB3 = 0x13;
  257. } else {
  258. psr_vsc.sdp_header.HB2 = 0x4;
  259. psr_vsc.sdp_header.HB3 = 0xe;
  260. }
  261. } else {
  262. /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
  263. memset(&psr_vsc, 0, sizeof(psr_vsc));
  264. psr_vsc.sdp_header.HB0 = 0;
  265. psr_vsc.sdp_header.HB1 = 0x7;
  266. psr_vsc.sdp_header.HB2 = 0x2;
  267. psr_vsc.sdp_header.HB3 = 0x8;
  268. }
  269. intel_dig_port->write_infoframe(&intel_dig_port->base.base, crtc_state,
  270. DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
  271. }
  272. static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
  273. {
  274. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  275. struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
  276. u32 aux_clock_divider, aux_ctl;
  277. int i;
  278. static const uint8_t aux_msg[] = {
  279. [0] = DP_AUX_NATIVE_WRITE << 4,
  280. [1] = DP_SET_POWER >> 8,
  281. [2] = DP_SET_POWER & 0xff,
  282. [3] = 1 - 1,
  283. [4] = DP_SET_POWER_D0,
  284. };
  285. u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
  286. EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
  287. EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
  288. EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
  289. BUILD_BUG_ON(sizeof(aux_msg) > 20);
  290. for (i = 0; i < sizeof(aux_msg); i += 4)
  291. I915_WRITE(EDP_PSR_AUX_DATA(i >> 2),
  292. intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
  293. aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
  294. /* Start with bits set for DDI_AUX_CTL register */
  295. aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, 0, sizeof(aux_msg),
  296. aux_clock_divider);
  297. /* Select only valid bits for SRD_AUX_CTL */
  298. aux_ctl &= psr_aux_mask;
  299. I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl);
  300. }
  301. static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
  302. {
  303. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  304. struct drm_device *dev = dig_port->base.base.dev;
  305. struct drm_i915_private *dev_priv = to_i915(dev);
  306. u8 dpcd_val = DP_PSR_ENABLE;
  307. /* Enable ALPM at sink for psr2 */
  308. if (dev_priv->psr.psr2_enabled) {
  309. drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
  310. DP_ALPM_ENABLE);
  311. dpcd_val |= DP_PSR_ENABLE_PSR2;
  312. }
  313. if (dev_priv->psr.link_standby)
  314. dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
  315. drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
  316. drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
  317. }
  318. static void hsw_activate_psr1(struct intel_dp *intel_dp)
  319. {
  320. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  321. struct drm_device *dev = dig_port->base.base.dev;
  322. struct drm_i915_private *dev_priv = to_i915(dev);
  323. u32 max_sleep_time = 0x1f;
  324. u32 val = EDP_PSR_ENABLE;
  325. /* Let's use 6 as the minimum to cover all known cases including the
  326. * off-by-one issue that HW has in some cases.
  327. */
  328. int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
  329. /* sink_sync_latency of 8 means source has to wait for more than 8
  330. * frames, we'll go with 9 frames for now
  331. */
  332. idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
  333. val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
  334. val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
  335. if (IS_HASWELL(dev_priv))
  336. val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
  337. if (dev_priv->psr.link_standby)
  338. val |= EDP_PSR_LINK_STANDBY;
  339. if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
  340. val |= EDP_PSR_TP1_TIME_0us;
  341. else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
  342. val |= EDP_PSR_TP1_TIME_100us;
  343. else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
  344. val |= EDP_PSR_TP1_TIME_500us;
  345. else
  346. val |= EDP_PSR_TP1_TIME_2500us;
  347. if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
  348. val |= EDP_PSR_TP2_TP3_TIME_0us;
  349. else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
  350. val |= EDP_PSR_TP2_TP3_TIME_100us;
  351. else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
  352. val |= EDP_PSR_TP2_TP3_TIME_500us;
  353. else
  354. val |= EDP_PSR_TP2_TP3_TIME_2500us;
  355. if (intel_dp_source_supports_hbr2(intel_dp) &&
  356. drm_dp_tps3_supported(intel_dp->dpcd))
  357. val |= EDP_PSR_TP1_TP3_SEL;
  358. else
  359. val |= EDP_PSR_TP1_TP2_SEL;
  360. val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
  361. I915_WRITE(EDP_PSR_CTL, val);
  362. }
  363. static void hsw_activate_psr2(struct intel_dp *intel_dp)
  364. {
  365. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  366. struct drm_device *dev = dig_port->base.base.dev;
  367. struct drm_i915_private *dev_priv = to_i915(dev);
  368. u32 val;
  369. /* Let's use 6 as the minimum to cover all known cases including the
  370. * off-by-one issue that HW has in some cases.
  371. */
  372. int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
  373. idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
  374. val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
  375. /* FIXME: selective update is probably totally broken because it doesn't
  376. * mesh at all with our frontbuffer tracking. And the hw alone isn't
  377. * good enough. */
  378. val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
  379. if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
  380. val |= EDP_Y_COORDINATE_ENABLE;
  381. val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
  382. if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us >= 0 &&
  383. dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 50)
  384. val |= EDP_PSR2_TP2_TIME_50us;
  385. else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
  386. val |= EDP_PSR2_TP2_TIME_100us;
  387. else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
  388. val |= EDP_PSR2_TP2_TIME_500us;
  389. else
  390. val |= EDP_PSR2_TP2_TIME_2500us;
  391. I915_WRITE(EDP_PSR2_CTL, val);
  392. }
  393. static void hsw_psr_activate(struct intel_dp *intel_dp)
  394. {
  395. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  396. struct drm_device *dev = dig_port->base.base.dev;
  397. struct drm_i915_private *dev_priv = to_i915(dev);
  398. /* On HSW+ after we enable PSR on source it will activate it
  399. * as soon as it match configure idle_frame count. So
  400. * we just actually enable it here on activation time.
  401. */
  402. /* psr1 and psr2 are mutually exclusive.*/
  403. if (dev_priv->psr.psr2_enabled)
  404. hsw_activate_psr2(intel_dp);
  405. else
  406. hsw_activate_psr1(intel_dp);
  407. }
  408. static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
  409. struct intel_crtc_state *crtc_state)
  410. {
  411. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  412. struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
  413. int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
  414. int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
  415. int psr_max_h = 0, psr_max_v = 0;
  416. /*
  417. * FIXME psr2_support is messed up. It's both computed
  418. * dynamically during PSR enable, and extracted from sink
  419. * caps during eDP detection.
  420. */
  421. if (!dev_priv->psr.sink_psr2_support)
  422. return false;
  423. if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
  424. psr_max_h = 4096;
  425. psr_max_v = 2304;
  426. } else if (IS_GEN9(dev_priv)) {
  427. psr_max_h = 3640;
  428. psr_max_v = 2304;
  429. }
  430. if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
  431. DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
  432. crtc_hdisplay, crtc_vdisplay,
  433. psr_max_h, psr_max_v);
  434. return false;
  435. }
  436. return true;
  437. }
  438. void intel_psr_compute_config(struct intel_dp *intel_dp,
  439. struct intel_crtc_state *crtc_state)
  440. {
  441. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  442. struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
  443. const struct drm_display_mode *adjusted_mode =
  444. &crtc_state->base.adjusted_mode;
  445. int psr_setup_time;
  446. if (!CAN_PSR(dev_priv))
  447. return;
  448. if (!i915_modparams.enable_psr) {
  449. DRM_DEBUG_KMS("PSR disable by flag\n");
  450. return;
  451. }
  452. /*
  453. * HSW spec explicitly says PSR is tied to port A.
  454. * BDW+ platforms with DDI implementation of PSR have different
  455. * PSR registers per transcoder and we only implement transcoder EDP
  456. * ones. Since by Display design transcoder EDP is tied to port A
  457. * we can safely escape based on the port A.
  458. */
  459. if (dig_port->base.port != PORT_A) {
  460. DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
  461. return;
  462. }
  463. if (IS_HASWELL(dev_priv) &&
  464. I915_READ(HSW_STEREO_3D_CTL(crtc_state->cpu_transcoder)) &
  465. S3D_ENABLE) {
  466. DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
  467. return;
  468. }
  469. if (IS_HASWELL(dev_priv) &&
  470. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  471. DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
  472. return;
  473. }
  474. psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
  475. if (psr_setup_time < 0) {
  476. DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
  477. intel_dp->psr_dpcd[1]);
  478. return;
  479. }
  480. if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
  481. adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
  482. DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
  483. psr_setup_time);
  484. return;
  485. }
  486. crtc_state->has_psr = true;
  487. crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
  488. DRM_DEBUG_KMS("Enabling PSR%s\n", crtc_state->has_psr2 ? "2" : "");
  489. }
  490. static void intel_psr_activate(struct intel_dp *intel_dp)
  491. {
  492. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  493. struct drm_device *dev = intel_dig_port->base.base.dev;
  494. struct drm_i915_private *dev_priv = to_i915(dev);
  495. if (dev_priv->psr.psr2_enabled)
  496. WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
  497. else
  498. WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
  499. WARN_ON(dev_priv->psr.active);
  500. lockdep_assert_held(&dev_priv->psr.lock);
  501. dev_priv->psr.activate(intel_dp);
  502. dev_priv->psr.active = true;
  503. }
  504. static void hsw_psr_enable_source(struct intel_dp *intel_dp,
  505. const struct intel_crtc_state *crtc_state)
  506. {
  507. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  508. struct drm_device *dev = dig_port->base.base.dev;
  509. struct drm_i915_private *dev_priv = to_i915(dev);
  510. enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
  511. psr_aux_io_power_get(intel_dp);
  512. /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
  513. * use hardcoded values PSR AUX transactions
  514. */
  515. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  516. hsw_psr_setup_aux(intel_dp);
  517. if (dev_priv->psr.psr2_enabled) {
  518. u32 chicken = I915_READ(CHICKEN_TRANS(cpu_transcoder));
  519. if (INTEL_GEN(dev_priv) == 9 && !IS_GEMINILAKE(dev_priv))
  520. chicken |= (PSR2_VSC_ENABLE_PROG_HEADER
  521. | PSR2_ADD_VERTICAL_LINE_COUNT);
  522. else
  523. chicken &= ~VSC_DATA_SEL_SOFTWARE_CONTROL;
  524. I915_WRITE(CHICKEN_TRANS(cpu_transcoder), chicken);
  525. I915_WRITE(EDP_PSR_DEBUG,
  526. EDP_PSR_DEBUG_MASK_MEMUP |
  527. EDP_PSR_DEBUG_MASK_HPD |
  528. EDP_PSR_DEBUG_MASK_LPSP |
  529. EDP_PSR_DEBUG_MASK_MAX_SLEEP |
  530. EDP_PSR_DEBUG_MASK_DISP_REG_WRITE);
  531. } else {
  532. /*
  533. * Per Spec: Avoid continuous PSR exit by masking MEMUP
  534. * and HPD. also mask LPSP to avoid dependency on other
  535. * drivers that might block runtime_pm besides
  536. * preventing other hw tracking issues now we can rely
  537. * on frontbuffer tracking.
  538. */
  539. I915_WRITE(EDP_PSR_DEBUG,
  540. EDP_PSR_DEBUG_MASK_MEMUP |
  541. EDP_PSR_DEBUG_MASK_HPD |
  542. EDP_PSR_DEBUG_MASK_LPSP |
  543. EDP_PSR_DEBUG_MASK_DISP_REG_WRITE);
  544. }
  545. }
  546. /**
  547. * intel_psr_enable - Enable PSR
  548. * @intel_dp: Intel DP
  549. * @crtc_state: new CRTC state
  550. *
  551. * This function can only be called after the pipe is fully trained and enabled.
  552. */
  553. void intel_psr_enable(struct intel_dp *intel_dp,
  554. const struct intel_crtc_state *crtc_state)
  555. {
  556. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  557. struct drm_device *dev = intel_dig_port->base.base.dev;
  558. struct drm_i915_private *dev_priv = to_i915(dev);
  559. if (!crtc_state->has_psr)
  560. return;
  561. if (WARN_ON(!CAN_PSR(dev_priv)))
  562. return;
  563. WARN_ON(dev_priv->drrs.dp);
  564. mutex_lock(&dev_priv->psr.lock);
  565. if (dev_priv->psr.enabled) {
  566. DRM_DEBUG_KMS("PSR already in use\n");
  567. goto unlock;
  568. }
  569. dev_priv->psr.psr2_enabled = crtc_state->has_psr2;
  570. dev_priv->psr.busy_frontbuffer_bits = 0;
  571. dev_priv->psr.setup_vsc(intel_dp, crtc_state);
  572. dev_priv->psr.enable_sink(intel_dp);
  573. dev_priv->psr.enable_source(intel_dp, crtc_state);
  574. dev_priv->psr.enabled = intel_dp;
  575. intel_psr_activate(intel_dp);
  576. unlock:
  577. mutex_unlock(&dev_priv->psr.lock);
  578. }
  579. static void hsw_psr_disable(struct intel_dp *intel_dp,
  580. const struct intel_crtc_state *old_crtc_state)
  581. {
  582. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  583. struct drm_device *dev = intel_dig_port->base.base.dev;
  584. struct drm_i915_private *dev_priv = to_i915(dev);
  585. if (dev_priv->psr.active) {
  586. i915_reg_t psr_status;
  587. u32 psr_status_mask;
  588. if (dev_priv->psr.psr2_enabled) {
  589. psr_status = EDP_PSR2_STATUS;
  590. psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
  591. I915_WRITE(EDP_PSR2_CTL,
  592. I915_READ(EDP_PSR2_CTL) &
  593. ~(EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE));
  594. } else {
  595. psr_status = EDP_PSR_STATUS;
  596. psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
  597. I915_WRITE(EDP_PSR_CTL,
  598. I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
  599. }
  600. /* Wait till PSR is idle */
  601. if (intel_wait_for_register(dev_priv,
  602. psr_status, psr_status_mask, 0,
  603. 2000))
  604. DRM_ERROR("Timed out waiting for PSR Idle State\n");
  605. dev_priv->psr.active = false;
  606. } else {
  607. if (dev_priv->psr.psr2_enabled)
  608. WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
  609. else
  610. WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
  611. }
  612. psr_aux_io_power_put(intel_dp);
  613. }
  614. /**
  615. * intel_psr_disable - Disable PSR
  616. * @intel_dp: Intel DP
  617. * @old_crtc_state: old CRTC state
  618. *
  619. * This function needs to be called before disabling pipe.
  620. */
  621. void intel_psr_disable(struct intel_dp *intel_dp,
  622. const struct intel_crtc_state *old_crtc_state)
  623. {
  624. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  625. struct drm_device *dev = intel_dig_port->base.base.dev;
  626. struct drm_i915_private *dev_priv = to_i915(dev);
  627. if (!old_crtc_state->has_psr)
  628. return;
  629. if (WARN_ON(!CAN_PSR(dev_priv)))
  630. return;
  631. mutex_lock(&dev_priv->psr.lock);
  632. if (!dev_priv->psr.enabled) {
  633. mutex_unlock(&dev_priv->psr.lock);
  634. return;
  635. }
  636. dev_priv->psr.disable_source(intel_dp, old_crtc_state);
  637. /* Disable PSR on Sink */
  638. drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
  639. dev_priv->psr.enabled = NULL;
  640. mutex_unlock(&dev_priv->psr.lock);
  641. cancel_work_sync(&dev_priv->psr.work);
  642. }
  643. static bool psr_wait_for_idle(struct drm_i915_private *dev_priv)
  644. {
  645. struct intel_dp *intel_dp;
  646. i915_reg_t reg;
  647. u32 mask;
  648. int err;
  649. intel_dp = dev_priv->psr.enabled;
  650. if (!intel_dp)
  651. return false;
  652. if (dev_priv->psr.psr2_enabled) {
  653. reg = EDP_PSR2_STATUS;
  654. mask = EDP_PSR2_STATUS_STATE_MASK;
  655. } else {
  656. reg = EDP_PSR_STATUS;
  657. mask = EDP_PSR_STATUS_STATE_MASK;
  658. }
  659. mutex_unlock(&dev_priv->psr.lock);
  660. err = intel_wait_for_register(dev_priv, reg, mask, 0, 50);
  661. if (err)
  662. DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
  663. /* After the unlocked wait, verify that PSR is still wanted! */
  664. mutex_lock(&dev_priv->psr.lock);
  665. return err == 0 && dev_priv->psr.enabled;
  666. }
  667. static void intel_psr_work(struct work_struct *work)
  668. {
  669. struct drm_i915_private *dev_priv =
  670. container_of(work, typeof(*dev_priv), psr.work);
  671. mutex_lock(&dev_priv->psr.lock);
  672. if (!dev_priv->psr.enabled)
  673. goto unlock;
  674. /*
  675. * We have to make sure PSR is ready for re-enable
  676. * otherwise it keeps disabled until next full enable/disable cycle.
  677. * PSR might take some time to get fully disabled
  678. * and be ready for re-enable.
  679. */
  680. if (!psr_wait_for_idle(dev_priv))
  681. goto unlock;
  682. /*
  683. * The delayed work can race with an invalidate hence we need to
  684. * recheck. Since psr_flush first clears this and then reschedules we
  685. * won't ever miss a flush when bailing out here.
  686. */
  687. if (dev_priv->psr.busy_frontbuffer_bits)
  688. goto unlock;
  689. intel_psr_activate(dev_priv->psr.enabled);
  690. unlock:
  691. mutex_unlock(&dev_priv->psr.lock);
  692. }
  693. static void intel_psr_exit(struct drm_i915_private *dev_priv)
  694. {
  695. u32 val;
  696. if (!dev_priv->psr.active)
  697. return;
  698. if (dev_priv->psr.psr2_enabled) {
  699. val = I915_READ(EDP_PSR2_CTL);
  700. WARN_ON(!(val & EDP_PSR2_ENABLE));
  701. I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
  702. } else {
  703. val = I915_READ(EDP_PSR_CTL);
  704. WARN_ON(!(val & EDP_PSR_ENABLE));
  705. I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
  706. }
  707. dev_priv->psr.active = false;
  708. }
  709. /**
  710. * intel_psr_invalidate - Invalidade PSR
  711. * @dev_priv: i915 device
  712. * @frontbuffer_bits: frontbuffer plane tracking bits
  713. * @origin: which operation caused the invalidate
  714. *
  715. * Since the hardware frontbuffer tracking has gaps we need to integrate
  716. * with the software frontbuffer tracking. This function gets called every
  717. * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
  718. * disabled if the frontbuffer mask contains a buffer relevant to PSR.
  719. *
  720. * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
  721. */
  722. void intel_psr_invalidate(struct drm_i915_private *dev_priv,
  723. unsigned frontbuffer_bits, enum fb_op_origin origin)
  724. {
  725. struct drm_crtc *crtc;
  726. enum pipe pipe;
  727. if (!CAN_PSR(dev_priv))
  728. return;
  729. if (origin == ORIGIN_FLIP)
  730. return;
  731. mutex_lock(&dev_priv->psr.lock);
  732. if (!dev_priv->psr.enabled) {
  733. mutex_unlock(&dev_priv->psr.lock);
  734. return;
  735. }
  736. crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
  737. pipe = to_intel_crtc(crtc)->pipe;
  738. frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
  739. dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
  740. if (frontbuffer_bits)
  741. intel_psr_exit(dev_priv);
  742. mutex_unlock(&dev_priv->psr.lock);
  743. }
  744. /**
  745. * intel_psr_flush - Flush PSR
  746. * @dev_priv: i915 device
  747. * @frontbuffer_bits: frontbuffer plane tracking bits
  748. * @origin: which operation caused the flush
  749. *
  750. * Since the hardware frontbuffer tracking has gaps we need to integrate
  751. * with the software frontbuffer tracking. This function gets called every
  752. * time frontbuffer rendering has completed and flushed out to memory. PSR
  753. * can be enabled again if no other frontbuffer relevant to PSR is dirty.
  754. *
  755. * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
  756. */
  757. void intel_psr_flush(struct drm_i915_private *dev_priv,
  758. unsigned frontbuffer_bits, enum fb_op_origin origin)
  759. {
  760. struct drm_crtc *crtc;
  761. enum pipe pipe;
  762. if (!CAN_PSR(dev_priv))
  763. return;
  764. if (origin == ORIGIN_FLIP)
  765. return;
  766. mutex_lock(&dev_priv->psr.lock);
  767. if (!dev_priv->psr.enabled) {
  768. mutex_unlock(&dev_priv->psr.lock);
  769. return;
  770. }
  771. crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
  772. pipe = to_intel_crtc(crtc)->pipe;
  773. frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
  774. dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
  775. /* By definition flush = invalidate + flush */
  776. if (frontbuffer_bits) {
  777. if (dev_priv->psr.psr2_enabled) {
  778. intel_psr_exit(dev_priv);
  779. } else {
  780. /*
  781. * Display WA #0884: all
  782. * This documented WA for bxt can be safely applied
  783. * broadly so we can force HW tracking to exit PSR
  784. * instead of disabling and re-enabling.
  785. * Workaround tells us to write 0 to CUR_SURFLIVE_A,
  786. * but it makes more sense write to the current active
  787. * pipe.
  788. */
  789. I915_WRITE(CURSURFLIVE(pipe), 0);
  790. }
  791. }
  792. if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
  793. schedule_work(&dev_priv->psr.work);
  794. mutex_unlock(&dev_priv->psr.lock);
  795. }
  796. /**
  797. * intel_psr_init - Init basic PSR work and mutex.
  798. * @dev_priv: i915 device private
  799. *
  800. * This function is called only once at driver load to initialize basic
  801. * PSR stuff.
  802. */
  803. void intel_psr_init(struct drm_i915_private *dev_priv)
  804. {
  805. if (!HAS_PSR(dev_priv))
  806. return;
  807. dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
  808. HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
  809. if (!dev_priv->psr.sink_support)
  810. return;
  811. if (i915_modparams.enable_psr == -1) {
  812. i915_modparams.enable_psr = dev_priv->vbt.psr.enable;
  813. /* Per platform default: all disabled. */
  814. i915_modparams.enable_psr = 0;
  815. }
  816. /* Set link_standby x link_off defaults */
  817. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  818. /* HSW and BDW require workarounds that we don't implement. */
  819. dev_priv->psr.link_standby = false;
  820. else
  821. /* For new platforms let's respect VBT back again */
  822. dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
  823. /* Override link_standby x link_off defaults */
  824. if (i915_modparams.enable_psr == 2 && !dev_priv->psr.link_standby) {
  825. DRM_DEBUG_KMS("PSR: Forcing link standby\n");
  826. dev_priv->psr.link_standby = true;
  827. }
  828. if (i915_modparams.enable_psr == 3 && dev_priv->psr.link_standby) {
  829. DRM_DEBUG_KMS("PSR: Forcing main link off\n");
  830. dev_priv->psr.link_standby = false;
  831. }
  832. INIT_WORK(&dev_priv->psr.work, intel_psr_work);
  833. mutex_init(&dev_priv->psr.lock);
  834. dev_priv->psr.enable_source = hsw_psr_enable_source;
  835. dev_priv->psr.disable_source = hsw_psr_disable;
  836. dev_priv->psr.enable_sink = hsw_psr_enable_sink;
  837. dev_priv->psr.activate = hsw_psr_activate;
  838. dev_priv->psr.setup_vsc = hsw_psr_setup_vsc;
  839. }