i915_debugfs.c 136 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/debugfs.h>
  29. #include <linux/sort.h>
  30. #include <linux/sched/mm.h>
  31. #include "intel_drv.h"
  32. #include "intel_guc_submission.h"
  33. static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
  34. {
  35. return to_i915(node->minor->dev);
  36. }
  37. static int i915_capabilities(struct seq_file *m, void *data)
  38. {
  39. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  40. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  41. struct drm_printer p = drm_seq_file_printer(m);
  42. seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
  43. seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
  44. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
  45. intel_device_info_dump_flags(info, &p);
  46. intel_device_info_dump_runtime(info, &p);
  47. intel_driver_caps_print(&dev_priv->caps, &p);
  48. kernel_param_lock(THIS_MODULE);
  49. i915_params_dump(&i915_modparams, &p);
  50. kernel_param_unlock(THIS_MODULE);
  51. return 0;
  52. }
  53. static char get_active_flag(struct drm_i915_gem_object *obj)
  54. {
  55. return i915_gem_object_is_active(obj) ? '*' : ' ';
  56. }
  57. static char get_pin_flag(struct drm_i915_gem_object *obj)
  58. {
  59. return obj->pin_global ? 'p' : ' ';
  60. }
  61. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  62. {
  63. switch (i915_gem_object_get_tiling(obj)) {
  64. default:
  65. case I915_TILING_NONE: return ' ';
  66. case I915_TILING_X: return 'X';
  67. case I915_TILING_Y: return 'Y';
  68. }
  69. }
  70. static char get_global_flag(struct drm_i915_gem_object *obj)
  71. {
  72. return obj->userfault_count ? 'g' : ' ';
  73. }
  74. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  75. {
  76. return obj->mm.mapping ? 'M' : ' ';
  77. }
  78. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  79. {
  80. u64 size = 0;
  81. struct i915_vma *vma;
  82. for_each_ggtt_vma(vma, obj) {
  83. if (drm_mm_node_allocated(&vma->node))
  84. size += vma->node.size;
  85. }
  86. return size;
  87. }
  88. static const char *
  89. stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
  90. {
  91. size_t x = 0;
  92. switch (page_sizes) {
  93. case 0:
  94. return "";
  95. case I915_GTT_PAGE_SIZE_4K:
  96. return "4K";
  97. case I915_GTT_PAGE_SIZE_64K:
  98. return "64K";
  99. case I915_GTT_PAGE_SIZE_2M:
  100. return "2M";
  101. default:
  102. if (!buf)
  103. return "M";
  104. if (page_sizes & I915_GTT_PAGE_SIZE_2M)
  105. x += snprintf(buf + x, len - x, "2M, ");
  106. if (page_sizes & I915_GTT_PAGE_SIZE_64K)
  107. x += snprintf(buf + x, len - x, "64K, ");
  108. if (page_sizes & I915_GTT_PAGE_SIZE_4K)
  109. x += snprintf(buf + x, len - x, "4K, ");
  110. buf[x-2] = '\0';
  111. return buf;
  112. }
  113. }
  114. static void
  115. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  116. {
  117. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  118. struct intel_engine_cs *engine;
  119. struct i915_vma *vma;
  120. unsigned int frontbuffer_bits;
  121. int pin_count = 0;
  122. lockdep_assert_held(&obj->base.dev->struct_mutex);
  123. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
  124. &obj->base,
  125. get_active_flag(obj),
  126. get_pin_flag(obj),
  127. get_tiling_flag(obj),
  128. get_global_flag(obj),
  129. get_pin_mapped_flag(obj),
  130. obj->base.size / 1024,
  131. obj->read_domains,
  132. obj->write_domain,
  133. i915_cache_level_str(dev_priv, obj->cache_level),
  134. obj->mm.dirty ? " dirty" : "",
  135. obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
  136. if (obj->base.name)
  137. seq_printf(m, " (name: %d)", obj->base.name);
  138. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  139. if (i915_vma_is_pinned(vma))
  140. pin_count++;
  141. }
  142. seq_printf(m, " (pinned x %d)", pin_count);
  143. if (obj->pin_global)
  144. seq_printf(m, " (global)");
  145. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  146. if (!drm_mm_node_allocated(&vma->node))
  147. continue;
  148. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
  149. i915_vma_is_ggtt(vma) ? "g" : "pp",
  150. vma->node.start, vma->node.size,
  151. stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
  152. if (i915_vma_is_ggtt(vma)) {
  153. switch (vma->ggtt_view.type) {
  154. case I915_GGTT_VIEW_NORMAL:
  155. seq_puts(m, ", normal");
  156. break;
  157. case I915_GGTT_VIEW_PARTIAL:
  158. seq_printf(m, ", partial [%08llx+%x]",
  159. vma->ggtt_view.partial.offset << PAGE_SHIFT,
  160. vma->ggtt_view.partial.size << PAGE_SHIFT);
  161. break;
  162. case I915_GGTT_VIEW_ROTATED:
  163. seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
  164. vma->ggtt_view.rotated.plane[0].width,
  165. vma->ggtt_view.rotated.plane[0].height,
  166. vma->ggtt_view.rotated.plane[0].stride,
  167. vma->ggtt_view.rotated.plane[0].offset,
  168. vma->ggtt_view.rotated.plane[1].width,
  169. vma->ggtt_view.rotated.plane[1].height,
  170. vma->ggtt_view.rotated.plane[1].stride,
  171. vma->ggtt_view.rotated.plane[1].offset);
  172. break;
  173. default:
  174. MISSING_CASE(vma->ggtt_view.type);
  175. break;
  176. }
  177. }
  178. if (vma->fence)
  179. seq_printf(m, " , fence: %d%s",
  180. vma->fence->id,
  181. i915_gem_active_isset(&vma->last_fence) ? "*" : "");
  182. seq_puts(m, ")");
  183. }
  184. if (obj->stolen)
  185. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  186. engine = i915_gem_object_last_write_engine(obj);
  187. if (engine)
  188. seq_printf(m, " (%s)", engine->name);
  189. frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
  190. if (frontbuffer_bits)
  191. seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
  192. }
  193. static int obj_rank_by_stolen(const void *A, const void *B)
  194. {
  195. const struct drm_i915_gem_object *a =
  196. *(const struct drm_i915_gem_object **)A;
  197. const struct drm_i915_gem_object *b =
  198. *(const struct drm_i915_gem_object **)B;
  199. if (a->stolen->start < b->stolen->start)
  200. return -1;
  201. if (a->stolen->start > b->stolen->start)
  202. return 1;
  203. return 0;
  204. }
  205. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  206. {
  207. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  208. struct drm_device *dev = &dev_priv->drm;
  209. struct drm_i915_gem_object **objects;
  210. struct drm_i915_gem_object *obj;
  211. u64 total_obj_size, total_gtt_size;
  212. unsigned long total, count, n;
  213. int ret;
  214. total = READ_ONCE(dev_priv->mm.object_count);
  215. objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
  216. if (!objects)
  217. return -ENOMEM;
  218. ret = mutex_lock_interruptible(&dev->struct_mutex);
  219. if (ret)
  220. goto out;
  221. total_obj_size = total_gtt_size = count = 0;
  222. spin_lock(&dev_priv->mm.obj_lock);
  223. list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
  224. if (count == total)
  225. break;
  226. if (obj->stolen == NULL)
  227. continue;
  228. objects[count++] = obj;
  229. total_obj_size += obj->base.size;
  230. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  231. }
  232. list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
  233. if (count == total)
  234. break;
  235. if (obj->stolen == NULL)
  236. continue;
  237. objects[count++] = obj;
  238. total_obj_size += obj->base.size;
  239. }
  240. spin_unlock(&dev_priv->mm.obj_lock);
  241. sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
  242. seq_puts(m, "Stolen:\n");
  243. for (n = 0; n < count; n++) {
  244. seq_puts(m, " ");
  245. describe_obj(m, objects[n]);
  246. seq_putc(m, '\n');
  247. }
  248. seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
  249. count, total_obj_size, total_gtt_size);
  250. mutex_unlock(&dev->struct_mutex);
  251. out:
  252. kvfree(objects);
  253. return ret;
  254. }
  255. struct file_stats {
  256. struct drm_i915_file_private *file_priv;
  257. unsigned long count;
  258. u64 total, unbound;
  259. u64 global, shared;
  260. u64 active, inactive;
  261. };
  262. static int per_file_stats(int id, void *ptr, void *data)
  263. {
  264. struct drm_i915_gem_object *obj = ptr;
  265. struct file_stats *stats = data;
  266. struct i915_vma *vma;
  267. lockdep_assert_held(&obj->base.dev->struct_mutex);
  268. stats->count++;
  269. stats->total += obj->base.size;
  270. if (!obj->bind_count)
  271. stats->unbound += obj->base.size;
  272. if (obj->base.name || obj->base.dma_buf)
  273. stats->shared += obj->base.size;
  274. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  275. if (!drm_mm_node_allocated(&vma->node))
  276. continue;
  277. if (i915_vma_is_ggtt(vma)) {
  278. stats->global += vma->node.size;
  279. } else {
  280. struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
  281. if (ppgtt->vm.file != stats->file_priv)
  282. continue;
  283. }
  284. if (i915_vma_is_active(vma))
  285. stats->active += vma->node.size;
  286. else
  287. stats->inactive += vma->node.size;
  288. }
  289. return 0;
  290. }
  291. #define print_file_stats(m, name, stats) do { \
  292. if (stats.count) \
  293. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  294. name, \
  295. stats.count, \
  296. stats.total, \
  297. stats.active, \
  298. stats.inactive, \
  299. stats.global, \
  300. stats.shared, \
  301. stats.unbound); \
  302. } while (0)
  303. static void print_batch_pool_stats(struct seq_file *m,
  304. struct drm_i915_private *dev_priv)
  305. {
  306. struct drm_i915_gem_object *obj;
  307. struct file_stats stats;
  308. struct intel_engine_cs *engine;
  309. enum intel_engine_id id;
  310. int j;
  311. memset(&stats, 0, sizeof(stats));
  312. for_each_engine(engine, dev_priv, id) {
  313. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  314. list_for_each_entry(obj,
  315. &engine->batch_pool.cache_list[j],
  316. batch_pool_link)
  317. per_file_stats(0, obj, &stats);
  318. }
  319. }
  320. print_file_stats(m, "[k]batch pool", stats);
  321. }
  322. static int per_file_ctx_stats(int idx, void *ptr, void *data)
  323. {
  324. struct i915_gem_context *ctx = ptr;
  325. struct intel_engine_cs *engine;
  326. enum intel_engine_id id;
  327. for_each_engine(engine, ctx->i915, id) {
  328. struct intel_context *ce = to_intel_context(ctx, engine);
  329. if (ce->state)
  330. per_file_stats(0, ce->state->obj, data);
  331. if (ce->ring)
  332. per_file_stats(0, ce->ring->vma->obj, data);
  333. }
  334. return 0;
  335. }
  336. static void print_context_stats(struct seq_file *m,
  337. struct drm_i915_private *dev_priv)
  338. {
  339. struct drm_device *dev = &dev_priv->drm;
  340. struct file_stats stats;
  341. struct drm_file *file;
  342. memset(&stats, 0, sizeof(stats));
  343. mutex_lock(&dev->struct_mutex);
  344. if (dev_priv->kernel_context)
  345. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  346. list_for_each_entry(file, &dev->filelist, lhead) {
  347. struct drm_i915_file_private *fpriv = file->driver_priv;
  348. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  349. }
  350. mutex_unlock(&dev->struct_mutex);
  351. print_file_stats(m, "[k]contexts", stats);
  352. }
  353. static int i915_gem_object_info(struct seq_file *m, void *data)
  354. {
  355. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  356. struct drm_device *dev = &dev_priv->drm;
  357. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  358. u32 count, mapped_count, purgeable_count, dpy_count, huge_count;
  359. u64 size, mapped_size, purgeable_size, dpy_size, huge_size;
  360. struct drm_i915_gem_object *obj;
  361. unsigned int page_sizes = 0;
  362. struct drm_file *file;
  363. char buf[80];
  364. int ret;
  365. ret = mutex_lock_interruptible(&dev->struct_mutex);
  366. if (ret)
  367. return ret;
  368. seq_printf(m, "%u objects, %llu bytes\n",
  369. dev_priv->mm.object_count,
  370. dev_priv->mm.object_memory);
  371. size = count = 0;
  372. mapped_size = mapped_count = 0;
  373. purgeable_size = purgeable_count = 0;
  374. huge_size = huge_count = 0;
  375. spin_lock(&dev_priv->mm.obj_lock);
  376. list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
  377. size += obj->base.size;
  378. ++count;
  379. if (obj->mm.madv == I915_MADV_DONTNEED) {
  380. purgeable_size += obj->base.size;
  381. ++purgeable_count;
  382. }
  383. if (obj->mm.mapping) {
  384. mapped_count++;
  385. mapped_size += obj->base.size;
  386. }
  387. if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
  388. huge_count++;
  389. huge_size += obj->base.size;
  390. page_sizes |= obj->mm.page_sizes.sg;
  391. }
  392. }
  393. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  394. size = count = dpy_size = dpy_count = 0;
  395. list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
  396. size += obj->base.size;
  397. ++count;
  398. if (obj->pin_global) {
  399. dpy_size += obj->base.size;
  400. ++dpy_count;
  401. }
  402. if (obj->mm.madv == I915_MADV_DONTNEED) {
  403. purgeable_size += obj->base.size;
  404. ++purgeable_count;
  405. }
  406. if (obj->mm.mapping) {
  407. mapped_count++;
  408. mapped_size += obj->base.size;
  409. }
  410. if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
  411. huge_count++;
  412. huge_size += obj->base.size;
  413. page_sizes |= obj->mm.page_sizes.sg;
  414. }
  415. }
  416. spin_unlock(&dev_priv->mm.obj_lock);
  417. seq_printf(m, "%u bound objects, %llu bytes\n",
  418. count, size);
  419. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  420. purgeable_count, purgeable_size);
  421. seq_printf(m, "%u mapped objects, %llu bytes\n",
  422. mapped_count, mapped_size);
  423. seq_printf(m, "%u huge-paged objects (%s) %llu bytes\n",
  424. huge_count,
  425. stringify_page_sizes(page_sizes, buf, sizeof(buf)),
  426. huge_size);
  427. seq_printf(m, "%u display objects (globally pinned), %llu bytes\n",
  428. dpy_count, dpy_size);
  429. seq_printf(m, "%llu [%pa] gtt total\n",
  430. ggtt->vm.total, &ggtt->mappable_end);
  431. seq_printf(m, "Supported page sizes: %s\n",
  432. stringify_page_sizes(INTEL_INFO(dev_priv)->page_sizes,
  433. buf, sizeof(buf)));
  434. seq_putc(m, '\n');
  435. print_batch_pool_stats(m, dev_priv);
  436. mutex_unlock(&dev->struct_mutex);
  437. mutex_lock(&dev->filelist_mutex);
  438. print_context_stats(m, dev_priv);
  439. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  440. struct file_stats stats;
  441. struct drm_i915_file_private *file_priv = file->driver_priv;
  442. struct i915_request *request;
  443. struct task_struct *task;
  444. mutex_lock(&dev->struct_mutex);
  445. memset(&stats, 0, sizeof(stats));
  446. stats.file_priv = file->driver_priv;
  447. spin_lock(&file->table_lock);
  448. idr_for_each(&file->object_idr, per_file_stats, &stats);
  449. spin_unlock(&file->table_lock);
  450. /*
  451. * Although we have a valid reference on file->pid, that does
  452. * not guarantee that the task_struct who called get_pid() is
  453. * still alive (e.g. get_pid(current) => fork() => exit()).
  454. * Therefore, we need to protect this ->comm access using RCU.
  455. */
  456. request = list_first_entry_or_null(&file_priv->mm.request_list,
  457. struct i915_request,
  458. client_link);
  459. rcu_read_lock();
  460. task = pid_task(request && request->gem_context->pid ?
  461. request->gem_context->pid : file->pid,
  462. PIDTYPE_PID);
  463. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  464. rcu_read_unlock();
  465. mutex_unlock(&dev->struct_mutex);
  466. }
  467. mutex_unlock(&dev->filelist_mutex);
  468. return 0;
  469. }
  470. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  471. {
  472. struct drm_info_node *node = m->private;
  473. struct drm_i915_private *dev_priv = node_to_i915(node);
  474. struct drm_device *dev = &dev_priv->drm;
  475. struct drm_i915_gem_object **objects;
  476. struct drm_i915_gem_object *obj;
  477. u64 total_obj_size, total_gtt_size;
  478. unsigned long nobject, n;
  479. int count, ret;
  480. nobject = READ_ONCE(dev_priv->mm.object_count);
  481. objects = kvmalloc_array(nobject, sizeof(*objects), GFP_KERNEL);
  482. if (!objects)
  483. return -ENOMEM;
  484. ret = mutex_lock_interruptible(&dev->struct_mutex);
  485. if (ret)
  486. return ret;
  487. count = 0;
  488. spin_lock(&dev_priv->mm.obj_lock);
  489. list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
  490. objects[count++] = obj;
  491. if (count == nobject)
  492. break;
  493. }
  494. spin_unlock(&dev_priv->mm.obj_lock);
  495. total_obj_size = total_gtt_size = 0;
  496. for (n = 0; n < count; n++) {
  497. obj = objects[n];
  498. seq_puts(m, " ");
  499. describe_obj(m, obj);
  500. seq_putc(m, '\n');
  501. total_obj_size += obj->base.size;
  502. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  503. }
  504. mutex_unlock(&dev->struct_mutex);
  505. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  506. count, total_obj_size, total_gtt_size);
  507. kvfree(objects);
  508. return 0;
  509. }
  510. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  511. {
  512. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  513. struct drm_device *dev = &dev_priv->drm;
  514. struct drm_i915_gem_object *obj;
  515. struct intel_engine_cs *engine;
  516. enum intel_engine_id id;
  517. int total = 0;
  518. int ret, j;
  519. ret = mutex_lock_interruptible(&dev->struct_mutex);
  520. if (ret)
  521. return ret;
  522. for_each_engine(engine, dev_priv, id) {
  523. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  524. int count;
  525. count = 0;
  526. list_for_each_entry(obj,
  527. &engine->batch_pool.cache_list[j],
  528. batch_pool_link)
  529. count++;
  530. seq_printf(m, "%s cache[%d]: %d objects\n",
  531. engine->name, j, count);
  532. list_for_each_entry(obj,
  533. &engine->batch_pool.cache_list[j],
  534. batch_pool_link) {
  535. seq_puts(m, " ");
  536. describe_obj(m, obj);
  537. seq_putc(m, '\n');
  538. }
  539. total += count;
  540. }
  541. }
  542. seq_printf(m, "total: %d\n", total);
  543. mutex_unlock(&dev->struct_mutex);
  544. return 0;
  545. }
  546. static void gen8_display_interrupt_info(struct seq_file *m)
  547. {
  548. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  549. int pipe;
  550. for_each_pipe(dev_priv, pipe) {
  551. enum intel_display_power_domain power_domain;
  552. power_domain = POWER_DOMAIN_PIPE(pipe);
  553. if (!intel_display_power_get_if_enabled(dev_priv,
  554. power_domain)) {
  555. seq_printf(m, "Pipe %c power disabled\n",
  556. pipe_name(pipe));
  557. continue;
  558. }
  559. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  560. pipe_name(pipe),
  561. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  562. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  563. pipe_name(pipe),
  564. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  565. seq_printf(m, "Pipe %c IER:\t%08x\n",
  566. pipe_name(pipe),
  567. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  568. intel_display_power_put(dev_priv, power_domain);
  569. }
  570. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  571. I915_READ(GEN8_DE_PORT_IMR));
  572. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  573. I915_READ(GEN8_DE_PORT_IIR));
  574. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  575. I915_READ(GEN8_DE_PORT_IER));
  576. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  577. I915_READ(GEN8_DE_MISC_IMR));
  578. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  579. I915_READ(GEN8_DE_MISC_IIR));
  580. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  581. I915_READ(GEN8_DE_MISC_IER));
  582. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  583. I915_READ(GEN8_PCU_IMR));
  584. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  585. I915_READ(GEN8_PCU_IIR));
  586. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  587. I915_READ(GEN8_PCU_IER));
  588. }
  589. static int i915_interrupt_info(struct seq_file *m, void *data)
  590. {
  591. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  592. struct intel_engine_cs *engine;
  593. enum intel_engine_id id;
  594. int i, pipe;
  595. intel_runtime_pm_get(dev_priv);
  596. if (IS_CHERRYVIEW(dev_priv)) {
  597. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  598. I915_READ(GEN8_MASTER_IRQ));
  599. seq_printf(m, "Display IER:\t%08x\n",
  600. I915_READ(VLV_IER));
  601. seq_printf(m, "Display IIR:\t%08x\n",
  602. I915_READ(VLV_IIR));
  603. seq_printf(m, "Display IIR_RW:\t%08x\n",
  604. I915_READ(VLV_IIR_RW));
  605. seq_printf(m, "Display IMR:\t%08x\n",
  606. I915_READ(VLV_IMR));
  607. for_each_pipe(dev_priv, pipe) {
  608. enum intel_display_power_domain power_domain;
  609. power_domain = POWER_DOMAIN_PIPE(pipe);
  610. if (!intel_display_power_get_if_enabled(dev_priv,
  611. power_domain)) {
  612. seq_printf(m, "Pipe %c power disabled\n",
  613. pipe_name(pipe));
  614. continue;
  615. }
  616. seq_printf(m, "Pipe %c stat:\t%08x\n",
  617. pipe_name(pipe),
  618. I915_READ(PIPESTAT(pipe)));
  619. intel_display_power_put(dev_priv, power_domain);
  620. }
  621. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  622. seq_printf(m, "Port hotplug:\t%08x\n",
  623. I915_READ(PORT_HOTPLUG_EN));
  624. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  625. I915_READ(VLV_DPFLIPSTAT));
  626. seq_printf(m, "DPINVGTT:\t%08x\n",
  627. I915_READ(DPINVGTT));
  628. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  629. for (i = 0; i < 4; i++) {
  630. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  631. i, I915_READ(GEN8_GT_IMR(i)));
  632. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  633. i, I915_READ(GEN8_GT_IIR(i)));
  634. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  635. i, I915_READ(GEN8_GT_IER(i)));
  636. }
  637. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  638. I915_READ(GEN8_PCU_IMR));
  639. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  640. I915_READ(GEN8_PCU_IIR));
  641. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  642. I915_READ(GEN8_PCU_IER));
  643. } else if (INTEL_GEN(dev_priv) >= 11) {
  644. seq_printf(m, "Master Interrupt Control: %08x\n",
  645. I915_READ(GEN11_GFX_MSTR_IRQ));
  646. seq_printf(m, "Render/Copy Intr Enable: %08x\n",
  647. I915_READ(GEN11_RENDER_COPY_INTR_ENABLE));
  648. seq_printf(m, "VCS/VECS Intr Enable: %08x\n",
  649. I915_READ(GEN11_VCS_VECS_INTR_ENABLE));
  650. seq_printf(m, "GUC/SG Intr Enable:\t %08x\n",
  651. I915_READ(GEN11_GUC_SG_INTR_ENABLE));
  652. seq_printf(m, "GPM/WGBOXPERF Intr Enable: %08x\n",
  653. I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE));
  654. seq_printf(m, "Crypto Intr Enable:\t %08x\n",
  655. I915_READ(GEN11_CRYPTO_RSVD_INTR_ENABLE));
  656. seq_printf(m, "GUnit/CSME Intr Enable:\t %08x\n",
  657. I915_READ(GEN11_GUNIT_CSME_INTR_ENABLE));
  658. seq_printf(m, "Display Interrupt Control:\t%08x\n",
  659. I915_READ(GEN11_DISPLAY_INT_CTL));
  660. gen8_display_interrupt_info(m);
  661. } else if (INTEL_GEN(dev_priv) >= 8) {
  662. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  663. I915_READ(GEN8_MASTER_IRQ));
  664. for (i = 0; i < 4; i++) {
  665. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  666. i, I915_READ(GEN8_GT_IMR(i)));
  667. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  668. i, I915_READ(GEN8_GT_IIR(i)));
  669. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  670. i, I915_READ(GEN8_GT_IER(i)));
  671. }
  672. gen8_display_interrupt_info(m);
  673. } else if (IS_VALLEYVIEW(dev_priv)) {
  674. seq_printf(m, "Display IER:\t%08x\n",
  675. I915_READ(VLV_IER));
  676. seq_printf(m, "Display IIR:\t%08x\n",
  677. I915_READ(VLV_IIR));
  678. seq_printf(m, "Display IIR_RW:\t%08x\n",
  679. I915_READ(VLV_IIR_RW));
  680. seq_printf(m, "Display IMR:\t%08x\n",
  681. I915_READ(VLV_IMR));
  682. for_each_pipe(dev_priv, pipe) {
  683. enum intel_display_power_domain power_domain;
  684. power_domain = POWER_DOMAIN_PIPE(pipe);
  685. if (!intel_display_power_get_if_enabled(dev_priv,
  686. power_domain)) {
  687. seq_printf(m, "Pipe %c power disabled\n",
  688. pipe_name(pipe));
  689. continue;
  690. }
  691. seq_printf(m, "Pipe %c stat:\t%08x\n",
  692. pipe_name(pipe),
  693. I915_READ(PIPESTAT(pipe)));
  694. intel_display_power_put(dev_priv, power_domain);
  695. }
  696. seq_printf(m, "Master IER:\t%08x\n",
  697. I915_READ(VLV_MASTER_IER));
  698. seq_printf(m, "Render IER:\t%08x\n",
  699. I915_READ(GTIER));
  700. seq_printf(m, "Render IIR:\t%08x\n",
  701. I915_READ(GTIIR));
  702. seq_printf(m, "Render IMR:\t%08x\n",
  703. I915_READ(GTIMR));
  704. seq_printf(m, "PM IER:\t\t%08x\n",
  705. I915_READ(GEN6_PMIER));
  706. seq_printf(m, "PM IIR:\t\t%08x\n",
  707. I915_READ(GEN6_PMIIR));
  708. seq_printf(m, "PM IMR:\t\t%08x\n",
  709. I915_READ(GEN6_PMIMR));
  710. seq_printf(m, "Port hotplug:\t%08x\n",
  711. I915_READ(PORT_HOTPLUG_EN));
  712. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  713. I915_READ(VLV_DPFLIPSTAT));
  714. seq_printf(m, "DPINVGTT:\t%08x\n",
  715. I915_READ(DPINVGTT));
  716. } else if (!HAS_PCH_SPLIT(dev_priv)) {
  717. seq_printf(m, "Interrupt enable: %08x\n",
  718. I915_READ(IER));
  719. seq_printf(m, "Interrupt identity: %08x\n",
  720. I915_READ(IIR));
  721. seq_printf(m, "Interrupt mask: %08x\n",
  722. I915_READ(IMR));
  723. for_each_pipe(dev_priv, pipe)
  724. seq_printf(m, "Pipe %c stat: %08x\n",
  725. pipe_name(pipe),
  726. I915_READ(PIPESTAT(pipe)));
  727. } else {
  728. seq_printf(m, "North Display Interrupt enable: %08x\n",
  729. I915_READ(DEIER));
  730. seq_printf(m, "North Display Interrupt identity: %08x\n",
  731. I915_READ(DEIIR));
  732. seq_printf(m, "North Display Interrupt mask: %08x\n",
  733. I915_READ(DEIMR));
  734. seq_printf(m, "South Display Interrupt enable: %08x\n",
  735. I915_READ(SDEIER));
  736. seq_printf(m, "South Display Interrupt identity: %08x\n",
  737. I915_READ(SDEIIR));
  738. seq_printf(m, "South Display Interrupt mask: %08x\n",
  739. I915_READ(SDEIMR));
  740. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  741. I915_READ(GTIER));
  742. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  743. I915_READ(GTIIR));
  744. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  745. I915_READ(GTIMR));
  746. }
  747. if (INTEL_GEN(dev_priv) >= 11) {
  748. seq_printf(m, "RCS Intr Mask:\t %08x\n",
  749. I915_READ(GEN11_RCS0_RSVD_INTR_MASK));
  750. seq_printf(m, "BCS Intr Mask:\t %08x\n",
  751. I915_READ(GEN11_BCS_RSVD_INTR_MASK));
  752. seq_printf(m, "VCS0/VCS1 Intr Mask:\t %08x\n",
  753. I915_READ(GEN11_VCS0_VCS1_INTR_MASK));
  754. seq_printf(m, "VCS2/VCS3 Intr Mask:\t %08x\n",
  755. I915_READ(GEN11_VCS2_VCS3_INTR_MASK));
  756. seq_printf(m, "VECS0/VECS1 Intr Mask:\t %08x\n",
  757. I915_READ(GEN11_VECS0_VECS1_INTR_MASK));
  758. seq_printf(m, "GUC/SG Intr Mask:\t %08x\n",
  759. I915_READ(GEN11_GUC_SG_INTR_MASK));
  760. seq_printf(m, "GPM/WGBOXPERF Intr Mask: %08x\n",
  761. I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK));
  762. seq_printf(m, "Crypto Intr Mask:\t %08x\n",
  763. I915_READ(GEN11_CRYPTO_RSVD_INTR_MASK));
  764. seq_printf(m, "Gunit/CSME Intr Mask:\t %08x\n",
  765. I915_READ(GEN11_GUNIT_CSME_INTR_MASK));
  766. } else if (INTEL_GEN(dev_priv) >= 6) {
  767. for_each_engine(engine, dev_priv, id) {
  768. seq_printf(m,
  769. "Graphics Interrupt mask (%s): %08x\n",
  770. engine->name, I915_READ_IMR(engine));
  771. }
  772. }
  773. intel_runtime_pm_put(dev_priv);
  774. return 0;
  775. }
  776. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  777. {
  778. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  779. struct drm_device *dev = &dev_priv->drm;
  780. int i, ret;
  781. ret = mutex_lock_interruptible(&dev->struct_mutex);
  782. if (ret)
  783. return ret;
  784. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  785. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  786. struct i915_vma *vma = dev_priv->fence_regs[i].vma;
  787. seq_printf(m, "Fence %d, pin count = %d, object = ",
  788. i, dev_priv->fence_regs[i].pin_count);
  789. if (!vma)
  790. seq_puts(m, "unused");
  791. else
  792. describe_obj(m, vma->obj);
  793. seq_putc(m, '\n');
  794. }
  795. mutex_unlock(&dev->struct_mutex);
  796. return 0;
  797. }
  798. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  799. static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
  800. size_t count, loff_t *pos)
  801. {
  802. struct i915_gpu_state *error = file->private_data;
  803. struct drm_i915_error_state_buf str;
  804. ssize_t ret;
  805. loff_t tmp;
  806. if (!error)
  807. return 0;
  808. ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
  809. if (ret)
  810. return ret;
  811. ret = i915_error_state_to_str(&str, error);
  812. if (ret)
  813. goto out;
  814. tmp = 0;
  815. ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
  816. if (ret < 0)
  817. goto out;
  818. *pos = str.start + ret;
  819. out:
  820. i915_error_state_buf_release(&str);
  821. return ret;
  822. }
  823. static int gpu_state_release(struct inode *inode, struct file *file)
  824. {
  825. i915_gpu_state_put(file->private_data);
  826. return 0;
  827. }
  828. static int i915_gpu_info_open(struct inode *inode, struct file *file)
  829. {
  830. struct drm_i915_private *i915 = inode->i_private;
  831. struct i915_gpu_state *gpu;
  832. intel_runtime_pm_get(i915);
  833. gpu = i915_capture_gpu_state(i915);
  834. intel_runtime_pm_put(i915);
  835. if (!gpu)
  836. return -ENOMEM;
  837. file->private_data = gpu;
  838. return 0;
  839. }
  840. static const struct file_operations i915_gpu_info_fops = {
  841. .owner = THIS_MODULE,
  842. .open = i915_gpu_info_open,
  843. .read = gpu_state_read,
  844. .llseek = default_llseek,
  845. .release = gpu_state_release,
  846. };
  847. static ssize_t
  848. i915_error_state_write(struct file *filp,
  849. const char __user *ubuf,
  850. size_t cnt,
  851. loff_t *ppos)
  852. {
  853. struct i915_gpu_state *error = filp->private_data;
  854. if (!error)
  855. return 0;
  856. DRM_DEBUG_DRIVER("Resetting error state\n");
  857. i915_reset_error_state(error->i915);
  858. return cnt;
  859. }
  860. static int i915_error_state_open(struct inode *inode, struct file *file)
  861. {
  862. file->private_data = i915_first_error_state(inode->i_private);
  863. return 0;
  864. }
  865. static const struct file_operations i915_error_state_fops = {
  866. .owner = THIS_MODULE,
  867. .open = i915_error_state_open,
  868. .read = gpu_state_read,
  869. .write = i915_error_state_write,
  870. .llseek = default_llseek,
  871. .release = gpu_state_release,
  872. };
  873. #endif
  874. static int
  875. i915_next_seqno_set(void *data, u64 val)
  876. {
  877. struct drm_i915_private *dev_priv = data;
  878. struct drm_device *dev = &dev_priv->drm;
  879. int ret;
  880. ret = mutex_lock_interruptible(&dev->struct_mutex);
  881. if (ret)
  882. return ret;
  883. intel_runtime_pm_get(dev_priv);
  884. ret = i915_gem_set_global_seqno(dev, val);
  885. intel_runtime_pm_put(dev_priv);
  886. mutex_unlock(&dev->struct_mutex);
  887. return ret;
  888. }
  889. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  890. NULL, i915_next_seqno_set,
  891. "0x%llx\n");
  892. static int i915_frequency_info(struct seq_file *m, void *unused)
  893. {
  894. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  895. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  896. int ret = 0;
  897. intel_runtime_pm_get(dev_priv);
  898. if (IS_GEN5(dev_priv)) {
  899. u16 rgvswctl = I915_READ16(MEMSWCTL);
  900. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  901. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  902. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  903. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  904. MEMSTAT_VID_SHIFT);
  905. seq_printf(m, "Current P-state: %d\n",
  906. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  907. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  908. u32 rpmodectl, freq_sts;
  909. mutex_lock(&dev_priv->pcu_lock);
  910. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  911. seq_printf(m, "Video Turbo Mode: %s\n",
  912. yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
  913. seq_printf(m, "HW control enabled: %s\n",
  914. yesno(rpmodectl & GEN6_RP_ENABLE));
  915. seq_printf(m, "SW control enabled: %s\n",
  916. yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
  917. GEN6_RP_MEDIA_SW_MODE));
  918. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  919. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  920. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  921. seq_printf(m, "actual GPU freq: %d MHz\n",
  922. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  923. seq_printf(m, "current GPU freq: %d MHz\n",
  924. intel_gpu_freq(dev_priv, rps->cur_freq));
  925. seq_printf(m, "max GPU freq: %d MHz\n",
  926. intel_gpu_freq(dev_priv, rps->max_freq));
  927. seq_printf(m, "min GPU freq: %d MHz\n",
  928. intel_gpu_freq(dev_priv, rps->min_freq));
  929. seq_printf(m, "idle GPU freq: %d MHz\n",
  930. intel_gpu_freq(dev_priv, rps->idle_freq));
  931. seq_printf(m,
  932. "efficient (RPe) frequency: %d MHz\n",
  933. intel_gpu_freq(dev_priv, rps->efficient_freq));
  934. mutex_unlock(&dev_priv->pcu_lock);
  935. } else if (INTEL_GEN(dev_priv) >= 6) {
  936. u32 rp_state_limits;
  937. u32 gt_perf_status;
  938. u32 rp_state_cap;
  939. u32 rpmodectl, rpinclimit, rpdeclimit;
  940. u32 rpstat, cagf, reqf;
  941. u32 rpupei, rpcurup, rpprevup;
  942. u32 rpdownei, rpcurdown, rpprevdown;
  943. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  944. int max_freq;
  945. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  946. if (IS_GEN9_LP(dev_priv)) {
  947. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  948. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  949. } else {
  950. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  951. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  952. }
  953. /* RPSTAT1 is in the GT power well */
  954. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  955. reqf = I915_READ(GEN6_RPNSWREQ);
  956. if (INTEL_GEN(dev_priv) >= 9)
  957. reqf >>= 23;
  958. else {
  959. reqf &= ~GEN6_TURBO_DISABLE;
  960. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  961. reqf >>= 24;
  962. else
  963. reqf >>= 25;
  964. }
  965. reqf = intel_gpu_freq(dev_priv, reqf);
  966. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  967. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  968. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  969. rpstat = I915_READ(GEN6_RPSTAT1);
  970. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  971. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  972. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  973. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  974. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  975. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  976. cagf = intel_gpu_freq(dev_priv,
  977. intel_get_cagf(dev_priv, rpstat));
  978. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  979. if (INTEL_GEN(dev_priv) >= 11) {
  980. pm_ier = I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE);
  981. pm_imr = I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK);
  982. /*
  983. * The equivalent to the PM ISR & IIR cannot be read
  984. * without affecting the current state of the system
  985. */
  986. pm_isr = 0;
  987. pm_iir = 0;
  988. } else if (INTEL_GEN(dev_priv) >= 8) {
  989. pm_ier = I915_READ(GEN8_GT_IER(2));
  990. pm_imr = I915_READ(GEN8_GT_IMR(2));
  991. pm_isr = I915_READ(GEN8_GT_ISR(2));
  992. pm_iir = I915_READ(GEN8_GT_IIR(2));
  993. } else {
  994. pm_ier = I915_READ(GEN6_PMIER);
  995. pm_imr = I915_READ(GEN6_PMIMR);
  996. pm_isr = I915_READ(GEN6_PMISR);
  997. pm_iir = I915_READ(GEN6_PMIIR);
  998. }
  999. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1000. seq_printf(m, "Video Turbo Mode: %s\n",
  1001. yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
  1002. seq_printf(m, "HW control enabled: %s\n",
  1003. yesno(rpmodectl & GEN6_RP_ENABLE));
  1004. seq_printf(m, "SW control enabled: %s\n",
  1005. yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
  1006. GEN6_RP_MEDIA_SW_MODE));
  1007. seq_printf(m, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
  1008. pm_ier, pm_imr, pm_mask);
  1009. if (INTEL_GEN(dev_priv) <= 10)
  1010. seq_printf(m, "PM ISR=0x%08x IIR=0x%08x\n",
  1011. pm_isr, pm_iir);
  1012. seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
  1013. rps->pm_intrmsk_mbz);
  1014. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1015. seq_printf(m, "Render p-state ratio: %d\n",
  1016. (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
  1017. seq_printf(m, "Render p-state VID: %d\n",
  1018. gt_perf_status & 0xff);
  1019. seq_printf(m, "Render p-state limit: %d\n",
  1020. rp_state_limits & 0xff);
  1021. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1022. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1023. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1024. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1025. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1026. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1027. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  1028. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  1029. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  1030. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  1031. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  1032. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  1033. seq_printf(m, "Up threshold: %d%%\n", rps->up_threshold);
  1034. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  1035. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  1036. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  1037. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  1038. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  1039. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  1040. seq_printf(m, "Down threshold: %d%%\n", rps->down_threshold);
  1041. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
  1042. rp_state_cap >> 16) & 0xff;
  1043. max_freq *= (IS_GEN9_BC(dev_priv) ||
  1044. INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
  1045. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1046. intel_gpu_freq(dev_priv, max_freq));
  1047. max_freq = (rp_state_cap & 0xff00) >> 8;
  1048. max_freq *= (IS_GEN9_BC(dev_priv) ||
  1049. INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
  1050. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1051. intel_gpu_freq(dev_priv, max_freq));
  1052. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
  1053. rp_state_cap >> 0) & 0xff;
  1054. max_freq *= (IS_GEN9_BC(dev_priv) ||
  1055. INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
  1056. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1057. intel_gpu_freq(dev_priv, max_freq));
  1058. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1059. intel_gpu_freq(dev_priv, rps->max_freq));
  1060. seq_printf(m, "Current freq: %d MHz\n",
  1061. intel_gpu_freq(dev_priv, rps->cur_freq));
  1062. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1063. seq_printf(m, "Idle freq: %d MHz\n",
  1064. intel_gpu_freq(dev_priv, rps->idle_freq));
  1065. seq_printf(m, "Min freq: %d MHz\n",
  1066. intel_gpu_freq(dev_priv, rps->min_freq));
  1067. seq_printf(m, "Boost freq: %d MHz\n",
  1068. intel_gpu_freq(dev_priv, rps->boost_freq));
  1069. seq_printf(m, "Max freq: %d MHz\n",
  1070. intel_gpu_freq(dev_priv, rps->max_freq));
  1071. seq_printf(m,
  1072. "efficient (RPe) frequency: %d MHz\n",
  1073. intel_gpu_freq(dev_priv, rps->efficient_freq));
  1074. } else {
  1075. seq_puts(m, "no P-state info available\n");
  1076. }
  1077. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
  1078. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1079. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1080. intel_runtime_pm_put(dev_priv);
  1081. return ret;
  1082. }
  1083. static void i915_instdone_info(struct drm_i915_private *dev_priv,
  1084. struct seq_file *m,
  1085. struct intel_instdone *instdone)
  1086. {
  1087. int slice;
  1088. int subslice;
  1089. seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
  1090. instdone->instdone);
  1091. if (INTEL_GEN(dev_priv) <= 3)
  1092. return;
  1093. seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
  1094. instdone->slice_common);
  1095. if (INTEL_GEN(dev_priv) <= 6)
  1096. return;
  1097. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1098. seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
  1099. slice, subslice, instdone->sampler[slice][subslice]);
  1100. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1101. seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
  1102. slice, subslice, instdone->row[slice][subslice]);
  1103. }
  1104. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1105. {
  1106. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1107. struct intel_engine_cs *engine;
  1108. u64 acthd[I915_NUM_ENGINES];
  1109. u32 seqno[I915_NUM_ENGINES];
  1110. struct intel_instdone instdone;
  1111. enum intel_engine_id id;
  1112. if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  1113. seq_puts(m, "Wedged\n");
  1114. if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
  1115. seq_puts(m, "Reset in progress: struct_mutex backoff\n");
  1116. if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
  1117. seq_puts(m, "Reset in progress: reset handoff to waiter\n");
  1118. if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
  1119. seq_puts(m, "Waiter holding struct mutex\n");
  1120. if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
  1121. seq_puts(m, "struct_mutex blocked for reset\n");
  1122. if (!i915_modparams.enable_hangcheck) {
  1123. seq_puts(m, "Hangcheck disabled\n");
  1124. return 0;
  1125. }
  1126. intel_runtime_pm_get(dev_priv);
  1127. for_each_engine(engine, dev_priv, id) {
  1128. acthd[id] = intel_engine_get_active_head(engine);
  1129. seqno[id] = intel_engine_get_seqno(engine);
  1130. }
  1131. intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
  1132. intel_runtime_pm_put(dev_priv);
  1133. if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
  1134. seq_printf(m, "Hangcheck active, timer fires in %dms\n",
  1135. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1136. jiffies));
  1137. else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
  1138. seq_puts(m, "Hangcheck active, work pending\n");
  1139. else
  1140. seq_puts(m, "Hangcheck inactive\n");
  1141. seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
  1142. for_each_engine(engine, dev_priv, id) {
  1143. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  1144. struct rb_node *rb;
  1145. seq_printf(m, "%s:\n", engine->name);
  1146. seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
  1147. engine->hangcheck.seqno, seqno[id],
  1148. intel_engine_last_submit(engine));
  1149. seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s, wedged? %s\n",
  1150. yesno(intel_engine_has_waiter(engine)),
  1151. yesno(test_bit(engine->id,
  1152. &dev_priv->gpu_error.missed_irq_rings)),
  1153. yesno(engine->hangcheck.stalled),
  1154. yesno(engine->hangcheck.wedged));
  1155. spin_lock_irq(&b->rb_lock);
  1156. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  1157. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  1158. seq_printf(m, "\t%s [%d] waiting for %x\n",
  1159. w->tsk->comm, w->tsk->pid, w->seqno);
  1160. }
  1161. spin_unlock_irq(&b->rb_lock);
  1162. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1163. (long long)engine->hangcheck.acthd,
  1164. (long long)acthd[id]);
  1165. seq_printf(m, "\taction = %s(%d) %d ms ago\n",
  1166. hangcheck_action_to_str(engine->hangcheck.action),
  1167. engine->hangcheck.action,
  1168. jiffies_to_msecs(jiffies -
  1169. engine->hangcheck.action_timestamp));
  1170. if (engine->id == RCS) {
  1171. seq_puts(m, "\tinstdone read =\n");
  1172. i915_instdone_info(dev_priv, m, &instdone);
  1173. seq_puts(m, "\tinstdone accu =\n");
  1174. i915_instdone_info(dev_priv, m,
  1175. &engine->hangcheck.instdone);
  1176. }
  1177. }
  1178. return 0;
  1179. }
  1180. static int i915_reset_info(struct seq_file *m, void *unused)
  1181. {
  1182. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1183. struct i915_gpu_error *error = &dev_priv->gpu_error;
  1184. struct intel_engine_cs *engine;
  1185. enum intel_engine_id id;
  1186. seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
  1187. for_each_engine(engine, dev_priv, id) {
  1188. seq_printf(m, "%s = %u\n", engine->name,
  1189. i915_reset_engine_count(error, engine));
  1190. }
  1191. return 0;
  1192. }
  1193. static int ironlake_drpc_info(struct seq_file *m)
  1194. {
  1195. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1196. u32 rgvmodectl, rstdbyctl;
  1197. u16 crstandvid;
  1198. rgvmodectl = I915_READ(MEMMODECTL);
  1199. rstdbyctl = I915_READ(RSTDBYCTL);
  1200. crstandvid = I915_READ16(CRSTANDVID);
  1201. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1202. seq_printf(m, "Boost freq: %d\n",
  1203. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1204. MEMMODE_BOOST_FREQ_SHIFT);
  1205. seq_printf(m, "HW control enabled: %s\n",
  1206. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1207. seq_printf(m, "SW control enabled: %s\n",
  1208. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1209. seq_printf(m, "Gated voltage change: %s\n",
  1210. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1211. seq_printf(m, "Starting frequency: P%d\n",
  1212. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1213. seq_printf(m, "Max P-state: P%d\n",
  1214. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1215. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1216. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1217. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1218. seq_printf(m, "Render standby enabled: %s\n",
  1219. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1220. seq_puts(m, "Current RS state: ");
  1221. switch (rstdbyctl & RSX_STATUS_MASK) {
  1222. case RSX_STATUS_ON:
  1223. seq_puts(m, "on\n");
  1224. break;
  1225. case RSX_STATUS_RC1:
  1226. seq_puts(m, "RC1\n");
  1227. break;
  1228. case RSX_STATUS_RC1E:
  1229. seq_puts(m, "RC1E\n");
  1230. break;
  1231. case RSX_STATUS_RS1:
  1232. seq_puts(m, "RS1\n");
  1233. break;
  1234. case RSX_STATUS_RS2:
  1235. seq_puts(m, "RS2 (RC6)\n");
  1236. break;
  1237. case RSX_STATUS_RS3:
  1238. seq_puts(m, "RC3 (RC6+)\n");
  1239. break;
  1240. default:
  1241. seq_puts(m, "unknown\n");
  1242. break;
  1243. }
  1244. return 0;
  1245. }
  1246. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1247. {
  1248. struct drm_i915_private *i915 = node_to_i915(m->private);
  1249. struct intel_uncore_forcewake_domain *fw_domain;
  1250. unsigned int tmp;
  1251. seq_printf(m, "user.bypass_count = %u\n",
  1252. i915->uncore.user_forcewake.count);
  1253. for_each_fw_domain(fw_domain, i915, tmp)
  1254. seq_printf(m, "%s.wake_count = %u\n",
  1255. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1256. READ_ONCE(fw_domain->wake_count));
  1257. return 0;
  1258. }
  1259. static void print_rc6_res(struct seq_file *m,
  1260. const char *title,
  1261. const i915_reg_t reg)
  1262. {
  1263. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1264. seq_printf(m, "%s %u (%llu us)\n",
  1265. title, I915_READ(reg),
  1266. intel_rc6_residency_us(dev_priv, reg));
  1267. }
  1268. static int vlv_drpc_info(struct seq_file *m)
  1269. {
  1270. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1271. u32 rcctl1, pw_status;
  1272. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1273. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1274. seq_printf(m, "RC6 Enabled: %s\n",
  1275. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1276. GEN6_RC_CTL_EI_MODE(1))));
  1277. seq_printf(m, "Render Power Well: %s\n",
  1278. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1279. seq_printf(m, "Media Power Well: %s\n",
  1280. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1281. print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
  1282. print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
  1283. return i915_forcewake_domains(m, NULL);
  1284. }
  1285. static int gen6_drpc_info(struct seq_file *m)
  1286. {
  1287. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1288. u32 gt_core_status, rcctl1, rc6vids = 0;
  1289. u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
  1290. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1291. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1292. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1293. if (INTEL_GEN(dev_priv) >= 9) {
  1294. gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
  1295. gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
  1296. }
  1297. if (INTEL_GEN(dev_priv) <= 7) {
  1298. mutex_lock(&dev_priv->pcu_lock);
  1299. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS,
  1300. &rc6vids);
  1301. mutex_unlock(&dev_priv->pcu_lock);
  1302. }
  1303. seq_printf(m, "RC1e Enabled: %s\n",
  1304. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1305. seq_printf(m, "RC6 Enabled: %s\n",
  1306. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1307. if (INTEL_GEN(dev_priv) >= 9) {
  1308. seq_printf(m, "Render Well Gating Enabled: %s\n",
  1309. yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
  1310. seq_printf(m, "Media Well Gating Enabled: %s\n",
  1311. yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
  1312. }
  1313. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1314. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1315. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1316. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1317. seq_puts(m, "Current RC state: ");
  1318. switch (gt_core_status & GEN6_RCn_MASK) {
  1319. case GEN6_RC0:
  1320. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1321. seq_puts(m, "Core Power Down\n");
  1322. else
  1323. seq_puts(m, "on\n");
  1324. break;
  1325. case GEN6_RC3:
  1326. seq_puts(m, "RC3\n");
  1327. break;
  1328. case GEN6_RC6:
  1329. seq_puts(m, "RC6\n");
  1330. break;
  1331. case GEN6_RC7:
  1332. seq_puts(m, "RC7\n");
  1333. break;
  1334. default:
  1335. seq_puts(m, "Unknown\n");
  1336. break;
  1337. }
  1338. seq_printf(m, "Core Power Down: %s\n",
  1339. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1340. if (INTEL_GEN(dev_priv) >= 9) {
  1341. seq_printf(m, "Render Power Well: %s\n",
  1342. (gen9_powergate_status &
  1343. GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
  1344. seq_printf(m, "Media Power Well: %s\n",
  1345. (gen9_powergate_status &
  1346. GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1347. }
  1348. /* Not exactly sure what this is */
  1349. print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
  1350. GEN6_GT_GFX_RC6_LOCKED);
  1351. print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
  1352. print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
  1353. print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
  1354. if (INTEL_GEN(dev_priv) <= 7) {
  1355. seq_printf(m, "RC6 voltage: %dmV\n",
  1356. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1357. seq_printf(m, "RC6+ voltage: %dmV\n",
  1358. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1359. seq_printf(m, "RC6++ voltage: %dmV\n",
  1360. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1361. }
  1362. return i915_forcewake_domains(m, NULL);
  1363. }
  1364. static int i915_drpc_info(struct seq_file *m, void *unused)
  1365. {
  1366. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1367. int err;
  1368. intel_runtime_pm_get(dev_priv);
  1369. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1370. err = vlv_drpc_info(m);
  1371. else if (INTEL_GEN(dev_priv) >= 6)
  1372. err = gen6_drpc_info(m);
  1373. else
  1374. err = ironlake_drpc_info(m);
  1375. intel_runtime_pm_put(dev_priv);
  1376. return err;
  1377. }
  1378. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1379. {
  1380. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1381. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1382. dev_priv->fb_tracking.busy_bits);
  1383. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1384. dev_priv->fb_tracking.flip_bits);
  1385. return 0;
  1386. }
  1387. static int i915_fbc_status(struct seq_file *m, void *unused)
  1388. {
  1389. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1390. struct intel_fbc *fbc = &dev_priv->fbc;
  1391. if (!HAS_FBC(dev_priv))
  1392. return -ENODEV;
  1393. intel_runtime_pm_get(dev_priv);
  1394. mutex_lock(&fbc->lock);
  1395. if (intel_fbc_is_active(dev_priv))
  1396. seq_puts(m, "FBC enabled\n");
  1397. else
  1398. seq_printf(m, "FBC disabled: %s\n", fbc->no_fbc_reason);
  1399. if (fbc->work.scheduled)
  1400. seq_printf(m, "FBC worker scheduled on vblank %llu, now %llu\n",
  1401. fbc->work.scheduled_vblank,
  1402. drm_crtc_vblank_count(&fbc->crtc->base));
  1403. if (intel_fbc_is_active(dev_priv)) {
  1404. u32 mask;
  1405. if (INTEL_GEN(dev_priv) >= 8)
  1406. mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
  1407. else if (INTEL_GEN(dev_priv) >= 7)
  1408. mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
  1409. else if (INTEL_GEN(dev_priv) >= 5)
  1410. mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
  1411. else if (IS_G4X(dev_priv))
  1412. mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
  1413. else
  1414. mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
  1415. FBC_STAT_COMPRESSED);
  1416. seq_printf(m, "Compressing: %s\n", yesno(mask));
  1417. }
  1418. mutex_unlock(&fbc->lock);
  1419. intel_runtime_pm_put(dev_priv);
  1420. return 0;
  1421. }
  1422. static int i915_fbc_false_color_get(void *data, u64 *val)
  1423. {
  1424. struct drm_i915_private *dev_priv = data;
  1425. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1426. return -ENODEV;
  1427. *val = dev_priv->fbc.false_color;
  1428. return 0;
  1429. }
  1430. static int i915_fbc_false_color_set(void *data, u64 val)
  1431. {
  1432. struct drm_i915_private *dev_priv = data;
  1433. u32 reg;
  1434. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1435. return -ENODEV;
  1436. mutex_lock(&dev_priv->fbc.lock);
  1437. reg = I915_READ(ILK_DPFC_CONTROL);
  1438. dev_priv->fbc.false_color = val;
  1439. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1440. (reg | FBC_CTL_FALSE_COLOR) :
  1441. (reg & ~FBC_CTL_FALSE_COLOR));
  1442. mutex_unlock(&dev_priv->fbc.lock);
  1443. return 0;
  1444. }
  1445. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
  1446. i915_fbc_false_color_get, i915_fbc_false_color_set,
  1447. "%llu\n");
  1448. static int i915_ips_status(struct seq_file *m, void *unused)
  1449. {
  1450. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1451. if (!HAS_IPS(dev_priv))
  1452. return -ENODEV;
  1453. intel_runtime_pm_get(dev_priv);
  1454. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1455. yesno(i915_modparams.enable_ips));
  1456. if (INTEL_GEN(dev_priv) >= 8) {
  1457. seq_puts(m, "Currently: unknown\n");
  1458. } else {
  1459. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1460. seq_puts(m, "Currently: enabled\n");
  1461. else
  1462. seq_puts(m, "Currently: disabled\n");
  1463. }
  1464. intel_runtime_pm_put(dev_priv);
  1465. return 0;
  1466. }
  1467. static int i915_sr_status(struct seq_file *m, void *unused)
  1468. {
  1469. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1470. bool sr_enabled = false;
  1471. intel_runtime_pm_get(dev_priv);
  1472. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  1473. if (INTEL_GEN(dev_priv) >= 9)
  1474. /* no global SR status; inspect per-plane WM */;
  1475. else if (HAS_PCH_SPLIT(dev_priv))
  1476. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1477. else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
  1478. IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1479. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1480. else if (IS_I915GM(dev_priv))
  1481. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1482. else if (IS_PINEVIEW(dev_priv))
  1483. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1484. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1485. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1486. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  1487. intel_runtime_pm_put(dev_priv);
  1488. seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
  1489. return 0;
  1490. }
  1491. static int i915_emon_status(struct seq_file *m, void *unused)
  1492. {
  1493. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1494. struct drm_device *dev = &dev_priv->drm;
  1495. unsigned long temp, chipset, gfx;
  1496. int ret;
  1497. if (!IS_GEN5(dev_priv))
  1498. return -ENODEV;
  1499. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1500. if (ret)
  1501. return ret;
  1502. temp = i915_mch_val(dev_priv);
  1503. chipset = i915_chipset_val(dev_priv);
  1504. gfx = i915_gfx_val(dev_priv);
  1505. mutex_unlock(&dev->struct_mutex);
  1506. seq_printf(m, "GMCH temp: %ld\n", temp);
  1507. seq_printf(m, "Chipset power: %ld\n", chipset);
  1508. seq_printf(m, "GFX power: %ld\n", gfx);
  1509. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1510. return 0;
  1511. }
  1512. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1513. {
  1514. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1515. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  1516. unsigned int max_gpu_freq, min_gpu_freq;
  1517. int gpu_freq, ia_freq;
  1518. int ret;
  1519. if (!HAS_LLC(dev_priv))
  1520. return -ENODEV;
  1521. intel_runtime_pm_get(dev_priv);
  1522. ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
  1523. if (ret)
  1524. goto out;
  1525. min_gpu_freq = rps->min_freq;
  1526. max_gpu_freq = rps->max_freq;
  1527. if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
  1528. /* Convert GT frequency to 50 HZ units */
  1529. min_gpu_freq /= GEN9_FREQ_SCALER;
  1530. max_gpu_freq /= GEN9_FREQ_SCALER;
  1531. }
  1532. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1533. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1534. ia_freq = gpu_freq;
  1535. sandybridge_pcode_read(dev_priv,
  1536. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1537. &ia_freq);
  1538. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1539. intel_gpu_freq(dev_priv, (gpu_freq *
  1540. (IS_GEN9_BC(dev_priv) ||
  1541. INTEL_GEN(dev_priv) >= 10 ?
  1542. GEN9_FREQ_SCALER : 1))),
  1543. ((ia_freq >> 0) & 0xff) * 100,
  1544. ((ia_freq >> 8) & 0xff) * 100);
  1545. }
  1546. mutex_unlock(&dev_priv->pcu_lock);
  1547. out:
  1548. intel_runtime_pm_put(dev_priv);
  1549. return ret;
  1550. }
  1551. static int i915_opregion(struct seq_file *m, void *unused)
  1552. {
  1553. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1554. struct drm_device *dev = &dev_priv->drm;
  1555. struct intel_opregion *opregion = &dev_priv->opregion;
  1556. int ret;
  1557. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1558. if (ret)
  1559. goto out;
  1560. if (opregion->header)
  1561. seq_write(m, opregion->header, OPREGION_SIZE);
  1562. mutex_unlock(&dev->struct_mutex);
  1563. out:
  1564. return 0;
  1565. }
  1566. static int i915_vbt(struct seq_file *m, void *unused)
  1567. {
  1568. struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
  1569. if (opregion->vbt)
  1570. seq_write(m, opregion->vbt, opregion->vbt_size);
  1571. return 0;
  1572. }
  1573. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1574. {
  1575. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1576. struct drm_device *dev = &dev_priv->drm;
  1577. struct intel_framebuffer *fbdev_fb = NULL;
  1578. struct drm_framebuffer *drm_fb;
  1579. int ret;
  1580. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1581. if (ret)
  1582. return ret;
  1583. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1584. if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
  1585. fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
  1586. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1587. fbdev_fb->base.width,
  1588. fbdev_fb->base.height,
  1589. fbdev_fb->base.format->depth,
  1590. fbdev_fb->base.format->cpp[0] * 8,
  1591. fbdev_fb->base.modifier,
  1592. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1593. describe_obj(m, intel_fb_obj(&fbdev_fb->base));
  1594. seq_putc(m, '\n');
  1595. }
  1596. #endif
  1597. mutex_lock(&dev->mode_config.fb_lock);
  1598. drm_for_each_fb(drm_fb, dev) {
  1599. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1600. if (fb == fbdev_fb)
  1601. continue;
  1602. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1603. fb->base.width,
  1604. fb->base.height,
  1605. fb->base.format->depth,
  1606. fb->base.format->cpp[0] * 8,
  1607. fb->base.modifier,
  1608. drm_framebuffer_read_refcount(&fb->base));
  1609. describe_obj(m, intel_fb_obj(&fb->base));
  1610. seq_putc(m, '\n');
  1611. }
  1612. mutex_unlock(&dev->mode_config.fb_lock);
  1613. mutex_unlock(&dev->struct_mutex);
  1614. return 0;
  1615. }
  1616. static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
  1617. {
  1618. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, emit: %u)",
  1619. ring->space, ring->head, ring->tail, ring->emit);
  1620. }
  1621. static int i915_context_status(struct seq_file *m, void *unused)
  1622. {
  1623. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1624. struct drm_device *dev = &dev_priv->drm;
  1625. struct intel_engine_cs *engine;
  1626. struct i915_gem_context *ctx;
  1627. enum intel_engine_id id;
  1628. int ret;
  1629. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1630. if (ret)
  1631. return ret;
  1632. list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
  1633. seq_printf(m, "HW context %u ", ctx->hw_id);
  1634. if (ctx->pid) {
  1635. struct task_struct *task;
  1636. task = get_pid_task(ctx->pid, PIDTYPE_PID);
  1637. if (task) {
  1638. seq_printf(m, "(%s [%d]) ",
  1639. task->comm, task->pid);
  1640. put_task_struct(task);
  1641. }
  1642. } else if (IS_ERR(ctx->file_priv)) {
  1643. seq_puts(m, "(deleted) ");
  1644. } else {
  1645. seq_puts(m, "(kernel) ");
  1646. }
  1647. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1648. seq_putc(m, '\n');
  1649. for_each_engine(engine, dev_priv, id) {
  1650. struct intel_context *ce =
  1651. to_intel_context(ctx, engine);
  1652. seq_printf(m, "%s: ", engine->name);
  1653. if (ce->state)
  1654. describe_obj(m, ce->state->obj);
  1655. if (ce->ring)
  1656. describe_ctx_ring(m, ce->ring);
  1657. seq_putc(m, '\n');
  1658. }
  1659. seq_putc(m, '\n');
  1660. }
  1661. mutex_unlock(&dev->struct_mutex);
  1662. return 0;
  1663. }
  1664. static const char *swizzle_string(unsigned swizzle)
  1665. {
  1666. switch (swizzle) {
  1667. case I915_BIT_6_SWIZZLE_NONE:
  1668. return "none";
  1669. case I915_BIT_6_SWIZZLE_9:
  1670. return "bit9";
  1671. case I915_BIT_6_SWIZZLE_9_10:
  1672. return "bit9/bit10";
  1673. case I915_BIT_6_SWIZZLE_9_11:
  1674. return "bit9/bit11";
  1675. case I915_BIT_6_SWIZZLE_9_10_11:
  1676. return "bit9/bit10/bit11";
  1677. case I915_BIT_6_SWIZZLE_9_17:
  1678. return "bit9/bit17";
  1679. case I915_BIT_6_SWIZZLE_9_10_17:
  1680. return "bit9/bit10/bit17";
  1681. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1682. return "unknown";
  1683. }
  1684. return "bug";
  1685. }
  1686. static int i915_swizzle_info(struct seq_file *m, void *data)
  1687. {
  1688. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1689. intel_runtime_pm_get(dev_priv);
  1690. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1691. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1692. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1693. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1694. if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
  1695. seq_printf(m, "DDC = 0x%08x\n",
  1696. I915_READ(DCC));
  1697. seq_printf(m, "DDC2 = 0x%08x\n",
  1698. I915_READ(DCC2));
  1699. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1700. I915_READ16(C0DRB3));
  1701. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1702. I915_READ16(C1DRB3));
  1703. } else if (INTEL_GEN(dev_priv) >= 6) {
  1704. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1705. I915_READ(MAD_DIMM_C0));
  1706. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1707. I915_READ(MAD_DIMM_C1));
  1708. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1709. I915_READ(MAD_DIMM_C2));
  1710. seq_printf(m, "TILECTL = 0x%08x\n",
  1711. I915_READ(TILECTL));
  1712. if (INTEL_GEN(dev_priv) >= 8)
  1713. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1714. I915_READ(GAMTARBMODE));
  1715. else
  1716. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1717. I915_READ(ARB_MODE));
  1718. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1719. I915_READ(DISP_ARB_CTL));
  1720. }
  1721. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1722. seq_puts(m, "L-shaped memory detected\n");
  1723. intel_runtime_pm_put(dev_priv);
  1724. return 0;
  1725. }
  1726. static int per_file_ctx(int id, void *ptr, void *data)
  1727. {
  1728. struct i915_gem_context *ctx = ptr;
  1729. struct seq_file *m = data;
  1730. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1731. if (!ppgtt) {
  1732. seq_printf(m, " no ppgtt for context %d\n",
  1733. ctx->user_handle);
  1734. return 0;
  1735. }
  1736. if (i915_gem_context_is_default(ctx))
  1737. seq_puts(m, " default context:\n");
  1738. else
  1739. seq_printf(m, " context %d:\n", ctx->user_handle);
  1740. ppgtt->debug_dump(ppgtt, m);
  1741. return 0;
  1742. }
  1743. static void gen8_ppgtt_info(struct seq_file *m,
  1744. struct drm_i915_private *dev_priv)
  1745. {
  1746. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1747. struct intel_engine_cs *engine;
  1748. enum intel_engine_id id;
  1749. int i;
  1750. if (!ppgtt)
  1751. return;
  1752. for_each_engine(engine, dev_priv, id) {
  1753. seq_printf(m, "%s\n", engine->name);
  1754. for (i = 0; i < 4; i++) {
  1755. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1756. pdp <<= 32;
  1757. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1758. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1759. }
  1760. }
  1761. }
  1762. static void gen6_ppgtt_info(struct seq_file *m,
  1763. struct drm_i915_private *dev_priv)
  1764. {
  1765. struct intel_engine_cs *engine;
  1766. enum intel_engine_id id;
  1767. if (IS_GEN6(dev_priv))
  1768. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1769. for_each_engine(engine, dev_priv, id) {
  1770. seq_printf(m, "%s\n", engine->name);
  1771. if (IS_GEN7(dev_priv))
  1772. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1773. I915_READ(RING_MODE_GEN7(engine)));
  1774. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1775. I915_READ(RING_PP_DIR_BASE(engine)));
  1776. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1777. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1778. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1779. I915_READ(RING_PP_DIR_DCLV(engine)));
  1780. }
  1781. if (dev_priv->mm.aliasing_ppgtt) {
  1782. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1783. seq_puts(m, "aliasing PPGTT:\n");
  1784. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1785. ppgtt->debug_dump(ppgtt, m);
  1786. }
  1787. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1788. }
  1789. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1790. {
  1791. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1792. struct drm_device *dev = &dev_priv->drm;
  1793. struct drm_file *file;
  1794. int ret;
  1795. mutex_lock(&dev->filelist_mutex);
  1796. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1797. if (ret)
  1798. goto out_unlock;
  1799. intel_runtime_pm_get(dev_priv);
  1800. if (INTEL_GEN(dev_priv) >= 8)
  1801. gen8_ppgtt_info(m, dev_priv);
  1802. else if (INTEL_GEN(dev_priv) >= 6)
  1803. gen6_ppgtt_info(m, dev_priv);
  1804. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1805. struct drm_i915_file_private *file_priv = file->driver_priv;
  1806. struct task_struct *task;
  1807. task = get_pid_task(file->pid, PIDTYPE_PID);
  1808. if (!task) {
  1809. ret = -ESRCH;
  1810. goto out_rpm;
  1811. }
  1812. seq_printf(m, "\nproc: %s\n", task->comm);
  1813. put_task_struct(task);
  1814. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1815. (void *)(unsigned long)m);
  1816. }
  1817. out_rpm:
  1818. intel_runtime_pm_put(dev_priv);
  1819. mutex_unlock(&dev->struct_mutex);
  1820. out_unlock:
  1821. mutex_unlock(&dev->filelist_mutex);
  1822. return ret;
  1823. }
  1824. static int count_irq_waiters(struct drm_i915_private *i915)
  1825. {
  1826. struct intel_engine_cs *engine;
  1827. enum intel_engine_id id;
  1828. int count = 0;
  1829. for_each_engine(engine, i915, id)
  1830. count += intel_engine_has_waiter(engine);
  1831. return count;
  1832. }
  1833. static const char *rps_power_to_str(unsigned int power)
  1834. {
  1835. static const char * const strings[] = {
  1836. [LOW_POWER] = "low power",
  1837. [BETWEEN] = "mixed",
  1838. [HIGH_POWER] = "high power",
  1839. };
  1840. if (power >= ARRAY_SIZE(strings) || !strings[power])
  1841. return "unknown";
  1842. return strings[power];
  1843. }
  1844. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1845. {
  1846. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1847. struct drm_device *dev = &dev_priv->drm;
  1848. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  1849. struct drm_file *file;
  1850. seq_printf(m, "RPS enabled? %d\n", rps->enabled);
  1851. seq_printf(m, "GPU busy? %s [%d requests]\n",
  1852. yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
  1853. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1854. seq_printf(m, "Boosts outstanding? %d\n",
  1855. atomic_read(&rps->num_waiters));
  1856. seq_printf(m, "Frequency requested %d\n",
  1857. intel_gpu_freq(dev_priv, rps->cur_freq));
  1858. seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1859. intel_gpu_freq(dev_priv, rps->min_freq),
  1860. intel_gpu_freq(dev_priv, rps->min_freq_softlimit),
  1861. intel_gpu_freq(dev_priv, rps->max_freq_softlimit),
  1862. intel_gpu_freq(dev_priv, rps->max_freq));
  1863. seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
  1864. intel_gpu_freq(dev_priv, rps->idle_freq),
  1865. intel_gpu_freq(dev_priv, rps->efficient_freq),
  1866. intel_gpu_freq(dev_priv, rps->boost_freq));
  1867. mutex_lock(&dev->filelist_mutex);
  1868. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1869. struct drm_i915_file_private *file_priv = file->driver_priv;
  1870. struct task_struct *task;
  1871. rcu_read_lock();
  1872. task = pid_task(file->pid, PIDTYPE_PID);
  1873. seq_printf(m, "%s [%d]: %d boosts\n",
  1874. task ? task->comm : "<unknown>",
  1875. task ? task->pid : -1,
  1876. atomic_read(&file_priv->rps_client.boosts));
  1877. rcu_read_unlock();
  1878. }
  1879. seq_printf(m, "Kernel (anonymous) boosts: %d\n",
  1880. atomic_read(&rps->boosts));
  1881. mutex_unlock(&dev->filelist_mutex);
  1882. if (INTEL_GEN(dev_priv) >= 6 &&
  1883. rps->enabled &&
  1884. dev_priv->gt.active_requests) {
  1885. u32 rpup, rpupei;
  1886. u32 rpdown, rpdownei;
  1887. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1888. rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
  1889. rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
  1890. rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
  1891. rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
  1892. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1893. seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
  1894. rps_power_to_str(rps->power));
  1895. seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
  1896. rpup && rpupei ? 100 * rpup / rpupei : 0,
  1897. rps->up_threshold);
  1898. seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
  1899. rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
  1900. rps->down_threshold);
  1901. } else {
  1902. seq_puts(m, "\nRPS Autotuning inactive\n");
  1903. }
  1904. return 0;
  1905. }
  1906. static int i915_llc(struct seq_file *m, void *data)
  1907. {
  1908. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1909. const bool edram = INTEL_GEN(dev_priv) > 8;
  1910. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
  1911. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  1912. intel_uncore_edram_size(dev_priv)/1024/1024);
  1913. return 0;
  1914. }
  1915. static int i915_huc_load_status_info(struct seq_file *m, void *data)
  1916. {
  1917. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1918. struct drm_printer p;
  1919. if (!HAS_HUC(dev_priv))
  1920. return -ENODEV;
  1921. p = drm_seq_file_printer(m);
  1922. intel_uc_fw_dump(&dev_priv->huc.fw, &p);
  1923. intel_runtime_pm_get(dev_priv);
  1924. seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
  1925. intel_runtime_pm_put(dev_priv);
  1926. return 0;
  1927. }
  1928. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  1929. {
  1930. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1931. struct drm_printer p;
  1932. u32 tmp, i;
  1933. if (!HAS_GUC(dev_priv))
  1934. return -ENODEV;
  1935. p = drm_seq_file_printer(m);
  1936. intel_uc_fw_dump(&dev_priv->guc.fw, &p);
  1937. intel_runtime_pm_get(dev_priv);
  1938. tmp = I915_READ(GUC_STATUS);
  1939. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  1940. seq_printf(m, "\tBootrom status = 0x%x\n",
  1941. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  1942. seq_printf(m, "\tuKernel status = 0x%x\n",
  1943. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  1944. seq_printf(m, "\tMIA Core status = 0x%x\n",
  1945. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  1946. seq_puts(m, "\nScratch registers:\n");
  1947. for (i = 0; i < 16; i++)
  1948. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  1949. intel_runtime_pm_put(dev_priv);
  1950. return 0;
  1951. }
  1952. static const char *
  1953. stringify_guc_log_type(enum guc_log_buffer_type type)
  1954. {
  1955. switch (type) {
  1956. case GUC_ISR_LOG_BUFFER:
  1957. return "ISR";
  1958. case GUC_DPC_LOG_BUFFER:
  1959. return "DPC";
  1960. case GUC_CRASH_DUMP_LOG_BUFFER:
  1961. return "CRASH";
  1962. default:
  1963. MISSING_CASE(type);
  1964. }
  1965. return "";
  1966. }
  1967. static void i915_guc_log_info(struct seq_file *m,
  1968. struct drm_i915_private *dev_priv)
  1969. {
  1970. struct intel_guc_log *log = &dev_priv->guc.log;
  1971. enum guc_log_buffer_type type;
  1972. if (!intel_guc_log_relay_enabled(log)) {
  1973. seq_puts(m, "GuC log relay disabled\n");
  1974. return;
  1975. }
  1976. seq_puts(m, "GuC logging stats:\n");
  1977. seq_printf(m, "\tRelay full count: %u\n",
  1978. log->relay.full_count);
  1979. for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
  1980. seq_printf(m, "\t%s:\tflush count %10u, overflow count %10u\n",
  1981. stringify_guc_log_type(type),
  1982. log->stats[type].flush,
  1983. log->stats[type].sampled_overflow);
  1984. }
  1985. }
  1986. static void i915_guc_client_info(struct seq_file *m,
  1987. struct drm_i915_private *dev_priv,
  1988. struct intel_guc_client *client)
  1989. {
  1990. struct intel_engine_cs *engine;
  1991. enum intel_engine_id id;
  1992. uint64_t tot = 0;
  1993. seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
  1994. client->priority, client->stage_id, client->proc_desc_offset);
  1995. seq_printf(m, "\tDoorbell id %d, offset: 0x%lx\n",
  1996. client->doorbell_id, client->doorbell_offset);
  1997. for_each_engine(engine, dev_priv, id) {
  1998. u64 submissions = client->submissions[id];
  1999. tot += submissions;
  2000. seq_printf(m, "\tSubmissions: %llu %s\n",
  2001. submissions, engine->name);
  2002. }
  2003. seq_printf(m, "\tTotal: %llu\n", tot);
  2004. }
  2005. static int i915_guc_info(struct seq_file *m, void *data)
  2006. {
  2007. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2008. const struct intel_guc *guc = &dev_priv->guc;
  2009. if (!USES_GUC(dev_priv))
  2010. return -ENODEV;
  2011. i915_guc_log_info(m, dev_priv);
  2012. if (!USES_GUC_SUBMISSION(dev_priv))
  2013. return 0;
  2014. GEM_BUG_ON(!guc->execbuf_client);
  2015. seq_printf(m, "\nDoorbell map:\n");
  2016. seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
  2017. seq_printf(m, "Doorbell next cacheline: 0x%x\n", guc->db_cacheline);
  2018. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
  2019. i915_guc_client_info(m, dev_priv, guc->execbuf_client);
  2020. if (guc->preempt_client) {
  2021. seq_printf(m, "\nGuC preempt client @ %p:\n",
  2022. guc->preempt_client);
  2023. i915_guc_client_info(m, dev_priv, guc->preempt_client);
  2024. }
  2025. /* Add more as required ... */
  2026. return 0;
  2027. }
  2028. static int i915_guc_stage_pool(struct seq_file *m, void *data)
  2029. {
  2030. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2031. const struct intel_guc *guc = &dev_priv->guc;
  2032. struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
  2033. struct intel_guc_client *client = guc->execbuf_client;
  2034. unsigned int tmp;
  2035. int index;
  2036. if (!USES_GUC_SUBMISSION(dev_priv))
  2037. return -ENODEV;
  2038. for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
  2039. struct intel_engine_cs *engine;
  2040. if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
  2041. continue;
  2042. seq_printf(m, "GuC stage descriptor %u:\n", index);
  2043. seq_printf(m, "\tIndex: %u\n", desc->stage_id);
  2044. seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
  2045. seq_printf(m, "\tPriority: %d\n", desc->priority);
  2046. seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
  2047. seq_printf(m, "\tEngines used: 0x%x\n",
  2048. desc->engines_used);
  2049. seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
  2050. desc->db_trigger_phy,
  2051. desc->db_trigger_cpu,
  2052. desc->db_trigger_uk);
  2053. seq_printf(m, "\tProcess descriptor: 0x%x\n",
  2054. desc->process_desc);
  2055. seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
  2056. desc->wq_addr, desc->wq_size);
  2057. seq_putc(m, '\n');
  2058. for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
  2059. u32 guc_engine_id = engine->guc_id;
  2060. struct guc_execlist_context *lrc =
  2061. &desc->lrc[guc_engine_id];
  2062. seq_printf(m, "\t%s LRC:\n", engine->name);
  2063. seq_printf(m, "\t\tContext desc: 0x%x\n",
  2064. lrc->context_desc);
  2065. seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
  2066. seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
  2067. seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
  2068. seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
  2069. seq_putc(m, '\n');
  2070. }
  2071. }
  2072. return 0;
  2073. }
  2074. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2075. {
  2076. struct drm_info_node *node = m->private;
  2077. struct drm_i915_private *dev_priv = node_to_i915(node);
  2078. bool dump_load_err = !!node->info_ent->data;
  2079. struct drm_i915_gem_object *obj = NULL;
  2080. u32 *log;
  2081. int i = 0;
  2082. if (!HAS_GUC(dev_priv))
  2083. return -ENODEV;
  2084. if (dump_load_err)
  2085. obj = dev_priv->guc.load_err_log;
  2086. else if (dev_priv->guc.log.vma)
  2087. obj = dev_priv->guc.log.vma->obj;
  2088. if (!obj)
  2089. return 0;
  2090. log = i915_gem_object_pin_map(obj, I915_MAP_WC);
  2091. if (IS_ERR(log)) {
  2092. DRM_DEBUG("Failed to pin object\n");
  2093. seq_puts(m, "(log data unaccessible)\n");
  2094. return PTR_ERR(log);
  2095. }
  2096. for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
  2097. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2098. *(log + i), *(log + i + 1),
  2099. *(log + i + 2), *(log + i + 3));
  2100. seq_putc(m, '\n');
  2101. i915_gem_object_unpin_map(obj);
  2102. return 0;
  2103. }
  2104. static int i915_guc_log_level_get(void *data, u64 *val)
  2105. {
  2106. struct drm_i915_private *dev_priv = data;
  2107. if (!USES_GUC(dev_priv))
  2108. return -ENODEV;
  2109. *val = intel_guc_log_get_level(&dev_priv->guc.log);
  2110. return 0;
  2111. }
  2112. static int i915_guc_log_level_set(void *data, u64 val)
  2113. {
  2114. struct drm_i915_private *dev_priv = data;
  2115. if (!USES_GUC(dev_priv))
  2116. return -ENODEV;
  2117. return intel_guc_log_set_level(&dev_priv->guc.log, val);
  2118. }
  2119. DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_level_fops,
  2120. i915_guc_log_level_get, i915_guc_log_level_set,
  2121. "%lld\n");
  2122. static int i915_guc_log_relay_open(struct inode *inode, struct file *file)
  2123. {
  2124. struct drm_i915_private *dev_priv = inode->i_private;
  2125. if (!USES_GUC(dev_priv))
  2126. return -ENODEV;
  2127. file->private_data = &dev_priv->guc.log;
  2128. return intel_guc_log_relay_open(&dev_priv->guc.log);
  2129. }
  2130. static ssize_t
  2131. i915_guc_log_relay_write(struct file *filp,
  2132. const char __user *ubuf,
  2133. size_t cnt,
  2134. loff_t *ppos)
  2135. {
  2136. struct intel_guc_log *log = filp->private_data;
  2137. intel_guc_log_relay_flush(log);
  2138. return cnt;
  2139. }
  2140. static int i915_guc_log_relay_release(struct inode *inode, struct file *file)
  2141. {
  2142. struct drm_i915_private *dev_priv = inode->i_private;
  2143. intel_guc_log_relay_close(&dev_priv->guc.log);
  2144. return 0;
  2145. }
  2146. static const struct file_operations i915_guc_log_relay_fops = {
  2147. .owner = THIS_MODULE,
  2148. .open = i915_guc_log_relay_open,
  2149. .write = i915_guc_log_relay_write,
  2150. .release = i915_guc_log_relay_release,
  2151. };
  2152. static const char *psr2_live_status(u32 val)
  2153. {
  2154. static const char * const live_status[] = {
  2155. "IDLE",
  2156. "CAPTURE",
  2157. "CAPTURE_FS",
  2158. "SLEEP",
  2159. "BUFON_FW",
  2160. "ML_UP",
  2161. "SU_STANDBY",
  2162. "FAST_SLEEP",
  2163. "DEEP_SLEEP",
  2164. "BUF_ON",
  2165. "TG_ON"
  2166. };
  2167. val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
  2168. if (val < ARRAY_SIZE(live_status))
  2169. return live_status[val];
  2170. return "unknown";
  2171. }
  2172. static const char *psr_sink_status(u8 val)
  2173. {
  2174. static const char * const sink_status[] = {
  2175. "inactive",
  2176. "transition to active, capture and display",
  2177. "active, display from RFB",
  2178. "active, capture and display on sink device timings",
  2179. "transition to inactive, capture and display, timing re-sync",
  2180. "reserved",
  2181. "reserved",
  2182. "sink internal error"
  2183. };
  2184. val &= DP_PSR_SINK_STATE_MASK;
  2185. if (val < ARRAY_SIZE(sink_status))
  2186. return sink_status[val];
  2187. return "unknown";
  2188. }
  2189. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2190. {
  2191. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2192. u32 psrperf = 0;
  2193. bool enabled = false;
  2194. bool sink_support;
  2195. if (!HAS_PSR(dev_priv))
  2196. return -ENODEV;
  2197. sink_support = dev_priv->psr.sink_support;
  2198. seq_printf(m, "Sink_Support: %s\n", yesno(sink_support));
  2199. if (!sink_support)
  2200. return 0;
  2201. intel_runtime_pm_get(dev_priv);
  2202. mutex_lock(&dev_priv->psr.lock);
  2203. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2204. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2205. dev_priv->psr.busy_frontbuffer_bits);
  2206. if (dev_priv->psr.psr2_enabled)
  2207. enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
  2208. else
  2209. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2210. seq_printf(m, "Main link in standby mode: %s\n",
  2211. yesno(dev_priv->psr.link_standby));
  2212. seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
  2213. /*
  2214. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2215. */
  2216. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2217. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2218. EDP_PSR_PERF_CNT_MASK;
  2219. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2220. }
  2221. if (dev_priv->psr.psr2_enabled) {
  2222. u32 psr2 = I915_READ(EDP_PSR2_STATUS);
  2223. seq_printf(m, "EDP_PSR2_STATUS: %x [%s]\n",
  2224. psr2, psr2_live_status(psr2));
  2225. }
  2226. if (dev_priv->psr.enabled) {
  2227. struct drm_dp_aux *aux = &dev_priv->psr.enabled->aux;
  2228. u8 val;
  2229. if (drm_dp_dpcd_readb(aux, DP_PSR_STATUS, &val) == 1)
  2230. seq_printf(m, "Sink PSR status: 0x%x [%s]\n", val,
  2231. psr_sink_status(val));
  2232. }
  2233. mutex_unlock(&dev_priv->psr.lock);
  2234. if (READ_ONCE(dev_priv->psr.debug)) {
  2235. seq_printf(m, "Last attempted entry at: %lld\n",
  2236. dev_priv->psr.last_entry_attempt);
  2237. seq_printf(m, "Last exit at: %lld\n",
  2238. dev_priv->psr.last_exit);
  2239. }
  2240. intel_runtime_pm_put(dev_priv);
  2241. return 0;
  2242. }
  2243. static int
  2244. i915_edp_psr_debug_set(void *data, u64 val)
  2245. {
  2246. struct drm_i915_private *dev_priv = data;
  2247. if (!CAN_PSR(dev_priv))
  2248. return -ENODEV;
  2249. DRM_DEBUG_KMS("PSR debug %s\n", enableddisabled(val));
  2250. intel_runtime_pm_get(dev_priv);
  2251. intel_psr_irq_control(dev_priv, !!val);
  2252. intel_runtime_pm_put(dev_priv);
  2253. return 0;
  2254. }
  2255. static int
  2256. i915_edp_psr_debug_get(void *data, u64 *val)
  2257. {
  2258. struct drm_i915_private *dev_priv = data;
  2259. if (!CAN_PSR(dev_priv))
  2260. return -ENODEV;
  2261. *val = READ_ONCE(dev_priv->psr.debug);
  2262. return 0;
  2263. }
  2264. DEFINE_SIMPLE_ATTRIBUTE(i915_edp_psr_debug_fops,
  2265. i915_edp_psr_debug_get, i915_edp_psr_debug_set,
  2266. "%llu\n");
  2267. static int i915_sink_crc(struct seq_file *m, void *data)
  2268. {
  2269. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2270. struct drm_device *dev = &dev_priv->drm;
  2271. struct intel_connector *connector;
  2272. struct drm_connector_list_iter conn_iter;
  2273. struct intel_dp *intel_dp = NULL;
  2274. struct drm_modeset_acquire_ctx ctx;
  2275. int ret;
  2276. u8 crc[6];
  2277. drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
  2278. drm_connector_list_iter_begin(dev, &conn_iter);
  2279. for_each_intel_connector_iter(connector, &conn_iter) {
  2280. struct drm_crtc *crtc;
  2281. struct drm_connector_state *state;
  2282. struct intel_crtc_state *crtc_state;
  2283. if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
  2284. continue;
  2285. retry:
  2286. ret = drm_modeset_lock(&dev->mode_config.connection_mutex, &ctx);
  2287. if (ret)
  2288. goto err;
  2289. state = connector->base.state;
  2290. if (!state->best_encoder)
  2291. continue;
  2292. crtc = state->crtc;
  2293. ret = drm_modeset_lock(&crtc->mutex, &ctx);
  2294. if (ret)
  2295. goto err;
  2296. crtc_state = to_intel_crtc_state(crtc->state);
  2297. if (!crtc_state->base.active)
  2298. continue;
  2299. /*
  2300. * We need to wait for all crtc updates to complete, to make
  2301. * sure any pending modesets and plane updates are completed.
  2302. */
  2303. if (crtc_state->base.commit) {
  2304. ret = wait_for_completion_interruptible(&crtc_state->base.commit->hw_done);
  2305. if (ret)
  2306. goto err;
  2307. }
  2308. intel_dp = enc_to_intel_dp(state->best_encoder);
  2309. ret = intel_dp_sink_crc(intel_dp, crtc_state, crc);
  2310. if (ret)
  2311. goto err;
  2312. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2313. crc[0], crc[1], crc[2],
  2314. crc[3], crc[4], crc[5]);
  2315. goto out;
  2316. err:
  2317. if (ret == -EDEADLK) {
  2318. ret = drm_modeset_backoff(&ctx);
  2319. if (!ret)
  2320. goto retry;
  2321. }
  2322. goto out;
  2323. }
  2324. ret = -ENODEV;
  2325. out:
  2326. drm_connector_list_iter_end(&conn_iter);
  2327. drm_modeset_drop_locks(&ctx);
  2328. drm_modeset_acquire_fini(&ctx);
  2329. return ret;
  2330. }
  2331. static int i915_energy_uJ(struct seq_file *m, void *data)
  2332. {
  2333. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2334. unsigned long long power;
  2335. u32 units;
  2336. if (INTEL_GEN(dev_priv) < 6)
  2337. return -ENODEV;
  2338. intel_runtime_pm_get(dev_priv);
  2339. if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
  2340. intel_runtime_pm_put(dev_priv);
  2341. return -ENODEV;
  2342. }
  2343. units = (power & 0x1f00) >> 8;
  2344. power = I915_READ(MCH_SECP_NRG_STTS);
  2345. power = (1000000 * power) >> units; /* convert to uJ */
  2346. intel_runtime_pm_put(dev_priv);
  2347. seq_printf(m, "%llu", power);
  2348. return 0;
  2349. }
  2350. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2351. {
  2352. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2353. struct pci_dev *pdev = dev_priv->drm.pdev;
  2354. if (!HAS_RUNTIME_PM(dev_priv))
  2355. seq_puts(m, "Runtime power management not supported\n");
  2356. seq_printf(m, "GPU idle: %s (epoch %u)\n",
  2357. yesno(!dev_priv->gt.awake), dev_priv->gt.epoch);
  2358. seq_printf(m, "IRQs disabled: %s\n",
  2359. yesno(!intel_irqs_enabled(dev_priv)));
  2360. #ifdef CONFIG_PM
  2361. seq_printf(m, "Usage count: %d\n",
  2362. atomic_read(&dev_priv->drm.dev->power.usage_count));
  2363. #else
  2364. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2365. #endif
  2366. seq_printf(m, "PCI device power state: %s [%d]\n",
  2367. pci_power_name(pdev->current_state),
  2368. pdev->current_state);
  2369. return 0;
  2370. }
  2371. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2372. {
  2373. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2374. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2375. int i;
  2376. mutex_lock(&power_domains->lock);
  2377. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2378. for (i = 0; i < power_domains->power_well_count; i++) {
  2379. struct i915_power_well *power_well;
  2380. enum intel_display_power_domain power_domain;
  2381. power_well = &power_domains->power_wells[i];
  2382. seq_printf(m, "%-25s %d\n", power_well->name,
  2383. power_well->count);
  2384. for_each_power_domain(power_domain, power_well->domains)
  2385. seq_printf(m, " %-23s %d\n",
  2386. intel_display_power_domain_str(power_domain),
  2387. power_domains->domain_use_count[power_domain]);
  2388. }
  2389. mutex_unlock(&power_domains->lock);
  2390. return 0;
  2391. }
  2392. static int i915_dmc_info(struct seq_file *m, void *unused)
  2393. {
  2394. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2395. struct intel_csr *csr;
  2396. if (!HAS_CSR(dev_priv))
  2397. return -ENODEV;
  2398. csr = &dev_priv->csr;
  2399. intel_runtime_pm_get(dev_priv);
  2400. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2401. seq_printf(m, "path: %s\n", csr->fw_path);
  2402. if (!csr->dmc_payload)
  2403. goto out;
  2404. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2405. CSR_VERSION_MINOR(csr->version));
  2406. if (IS_KABYLAKE(dev_priv) ||
  2407. (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
  2408. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2409. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2410. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2411. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2412. } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
  2413. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2414. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2415. }
  2416. out:
  2417. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2418. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2419. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2420. intel_runtime_pm_put(dev_priv);
  2421. return 0;
  2422. }
  2423. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2424. struct drm_display_mode *mode)
  2425. {
  2426. int i;
  2427. for (i = 0; i < tabs; i++)
  2428. seq_putc(m, '\t');
  2429. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2430. mode->base.id, mode->name,
  2431. mode->vrefresh, mode->clock,
  2432. mode->hdisplay, mode->hsync_start,
  2433. mode->hsync_end, mode->htotal,
  2434. mode->vdisplay, mode->vsync_start,
  2435. mode->vsync_end, mode->vtotal,
  2436. mode->type, mode->flags);
  2437. }
  2438. static void intel_encoder_info(struct seq_file *m,
  2439. struct intel_crtc *intel_crtc,
  2440. struct intel_encoder *intel_encoder)
  2441. {
  2442. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2443. struct drm_device *dev = &dev_priv->drm;
  2444. struct drm_crtc *crtc = &intel_crtc->base;
  2445. struct intel_connector *intel_connector;
  2446. struct drm_encoder *encoder;
  2447. encoder = &intel_encoder->base;
  2448. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2449. encoder->base.id, encoder->name);
  2450. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2451. struct drm_connector *connector = &intel_connector->base;
  2452. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2453. connector->base.id,
  2454. connector->name,
  2455. drm_get_connector_status_name(connector->status));
  2456. if (connector->status == connector_status_connected) {
  2457. struct drm_display_mode *mode = &crtc->mode;
  2458. seq_printf(m, ", mode:\n");
  2459. intel_seq_print_mode(m, 2, mode);
  2460. } else {
  2461. seq_putc(m, '\n');
  2462. }
  2463. }
  2464. }
  2465. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2466. {
  2467. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2468. struct drm_device *dev = &dev_priv->drm;
  2469. struct drm_crtc *crtc = &intel_crtc->base;
  2470. struct intel_encoder *intel_encoder;
  2471. struct drm_plane_state *plane_state = crtc->primary->state;
  2472. struct drm_framebuffer *fb = plane_state->fb;
  2473. if (fb)
  2474. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2475. fb->base.id, plane_state->src_x >> 16,
  2476. plane_state->src_y >> 16, fb->width, fb->height);
  2477. else
  2478. seq_puts(m, "\tprimary plane disabled\n");
  2479. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2480. intel_encoder_info(m, intel_crtc, intel_encoder);
  2481. }
  2482. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2483. {
  2484. struct drm_display_mode *mode = panel->fixed_mode;
  2485. seq_printf(m, "\tfixed mode:\n");
  2486. intel_seq_print_mode(m, 2, mode);
  2487. }
  2488. static void intel_dp_info(struct seq_file *m,
  2489. struct intel_connector *intel_connector)
  2490. {
  2491. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2492. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2493. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2494. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2495. if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
  2496. intel_panel_info(m, &intel_connector->panel);
  2497. drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
  2498. &intel_dp->aux);
  2499. }
  2500. static void intel_dp_mst_info(struct seq_file *m,
  2501. struct intel_connector *intel_connector)
  2502. {
  2503. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2504. struct intel_dp_mst_encoder *intel_mst =
  2505. enc_to_mst(&intel_encoder->base);
  2506. struct intel_digital_port *intel_dig_port = intel_mst->primary;
  2507. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2508. bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
  2509. intel_connector->port);
  2510. seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
  2511. }
  2512. static void intel_hdmi_info(struct seq_file *m,
  2513. struct intel_connector *intel_connector)
  2514. {
  2515. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2516. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2517. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2518. }
  2519. static void intel_lvds_info(struct seq_file *m,
  2520. struct intel_connector *intel_connector)
  2521. {
  2522. intel_panel_info(m, &intel_connector->panel);
  2523. }
  2524. static void intel_connector_info(struct seq_file *m,
  2525. struct drm_connector *connector)
  2526. {
  2527. struct intel_connector *intel_connector = to_intel_connector(connector);
  2528. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2529. struct drm_display_mode *mode;
  2530. seq_printf(m, "connector %d: type %s, status: %s\n",
  2531. connector->base.id, connector->name,
  2532. drm_get_connector_status_name(connector->status));
  2533. if (connector->status == connector_status_connected) {
  2534. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2535. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2536. connector->display_info.width_mm,
  2537. connector->display_info.height_mm);
  2538. seq_printf(m, "\tsubpixel order: %s\n",
  2539. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2540. seq_printf(m, "\tCEA rev: %d\n",
  2541. connector->display_info.cea_rev);
  2542. }
  2543. if (!intel_encoder)
  2544. return;
  2545. switch (connector->connector_type) {
  2546. case DRM_MODE_CONNECTOR_DisplayPort:
  2547. case DRM_MODE_CONNECTOR_eDP:
  2548. if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2549. intel_dp_mst_info(m, intel_connector);
  2550. else
  2551. intel_dp_info(m, intel_connector);
  2552. break;
  2553. case DRM_MODE_CONNECTOR_LVDS:
  2554. if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2555. intel_lvds_info(m, intel_connector);
  2556. break;
  2557. case DRM_MODE_CONNECTOR_HDMIA:
  2558. if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
  2559. intel_encoder->type == INTEL_OUTPUT_DDI)
  2560. intel_hdmi_info(m, intel_connector);
  2561. break;
  2562. default:
  2563. break;
  2564. }
  2565. seq_printf(m, "\tmodes:\n");
  2566. list_for_each_entry(mode, &connector->modes, head)
  2567. intel_seq_print_mode(m, 2, mode);
  2568. }
  2569. static const char *plane_type(enum drm_plane_type type)
  2570. {
  2571. switch (type) {
  2572. case DRM_PLANE_TYPE_OVERLAY:
  2573. return "OVL";
  2574. case DRM_PLANE_TYPE_PRIMARY:
  2575. return "PRI";
  2576. case DRM_PLANE_TYPE_CURSOR:
  2577. return "CUR";
  2578. /*
  2579. * Deliberately omitting default: to generate compiler warnings
  2580. * when a new drm_plane_type gets added.
  2581. */
  2582. }
  2583. return "unknown";
  2584. }
  2585. static const char *plane_rotation(unsigned int rotation)
  2586. {
  2587. static char buf[48];
  2588. /*
  2589. * According to doc only one DRM_MODE_ROTATE_ is allowed but this
  2590. * will print them all to visualize if the values are misused
  2591. */
  2592. snprintf(buf, sizeof(buf),
  2593. "%s%s%s%s%s%s(0x%08x)",
  2594. (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
  2595. (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
  2596. (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
  2597. (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
  2598. (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
  2599. (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
  2600. rotation);
  2601. return buf;
  2602. }
  2603. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2604. {
  2605. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2606. struct drm_device *dev = &dev_priv->drm;
  2607. struct intel_plane *intel_plane;
  2608. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2609. struct drm_plane_state *state;
  2610. struct drm_plane *plane = &intel_plane->base;
  2611. struct drm_format_name_buf format_name;
  2612. if (!plane->state) {
  2613. seq_puts(m, "plane->state is NULL!\n");
  2614. continue;
  2615. }
  2616. state = plane->state;
  2617. if (state->fb) {
  2618. drm_get_format_name(state->fb->format->format,
  2619. &format_name);
  2620. } else {
  2621. sprintf(format_name.str, "N/A");
  2622. }
  2623. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2624. plane->base.id,
  2625. plane_type(intel_plane->base.type),
  2626. state->crtc_x, state->crtc_y,
  2627. state->crtc_w, state->crtc_h,
  2628. (state->src_x >> 16),
  2629. ((state->src_x & 0xffff) * 15625) >> 10,
  2630. (state->src_y >> 16),
  2631. ((state->src_y & 0xffff) * 15625) >> 10,
  2632. (state->src_w >> 16),
  2633. ((state->src_w & 0xffff) * 15625) >> 10,
  2634. (state->src_h >> 16),
  2635. ((state->src_h & 0xffff) * 15625) >> 10,
  2636. format_name.str,
  2637. plane_rotation(state->rotation));
  2638. }
  2639. }
  2640. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2641. {
  2642. struct intel_crtc_state *pipe_config;
  2643. int num_scalers = intel_crtc->num_scalers;
  2644. int i;
  2645. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2646. /* Not all platformas have a scaler */
  2647. if (num_scalers) {
  2648. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2649. num_scalers,
  2650. pipe_config->scaler_state.scaler_users,
  2651. pipe_config->scaler_state.scaler_id);
  2652. for (i = 0; i < num_scalers; i++) {
  2653. struct intel_scaler *sc =
  2654. &pipe_config->scaler_state.scalers[i];
  2655. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2656. i, yesno(sc->in_use), sc->mode);
  2657. }
  2658. seq_puts(m, "\n");
  2659. } else {
  2660. seq_puts(m, "\tNo scalers available on this platform\n");
  2661. }
  2662. }
  2663. static int i915_display_info(struct seq_file *m, void *unused)
  2664. {
  2665. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2666. struct drm_device *dev = &dev_priv->drm;
  2667. struct intel_crtc *crtc;
  2668. struct drm_connector *connector;
  2669. struct drm_connector_list_iter conn_iter;
  2670. intel_runtime_pm_get(dev_priv);
  2671. seq_printf(m, "CRTC info\n");
  2672. seq_printf(m, "---------\n");
  2673. for_each_intel_crtc(dev, crtc) {
  2674. struct intel_crtc_state *pipe_config;
  2675. drm_modeset_lock(&crtc->base.mutex, NULL);
  2676. pipe_config = to_intel_crtc_state(crtc->base.state);
  2677. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2678. crtc->base.base.id, pipe_name(crtc->pipe),
  2679. yesno(pipe_config->base.active),
  2680. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2681. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2682. if (pipe_config->base.active) {
  2683. struct intel_plane *cursor =
  2684. to_intel_plane(crtc->base.cursor);
  2685. intel_crtc_info(m, crtc);
  2686. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
  2687. yesno(cursor->base.state->visible),
  2688. cursor->base.state->crtc_x,
  2689. cursor->base.state->crtc_y,
  2690. cursor->base.state->crtc_w,
  2691. cursor->base.state->crtc_h,
  2692. cursor->cursor.base);
  2693. intel_scaler_info(m, crtc);
  2694. intel_plane_info(m, crtc);
  2695. }
  2696. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2697. yesno(!crtc->cpu_fifo_underrun_disabled),
  2698. yesno(!crtc->pch_fifo_underrun_disabled));
  2699. drm_modeset_unlock(&crtc->base.mutex);
  2700. }
  2701. seq_printf(m, "\n");
  2702. seq_printf(m, "Connector info\n");
  2703. seq_printf(m, "--------------\n");
  2704. mutex_lock(&dev->mode_config.mutex);
  2705. drm_connector_list_iter_begin(dev, &conn_iter);
  2706. drm_for_each_connector_iter(connector, &conn_iter)
  2707. intel_connector_info(m, connector);
  2708. drm_connector_list_iter_end(&conn_iter);
  2709. mutex_unlock(&dev->mode_config.mutex);
  2710. intel_runtime_pm_put(dev_priv);
  2711. return 0;
  2712. }
  2713. static int i915_engine_info(struct seq_file *m, void *unused)
  2714. {
  2715. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2716. struct intel_engine_cs *engine;
  2717. enum intel_engine_id id;
  2718. struct drm_printer p;
  2719. intel_runtime_pm_get(dev_priv);
  2720. seq_printf(m, "GT awake? %s (epoch %u)\n",
  2721. yesno(dev_priv->gt.awake), dev_priv->gt.epoch);
  2722. seq_printf(m, "Global active requests: %d\n",
  2723. dev_priv->gt.active_requests);
  2724. seq_printf(m, "CS timestamp frequency: %u kHz\n",
  2725. dev_priv->info.cs_timestamp_frequency_khz);
  2726. p = drm_seq_file_printer(m);
  2727. for_each_engine(engine, dev_priv, id)
  2728. intel_engine_dump(engine, &p, "%s\n", engine->name);
  2729. intel_runtime_pm_put(dev_priv);
  2730. return 0;
  2731. }
  2732. static int i915_rcs_topology(struct seq_file *m, void *unused)
  2733. {
  2734. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2735. struct drm_printer p = drm_seq_file_printer(m);
  2736. intel_device_info_dump_topology(&INTEL_INFO(dev_priv)->sseu, &p);
  2737. return 0;
  2738. }
  2739. static int i915_shrinker_info(struct seq_file *m, void *unused)
  2740. {
  2741. struct drm_i915_private *i915 = node_to_i915(m->private);
  2742. seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
  2743. seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
  2744. return 0;
  2745. }
  2746. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2747. {
  2748. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2749. struct drm_device *dev = &dev_priv->drm;
  2750. int i;
  2751. drm_modeset_lock_all(dev);
  2752. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2753. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2754. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->info->name,
  2755. pll->info->id);
  2756. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2757. pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
  2758. seq_printf(m, " tracked hardware state:\n");
  2759. seq_printf(m, " dpll: 0x%08x\n", pll->state.hw_state.dpll);
  2760. seq_printf(m, " dpll_md: 0x%08x\n",
  2761. pll->state.hw_state.dpll_md);
  2762. seq_printf(m, " fp0: 0x%08x\n", pll->state.hw_state.fp0);
  2763. seq_printf(m, " fp1: 0x%08x\n", pll->state.hw_state.fp1);
  2764. seq_printf(m, " wrpll: 0x%08x\n", pll->state.hw_state.wrpll);
  2765. seq_printf(m, " cfgcr0: 0x%08x\n", pll->state.hw_state.cfgcr0);
  2766. seq_printf(m, " cfgcr1: 0x%08x\n", pll->state.hw_state.cfgcr1);
  2767. seq_printf(m, " mg_refclkin_ctl: 0x%08x\n",
  2768. pll->state.hw_state.mg_refclkin_ctl);
  2769. seq_printf(m, " mg_clktop2_coreclkctl1: 0x%08x\n",
  2770. pll->state.hw_state.mg_clktop2_coreclkctl1);
  2771. seq_printf(m, " mg_clktop2_hsclkctl: 0x%08x\n",
  2772. pll->state.hw_state.mg_clktop2_hsclkctl);
  2773. seq_printf(m, " mg_pll_div0: 0x%08x\n",
  2774. pll->state.hw_state.mg_pll_div0);
  2775. seq_printf(m, " mg_pll_div1: 0x%08x\n",
  2776. pll->state.hw_state.mg_pll_div1);
  2777. seq_printf(m, " mg_pll_lf: 0x%08x\n",
  2778. pll->state.hw_state.mg_pll_lf);
  2779. seq_printf(m, " mg_pll_frac_lock: 0x%08x\n",
  2780. pll->state.hw_state.mg_pll_frac_lock);
  2781. seq_printf(m, " mg_pll_ssc: 0x%08x\n",
  2782. pll->state.hw_state.mg_pll_ssc);
  2783. seq_printf(m, " mg_pll_bias: 0x%08x\n",
  2784. pll->state.hw_state.mg_pll_bias);
  2785. seq_printf(m, " mg_pll_tdc_coldst_bias: 0x%08x\n",
  2786. pll->state.hw_state.mg_pll_tdc_coldst_bias);
  2787. }
  2788. drm_modeset_unlock_all(dev);
  2789. return 0;
  2790. }
  2791. static int i915_wa_registers(struct seq_file *m, void *unused)
  2792. {
  2793. struct i915_workarounds *wa = &node_to_i915(m->private)->workarounds;
  2794. int i;
  2795. seq_printf(m, "Workarounds applied: %d\n", wa->count);
  2796. for (i = 0; i < wa->count; ++i)
  2797. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n",
  2798. wa->reg[i].addr, wa->reg[i].value, wa->reg[i].mask);
  2799. return 0;
  2800. }
  2801. static int i915_ipc_status_show(struct seq_file *m, void *data)
  2802. {
  2803. struct drm_i915_private *dev_priv = m->private;
  2804. seq_printf(m, "Isochronous Priority Control: %s\n",
  2805. yesno(dev_priv->ipc_enabled));
  2806. return 0;
  2807. }
  2808. static int i915_ipc_status_open(struct inode *inode, struct file *file)
  2809. {
  2810. struct drm_i915_private *dev_priv = inode->i_private;
  2811. if (!HAS_IPC(dev_priv))
  2812. return -ENODEV;
  2813. return single_open(file, i915_ipc_status_show, dev_priv);
  2814. }
  2815. static ssize_t i915_ipc_status_write(struct file *file, const char __user *ubuf,
  2816. size_t len, loff_t *offp)
  2817. {
  2818. struct seq_file *m = file->private_data;
  2819. struct drm_i915_private *dev_priv = m->private;
  2820. int ret;
  2821. bool enable;
  2822. ret = kstrtobool_from_user(ubuf, len, &enable);
  2823. if (ret < 0)
  2824. return ret;
  2825. intel_runtime_pm_get(dev_priv);
  2826. if (!dev_priv->ipc_enabled && enable)
  2827. DRM_INFO("Enabling IPC: WM will be proper only after next commit\n");
  2828. dev_priv->wm.distrust_bios_wm = true;
  2829. dev_priv->ipc_enabled = enable;
  2830. intel_enable_ipc(dev_priv);
  2831. intel_runtime_pm_put(dev_priv);
  2832. return len;
  2833. }
  2834. static const struct file_operations i915_ipc_status_fops = {
  2835. .owner = THIS_MODULE,
  2836. .open = i915_ipc_status_open,
  2837. .read = seq_read,
  2838. .llseek = seq_lseek,
  2839. .release = single_release,
  2840. .write = i915_ipc_status_write
  2841. };
  2842. static int i915_ddb_info(struct seq_file *m, void *unused)
  2843. {
  2844. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2845. struct drm_device *dev = &dev_priv->drm;
  2846. struct skl_ddb_allocation *ddb;
  2847. struct skl_ddb_entry *entry;
  2848. enum pipe pipe;
  2849. int plane;
  2850. if (INTEL_GEN(dev_priv) < 9)
  2851. return -ENODEV;
  2852. drm_modeset_lock_all(dev);
  2853. ddb = &dev_priv->wm.skl_hw.ddb;
  2854. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2855. for_each_pipe(dev_priv, pipe) {
  2856. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2857. for_each_universal_plane(dev_priv, pipe, plane) {
  2858. entry = &ddb->plane[pipe][plane];
  2859. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2860. entry->start, entry->end,
  2861. skl_ddb_entry_size(entry));
  2862. }
  2863. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2864. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2865. entry->end, skl_ddb_entry_size(entry));
  2866. }
  2867. drm_modeset_unlock_all(dev);
  2868. return 0;
  2869. }
  2870. static void drrs_status_per_crtc(struct seq_file *m,
  2871. struct drm_device *dev,
  2872. struct intel_crtc *intel_crtc)
  2873. {
  2874. struct drm_i915_private *dev_priv = to_i915(dev);
  2875. struct i915_drrs *drrs = &dev_priv->drrs;
  2876. int vrefresh = 0;
  2877. struct drm_connector *connector;
  2878. struct drm_connector_list_iter conn_iter;
  2879. drm_connector_list_iter_begin(dev, &conn_iter);
  2880. drm_for_each_connector_iter(connector, &conn_iter) {
  2881. if (connector->state->crtc != &intel_crtc->base)
  2882. continue;
  2883. seq_printf(m, "%s:\n", connector->name);
  2884. }
  2885. drm_connector_list_iter_end(&conn_iter);
  2886. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2887. seq_puts(m, "\tVBT: DRRS_type: Static");
  2888. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2889. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2890. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2891. seq_puts(m, "\tVBT: DRRS_type: None");
  2892. else
  2893. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2894. seq_puts(m, "\n\n");
  2895. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2896. struct intel_panel *panel;
  2897. mutex_lock(&drrs->mutex);
  2898. /* DRRS Supported */
  2899. seq_puts(m, "\tDRRS Supported: Yes\n");
  2900. /* disable_drrs() will make drrs->dp NULL */
  2901. if (!drrs->dp) {
  2902. seq_puts(m, "Idleness DRRS: Disabled\n");
  2903. if (dev_priv->psr.enabled)
  2904. seq_puts(m,
  2905. "\tAs PSR is enabled, DRRS is not enabled\n");
  2906. mutex_unlock(&drrs->mutex);
  2907. return;
  2908. }
  2909. panel = &drrs->dp->attached_connector->panel;
  2910. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2911. drrs->busy_frontbuffer_bits);
  2912. seq_puts(m, "\n\t\t");
  2913. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2914. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2915. vrefresh = panel->fixed_mode->vrefresh;
  2916. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2917. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2918. vrefresh = panel->downclock_mode->vrefresh;
  2919. } else {
  2920. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2921. drrs->refresh_rate_type);
  2922. mutex_unlock(&drrs->mutex);
  2923. return;
  2924. }
  2925. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2926. seq_puts(m, "\n\t\t");
  2927. mutex_unlock(&drrs->mutex);
  2928. } else {
  2929. /* DRRS not supported. Print the VBT parameter*/
  2930. seq_puts(m, "\tDRRS Supported : No");
  2931. }
  2932. seq_puts(m, "\n");
  2933. }
  2934. static int i915_drrs_status(struct seq_file *m, void *unused)
  2935. {
  2936. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2937. struct drm_device *dev = &dev_priv->drm;
  2938. struct intel_crtc *intel_crtc;
  2939. int active_crtc_cnt = 0;
  2940. drm_modeset_lock_all(dev);
  2941. for_each_intel_crtc(dev, intel_crtc) {
  2942. if (intel_crtc->base.state->active) {
  2943. active_crtc_cnt++;
  2944. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2945. drrs_status_per_crtc(m, dev, intel_crtc);
  2946. }
  2947. }
  2948. drm_modeset_unlock_all(dev);
  2949. if (!active_crtc_cnt)
  2950. seq_puts(m, "No active crtc found\n");
  2951. return 0;
  2952. }
  2953. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2954. {
  2955. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2956. struct drm_device *dev = &dev_priv->drm;
  2957. struct intel_encoder *intel_encoder;
  2958. struct intel_digital_port *intel_dig_port;
  2959. struct drm_connector *connector;
  2960. struct drm_connector_list_iter conn_iter;
  2961. drm_connector_list_iter_begin(dev, &conn_iter);
  2962. drm_for_each_connector_iter(connector, &conn_iter) {
  2963. if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
  2964. continue;
  2965. intel_encoder = intel_attached_encoder(connector);
  2966. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2967. continue;
  2968. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  2969. if (!intel_dig_port->dp.can_mst)
  2970. continue;
  2971. seq_printf(m, "MST Source Port %c\n",
  2972. port_name(intel_dig_port->base.port));
  2973. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2974. }
  2975. drm_connector_list_iter_end(&conn_iter);
  2976. return 0;
  2977. }
  2978. static ssize_t i915_displayport_test_active_write(struct file *file,
  2979. const char __user *ubuf,
  2980. size_t len, loff_t *offp)
  2981. {
  2982. char *input_buffer;
  2983. int status = 0;
  2984. struct drm_device *dev;
  2985. struct drm_connector *connector;
  2986. struct drm_connector_list_iter conn_iter;
  2987. struct intel_dp *intel_dp;
  2988. int val = 0;
  2989. dev = ((struct seq_file *)file->private_data)->private;
  2990. if (len == 0)
  2991. return 0;
  2992. input_buffer = memdup_user_nul(ubuf, len);
  2993. if (IS_ERR(input_buffer))
  2994. return PTR_ERR(input_buffer);
  2995. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  2996. drm_connector_list_iter_begin(dev, &conn_iter);
  2997. drm_for_each_connector_iter(connector, &conn_iter) {
  2998. struct intel_encoder *encoder;
  2999. if (connector->connector_type !=
  3000. DRM_MODE_CONNECTOR_DisplayPort)
  3001. continue;
  3002. encoder = to_intel_encoder(connector->encoder);
  3003. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3004. continue;
  3005. if (encoder && connector->status == connector_status_connected) {
  3006. intel_dp = enc_to_intel_dp(&encoder->base);
  3007. status = kstrtoint(input_buffer, 10, &val);
  3008. if (status < 0)
  3009. break;
  3010. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3011. /* To prevent erroneous activation of the compliance
  3012. * testing code, only accept an actual value of 1 here
  3013. */
  3014. if (val == 1)
  3015. intel_dp->compliance.test_active = 1;
  3016. else
  3017. intel_dp->compliance.test_active = 0;
  3018. }
  3019. }
  3020. drm_connector_list_iter_end(&conn_iter);
  3021. kfree(input_buffer);
  3022. if (status < 0)
  3023. return status;
  3024. *offp += len;
  3025. return len;
  3026. }
  3027. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3028. {
  3029. struct drm_i915_private *dev_priv = m->private;
  3030. struct drm_device *dev = &dev_priv->drm;
  3031. struct drm_connector *connector;
  3032. struct drm_connector_list_iter conn_iter;
  3033. struct intel_dp *intel_dp;
  3034. drm_connector_list_iter_begin(dev, &conn_iter);
  3035. drm_for_each_connector_iter(connector, &conn_iter) {
  3036. struct intel_encoder *encoder;
  3037. if (connector->connector_type !=
  3038. DRM_MODE_CONNECTOR_DisplayPort)
  3039. continue;
  3040. encoder = to_intel_encoder(connector->encoder);
  3041. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3042. continue;
  3043. if (encoder && connector->status == connector_status_connected) {
  3044. intel_dp = enc_to_intel_dp(&encoder->base);
  3045. if (intel_dp->compliance.test_active)
  3046. seq_puts(m, "1");
  3047. else
  3048. seq_puts(m, "0");
  3049. } else
  3050. seq_puts(m, "0");
  3051. }
  3052. drm_connector_list_iter_end(&conn_iter);
  3053. return 0;
  3054. }
  3055. static int i915_displayport_test_active_open(struct inode *inode,
  3056. struct file *file)
  3057. {
  3058. return single_open(file, i915_displayport_test_active_show,
  3059. inode->i_private);
  3060. }
  3061. static const struct file_operations i915_displayport_test_active_fops = {
  3062. .owner = THIS_MODULE,
  3063. .open = i915_displayport_test_active_open,
  3064. .read = seq_read,
  3065. .llseek = seq_lseek,
  3066. .release = single_release,
  3067. .write = i915_displayport_test_active_write
  3068. };
  3069. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3070. {
  3071. struct drm_i915_private *dev_priv = m->private;
  3072. struct drm_device *dev = &dev_priv->drm;
  3073. struct drm_connector *connector;
  3074. struct drm_connector_list_iter conn_iter;
  3075. struct intel_dp *intel_dp;
  3076. drm_connector_list_iter_begin(dev, &conn_iter);
  3077. drm_for_each_connector_iter(connector, &conn_iter) {
  3078. struct intel_encoder *encoder;
  3079. if (connector->connector_type !=
  3080. DRM_MODE_CONNECTOR_DisplayPort)
  3081. continue;
  3082. encoder = to_intel_encoder(connector->encoder);
  3083. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3084. continue;
  3085. if (encoder && connector->status == connector_status_connected) {
  3086. intel_dp = enc_to_intel_dp(&encoder->base);
  3087. if (intel_dp->compliance.test_type ==
  3088. DP_TEST_LINK_EDID_READ)
  3089. seq_printf(m, "%lx",
  3090. intel_dp->compliance.test_data.edid);
  3091. else if (intel_dp->compliance.test_type ==
  3092. DP_TEST_LINK_VIDEO_PATTERN) {
  3093. seq_printf(m, "hdisplay: %d\n",
  3094. intel_dp->compliance.test_data.hdisplay);
  3095. seq_printf(m, "vdisplay: %d\n",
  3096. intel_dp->compliance.test_data.vdisplay);
  3097. seq_printf(m, "bpc: %u\n",
  3098. intel_dp->compliance.test_data.bpc);
  3099. }
  3100. } else
  3101. seq_puts(m, "0");
  3102. }
  3103. drm_connector_list_iter_end(&conn_iter);
  3104. return 0;
  3105. }
  3106. DEFINE_SHOW_ATTRIBUTE(i915_displayport_test_data);
  3107. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3108. {
  3109. struct drm_i915_private *dev_priv = m->private;
  3110. struct drm_device *dev = &dev_priv->drm;
  3111. struct drm_connector *connector;
  3112. struct drm_connector_list_iter conn_iter;
  3113. struct intel_dp *intel_dp;
  3114. drm_connector_list_iter_begin(dev, &conn_iter);
  3115. drm_for_each_connector_iter(connector, &conn_iter) {
  3116. struct intel_encoder *encoder;
  3117. if (connector->connector_type !=
  3118. DRM_MODE_CONNECTOR_DisplayPort)
  3119. continue;
  3120. encoder = to_intel_encoder(connector->encoder);
  3121. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3122. continue;
  3123. if (encoder && connector->status == connector_status_connected) {
  3124. intel_dp = enc_to_intel_dp(&encoder->base);
  3125. seq_printf(m, "%02lx", intel_dp->compliance.test_type);
  3126. } else
  3127. seq_puts(m, "0");
  3128. }
  3129. drm_connector_list_iter_end(&conn_iter);
  3130. return 0;
  3131. }
  3132. DEFINE_SHOW_ATTRIBUTE(i915_displayport_test_type);
  3133. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3134. {
  3135. struct drm_i915_private *dev_priv = m->private;
  3136. struct drm_device *dev = &dev_priv->drm;
  3137. int level;
  3138. int num_levels;
  3139. if (IS_CHERRYVIEW(dev_priv))
  3140. num_levels = 3;
  3141. else if (IS_VALLEYVIEW(dev_priv))
  3142. num_levels = 1;
  3143. else if (IS_G4X(dev_priv))
  3144. num_levels = 3;
  3145. else
  3146. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3147. drm_modeset_lock_all(dev);
  3148. for (level = 0; level < num_levels; level++) {
  3149. unsigned int latency = wm[level];
  3150. /*
  3151. * - WM1+ latency values in 0.5us units
  3152. * - latencies are in us on gen9/vlv/chv
  3153. */
  3154. if (INTEL_GEN(dev_priv) >= 9 ||
  3155. IS_VALLEYVIEW(dev_priv) ||
  3156. IS_CHERRYVIEW(dev_priv) ||
  3157. IS_G4X(dev_priv))
  3158. latency *= 10;
  3159. else if (level > 0)
  3160. latency *= 5;
  3161. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3162. level, wm[level], latency / 10, latency % 10);
  3163. }
  3164. drm_modeset_unlock_all(dev);
  3165. }
  3166. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3167. {
  3168. struct drm_i915_private *dev_priv = m->private;
  3169. const uint16_t *latencies;
  3170. if (INTEL_GEN(dev_priv) >= 9)
  3171. latencies = dev_priv->wm.skl_latency;
  3172. else
  3173. latencies = dev_priv->wm.pri_latency;
  3174. wm_latency_show(m, latencies);
  3175. return 0;
  3176. }
  3177. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3178. {
  3179. struct drm_i915_private *dev_priv = m->private;
  3180. const uint16_t *latencies;
  3181. if (INTEL_GEN(dev_priv) >= 9)
  3182. latencies = dev_priv->wm.skl_latency;
  3183. else
  3184. latencies = dev_priv->wm.spr_latency;
  3185. wm_latency_show(m, latencies);
  3186. return 0;
  3187. }
  3188. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3189. {
  3190. struct drm_i915_private *dev_priv = m->private;
  3191. const uint16_t *latencies;
  3192. if (INTEL_GEN(dev_priv) >= 9)
  3193. latencies = dev_priv->wm.skl_latency;
  3194. else
  3195. latencies = dev_priv->wm.cur_latency;
  3196. wm_latency_show(m, latencies);
  3197. return 0;
  3198. }
  3199. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3200. {
  3201. struct drm_i915_private *dev_priv = inode->i_private;
  3202. if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
  3203. return -ENODEV;
  3204. return single_open(file, pri_wm_latency_show, dev_priv);
  3205. }
  3206. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3207. {
  3208. struct drm_i915_private *dev_priv = inode->i_private;
  3209. if (HAS_GMCH_DISPLAY(dev_priv))
  3210. return -ENODEV;
  3211. return single_open(file, spr_wm_latency_show, dev_priv);
  3212. }
  3213. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3214. {
  3215. struct drm_i915_private *dev_priv = inode->i_private;
  3216. if (HAS_GMCH_DISPLAY(dev_priv))
  3217. return -ENODEV;
  3218. return single_open(file, cur_wm_latency_show, dev_priv);
  3219. }
  3220. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3221. size_t len, loff_t *offp, uint16_t wm[8])
  3222. {
  3223. struct seq_file *m = file->private_data;
  3224. struct drm_i915_private *dev_priv = m->private;
  3225. struct drm_device *dev = &dev_priv->drm;
  3226. uint16_t new[8] = { 0 };
  3227. int num_levels;
  3228. int level;
  3229. int ret;
  3230. char tmp[32];
  3231. if (IS_CHERRYVIEW(dev_priv))
  3232. num_levels = 3;
  3233. else if (IS_VALLEYVIEW(dev_priv))
  3234. num_levels = 1;
  3235. else if (IS_G4X(dev_priv))
  3236. num_levels = 3;
  3237. else
  3238. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3239. if (len >= sizeof(tmp))
  3240. return -EINVAL;
  3241. if (copy_from_user(tmp, ubuf, len))
  3242. return -EFAULT;
  3243. tmp[len] = '\0';
  3244. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3245. &new[0], &new[1], &new[2], &new[3],
  3246. &new[4], &new[5], &new[6], &new[7]);
  3247. if (ret != num_levels)
  3248. return -EINVAL;
  3249. drm_modeset_lock_all(dev);
  3250. for (level = 0; level < num_levels; level++)
  3251. wm[level] = new[level];
  3252. drm_modeset_unlock_all(dev);
  3253. return len;
  3254. }
  3255. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3256. size_t len, loff_t *offp)
  3257. {
  3258. struct seq_file *m = file->private_data;
  3259. struct drm_i915_private *dev_priv = m->private;
  3260. uint16_t *latencies;
  3261. if (INTEL_GEN(dev_priv) >= 9)
  3262. latencies = dev_priv->wm.skl_latency;
  3263. else
  3264. latencies = dev_priv->wm.pri_latency;
  3265. return wm_latency_write(file, ubuf, len, offp, latencies);
  3266. }
  3267. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3268. size_t len, loff_t *offp)
  3269. {
  3270. struct seq_file *m = file->private_data;
  3271. struct drm_i915_private *dev_priv = m->private;
  3272. uint16_t *latencies;
  3273. if (INTEL_GEN(dev_priv) >= 9)
  3274. latencies = dev_priv->wm.skl_latency;
  3275. else
  3276. latencies = dev_priv->wm.spr_latency;
  3277. return wm_latency_write(file, ubuf, len, offp, latencies);
  3278. }
  3279. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3280. size_t len, loff_t *offp)
  3281. {
  3282. struct seq_file *m = file->private_data;
  3283. struct drm_i915_private *dev_priv = m->private;
  3284. uint16_t *latencies;
  3285. if (INTEL_GEN(dev_priv) >= 9)
  3286. latencies = dev_priv->wm.skl_latency;
  3287. else
  3288. latencies = dev_priv->wm.cur_latency;
  3289. return wm_latency_write(file, ubuf, len, offp, latencies);
  3290. }
  3291. static const struct file_operations i915_pri_wm_latency_fops = {
  3292. .owner = THIS_MODULE,
  3293. .open = pri_wm_latency_open,
  3294. .read = seq_read,
  3295. .llseek = seq_lseek,
  3296. .release = single_release,
  3297. .write = pri_wm_latency_write
  3298. };
  3299. static const struct file_operations i915_spr_wm_latency_fops = {
  3300. .owner = THIS_MODULE,
  3301. .open = spr_wm_latency_open,
  3302. .read = seq_read,
  3303. .llseek = seq_lseek,
  3304. .release = single_release,
  3305. .write = spr_wm_latency_write
  3306. };
  3307. static const struct file_operations i915_cur_wm_latency_fops = {
  3308. .owner = THIS_MODULE,
  3309. .open = cur_wm_latency_open,
  3310. .read = seq_read,
  3311. .llseek = seq_lseek,
  3312. .release = single_release,
  3313. .write = cur_wm_latency_write
  3314. };
  3315. static int
  3316. i915_wedged_get(void *data, u64 *val)
  3317. {
  3318. struct drm_i915_private *dev_priv = data;
  3319. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3320. return 0;
  3321. }
  3322. static int
  3323. i915_wedged_set(void *data, u64 val)
  3324. {
  3325. struct drm_i915_private *i915 = data;
  3326. struct intel_engine_cs *engine;
  3327. unsigned int tmp;
  3328. /*
  3329. * There is no safeguard against this debugfs entry colliding
  3330. * with the hangcheck calling same i915_handle_error() in
  3331. * parallel, causing an explosion. For now we assume that the
  3332. * test harness is responsible enough not to inject gpu hangs
  3333. * while it is writing to 'i915_wedged'
  3334. */
  3335. if (i915_reset_backoff(&i915->gpu_error))
  3336. return -EAGAIN;
  3337. for_each_engine_masked(engine, i915, val, tmp) {
  3338. engine->hangcheck.seqno = intel_engine_get_seqno(engine);
  3339. engine->hangcheck.stalled = true;
  3340. }
  3341. i915_handle_error(i915, val, I915_ERROR_CAPTURE,
  3342. "Manually set wedged engine mask = %llx", val);
  3343. wait_on_bit(&i915->gpu_error.flags,
  3344. I915_RESET_HANDOFF,
  3345. TASK_UNINTERRUPTIBLE);
  3346. return 0;
  3347. }
  3348. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3349. i915_wedged_get, i915_wedged_set,
  3350. "%llu\n");
  3351. static int
  3352. fault_irq_set(struct drm_i915_private *i915,
  3353. unsigned long *irq,
  3354. unsigned long val)
  3355. {
  3356. int err;
  3357. err = mutex_lock_interruptible(&i915->drm.struct_mutex);
  3358. if (err)
  3359. return err;
  3360. err = i915_gem_wait_for_idle(i915,
  3361. I915_WAIT_LOCKED |
  3362. I915_WAIT_INTERRUPTIBLE);
  3363. if (err)
  3364. goto err_unlock;
  3365. *irq = val;
  3366. mutex_unlock(&i915->drm.struct_mutex);
  3367. /* Flush idle worker to disarm irq */
  3368. drain_delayed_work(&i915->gt.idle_work);
  3369. return 0;
  3370. err_unlock:
  3371. mutex_unlock(&i915->drm.struct_mutex);
  3372. return err;
  3373. }
  3374. static int
  3375. i915_ring_missed_irq_get(void *data, u64 *val)
  3376. {
  3377. struct drm_i915_private *dev_priv = data;
  3378. *val = dev_priv->gpu_error.missed_irq_rings;
  3379. return 0;
  3380. }
  3381. static int
  3382. i915_ring_missed_irq_set(void *data, u64 val)
  3383. {
  3384. struct drm_i915_private *i915 = data;
  3385. return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
  3386. }
  3387. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3388. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3389. "0x%08llx\n");
  3390. static int
  3391. i915_ring_test_irq_get(void *data, u64 *val)
  3392. {
  3393. struct drm_i915_private *dev_priv = data;
  3394. *val = dev_priv->gpu_error.test_irq_rings;
  3395. return 0;
  3396. }
  3397. static int
  3398. i915_ring_test_irq_set(void *data, u64 val)
  3399. {
  3400. struct drm_i915_private *i915 = data;
  3401. val &= INTEL_INFO(i915)->ring_mask;
  3402. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3403. return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
  3404. }
  3405. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3406. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3407. "0x%08llx\n");
  3408. #define DROP_UNBOUND BIT(0)
  3409. #define DROP_BOUND BIT(1)
  3410. #define DROP_RETIRE BIT(2)
  3411. #define DROP_ACTIVE BIT(3)
  3412. #define DROP_FREED BIT(4)
  3413. #define DROP_SHRINK_ALL BIT(5)
  3414. #define DROP_IDLE BIT(6)
  3415. #define DROP_ALL (DROP_UNBOUND | \
  3416. DROP_BOUND | \
  3417. DROP_RETIRE | \
  3418. DROP_ACTIVE | \
  3419. DROP_FREED | \
  3420. DROP_SHRINK_ALL |\
  3421. DROP_IDLE)
  3422. static int
  3423. i915_drop_caches_get(void *data, u64 *val)
  3424. {
  3425. *val = DROP_ALL;
  3426. return 0;
  3427. }
  3428. static int
  3429. i915_drop_caches_set(void *data, u64 val)
  3430. {
  3431. struct drm_i915_private *dev_priv = data;
  3432. struct drm_device *dev = &dev_priv->drm;
  3433. int ret = 0;
  3434. DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
  3435. val, val & DROP_ALL);
  3436. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3437. * on ioctls on -EAGAIN. */
  3438. if (val & (DROP_ACTIVE | DROP_RETIRE)) {
  3439. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3440. if (ret)
  3441. return ret;
  3442. if (val & DROP_ACTIVE)
  3443. ret = i915_gem_wait_for_idle(dev_priv,
  3444. I915_WAIT_INTERRUPTIBLE |
  3445. I915_WAIT_LOCKED);
  3446. if (val & DROP_RETIRE)
  3447. i915_retire_requests(dev_priv);
  3448. mutex_unlock(&dev->struct_mutex);
  3449. }
  3450. fs_reclaim_acquire(GFP_KERNEL);
  3451. if (val & DROP_BOUND)
  3452. i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_BOUND);
  3453. if (val & DROP_UNBOUND)
  3454. i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
  3455. if (val & DROP_SHRINK_ALL)
  3456. i915_gem_shrink_all(dev_priv);
  3457. fs_reclaim_release(GFP_KERNEL);
  3458. if (val & DROP_IDLE) {
  3459. do {
  3460. if (READ_ONCE(dev_priv->gt.active_requests))
  3461. flush_delayed_work(&dev_priv->gt.retire_work);
  3462. drain_delayed_work(&dev_priv->gt.idle_work);
  3463. } while (READ_ONCE(dev_priv->gt.awake));
  3464. }
  3465. if (val & DROP_FREED)
  3466. i915_gem_drain_freed_objects(dev_priv);
  3467. return ret;
  3468. }
  3469. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3470. i915_drop_caches_get, i915_drop_caches_set,
  3471. "0x%08llx\n");
  3472. static int
  3473. i915_cache_sharing_get(void *data, u64 *val)
  3474. {
  3475. struct drm_i915_private *dev_priv = data;
  3476. u32 snpcr;
  3477. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3478. return -ENODEV;
  3479. intel_runtime_pm_get(dev_priv);
  3480. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3481. intel_runtime_pm_put(dev_priv);
  3482. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3483. return 0;
  3484. }
  3485. static int
  3486. i915_cache_sharing_set(void *data, u64 val)
  3487. {
  3488. struct drm_i915_private *dev_priv = data;
  3489. u32 snpcr;
  3490. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3491. return -ENODEV;
  3492. if (val > 3)
  3493. return -EINVAL;
  3494. intel_runtime_pm_get(dev_priv);
  3495. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3496. /* Update the cache sharing policy here as well */
  3497. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3498. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3499. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3500. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3501. intel_runtime_pm_put(dev_priv);
  3502. return 0;
  3503. }
  3504. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3505. i915_cache_sharing_get, i915_cache_sharing_set,
  3506. "%llu\n");
  3507. static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
  3508. struct sseu_dev_info *sseu)
  3509. {
  3510. #define SS_MAX 2
  3511. const int ss_max = SS_MAX;
  3512. u32 sig1[SS_MAX], sig2[SS_MAX];
  3513. int ss;
  3514. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  3515. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  3516. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  3517. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  3518. for (ss = 0; ss < ss_max; ss++) {
  3519. unsigned int eu_cnt;
  3520. if (sig1[ss] & CHV_SS_PG_ENABLE)
  3521. /* skip disabled subslice */
  3522. continue;
  3523. sseu->slice_mask = BIT(0);
  3524. sseu->subslice_mask[0] |= BIT(ss);
  3525. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  3526. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  3527. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  3528. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  3529. sseu->eu_total += eu_cnt;
  3530. sseu->eu_per_subslice = max_t(unsigned int,
  3531. sseu->eu_per_subslice, eu_cnt);
  3532. }
  3533. #undef SS_MAX
  3534. }
  3535. static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
  3536. struct sseu_dev_info *sseu)
  3537. {
  3538. #define SS_MAX 6
  3539. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  3540. u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
  3541. int s, ss;
  3542. for (s = 0; s < info->sseu.max_slices; s++) {
  3543. /*
  3544. * FIXME: Valid SS Mask respects the spec and read
  3545. * only valid bits for those registers, excluding reserverd
  3546. * although this seems wrong because it would leave many
  3547. * subslices without ACK.
  3548. */
  3549. s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
  3550. GEN10_PGCTL_VALID_SS_MASK(s);
  3551. eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
  3552. eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
  3553. }
  3554. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3555. GEN9_PGCTL_SSA_EU19_ACK |
  3556. GEN9_PGCTL_SSA_EU210_ACK |
  3557. GEN9_PGCTL_SSA_EU311_ACK;
  3558. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3559. GEN9_PGCTL_SSB_EU19_ACK |
  3560. GEN9_PGCTL_SSB_EU210_ACK |
  3561. GEN9_PGCTL_SSB_EU311_ACK;
  3562. for (s = 0; s < info->sseu.max_slices; s++) {
  3563. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3564. /* skip disabled slice */
  3565. continue;
  3566. sseu->slice_mask |= BIT(s);
  3567. sseu->subslice_mask[s] = info->sseu.subslice_mask[s];
  3568. for (ss = 0; ss < info->sseu.max_subslices; ss++) {
  3569. unsigned int eu_cnt;
  3570. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  3571. /* skip disabled subslice */
  3572. continue;
  3573. eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
  3574. eu_mask[ss % 2]);
  3575. sseu->eu_total += eu_cnt;
  3576. sseu->eu_per_subslice = max_t(unsigned int,
  3577. sseu->eu_per_subslice,
  3578. eu_cnt);
  3579. }
  3580. }
  3581. #undef SS_MAX
  3582. }
  3583. static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
  3584. struct sseu_dev_info *sseu)
  3585. {
  3586. #define SS_MAX 3
  3587. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  3588. u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
  3589. int s, ss;
  3590. for (s = 0; s < info->sseu.max_slices; s++) {
  3591. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  3592. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  3593. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  3594. }
  3595. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3596. GEN9_PGCTL_SSA_EU19_ACK |
  3597. GEN9_PGCTL_SSA_EU210_ACK |
  3598. GEN9_PGCTL_SSA_EU311_ACK;
  3599. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3600. GEN9_PGCTL_SSB_EU19_ACK |
  3601. GEN9_PGCTL_SSB_EU210_ACK |
  3602. GEN9_PGCTL_SSB_EU311_ACK;
  3603. for (s = 0; s < info->sseu.max_slices; s++) {
  3604. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3605. /* skip disabled slice */
  3606. continue;
  3607. sseu->slice_mask |= BIT(s);
  3608. if (IS_GEN9_BC(dev_priv))
  3609. sseu->subslice_mask[s] =
  3610. INTEL_INFO(dev_priv)->sseu.subslice_mask[s];
  3611. for (ss = 0; ss < info->sseu.max_subslices; ss++) {
  3612. unsigned int eu_cnt;
  3613. if (IS_GEN9_LP(dev_priv)) {
  3614. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  3615. /* skip disabled subslice */
  3616. continue;
  3617. sseu->subslice_mask[s] |= BIT(ss);
  3618. }
  3619. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  3620. eu_mask[ss%2]);
  3621. sseu->eu_total += eu_cnt;
  3622. sseu->eu_per_subslice = max_t(unsigned int,
  3623. sseu->eu_per_subslice,
  3624. eu_cnt);
  3625. }
  3626. }
  3627. #undef SS_MAX
  3628. }
  3629. static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
  3630. struct sseu_dev_info *sseu)
  3631. {
  3632. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  3633. int s;
  3634. sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
  3635. if (sseu->slice_mask) {
  3636. sseu->eu_per_subslice =
  3637. INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
  3638. for (s = 0; s < fls(sseu->slice_mask); s++) {
  3639. sseu->subslice_mask[s] =
  3640. INTEL_INFO(dev_priv)->sseu.subslice_mask[s];
  3641. }
  3642. sseu->eu_total = sseu->eu_per_subslice *
  3643. sseu_subslice_total(sseu);
  3644. /* subtract fused off EU(s) from enabled slice(s) */
  3645. for (s = 0; s < fls(sseu->slice_mask); s++) {
  3646. u8 subslice_7eu =
  3647. INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
  3648. sseu->eu_total -= hweight8(subslice_7eu);
  3649. }
  3650. }
  3651. }
  3652. static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
  3653. const struct sseu_dev_info *sseu)
  3654. {
  3655. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3656. const char *type = is_available_info ? "Available" : "Enabled";
  3657. int s;
  3658. seq_printf(m, " %s Slice Mask: %04x\n", type,
  3659. sseu->slice_mask);
  3660. seq_printf(m, " %s Slice Total: %u\n", type,
  3661. hweight8(sseu->slice_mask));
  3662. seq_printf(m, " %s Subslice Total: %u\n", type,
  3663. sseu_subslice_total(sseu));
  3664. for (s = 0; s < fls(sseu->slice_mask); s++) {
  3665. seq_printf(m, " %s Slice%i subslices: %u\n", type,
  3666. s, hweight8(sseu->subslice_mask[s]));
  3667. }
  3668. seq_printf(m, " %s EU Total: %u\n", type,
  3669. sseu->eu_total);
  3670. seq_printf(m, " %s EU Per Subslice: %u\n", type,
  3671. sseu->eu_per_subslice);
  3672. if (!is_available_info)
  3673. return;
  3674. seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
  3675. if (HAS_POOLED_EU(dev_priv))
  3676. seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
  3677. seq_printf(m, " Has Slice Power Gating: %s\n",
  3678. yesno(sseu->has_slice_pg));
  3679. seq_printf(m, " Has Subslice Power Gating: %s\n",
  3680. yesno(sseu->has_subslice_pg));
  3681. seq_printf(m, " Has EU Power Gating: %s\n",
  3682. yesno(sseu->has_eu_pg));
  3683. }
  3684. static int i915_sseu_status(struct seq_file *m, void *unused)
  3685. {
  3686. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3687. struct sseu_dev_info sseu;
  3688. if (INTEL_GEN(dev_priv) < 8)
  3689. return -ENODEV;
  3690. seq_puts(m, "SSEU Device Info\n");
  3691. i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
  3692. seq_puts(m, "SSEU Device Status\n");
  3693. memset(&sseu, 0, sizeof(sseu));
  3694. sseu.max_slices = INTEL_INFO(dev_priv)->sseu.max_slices;
  3695. sseu.max_subslices = INTEL_INFO(dev_priv)->sseu.max_subslices;
  3696. sseu.max_eus_per_subslice =
  3697. INTEL_INFO(dev_priv)->sseu.max_eus_per_subslice;
  3698. intel_runtime_pm_get(dev_priv);
  3699. if (IS_CHERRYVIEW(dev_priv)) {
  3700. cherryview_sseu_device_status(dev_priv, &sseu);
  3701. } else if (IS_BROADWELL(dev_priv)) {
  3702. broadwell_sseu_device_status(dev_priv, &sseu);
  3703. } else if (IS_GEN9(dev_priv)) {
  3704. gen9_sseu_device_status(dev_priv, &sseu);
  3705. } else if (INTEL_GEN(dev_priv) >= 10) {
  3706. gen10_sseu_device_status(dev_priv, &sseu);
  3707. }
  3708. intel_runtime_pm_put(dev_priv);
  3709. i915_print_sseu_info(m, false, &sseu);
  3710. return 0;
  3711. }
  3712. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3713. {
  3714. struct drm_i915_private *i915 = inode->i_private;
  3715. if (INTEL_GEN(i915) < 6)
  3716. return 0;
  3717. intel_runtime_pm_get(i915);
  3718. intel_uncore_forcewake_user_get(i915);
  3719. return 0;
  3720. }
  3721. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3722. {
  3723. struct drm_i915_private *i915 = inode->i_private;
  3724. if (INTEL_GEN(i915) < 6)
  3725. return 0;
  3726. intel_uncore_forcewake_user_put(i915);
  3727. intel_runtime_pm_put(i915);
  3728. return 0;
  3729. }
  3730. static const struct file_operations i915_forcewake_fops = {
  3731. .owner = THIS_MODULE,
  3732. .open = i915_forcewake_open,
  3733. .release = i915_forcewake_release,
  3734. };
  3735. static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
  3736. {
  3737. struct drm_i915_private *dev_priv = m->private;
  3738. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3739. seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
  3740. seq_printf(m, "Detected: %s\n",
  3741. yesno(delayed_work_pending(&hotplug->reenable_work)));
  3742. return 0;
  3743. }
  3744. static ssize_t i915_hpd_storm_ctl_write(struct file *file,
  3745. const char __user *ubuf, size_t len,
  3746. loff_t *offp)
  3747. {
  3748. struct seq_file *m = file->private_data;
  3749. struct drm_i915_private *dev_priv = m->private;
  3750. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3751. unsigned int new_threshold;
  3752. int i;
  3753. char *newline;
  3754. char tmp[16];
  3755. if (len >= sizeof(tmp))
  3756. return -EINVAL;
  3757. if (copy_from_user(tmp, ubuf, len))
  3758. return -EFAULT;
  3759. tmp[len] = '\0';
  3760. /* Strip newline, if any */
  3761. newline = strchr(tmp, '\n');
  3762. if (newline)
  3763. *newline = '\0';
  3764. if (strcmp(tmp, "reset") == 0)
  3765. new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
  3766. else if (kstrtouint(tmp, 10, &new_threshold) != 0)
  3767. return -EINVAL;
  3768. if (new_threshold > 0)
  3769. DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
  3770. new_threshold);
  3771. else
  3772. DRM_DEBUG_KMS("Disabling HPD storm detection\n");
  3773. spin_lock_irq(&dev_priv->irq_lock);
  3774. hotplug->hpd_storm_threshold = new_threshold;
  3775. /* Reset the HPD storm stats so we don't accidentally trigger a storm */
  3776. for_each_hpd_pin(i)
  3777. hotplug->stats[i].count = 0;
  3778. spin_unlock_irq(&dev_priv->irq_lock);
  3779. /* Re-enable hpd immediately if we were in an irq storm */
  3780. flush_delayed_work(&dev_priv->hotplug.reenable_work);
  3781. return len;
  3782. }
  3783. static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
  3784. {
  3785. return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
  3786. }
  3787. static const struct file_operations i915_hpd_storm_ctl_fops = {
  3788. .owner = THIS_MODULE,
  3789. .open = i915_hpd_storm_ctl_open,
  3790. .read = seq_read,
  3791. .llseek = seq_lseek,
  3792. .release = single_release,
  3793. .write = i915_hpd_storm_ctl_write
  3794. };
  3795. static int i915_drrs_ctl_set(void *data, u64 val)
  3796. {
  3797. struct drm_i915_private *dev_priv = data;
  3798. struct drm_device *dev = &dev_priv->drm;
  3799. struct intel_crtc *intel_crtc;
  3800. struct intel_encoder *encoder;
  3801. struct intel_dp *intel_dp;
  3802. if (INTEL_GEN(dev_priv) < 7)
  3803. return -ENODEV;
  3804. drm_modeset_lock_all(dev);
  3805. for_each_intel_crtc(dev, intel_crtc) {
  3806. if (!intel_crtc->base.state->active ||
  3807. !intel_crtc->config->has_drrs)
  3808. continue;
  3809. for_each_encoder_on_crtc(dev, &intel_crtc->base, encoder) {
  3810. if (encoder->type != INTEL_OUTPUT_EDP)
  3811. continue;
  3812. DRM_DEBUG_DRIVER("Manually %sabling DRRS. %llu\n",
  3813. val ? "en" : "dis", val);
  3814. intel_dp = enc_to_intel_dp(&encoder->base);
  3815. if (val)
  3816. intel_edp_drrs_enable(intel_dp,
  3817. intel_crtc->config);
  3818. else
  3819. intel_edp_drrs_disable(intel_dp,
  3820. intel_crtc->config);
  3821. }
  3822. }
  3823. drm_modeset_unlock_all(dev);
  3824. return 0;
  3825. }
  3826. DEFINE_SIMPLE_ATTRIBUTE(i915_drrs_ctl_fops, NULL, i915_drrs_ctl_set, "%llu\n");
  3827. static ssize_t
  3828. i915_fifo_underrun_reset_write(struct file *filp,
  3829. const char __user *ubuf,
  3830. size_t cnt, loff_t *ppos)
  3831. {
  3832. struct drm_i915_private *dev_priv = filp->private_data;
  3833. struct intel_crtc *intel_crtc;
  3834. struct drm_device *dev = &dev_priv->drm;
  3835. int ret;
  3836. bool reset;
  3837. ret = kstrtobool_from_user(ubuf, cnt, &reset);
  3838. if (ret)
  3839. return ret;
  3840. if (!reset)
  3841. return cnt;
  3842. for_each_intel_crtc(dev, intel_crtc) {
  3843. struct drm_crtc_commit *commit;
  3844. struct intel_crtc_state *crtc_state;
  3845. ret = drm_modeset_lock_single_interruptible(&intel_crtc->base.mutex);
  3846. if (ret)
  3847. return ret;
  3848. crtc_state = to_intel_crtc_state(intel_crtc->base.state);
  3849. commit = crtc_state->base.commit;
  3850. if (commit) {
  3851. ret = wait_for_completion_interruptible(&commit->hw_done);
  3852. if (!ret)
  3853. ret = wait_for_completion_interruptible(&commit->flip_done);
  3854. }
  3855. if (!ret && crtc_state->base.active) {
  3856. DRM_DEBUG_KMS("Re-arming FIFO underruns on pipe %c\n",
  3857. pipe_name(intel_crtc->pipe));
  3858. intel_crtc_arm_fifo_underrun(intel_crtc, crtc_state);
  3859. }
  3860. drm_modeset_unlock(&intel_crtc->base.mutex);
  3861. if (ret)
  3862. return ret;
  3863. }
  3864. ret = intel_fbc_reset_underrun(dev_priv);
  3865. if (ret)
  3866. return ret;
  3867. return cnt;
  3868. }
  3869. static const struct file_operations i915_fifo_underrun_reset_ops = {
  3870. .owner = THIS_MODULE,
  3871. .open = simple_open,
  3872. .write = i915_fifo_underrun_reset_write,
  3873. .llseek = default_llseek,
  3874. };
  3875. static const struct drm_info_list i915_debugfs_list[] = {
  3876. {"i915_capabilities", i915_capabilities, 0},
  3877. {"i915_gem_objects", i915_gem_object_info, 0},
  3878. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3879. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3880. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3881. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3882. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  3883. {"i915_guc_info", i915_guc_info, 0},
  3884. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  3885. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  3886. {"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
  3887. {"i915_guc_stage_pool", i915_guc_stage_pool, 0},
  3888. {"i915_huc_load_status", i915_huc_load_status_info, 0},
  3889. {"i915_frequency_info", i915_frequency_info, 0},
  3890. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  3891. {"i915_reset_info", i915_reset_info, 0},
  3892. {"i915_drpc_info", i915_drpc_info, 0},
  3893. {"i915_emon_status", i915_emon_status, 0},
  3894. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3895. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  3896. {"i915_fbc_status", i915_fbc_status, 0},
  3897. {"i915_ips_status", i915_ips_status, 0},
  3898. {"i915_sr_status", i915_sr_status, 0},
  3899. {"i915_opregion", i915_opregion, 0},
  3900. {"i915_vbt", i915_vbt, 0},
  3901. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3902. {"i915_context_status", i915_context_status, 0},
  3903. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  3904. {"i915_swizzle_info", i915_swizzle_info, 0},
  3905. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3906. {"i915_llc", i915_llc, 0},
  3907. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3908. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3909. {"i915_energy_uJ", i915_energy_uJ, 0},
  3910. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  3911. {"i915_power_domain_info", i915_power_domain_info, 0},
  3912. {"i915_dmc_info", i915_dmc_info, 0},
  3913. {"i915_display_info", i915_display_info, 0},
  3914. {"i915_engine_info", i915_engine_info, 0},
  3915. {"i915_rcs_topology", i915_rcs_topology, 0},
  3916. {"i915_shrinker_info", i915_shrinker_info, 0},
  3917. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  3918. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  3919. {"i915_wa_registers", i915_wa_registers, 0},
  3920. {"i915_ddb_info", i915_ddb_info, 0},
  3921. {"i915_sseu_status", i915_sseu_status, 0},
  3922. {"i915_drrs_status", i915_drrs_status, 0},
  3923. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  3924. };
  3925. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3926. static const struct i915_debugfs_files {
  3927. const char *name;
  3928. const struct file_operations *fops;
  3929. } i915_debugfs_files[] = {
  3930. {"i915_wedged", &i915_wedged_fops},
  3931. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3932. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3933. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3934. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3935. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  3936. {"i915_error_state", &i915_error_state_fops},
  3937. {"i915_gpu_info", &i915_gpu_info_fops},
  3938. #endif
  3939. {"i915_fifo_underrun_reset", &i915_fifo_underrun_reset_ops},
  3940. {"i915_next_seqno", &i915_next_seqno_fops},
  3941. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  3942. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  3943. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  3944. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  3945. {"i915_fbc_false_color", &i915_fbc_false_color_fops},
  3946. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  3947. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  3948. {"i915_dp_test_active", &i915_displayport_test_active_fops},
  3949. {"i915_guc_log_level", &i915_guc_log_level_fops},
  3950. {"i915_guc_log_relay", &i915_guc_log_relay_fops},
  3951. {"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops},
  3952. {"i915_ipc_status", &i915_ipc_status_fops},
  3953. {"i915_drrs_ctl", &i915_drrs_ctl_fops},
  3954. {"i915_edp_psr_debug", &i915_edp_psr_debug_fops}
  3955. };
  3956. int i915_debugfs_register(struct drm_i915_private *dev_priv)
  3957. {
  3958. struct drm_minor *minor = dev_priv->drm.primary;
  3959. struct dentry *ent;
  3960. int ret, i;
  3961. ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
  3962. minor->debugfs_root, to_i915(minor->dev),
  3963. &i915_forcewake_fops);
  3964. if (!ent)
  3965. return -ENOMEM;
  3966. ret = intel_pipe_crc_create(minor);
  3967. if (ret)
  3968. return ret;
  3969. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3970. ent = debugfs_create_file(i915_debugfs_files[i].name,
  3971. S_IRUGO | S_IWUSR,
  3972. minor->debugfs_root,
  3973. to_i915(minor->dev),
  3974. i915_debugfs_files[i].fops);
  3975. if (!ent)
  3976. return -ENOMEM;
  3977. }
  3978. return drm_debugfs_create_files(i915_debugfs_list,
  3979. I915_DEBUGFS_ENTRIES,
  3980. minor->debugfs_root, minor);
  3981. }
  3982. struct dpcd_block {
  3983. /* DPCD dump start address. */
  3984. unsigned int offset;
  3985. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  3986. unsigned int end;
  3987. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  3988. size_t size;
  3989. /* Only valid for eDP. */
  3990. bool edp;
  3991. };
  3992. static const struct dpcd_block i915_dpcd_debug[] = {
  3993. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  3994. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  3995. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  3996. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  3997. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  3998. { .offset = DP_SET_POWER },
  3999. { .offset = DP_EDP_DPCD_REV },
  4000. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4001. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4002. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4003. };
  4004. static int i915_dpcd_show(struct seq_file *m, void *data)
  4005. {
  4006. struct drm_connector *connector = m->private;
  4007. struct intel_dp *intel_dp =
  4008. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4009. uint8_t buf[16];
  4010. ssize_t err;
  4011. int i;
  4012. if (connector->status != connector_status_connected)
  4013. return -ENODEV;
  4014. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4015. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4016. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4017. if (b->edp &&
  4018. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4019. continue;
  4020. /* low tech for now */
  4021. if (WARN_ON(size > sizeof(buf)))
  4022. continue;
  4023. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4024. if (err <= 0) {
  4025. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4026. size, b->offset, err);
  4027. continue;
  4028. }
  4029. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4030. }
  4031. return 0;
  4032. }
  4033. DEFINE_SHOW_ATTRIBUTE(i915_dpcd);
  4034. static int i915_panel_show(struct seq_file *m, void *data)
  4035. {
  4036. struct drm_connector *connector = m->private;
  4037. struct intel_dp *intel_dp =
  4038. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4039. if (connector->status != connector_status_connected)
  4040. return -ENODEV;
  4041. seq_printf(m, "Panel power up delay: %d\n",
  4042. intel_dp->panel_power_up_delay);
  4043. seq_printf(m, "Panel power down delay: %d\n",
  4044. intel_dp->panel_power_down_delay);
  4045. seq_printf(m, "Backlight on delay: %d\n",
  4046. intel_dp->backlight_on_delay);
  4047. seq_printf(m, "Backlight off delay: %d\n",
  4048. intel_dp->backlight_off_delay);
  4049. return 0;
  4050. }
  4051. DEFINE_SHOW_ATTRIBUTE(i915_panel);
  4052. /**
  4053. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4054. * @connector: pointer to a registered drm_connector
  4055. *
  4056. * Cleanup will be done by drm_connector_unregister() through a call to
  4057. * drm_debugfs_connector_remove().
  4058. *
  4059. * Returns 0 on success, negative error codes on error.
  4060. */
  4061. int i915_debugfs_connector_add(struct drm_connector *connector)
  4062. {
  4063. struct dentry *root = connector->debugfs_entry;
  4064. /* The connector must have been registered beforehands. */
  4065. if (!root)
  4066. return -ENODEV;
  4067. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4068. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4069. debugfs_create_file("i915_dpcd", S_IRUGO, root,
  4070. connector, &i915_dpcd_fops);
  4071. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4072. debugfs_create_file("i915_panel_timings", S_IRUGO, root,
  4073. connector, &i915_panel_fops);
  4074. return 0;
  4075. }