exynos_drm_dsi.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879
  1. /*
  2. * Samsung SoC MIPI DSI Master driver.
  3. *
  4. * Copyright (c) 2014 Samsung Electronics Co., Ltd
  5. *
  6. * Contacts: Tomasz Figa <t.figa@samsung.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <asm/unaligned.h>
  13. #include <drm/drmP.h>
  14. #include <drm/drm_crtc_helper.h>
  15. #include <drm/drm_mipi_dsi.h>
  16. #include <drm/drm_panel.h>
  17. #include <drm/drm_atomic_helper.h>
  18. #include <linux/clk.h>
  19. #include <linux/gpio/consumer.h>
  20. #include <linux/irq.h>
  21. #include <linux/of_device.h>
  22. #include <linux/of_gpio.h>
  23. #include <linux/of_graph.h>
  24. #include <linux/phy/phy.h>
  25. #include <linux/regulator/consumer.h>
  26. #include <linux/component.h>
  27. #include <video/mipi_display.h>
  28. #include <video/videomode.h>
  29. #include "exynos_drm_crtc.h"
  30. #include "exynos_drm_drv.h"
  31. /* returns true iff both arguments logically differs */
  32. #define NEQV(a, b) (!(a) ^ !(b))
  33. /* DSIM_STATUS */
  34. #define DSIM_STOP_STATE_DAT(x) (((x) & 0xf) << 0)
  35. #define DSIM_STOP_STATE_CLK (1 << 8)
  36. #define DSIM_TX_READY_HS_CLK (1 << 10)
  37. #define DSIM_PLL_STABLE (1 << 31)
  38. /* DSIM_SWRST */
  39. #define DSIM_FUNCRST (1 << 16)
  40. #define DSIM_SWRST (1 << 0)
  41. /* DSIM_TIMEOUT */
  42. #define DSIM_LPDR_TIMEOUT(x) ((x) << 0)
  43. #define DSIM_BTA_TIMEOUT(x) ((x) << 16)
  44. /* DSIM_CLKCTRL */
  45. #define DSIM_ESC_PRESCALER(x) (((x) & 0xffff) << 0)
  46. #define DSIM_ESC_PRESCALER_MASK (0xffff << 0)
  47. #define DSIM_LANE_ESC_CLK_EN_CLK (1 << 19)
  48. #define DSIM_LANE_ESC_CLK_EN_DATA(x) (((x) & 0xf) << 20)
  49. #define DSIM_LANE_ESC_CLK_EN_DATA_MASK (0xf << 20)
  50. #define DSIM_BYTE_CLKEN (1 << 24)
  51. #define DSIM_BYTE_CLK_SRC(x) (((x) & 0x3) << 25)
  52. #define DSIM_BYTE_CLK_SRC_MASK (0x3 << 25)
  53. #define DSIM_PLL_BYPASS (1 << 27)
  54. #define DSIM_ESC_CLKEN (1 << 28)
  55. #define DSIM_TX_REQUEST_HSCLK (1 << 31)
  56. /* DSIM_CONFIG */
  57. #define DSIM_LANE_EN_CLK (1 << 0)
  58. #define DSIM_LANE_EN(x) (((x) & 0xf) << 1)
  59. #define DSIM_NUM_OF_DATA_LANE(x) (((x) & 0x3) << 5)
  60. #define DSIM_SUB_PIX_FORMAT(x) (((x) & 0x7) << 8)
  61. #define DSIM_MAIN_PIX_FORMAT_MASK (0x7 << 12)
  62. #define DSIM_MAIN_PIX_FORMAT_RGB888 (0x7 << 12)
  63. #define DSIM_MAIN_PIX_FORMAT_RGB666 (0x6 << 12)
  64. #define DSIM_MAIN_PIX_FORMAT_RGB666_P (0x5 << 12)
  65. #define DSIM_MAIN_PIX_FORMAT_RGB565 (0x4 << 12)
  66. #define DSIM_SUB_VC (((x) & 0x3) << 16)
  67. #define DSIM_MAIN_VC (((x) & 0x3) << 18)
  68. #define DSIM_HSA_MODE (1 << 20)
  69. #define DSIM_HBP_MODE (1 << 21)
  70. #define DSIM_HFP_MODE (1 << 22)
  71. #define DSIM_HSE_MODE (1 << 23)
  72. #define DSIM_AUTO_MODE (1 << 24)
  73. #define DSIM_VIDEO_MODE (1 << 25)
  74. #define DSIM_BURST_MODE (1 << 26)
  75. #define DSIM_SYNC_INFORM (1 << 27)
  76. #define DSIM_EOT_DISABLE (1 << 28)
  77. #define DSIM_MFLUSH_VS (1 << 29)
  78. /* This flag is valid only for exynos3250/3472/5260/5430 */
  79. #define DSIM_CLKLANE_STOP (1 << 30)
  80. /* DSIM_ESCMODE */
  81. #define DSIM_TX_TRIGGER_RST (1 << 4)
  82. #define DSIM_TX_LPDT_LP (1 << 6)
  83. #define DSIM_CMD_LPDT_LP (1 << 7)
  84. #define DSIM_FORCE_BTA (1 << 16)
  85. #define DSIM_FORCE_STOP_STATE (1 << 20)
  86. #define DSIM_STOP_STATE_CNT(x) (((x) & 0x7ff) << 21)
  87. #define DSIM_STOP_STATE_CNT_MASK (0x7ff << 21)
  88. /* DSIM_MDRESOL */
  89. #define DSIM_MAIN_STAND_BY (1 << 31)
  90. #define DSIM_MAIN_VRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 16)
  91. #define DSIM_MAIN_HRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 0)
  92. /* DSIM_MVPORCH */
  93. #define DSIM_CMD_ALLOW(x) ((x) << 28)
  94. #define DSIM_STABLE_VFP(x) ((x) << 16)
  95. #define DSIM_MAIN_VBP(x) ((x) << 0)
  96. #define DSIM_CMD_ALLOW_MASK (0xf << 28)
  97. #define DSIM_STABLE_VFP_MASK (0x7ff << 16)
  98. #define DSIM_MAIN_VBP_MASK (0x7ff << 0)
  99. /* DSIM_MHPORCH */
  100. #define DSIM_MAIN_HFP(x) ((x) << 16)
  101. #define DSIM_MAIN_HBP(x) ((x) << 0)
  102. #define DSIM_MAIN_HFP_MASK ((0xffff) << 16)
  103. #define DSIM_MAIN_HBP_MASK ((0xffff) << 0)
  104. /* DSIM_MSYNC */
  105. #define DSIM_MAIN_VSA(x) ((x) << 22)
  106. #define DSIM_MAIN_HSA(x) ((x) << 0)
  107. #define DSIM_MAIN_VSA_MASK ((0x3ff) << 22)
  108. #define DSIM_MAIN_HSA_MASK ((0xffff) << 0)
  109. /* DSIM_SDRESOL */
  110. #define DSIM_SUB_STANDY(x) ((x) << 31)
  111. #define DSIM_SUB_VRESOL(x) ((x) << 16)
  112. #define DSIM_SUB_HRESOL(x) ((x) << 0)
  113. #define DSIM_SUB_STANDY_MASK ((0x1) << 31)
  114. #define DSIM_SUB_VRESOL_MASK ((0x7ff) << 16)
  115. #define DSIM_SUB_HRESOL_MASK ((0x7ff) << 0)
  116. /* DSIM_INTSRC */
  117. #define DSIM_INT_PLL_STABLE (1 << 31)
  118. #define DSIM_INT_SW_RST_RELEASE (1 << 30)
  119. #define DSIM_INT_SFR_FIFO_EMPTY (1 << 29)
  120. #define DSIM_INT_SFR_HDR_FIFO_EMPTY (1 << 28)
  121. #define DSIM_INT_BTA (1 << 25)
  122. #define DSIM_INT_FRAME_DONE (1 << 24)
  123. #define DSIM_INT_RX_TIMEOUT (1 << 21)
  124. #define DSIM_INT_BTA_TIMEOUT (1 << 20)
  125. #define DSIM_INT_RX_DONE (1 << 18)
  126. #define DSIM_INT_RX_TE (1 << 17)
  127. #define DSIM_INT_RX_ACK (1 << 16)
  128. #define DSIM_INT_RX_ECC_ERR (1 << 15)
  129. #define DSIM_INT_RX_CRC_ERR (1 << 14)
  130. /* DSIM_FIFOCTRL */
  131. #define DSIM_RX_DATA_FULL (1 << 25)
  132. #define DSIM_RX_DATA_EMPTY (1 << 24)
  133. #define DSIM_SFR_HEADER_FULL (1 << 23)
  134. #define DSIM_SFR_HEADER_EMPTY (1 << 22)
  135. #define DSIM_SFR_PAYLOAD_FULL (1 << 21)
  136. #define DSIM_SFR_PAYLOAD_EMPTY (1 << 20)
  137. #define DSIM_I80_HEADER_FULL (1 << 19)
  138. #define DSIM_I80_HEADER_EMPTY (1 << 18)
  139. #define DSIM_I80_PAYLOAD_FULL (1 << 17)
  140. #define DSIM_I80_PAYLOAD_EMPTY (1 << 16)
  141. #define DSIM_SD_HEADER_FULL (1 << 15)
  142. #define DSIM_SD_HEADER_EMPTY (1 << 14)
  143. #define DSIM_SD_PAYLOAD_FULL (1 << 13)
  144. #define DSIM_SD_PAYLOAD_EMPTY (1 << 12)
  145. #define DSIM_MD_HEADER_FULL (1 << 11)
  146. #define DSIM_MD_HEADER_EMPTY (1 << 10)
  147. #define DSIM_MD_PAYLOAD_FULL (1 << 9)
  148. #define DSIM_MD_PAYLOAD_EMPTY (1 << 8)
  149. #define DSIM_RX_FIFO (1 << 4)
  150. #define DSIM_SFR_FIFO (1 << 3)
  151. #define DSIM_I80_FIFO (1 << 2)
  152. #define DSIM_SD_FIFO (1 << 1)
  153. #define DSIM_MD_FIFO (1 << 0)
  154. /* DSIM_PHYACCHR */
  155. #define DSIM_AFC_EN (1 << 14)
  156. #define DSIM_AFC_CTL(x) (((x) & 0x7) << 5)
  157. /* DSIM_PLLCTRL */
  158. #define DSIM_FREQ_BAND(x) ((x) << 24)
  159. #define DSIM_PLL_EN (1 << 23)
  160. #define DSIM_PLL_P(x) ((x) << 13)
  161. #define DSIM_PLL_M(x) ((x) << 4)
  162. #define DSIM_PLL_S(x) ((x) << 1)
  163. /* DSIM_PHYCTRL */
  164. #define DSIM_PHYCTRL_ULPS_EXIT(x) (((x) & 0x1ff) << 0)
  165. #define DSIM_PHYCTRL_B_DPHYCTL_VREG_LP (1 << 30)
  166. #define DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP (1 << 14)
  167. /* DSIM_PHYTIMING */
  168. #define DSIM_PHYTIMING_LPX(x) ((x) << 8)
  169. #define DSIM_PHYTIMING_HS_EXIT(x) ((x) << 0)
  170. /* DSIM_PHYTIMING1 */
  171. #define DSIM_PHYTIMING1_CLK_PREPARE(x) ((x) << 24)
  172. #define DSIM_PHYTIMING1_CLK_ZERO(x) ((x) << 16)
  173. #define DSIM_PHYTIMING1_CLK_POST(x) ((x) << 8)
  174. #define DSIM_PHYTIMING1_CLK_TRAIL(x) ((x) << 0)
  175. /* DSIM_PHYTIMING2 */
  176. #define DSIM_PHYTIMING2_HS_PREPARE(x) ((x) << 16)
  177. #define DSIM_PHYTIMING2_HS_ZERO(x) ((x) << 8)
  178. #define DSIM_PHYTIMING2_HS_TRAIL(x) ((x) << 0)
  179. #define DSI_MAX_BUS_WIDTH 4
  180. #define DSI_NUM_VIRTUAL_CHANNELS 4
  181. #define DSI_TX_FIFO_SIZE 2048
  182. #define DSI_RX_FIFO_SIZE 256
  183. #define DSI_XFER_TIMEOUT_MS 100
  184. #define DSI_RX_FIFO_EMPTY 0x30800002
  185. #define OLD_SCLK_MIPI_CLK_NAME "pll_clk"
  186. static char *clk_names[5] = { "bus_clk", "sclk_mipi",
  187. "phyclk_mipidphy0_bitclkdiv8", "phyclk_mipidphy0_rxclkesc0",
  188. "sclk_rgb_vclk_to_dsim0" };
  189. enum exynos_dsi_transfer_type {
  190. EXYNOS_DSI_TX,
  191. EXYNOS_DSI_RX,
  192. };
  193. struct exynos_dsi_transfer {
  194. struct list_head list;
  195. struct completion completed;
  196. int result;
  197. struct mipi_dsi_packet packet;
  198. u16 flags;
  199. u16 tx_done;
  200. u8 *rx_payload;
  201. u16 rx_len;
  202. u16 rx_done;
  203. };
  204. #define DSIM_STATE_ENABLED BIT(0)
  205. #define DSIM_STATE_INITIALIZED BIT(1)
  206. #define DSIM_STATE_CMD_LPM BIT(2)
  207. #define DSIM_STATE_VIDOUT_AVAILABLE BIT(3)
  208. struct exynos_dsi_driver_data {
  209. const unsigned int *reg_ofs;
  210. unsigned int plltmr_reg;
  211. unsigned int has_freqband:1;
  212. unsigned int has_clklane_stop:1;
  213. unsigned int num_clks;
  214. unsigned int max_freq;
  215. unsigned int wait_for_reset;
  216. unsigned int num_bits_resol;
  217. const unsigned int *reg_values;
  218. };
  219. struct exynos_dsi {
  220. struct drm_encoder encoder;
  221. struct mipi_dsi_host dsi_host;
  222. struct drm_connector connector;
  223. struct drm_panel *panel;
  224. struct device *dev;
  225. void __iomem *reg_base;
  226. struct phy *phy;
  227. struct clk **clks;
  228. struct regulator_bulk_data supplies[2];
  229. int irq;
  230. int te_gpio;
  231. u32 pll_clk_rate;
  232. u32 burst_clk_rate;
  233. u32 esc_clk_rate;
  234. u32 lanes;
  235. u32 mode_flags;
  236. u32 format;
  237. int state;
  238. struct drm_property *brightness;
  239. struct completion completed;
  240. spinlock_t transfer_lock; /* protects transfer_list */
  241. struct list_head transfer_list;
  242. const struct exynos_dsi_driver_data *driver_data;
  243. struct device_node *bridge_node;
  244. };
  245. #define host_to_dsi(host) container_of(host, struct exynos_dsi, dsi_host)
  246. #define connector_to_dsi(c) container_of(c, struct exynos_dsi, connector)
  247. static inline struct exynos_dsi *encoder_to_dsi(struct drm_encoder *e)
  248. {
  249. return container_of(e, struct exynos_dsi, encoder);
  250. }
  251. enum reg_idx {
  252. DSIM_STATUS_REG, /* Status register */
  253. DSIM_SWRST_REG, /* Software reset register */
  254. DSIM_CLKCTRL_REG, /* Clock control register */
  255. DSIM_TIMEOUT_REG, /* Time out register */
  256. DSIM_CONFIG_REG, /* Configuration register */
  257. DSIM_ESCMODE_REG, /* Escape mode register */
  258. DSIM_MDRESOL_REG,
  259. DSIM_MVPORCH_REG, /* Main display Vporch register */
  260. DSIM_MHPORCH_REG, /* Main display Hporch register */
  261. DSIM_MSYNC_REG, /* Main display sync area register */
  262. DSIM_INTSRC_REG, /* Interrupt source register */
  263. DSIM_INTMSK_REG, /* Interrupt mask register */
  264. DSIM_PKTHDR_REG, /* Packet Header FIFO register */
  265. DSIM_PAYLOAD_REG, /* Payload FIFO register */
  266. DSIM_RXFIFO_REG, /* Read FIFO register */
  267. DSIM_FIFOCTRL_REG, /* FIFO status and control register */
  268. DSIM_PLLCTRL_REG, /* PLL control register */
  269. DSIM_PHYCTRL_REG,
  270. DSIM_PHYTIMING_REG,
  271. DSIM_PHYTIMING1_REG,
  272. DSIM_PHYTIMING2_REG,
  273. NUM_REGS
  274. };
  275. static inline void exynos_dsi_write(struct exynos_dsi *dsi, enum reg_idx idx,
  276. u32 val)
  277. {
  278. writel(val, dsi->reg_base + dsi->driver_data->reg_ofs[idx]);
  279. }
  280. static inline u32 exynos_dsi_read(struct exynos_dsi *dsi, enum reg_idx idx)
  281. {
  282. return readl(dsi->reg_base + dsi->driver_data->reg_ofs[idx]);
  283. }
  284. static const unsigned int exynos_reg_ofs[] = {
  285. [DSIM_STATUS_REG] = 0x00,
  286. [DSIM_SWRST_REG] = 0x04,
  287. [DSIM_CLKCTRL_REG] = 0x08,
  288. [DSIM_TIMEOUT_REG] = 0x0c,
  289. [DSIM_CONFIG_REG] = 0x10,
  290. [DSIM_ESCMODE_REG] = 0x14,
  291. [DSIM_MDRESOL_REG] = 0x18,
  292. [DSIM_MVPORCH_REG] = 0x1c,
  293. [DSIM_MHPORCH_REG] = 0x20,
  294. [DSIM_MSYNC_REG] = 0x24,
  295. [DSIM_INTSRC_REG] = 0x2c,
  296. [DSIM_INTMSK_REG] = 0x30,
  297. [DSIM_PKTHDR_REG] = 0x34,
  298. [DSIM_PAYLOAD_REG] = 0x38,
  299. [DSIM_RXFIFO_REG] = 0x3c,
  300. [DSIM_FIFOCTRL_REG] = 0x44,
  301. [DSIM_PLLCTRL_REG] = 0x4c,
  302. [DSIM_PHYCTRL_REG] = 0x5c,
  303. [DSIM_PHYTIMING_REG] = 0x64,
  304. [DSIM_PHYTIMING1_REG] = 0x68,
  305. [DSIM_PHYTIMING2_REG] = 0x6c,
  306. };
  307. static const unsigned int exynos5433_reg_ofs[] = {
  308. [DSIM_STATUS_REG] = 0x04,
  309. [DSIM_SWRST_REG] = 0x0C,
  310. [DSIM_CLKCTRL_REG] = 0x10,
  311. [DSIM_TIMEOUT_REG] = 0x14,
  312. [DSIM_CONFIG_REG] = 0x18,
  313. [DSIM_ESCMODE_REG] = 0x1C,
  314. [DSIM_MDRESOL_REG] = 0x20,
  315. [DSIM_MVPORCH_REG] = 0x24,
  316. [DSIM_MHPORCH_REG] = 0x28,
  317. [DSIM_MSYNC_REG] = 0x2C,
  318. [DSIM_INTSRC_REG] = 0x34,
  319. [DSIM_INTMSK_REG] = 0x38,
  320. [DSIM_PKTHDR_REG] = 0x3C,
  321. [DSIM_PAYLOAD_REG] = 0x40,
  322. [DSIM_RXFIFO_REG] = 0x44,
  323. [DSIM_FIFOCTRL_REG] = 0x4C,
  324. [DSIM_PLLCTRL_REG] = 0x94,
  325. [DSIM_PHYCTRL_REG] = 0xA4,
  326. [DSIM_PHYTIMING_REG] = 0xB4,
  327. [DSIM_PHYTIMING1_REG] = 0xB8,
  328. [DSIM_PHYTIMING2_REG] = 0xBC,
  329. };
  330. enum reg_value_idx {
  331. RESET_TYPE,
  332. PLL_TIMER,
  333. STOP_STATE_CNT,
  334. PHYCTRL_ULPS_EXIT,
  335. PHYCTRL_VREG_LP,
  336. PHYCTRL_SLEW_UP,
  337. PHYTIMING_LPX,
  338. PHYTIMING_HS_EXIT,
  339. PHYTIMING_CLK_PREPARE,
  340. PHYTIMING_CLK_ZERO,
  341. PHYTIMING_CLK_POST,
  342. PHYTIMING_CLK_TRAIL,
  343. PHYTIMING_HS_PREPARE,
  344. PHYTIMING_HS_ZERO,
  345. PHYTIMING_HS_TRAIL
  346. };
  347. static const unsigned int reg_values[] = {
  348. [RESET_TYPE] = DSIM_SWRST,
  349. [PLL_TIMER] = 500,
  350. [STOP_STATE_CNT] = 0xf,
  351. [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x0af),
  352. [PHYCTRL_VREG_LP] = 0,
  353. [PHYCTRL_SLEW_UP] = 0,
  354. [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06),
  355. [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b),
  356. [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07),
  357. [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x27),
  358. [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d),
  359. [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08),
  360. [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x09),
  361. [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d),
  362. [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b),
  363. };
  364. static const unsigned int exynos5422_reg_values[] = {
  365. [RESET_TYPE] = DSIM_SWRST,
  366. [PLL_TIMER] = 500,
  367. [STOP_STATE_CNT] = 0xf,
  368. [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0xaf),
  369. [PHYCTRL_VREG_LP] = 0,
  370. [PHYCTRL_SLEW_UP] = 0,
  371. [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x08),
  372. [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0d),
  373. [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09),
  374. [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x30),
  375. [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e),
  376. [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x0a),
  377. [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0c),
  378. [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x11),
  379. [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0d),
  380. };
  381. static const unsigned int exynos5433_reg_values[] = {
  382. [RESET_TYPE] = DSIM_FUNCRST,
  383. [PLL_TIMER] = 22200,
  384. [STOP_STATE_CNT] = 0xa,
  385. [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x190),
  386. [PHYCTRL_VREG_LP] = DSIM_PHYCTRL_B_DPHYCTL_VREG_LP,
  387. [PHYCTRL_SLEW_UP] = DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP,
  388. [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x07),
  389. [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0c),
  390. [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09),
  391. [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x2d),
  392. [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e),
  393. [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x09),
  394. [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0b),
  395. [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x10),
  396. [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0c),
  397. };
  398. static const struct exynos_dsi_driver_data exynos3_dsi_driver_data = {
  399. .reg_ofs = exynos_reg_ofs,
  400. .plltmr_reg = 0x50,
  401. .has_freqband = 1,
  402. .has_clklane_stop = 1,
  403. .num_clks = 2,
  404. .max_freq = 1000,
  405. .wait_for_reset = 1,
  406. .num_bits_resol = 11,
  407. .reg_values = reg_values,
  408. };
  409. static const struct exynos_dsi_driver_data exynos4_dsi_driver_data = {
  410. .reg_ofs = exynos_reg_ofs,
  411. .plltmr_reg = 0x50,
  412. .has_freqband = 1,
  413. .has_clklane_stop = 1,
  414. .num_clks = 2,
  415. .max_freq = 1000,
  416. .wait_for_reset = 1,
  417. .num_bits_resol = 11,
  418. .reg_values = reg_values,
  419. };
  420. static const struct exynos_dsi_driver_data exynos5_dsi_driver_data = {
  421. .reg_ofs = exynos_reg_ofs,
  422. .plltmr_reg = 0x58,
  423. .num_clks = 2,
  424. .max_freq = 1000,
  425. .wait_for_reset = 1,
  426. .num_bits_resol = 11,
  427. .reg_values = reg_values,
  428. };
  429. static const struct exynos_dsi_driver_data exynos5433_dsi_driver_data = {
  430. .reg_ofs = exynos5433_reg_ofs,
  431. .plltmr_reg = 0xa0,
  432. .has_clklane_stop = 1,
  433. .num_clks = 5,
  434. .max_freq = 1500,
  435. .wait_for_reset = 0,
  436. .num_bits_resol = 12,
  437. .reg_values = exynos5433_reg_values,
  438. };
  439. static const struct exynos_dsi_driver_data exynos5422_dsi_driver_data = {
  440. .reg_ofs = exynos5433_reg_ofs,
  441. .plltmr_reg = 0xa0,
  442. .has_clklane_stop = 1,
  443. .num_clks = 2,
  444. .max_freq = 1500,
  445. .wait_for_reset = 1,
  446. .num_bits_resol = 12,
  447. .reg_values = exynos5422_reg_values,
  448. };
  449. static const struct of_device_id exynos_dsi_of_match[] = {
  450. { .compatible = "samsung,exynos3250-mipi-dsi",
  451. .data = &exynos3_dsi_driver_data },
  452. { .compatible = "samsung,exynos4210-mipi-dsi",
  453. .data = &exynos4_dsi_driver_data },
  454. { .compatible = "samsung,exynos5410-mipi-dsi",
  455. .data = &exynos5_dsi_driver_data },
  456. { .compatible = "samsung,exynos5422-mipi-dsi",
  457. .data = &exynos5422_dsi_driver_data },
  458. { .compatible = "samsung,exynos5433-mipi-dsi",
  459. .data = &exynos5433_dsi_driver_data },
  460. { }
  461. };
  462. static void exynos_dsi_wait_for_reset(struct exynos_dsi *dsi)
  463. {
  464. if (wait_for_completion_timeout(&dsi->completed, msecs_to_jiffies(300)))
  465. return;
  466. dev_err(dsi->dev, "timeout waiting for reset\n");
  467. }
  468. static void exynos_dsi_reset(struct exynos_dsi *dsi)
  469. {
  470. u32 reset_val = dsi->driver_data->reg_values[RESET_TYPE];
  471. reinit_completion(&dsi->completed);
  472. exynos_dsi_write(dsi, DSIM_SWRST_REG, reset_val);
  473. }
  474. #ifndef MHZ
  475. #define MHZ (1000*1000)
  476. #endif
  477. static unsigned long exynos_dsi_pll_find_pms(struct exynos_dsi *dsi,
  478. unsigned long fin, unsigned long fout, u8 *p, u16 *m, u8 *s)
  479. {
  480. const struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
  481. unsigned long best_freq = 0;
  482. u32 min_delta = 0xffffffff;
  483. u8 p_min, p_max;
  484. u8 _p, uninitialized_var(best_p);
  485. u16 _m, uninitialized_var(best_m);
  486. u8 _s, uninitialized_var(best_s);
  487. p_min = DIV_ROUND_UP(fin, (12 * MHZ));
  488. p_max = fin / (6 * MHZ);
  489. for (_p = p_min; _p <= p_max; ++_p) {
  490. for (_s = 0; _s <= 5; ++_s) {
  491. u64 tmp;
  492. u32 delta;
  493. tmp = (u64)fout * (_p << _s);
  494. do_div(tmp, fin);
  495. _m = tmp;
  496. if (_m < 41 || _m > 125)
  497. continue;
  498. tmp = (u64)_m * fin;
  499. do_div(tmp, _p);
  500. if (tmp < 500 * MHZ ||
  501. tmp > driver_data->max_freq * MHZ)
  502. continue;
  503. tmp = (u64)_m * fin;
  504. do_div(tmp, _p << _s);
  505. delta = abs(fout - tmp);
  506. if (delta < min_delta) {
  507. best_p = _p;
  508. best_m = _m;
  509. best_s = _s;
  510. min_delta = delta;
  511. best_freq = tmp;
  512. }
  513. }
  514. }
  515. if (best_freq) {
  516. *p = best_p;
  517. *m = best_m;
  518. *s = best_s;
  519. }
  520. return best_freq;
  521. }
  522. static unsigned long exynos_dsi_set_pll(struct exynos_dsi *dsi,
  523. unsigned long freq)
  524. {
  525. const struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
  526. unsigned long fin, fout;
  527. int timeout;
  528. u8 p, s;
  529. u16 m;
  530. u32 reg;
  531. fin = dsi->pll_clk_rate;
  532. fout = exynos_dsi_pll_find_pms(dsi, fin, freq, &p, &m, &s);
  533. if (!fout) {
  534. dev_err(dsi->dev,
  535. "failed to find PLL PMS for requested frequency\n");
  536. return 0;
  537. }
  538. dev_dbg(dsi->dev, "PLL freq %lu, (p %d, m %d, s %d)\n", fout, p, m, s);
  539. writel(driver_data->reg_values[PLL_TIMER],
  540. dsi->reg_base + driver_data->plltmr_reg);
  541. reg = DSIM_PLL_EN | DSIM_PLL_P(p) | DSIM_PLL_M(m) | DSIM_PLL_S(s);
  542. if (driver_data->has_freqband) {
  543. static const unsigned long freq_bands[] = {
  544. 100 * MHZ, 120 * MHZ, 160 * MHZ, 200 * MHZ,
  545. 270 * MHZ, 320 * MHZ, 390 * MHZ, 450 * MHZ,
  546. 510 * MHZ, 560 * MHZ, 640 * MHZ, 690 * MHZ,
  547. 770 * MHZ, 870 * MHZ, 950 * MHZ,
  548. };
  549. int band;
  550. for (band = 0; band < ARRAY_SIZE(freq_bands); ++band)
  551. if (fout < freq_bands[band])
  552. break;
  553. dev_dbg(dsi->dev, "band %d\n", band);
  554. reg |= DSIM_FREQ_BAND(band);
  555. }
  556. exynos_dsi_write(dsi, DSIM_PLLCTRL_REG, reg);
  557. timeout = 1000;
  558. do {
  559. if (timeout-- == 0) {
  560. dev_err(dsi->dev, "PLL failed to stabilize\n");
  561. return 0;
  562. }
  563. reg = exynos_dsi_read(dsi, DSIM_STATUS_REG);
  564. } while ((reg & DSIM_PLL_STABLE) == 0);
  565. return fout;
  566. }
  567. static int exynos_dsi_enable_clock(struct exynos_dsi *dsi)
  568. {
  569. unsigned long hs_clk, byte_clk, esc_clk;
  570. unsigned long esc_div;
  571. u32 reg;
  572. hs_clk = exynos_dsi_set_pll(dsi, dsi->burst_clk_rate);
  573. if (!hs_clk) {
  574. dev_err(dsi->dev, "failed to configure DSI PLL\n");
  575. return -EFAULT;
  576. }
  577. byte_clk = hs_clk / 8;
  578. esc_div = DIV_ROUND_UP(byte_clk, dsi->esc_clk_rate);
  579. esc_clk = byte_clk / esc_div;
  580. if (esc_clk > 20 * MHZ) {
  581. ++esc_div;
  582. esc_clk = byte_clk / esc_div;
  583. }
  584. dev_dbg(dsi->dev, "hs_clk = %lu, byte_clk = %lu, esc_clk = %lu\n",
  585. hs_clk, byte_clk, esc_clk);
  586. reg = exynos_dsi_read(dsi, DSIM_CLKCTRL_REG);
  587. reg &= ~(DSIM_ESC_PRESCALER_MASK | DSIM_LANE_ESC_CLK_EN_CLK
  588. | DSIM_LANE_ESC_CLK_EN_DATA_MASK | DSIM_PLL_BYPASS
  589. | DSIM_BYTE_CLK_SRC_MASK);
  590. reg |= DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN
  591. | DSIM_ESC_PRESCALER(esc_div)
  592. | DSIM_LANE_ESC_CLK_EN_CLK
  593. | DSIM_LANE_ESC_CLK_EN_DATA(BIT(dsi->lanes) - 1)
  594. | DSIM_BYTE_CLK_SRC(0)
  595. | DSIM_TX_REQUEST_HSCLK;
  596. exynos_dsi_write(dsi, DSIM_CLKCTRL_REG, reg);
  597. return 0;
  598. }
  599. static void exynos_dsi_set_phy_ctrl(struct exynos_dsi *dsi)
  600. {
  601. const struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
  602. const unsigned int *reg_values = driver_data->reg_values;
  603. u32 reg;
  604. if (driver_data->has_freqband)
  605. return;
  606. /* B D-PHY: D-PHY Master & Slave Analog Block control */
  607. reg = reg_values[PHYCTRL_ULPS_EXIT] | reg_values[PHYCTRL_VREG_LP] |
  608. reg_values[PHYCTRL_SLEW_UP];
  609. exynos_dsi_write(dsi, DSIM_PHYCTRL_REG, reg);
  610. /*
  611. * T LPX: Transmitted length of any Low-Power state period
  612. * T HS-EXIT: Time that the transmitter drives LP-11 following a HS
  613. * burst
  614. */
  615. reg = reg_values[PHYTIMING_LPX] | reg_values[PHYTIMING_HS_EXIT];
  616. exynos_dsi_write(dsi, DSIM_PHYTIMING_REG, reg);
  617. /*
  618. * T CLK-PREPARE: Time that the transmitter drives the Clock Lane LP-00
  619. * Line state immediately before the HS-0 Line state starting the
  620. * HS transmission
  621. * T CLK-ZERO: Time that the transmitter drives the HS-0 state prior to
  622. * transmitting the Clock.
  623. * T CLK_POST: Time that the transmitter continues to send HS clock
  624. * after the last associated Data Lane has transitioned to LP Mode
  625. * Interval is defined as the period from the end of T HS-TRAIL to
  626. * the beginning of T CLK-TRAIL
  627. * T CLK-TRAIL: Time that the transmitter drives the HS-0 state after
  628. * the last payload clock bit of a HS transmission burst
  629. */
  630. reg = reg_values[PHYTIMING_CLK_PREPARE] |
  631. reg_values[PHYTIMING_CLK_ZERO] |
  632. reg_values[PHYTIMING_CLK_POST] |
  633. reg_values[PHYTIMING_CLK_TRAIL];
  634. exynos_dsi_write(dsi, DSIM_PHYTIMING1_REG, reg);
  635. /*
  636. * T HS-PREPARE: Time that the transmitter drives the Data Lane LP-00
  637. * Line state immediately before the HS-0 Line state starting the
  638. * HS transmission
  639. * T HS-ZERO: Time that the transmitter drives the HS-0 state prior to
  640. * transmitting the Sync sequence.
  641. * T HS-TRAIL: Time that the transmitter drives the flipped differential
  642. * state after last payload data bit of a HS transmission burst
  643. */
  644. reg = reg_values[PHYTIMING_HS_PREPARE] | reg_values[PHYTIMING_HS_ZERO] |
  645. reg_values[PHYTIMING_HS_TRAIL];
  646. exynos_dsi_write(dsi, DSIM_PHYTIMING2_REG, reg);
  647. }
  648. static void exynos_dsi_disable_clock(struct exynos_dsi *dsi)
  649. {
  650. u32 reg;
  651. reg = exynos_dsi_read(dsi, DSIM_CLKCTRL_REG);
  652. reg &= ~(DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA_MASK
  653. | DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN);
  654. exynos_dsi_write(dsi, DSIM_CLKCTRL_REG, reg);
  655. reg = exynos_dsi_read(dsi, DSIM_PLLCTRL_REG);
  656. reg &= ~DSIM_PLL_EN;
  657. exynos_dsi_write(dsi, DSIM_PLLCTRL_REG, reg);
  658. }
  659. static void exynos_dsi_enable_lane(struct exynos_dsi *dsi, u32 lane)
  660. {
  661. u32 reg = exynos_dsi_read(dsi, DSIM_CONFIG_REG);
  662. reg |= (DSIM_NUM_OF_DATA_LANE(dsi->lanes - 1) | DSIM_LANE_EN_CLK |
  663. DSIM_LANE_EN(lane));
  664. exynos_dsi_write(dsi, DSIM_CONFIG_REG, reg);
  665. }
  666. static int exynos_dsi_init_link(struct exynos_dsi *dsi)
  667. {
  668. const struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
  669. int timeout;
  670. u32 reg;
  671. u32 lanes_mask;
  672. /* Initialize FIFO pointers */
  673. reg = exynos_dsi_read(dsi, DSIM_FIFOCTRL_REG);
  674. reg &= ~0x1f;
  675. exynos_dsi_write(dsi, DSIM_FIFOCTRL_REG, reg);
  676. usleep_range(9000, 11000);
  677. reg |= 0x1f;
  678. exynos_dsi_write(dsi, DSIM_FIFOCTRL_REG, reg);
  679. usleep_range(9000, 11000);
  680. /* DSI configuration */
  681. reg = 0;
  682. /*
  683. * The first bit of mode_flags specifies display configuration.
  684. * If this bit is set[= MIPI_DSI_MODE_VIDEO], dsi will support video
  685. * mode, otherwise it will support command mode.
  686. */
  687. if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
  688. reg |= DSIM_VIDEO_MODE;
  689. /*
  690. * The user manual describes that following bits are ignored in
  691. * command mode.
  692. */
  693. if (!(dsi->mode_flags & MIPI_DSI_MODE_VSYNC_FLUSH))
  694. reg |= DSIM_MFLUSH_VS;
  695. if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
  696. reg |= DSIM_SYNC_INFORM;
  697. if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
  698. reg |= DSIM_BURST_MODE;
  699. if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_AUTO_VERT)
  700. reg |= DSIM_AUTO_MODE;
  701. if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE)
  702. reg |= DSIM_HSE_MODE;
  703. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HFP))
  704. reg |= DSIM_HFP_MODE;
  705. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HBP))
  706. reg |= DSIM_HBP_MODE;
  707. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSA))
  708. reg |= DSIM_HSA_MODE;
  709. }
  710. if (!(dsi->mode_flags & MIPI_DSI_MODE_EOT_PACKET))
  711. reg |= DSIM_EOT_DISABLE;
  712. switch (dsi->format) {
  713. case MIPI_DSI_FMT_RGB888:
  714. reg |= DSIM_MAIN_PIX_FORMAT_RGB888;
  715. break;
  716. case MIPI_DSI_FMT_RGB666:
  717. reg |= DSIM_MAIN_PIX_FORMAT_RGB666;
  718. break;
  719. case MIPI_DSI_FMT_RGB666_PACKED:
  720. reg |= DSIM_MAIN_PIX_FORMAT_RGB666_P;
  721. break;
  722. case MIPI_DSI_FMT_RGB565:
  723. reg |= DSIM_MAIN_PIX_FORMAT_RGB565;
  724. break;
  725. default:
  726. dev_err(dsi->dev, "invalid pixel format\n");
  727. return -EINVAL;
  728. }
  729. /*
  730. * Use non-continuous clock mode if the periparal wants and
  731. * host controller supports
  732. *
  733. * In non-continous clock mode, host controller will turn off
  734. * the HS clock between high-speed transmissions to reduce
  735. * power consumption.
  736. */
  737. if (driver_data->has_clklane_stop &&
  738. dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) {
  739. reg |= DSIM_CLKLANE_STOP;
  740. }
  741. exynos_dsi_write(dsi, DSIM_CONFIG_REG, reg);
  742. lanes_mask = BIT(dsi->lanes) - 1;
  743. exynos_dsi_enable_lane(dsi, lanes_mask);
  744. /* Check clock and data lane state are stop state */
  745. timeout = 100;
  746. do {
  747. if (timeout-- == 0) {
  748. dev_err(dsi->dev, "waiting for bus lanes timed out\n");
  749. return -EFAULT;
  750. }
  751. reg = exynos_dsi_read(dsi, DSIM_STATUS_REG);
  752. if ((reg & DSIM_STOP_STATE_DAT(lanes_mask))
  753. != DSIM_STOP_STATE_DAT(lanes_mask))
  754. continue;
  755. } while (!(reg & (DSIM_STOP_STATE_CLK | DSIM_TX_READY_HS_CLK)));
  756. reg = exynos_dsi_read(dsi, DSIM_ESCMODE_REG);
  757. reg &= ~DSIM_STOP_STATE_CNT_MASK;
  758. reg |= DSIM_STOP_STATE_CNT(driver_data->reg_values[STOP_STATE_CNT]);
  759. exynos_dsi_write(dsi, DSIM_ESCMODE_REG, reg);
  760. reg = DSIM_BTA_TIMEOUT(0xff) | DSIM_LPDR_TIMEOUT(0xffff);
  761. exynos_dsi_write(dsi, DSIM_TIMEOUT_REG, reg);
  762. return 0;
  763. }
  764. static void exynos_dsi_set_display_mode(struct exynos_dsi *dsi)
  765. {
  766. struct drm_display_mode *m = &dsi->encoder.crtc->state->adjusted_mode;
  767. unsigned int num_bits_resol = dsi->driver_data->num_bits_resol;
  768. u32 reg;
  769. if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
  770. reg = DSIM_CMD_ALLOW(0xf)
  771. | DSIM_STABLE_VFP(m->vsync_start - m->vdisplay)
  772. | DSIM_MAIN_VBP(m->vtotal - m->vsync_end);
  773. exynos_dsi_write(dsi, DSIM_MVPORCH_REG, reg);
  774. reg = DSIM_MAIN_HFP(m->hsync_start - m->hdisplay)
  775. | DSIM_MAIN_HBP(m->htotal - m->hsync_end);
  776. exynos_dsi_write(dsi, DSIM_MHPORCH_REG, reg);
  777. reg = DSIM_MAIN_VSA(m->vsync_end - m->vsync_start)
  778. | DSIM_MAIN_HSA(m->hsync_end - m->hsync_start);
  779. exynos_dsi_write(dsi, DSIM_MSYNC_REG, reg);
  780. }
  781. reg = DSIM_MAIN_HRESOL(m->hdisplay, num_bits_resol) |
  782. DSIM_MAIN_VRESOL(m->vdisplay, num_bits_resol);
  783. exynos_dsi_write(dsi, DSIM_MDRESOL_REG, reg);
  784. dev_dbg(dsi->dev, "LCD size = %dx%d\n", m->hdisplay, m->vdisplay);
  785. }
  786. static void exynos_dsi_set_display_enable(struct exynos_dsi *dsi, bool enable)
  787. {
  788. u32 reg;
  789. reg = exynos_dsi_read(dsi, DSIM_MDRESOL_REG);
  790. if (enable)
  791. reg |= DSIM_MAIN_STAND_BY;
  792. else
  793. reg &= ~DSIM_MAIN_STAND_BY;
  794. exynos_dsi_write(dsi, DSIM_MDRESOL_REG, reg);
  795. }
  796. static int exynos_dsi_wait_for_hdr_fifo(struct exynos_dsi *dsi)
  797. {
  798. int timeout = 2000;
  799. do {
  800. u32 reg = exynos_dsi_read(dsi, DSIM_FIFOCTRL_REG);
  801. if (!(reg & DSIM_SFR_HEADER_FULL))
  802. return 0;
  803. if (!cond_resched())
  804. usleep_range(950, 1050);
  805. } while (--timeout);
  806. return -ETIMEDOUT;
  807. }
  808. static void exynos_dsi_set_cmd_lpm(struct exynos_dsi *dsi, bool lpm)
  809. {
  810. u32 v = exynos_dsi_read(dsi, DSIM_ESCMODE_REG);
  811. if (lpm)
  812. v |= DSIM_CMD_LPDT_LP;
  813. else
  814. v &= ~DSIM_CMD_LPDT_LP;
  815. exynos_dsi_write(dsi, DSIM_ESCMODE_REG, v);
  816. }
  817. static void exynos_dsi_force_bta(struct exynos_dsi *dsi)
  818. {
  819. u32 v = exynos_dsi_read(dsi, DSIM_ESCMODE_REG);
  820. v |= DSIM_FORCE_BTA;
  821. exynos_dsi_write(dsi, DSIM_ESCMODE_REG, v);
  822. }
  823. static void exynos_dsi_send_to_fifo(struct exynos_dsi *dsi,
  824. struct exynos_dsi_transfer *xfer)
  825. {
  826. struct device *dev = dsi->dev;
  827. struct mipi_dsi_packet *pkt = &xfer->packet;
  828. const u8 *payload = pkt->payload + xfer->tx_done;
  829. u16 length = pkt->payload_length - xfer->tx_done;
  830. bool first = !xfer->tx_done;
  831. u32 reg;
  832. dev_dbg(dev, "< xfer %pK: tx len %u, done %u, rx len %u, done %u\n",
  833. xfer, length, xfer->tx_done, xfer->rx_len, xfer->rx_done);
  834. if (length > DSI_TX_FIFO_SIZE)
  835. length = DSI_TX_FIFO_SIZE;
  836. xfer->tx_done += length;
  837. /* Send payload */
  838. while (length >= 4) {
  839. reg = get_unaligned_le32(payload);
  840. exynos_dsi_write(dsi, DSIM_PAYLOAD_REG, reg);
  841. payload += 4;
  842. length -= 4;
  843. }
  844. reg = 0;
  845. switch (length) {
  846. case 3:
  847. reg |= payload[2] << 16;
  848. /* Fall through */
  849. case 2:
  850. reg |= payload[1] << 8;
  851. /* Fall through */
  852. case 1:
  853. reg |= payload[0];
  854. exynos_dsi_write(dsi, DSIM_PAYLOAD_REG, reg);
  855. break;
  856. }
  857. /* Send packet header */
  858. if (!first)
  859. return;
  860. reg = get_unaligned_le32(pkt->header);
  861. if (exynos_dsi_wait_for_hdr_fifo(dsi)) {
  862. dev_err(dev, "waiting for header FIFO timed out\n");
  863. return;
  864. }
  865. if (NEQV(xfer->flags & MIPI_DSI_MSG_USE_LPM,
  866. dsi->state & DSIM_STATE_CMD_LPM)) {
  867. exynos_dsi_set_cmd_lpm(dsi, xfer->flags & MIPI_DSI_MSG_USE_LPM);
  868. dsi->state ^= DSIM_STATE_CMD_LPM;
  869. }
  870. exynos_dsi_write(dsi, DSIM_PKTHDR_REG, reg);
  871. if (xfer->flags & MIPI_DSI_MSG_REQ_ACK)
  872. exynos_dsi_force_bta(dsi);
  873. }
  874. static void exynos_dsi_read_from_fifo(struct exynos_dsi *dsi,
  875. struct exynos_dsi_transfer *xfer)
  876. {
  877. u8 *payload = xfer->rx_payload + xfer->rx_done;
  878. bool first = !xfer->rx_done;
  879. struct device *dev = dsi->dev;
  880. u16 length;
  881. u32 reg;
  882. if (first) {
  883. reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG);
  884. switch (reg & 0x3f) {
  885. case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
  886. case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
  887. if (xfer->rx_len >= 2) {
  888. payload[1] = reg >> 16;
  889. ++xfer->rx_done;
  890. }
  891. /* Fall through */
  892. case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
  893. case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
  894. payload[0] = reg >> 8;
  895. ++xfer->rx_done;
  896. xfer->rx_len = xfer->rx_done;
  897. xfer->result = 0;
  898. goto clear_fifo;
  899. case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
  900. dev_err(dev, "DSI Error Report: 0x%04x\n",
  901. (reg >> 8) & 0xffff);
  902. xfer->result = 0;
  903. goto clear_fifo;
  904. }
  905. length = (reg >> 8) & 0xffff;
  906. if (length > xfer->rx_len) {
  907. dev_err(dev,
  908. "response too long (%u > %u bytes), stripping\n",
  909. xfer->rx_len, length);
  910. length = xfer->rx_len;
  911. } else if (length < xfer->rx_len)
  912. xfer->rx_len = length;
  913. }
  914. length = xfer->rx_len - xfer->rx_done;
  915. xfer->rx_done += length;
  916. /* Receive payload */
  917. while (length >= 4) {
  918. reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG);
  919. payload[0] = (reg >> 0) & 0xff;
  920. payload[1] = (reg >> 8) & 0xff;
  921. payload[2] = (reg >> 16) & 0xff;
  922. payload[3] = (reg >> 24) & 0xff;
  923. payload += 4;
  924. length -= 4;
  925. }
  926. if (length) {
  927. reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG);
  928. switch (length) {
  929. case 3:
  930. payload[2] = (reg >> 16) & 0xff;
  931. /* Fall through */
  932. case 2:
  933. payload[1] = (reg >> 8) & 0xff;
  934. /* Fall through */
  935. case 1:
  936. payload[0] = reg & 0xff;
  937. }
  938. }
  939. if (xfer->rx_done == xfer->rx_len)
  940. xfer->result = 0;
  941. clear_fifo:
  942. length = DSI_RX_FIFO_SIZE / 4;
  943. do {
  944. reg = exynos_dsi_read(dsi, DSIM_RXFIFO_REG);
  945. if (reg == DSI_RX_FIFO_EMPTY)
  946. break;
  947. } while (--length);
  948. }
  949. static void exynos_dsi_transfer_start(struct exynos_dsi *dsi)
  950. {
  951. unsigned long flags;
  952. struct exynos_dsi_transfer *xfer;
  953. bool start = false;
  954. again:
  955. spin_lock_irqsave(&dsi->transfer_lock, flags);
  956. if (list_empty(&dsi->transfer_list)) {
  957. spin_unlock_irqrestore(&dsi->transfer_lock, flags);
  958. return;
  959. }
  960. xfer = list_first_entry(&dsi->transfer_list,
  961. struct exynos_dsi_transfer, list);
  962. spin_unlock_irqrestore(&dsi->transfer_lock, flags);
  963. if (xfer->packet.payload_length &&
  964. xfer->tx_done == xfer->packet.payload_length)
  965. /* waiting for RX */
  966. return;
  967. exynos_dsi_send_to_fifo(dsi, xfer);
  968. if (xfer->packet.payload_length || xfer->rx_len)
  969. return;
  970. xfer->result = 0;
  971. complete(&xfer->completed);
  972. spin_lock_irqsave(&dsi->transfer_lock, flags);
  973. list_del_init(&xfer->list);
  974. start = !list_empty(&dsi->transfer_list);
  975. spin_unlock_irqrestore(&dsi->transfer_lock, flags);
  976. if (start)
  977. goto again;
  978. }
  979. static bool exynos_dsi_transfer_finish(struct exynos_dsi *dsi)
  980. {
  981. struct exynos_dsi_transfer *xfer;
  982. unsigned long flags;
  983. bool start = true;
  984. spin_lock_irqsave(&dsi->transfer_lock, flags);
  985. if (list_empty(&dsi->transfer_list)) {
  986. spin_unlock_irqrestore(&dsi->transfer_lock, flags);
  987. return false;
  988. }
  989. xfer = list_first_entry(&dsi->transfer_list,
  990. struct exynos_dsi_transfer, list);
  991. spin_unlock_irqrestore(&dsi->transfer_lock, flags);
  992. dev_dbg(dsi->dev,
  993. "> xfer %pK, tx_len %zu, tx_done %u, rx_len %u, rx_done %u\n",
  994. xfer, xfer->packet.payload_length, xfer->tx_done, xfer->rx_len,
  995. xfer->rx_done);
  996. if (xfer->tx_done != xfer->packet.payload_length)
  997. return true;
  998. if (xfer->rx_done != xfer->rx_len)
  999. exynos_dsi_read_from_fifo(dsi, xfer);
  1000. if (xfer->rx_done != xfer->rx_len)
  1001. return true;
  1002. spin_lock_irqsave(&dsi->transfer_lock, flags);
  1003. list_del_init(&xfer->list);
  1004. start = !list_empty(&dsi->transfer_list);
  1005. spin_unlock_irqrestore(&dsi->transfer_lock, flags);
  1006. if (!xfer->rx_len)
  1007. xfer->result = 0;
  1008. complete(&xfer->completed);
  1009. return start;
  1010. }
  1011. static void exynos_dsi_remove_transfer(struct exynos_dsi *dsi,
  1012. struct exynos_dsi_transfer *xfer)
  1013. {
  1014. unsigned long flags;
  1015. bool start;
  1016. spin_lock_irqsave(&dsi->transfer_lock, flags);
  1017. if (!list_empty(&dsi->transfer_list) &&
  1018. xfer == list_first_entry(&dsi->transfer_list,
  1019. struct exynos_dsi_transfer, list)) {
  1020. list_del_init(&xfer->list);
  1021. start = !list_empty(&dsi->transfer_list);
  1022. spin_unlock_irqrestore(&dsi->transfer_lock, flags);
  1023. if (start)
  1024. exynos_dsi_transfer_start(dsi);
  1025. return;
  1026. }
  1027. list_del_init(&xfer->list);
  1028. spin_unlock_irqrestore(&dsi->transfer_lock, flags);
  1029. }
  1030. static int exynos_dsi_transfer(struct exynos_dsi *dsi,
  1031. struct exynos_dsi_transfer *xfer)
  1032. {
  1033. unsigned long flags;
  1034. bool stopped;
  1035. xfer->tx_done = 0;
  1036. xfer->rx_done = 0;
  1037. xfer->result = -ETIMEDOUT;
  1038. init_completion(&xfer->completed);
  1039. spin_lock_irqsave(&dsi->transfer_lock, flags);
  1040. stopped = list_empty(&dsi->transfer_list);
  1041. list_add_tail(&xfer->list, &dsi->transfer_list);
  1042. spin_unlock_irqrestore(&dsi->transfer_lock, flags);
  1043. if (stopped)
  1044. exynos_dsi_transfer_start(dsi);
  1045. wait_for_completion_timeout(&xfer->completed,
  1046. msecs_to_jiffies(DSI_XFER_TIMEOUT_MS));
  1047. if (xfer->result == -ETIMEDOUT) {
  1048. struct mipi_dsi_packet *pkt = &xfer->packet;
  1049. exynos_dsi_remove_transfer(dsi, xfer);
  1050. dev_err(dsi->dev, "xfer timed out: %*ph %*ph\n", 4, pkt->header,
  1051. (int)pkt->payload_length, pkt->payload);
  1052. return -ETIMEDOUT;
  1053. }
  1054. /* Also covers hardware timeout condition */
  1055. return xfer->result;
  1056. }
  1057. static irqreturn_t exynos_dsi_irq(int irq, void *dev_id)
  1058. {
  1059. struct exynos_dsi *dsi = dev_id;
  1060. u32 status;
  1061. status = exynos_dsi_read(dsi, DSIM_INTSRC_REG);
  1062. if (!status) {
  1063. static unsigned long int j;
  1064. if (printk_timed_ratelimit(&j, 500))
  1065. dev_warn(dsi->dev, "spurious interrupt\n");
  1066. return IRQ_HANDLED;
  1067. }
  1068. exynos_dsi_write(dsi, DSIM_INTSRC_REG, status);
  1069. if (status & DSIM_INT_SW_RST_RELEASE) {
  1070. u32 mask = ~(DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY |
  1071. DSIM_INT_SFR_HDR_FIFO_EMPTY | DSIM_INT_RX_ECC_ERR |
  1072. DSIM_INT_SW_RST_RELEASE);
  1073. exynos_dsi_write(dsi, DSIM_INTMSK_REG, mask);
  1074. complete(&dsi->completed);
  1075. return IRQ_HANDLED;
  1076. }
  1077. if (!(status & (DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY |
  1078. DSIM_INT_PLL_STABLE)))
  1079. return IRQ_HANDLED;
  1080. if (exynos_dsi_transfer_finish(dsi))
  1081. exynos_dsi_transfer_start(dsi);
  1082. return IRQ_HANDLED;
  1083. }
  1084. static irqreturn_t exynos_dsi_te_irq_handler(int irq, void *dev_id)
  1085. {
  1086. struct exynos_dsi *dsi = (struct exynos_dsi *)dev_id;
  1087. struct drm_encoder *encoder = &dsi->encoder;
  1088. if (dsi->state & DSIM_STATE_VIDOUT_AVAILABLE)
  1089. exynos_drm_crtc_te_handler(encoder->crtc);
  1090. return IRQ_HANDLED;
  1091. }
  1092. static void exynos_dsi_enable_irq(struct exynos_dsi *dsi)
  1093. {
  1094. enable_irq(dsi->irq);
  1095. if (gpio_is_valid(dsi->te_gpio))
  1096. enable_irq(gpio_to_irq(dsi->te_gpio));
  1097. }
  1098. static void exynos_dsi_disable_irq(struct exynos_dsi *dsi)
  1099. {
  1100. if (gpio_is_valid(dsi->te_gpio))
  1101. disable_irq(gpio_to_irq(dsi->te_gpio));
  1102. disable_irq(dsi->irq);
  1103. }
  1104. static int exynos_dsi_init(struct exynos_dsi *dsi)
  1105. {
  1106. const struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
  1107. exynos_dsi_reset(dsi);
  1108. exynos_dsi_enable_irq(dsi);
  1109. if (driver_data->reg_values[RESET_TYPE] == DSIM_FUNCRST)
  1110. exynos_dsi_enable_lane(dsi, BIT(dsi->lanes) - 1);
  1111. exynos_dsi_enable_clock(dsi);
  1112. if (driver_data->wait_for_reset)
  1113. exynos_dsi_wait_for_reset(dsi);
  1114. exynos_dsi_set_phy_ctrl(dsi);
  1115. exynos_dsi_init_link(dsi);
  1116. return 0;
  1117. }
  1118. static int exynos_dsi_register_te_irq(struct exynos_dsi *dsi,
  1119. struct device *panel)
  1120. {
  1121. int ret;
  1122. int te_gpio_irq;
  1123. dsi->te_gpio = of_get_named_gpio(panel->of_node, "te-gpios", 0);
  1124. if (dsi->te_gpio == -ENOENT)
  1125. return 0;
  1126. if (!gpio_is_valid(dsi->te_gpio)) {
  1127. ret = dsi->te_gpio;
  1128. dev_err(dsi->dev, "cannot get te-gpios, %d\n", ret);
  1129. goto out;
  1130. }
  1131. ret = gpio_request(dsi->te_gpio, "te_gpio");
  1132. if (ret) {
  1133. dev_err(dsi->dev, "gpio request failed with %d\n", ret);
  1134. goto out;
  1135. }
  1136. te_gpio_irq = gpio_to_irq(dsi->te_gpio);
  1137. irq_set_status_flags(te_gpio_irq, IRQ_NOAUTOEN);
  1138. ret = request_threaded_irq(te_gpio_irq, exynos_dsi_te_irq_handler, NULL,
  1139. IRQF_TRIGGER_RISING, "TE", dsi);
  1140. if (ret) {
  1141. dev_err(dsi->dev, "request interrupt failed with %d\n", ret);
  1142. gpio_free(dsi->te_gpio);
  1143. goto out;
  1144. }
  1145. out:
  1146. return ret;
  1147. }
  1148. static void exynos_dsi_unregister_te_irq(struct exynos_dsi *dsi)
  1149. {
  1150. if (gpio_is_valid(dsi->te_gpio)) {
  1151. free_irq(gpio_to_irq(dsi->te_gpio), dsi);
  1152. gpio_free(dsi->te_gpio);
  1153. dsi->te_gpio = -ENOENT;
  1154. }
  1155. }
  1156. static void exynos_dsi_enable(struct drm_encoder *encoder)
  1157. {
  1158. struct exynos_dsi *dsi = encoder_to_dsi(encoder);
  1159. int ret;
  1160. if (dsi->state & DSIM_STATE_ENABLED)
  1161. return;
  1162. pm_runtime_get_sync(dsi->dev);
  1163. dsi->state |= DSIM_STATE_ENABLED;
  1164. ret = drm_panel_prepare(dsi->panel);
  1165. if (ret < 0) {
  1166. dsi->state &= ~DSIM_STATE_ENABLED;
  1167. pm_runtime_put_sync(dsi->dev);
  1168. return;
  1169. }
  1170. exynos_dsi_set_display_mode(dsi);
  1171. exynos_dsi_set_display_enable(dsi, true);
  1172. ret = drm_panel_enable(dsi->panel);
  1173. if (ret < 0) {
  1174. dsi->state &= ~DSIM_STATE_ENABLED;
  1175. exynos_dsi_set_display_enable(dsi, false);
  1176. drm_panel_unprepare(dsi->panel);
  1177. pm_runtime_put_sync(dsi->dev);
  1178. return;
  1179. }
  1180. dsi->state |= DSIM_STATE_VIDOUT_AVAILABLE;
  1181. }
  1182. static void exynos_dsi_disable(struct drm_encoder *encoder)
  1183. {
  1184. struct exynos_dsi *dsi = encoder_to_dsi(encoder);
  1185. if (!(dsi->state & DSIM_STATE_ENABLED))
  1186. return;
  1187. dsi->state &= ~DSIM_STATE_VIDOUT_AVAILABLE;
  1188. drm_panel_disable(dsi->panel);
  1189. exynos_dsi_set_display_enable(dsi, false);
  1190. drm_panel_unprepare(dsi->panel);
  1191. dsi->state &= ~DSIM_STATE_ENABLED;
  1192. pm_runtime_put_sync(dsi->dev);
  1193. }
  1194. static enum drm_connector_status
  1195. exynos_dsi_detect(struct drm_connector *connector, bool force)
  1196. {
  1197. return connector->status;
  1198. }
  1199. static void exynos_dsi_connector_destroy(struct drm_connector *connector)
  1200. {
  1201. drm_connector_unregister(connector);
  1202. drm_connector_cleanup(connector);
  1203. connector->dev = NULL;
  1204. }
  1205. static const struct drm_connector_funcs exynos_dsi_connector_funcs = {
  1206. .detect = exynos_dsi_detect,
  1207. .fill_modes = drm_helper_probe_single_connector_modes,
  1208. .destroy = exynos_dsi_connector_destroy,
  1209. .reset = drm_atomic_helper_connector_reset,
  1210. .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
  1211. .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
  1212. };
  1213. static int exynos_dsi_get_modes(struct drm_connector *connector)
  1214. {
  1215. struct exynos_dsi *dsi = connector_to_dsi(connector);
  1216. if (dsi->panel)
  1217. return dsi->panel->funcs->get_modes(dsi->panel);
  1218. return 0;
  1219. }
  1220. static const struct drm_connector_helper_funcs exynos_dsi_connector_helper_funcs = {
  1221. .get_modes = exynos_dsi_get_modes,
  1222. };
  1223. static int exynos_dsi_create_connector(struct drm_encoder *encoder)
  1224. {
  1225. struct exynos_dsi *dsi = encoder_to_dsi(encoder);
  1226. struct drm_connector *connector = &dsi->connector;
  1227. int ret;
  1228. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1229. ret = drm_connector_init(encoder->dev, connector,
  1230. &exynos_dsi_connector_funcs,
  1231. DRM_MODE_CONNECTOR_DSI);
  1232. if (ret) {
  1233. DRM_ERROR("Failed to initialize connector with drm\n");
  1234. return ret;
  1235. }
  1236. connector->status = connector_status_disconnected;
  1237. drm_connector_helper_add(connector, &exynos_dsi_connector_helper_funcs);
  1238. drm_mode_connector_attach_encoder(connector, encoder);
  1239. return 0;
  1240. }
  1241. static const struct drm_encoder_helper_funcs exynos_dsi_encoder_helper_funcs = {
  1242. .enable = exynos_dsi_enable,
  1243. .disable = exynos_dsi_disable,
  1244. };
  1245. static const struct drm_encoder_funcs exynos_dsi_encoder_funcs = {
  1246. .destroy = drm_encoder_cleanup,
  1247. };
  1248. MODULE_DEVICE_TABLE(of, exynos_dsi_of_match);
  1249. static int exynos_dsi_host_attach(struct mipi_dsi_host *host,
  1250. struct mipi_dsi_device *device)
  1251. {
  1252. struct exynos_dsi *dsi = host_to_dsi(host);
  1253. struct drm_device *drm = dsi->connector.dev;
  1254. /*
  1255. * This is a temporary solution and should be made by more generic way.
  1256. *
  1257. * If attached panel device is for command mode one, dsi should register
  1258. * TE interrupt handler.
  1259. */
  1260. if (!(device->mode_flags & MIPI_DSI_MODE_VIDEO)) {
  1261. int ret = exynos_dsi_register_te_irq(dsi, &device->dev);
  1262. if (ret)
  1263. return ret;
  1264. }
  1265. mutex_lock(&drm->mode_config.mutex);
  1266. dsi->lanes = device->lanes;
  1267. dsi->format = device->format;
  1268. dsi->mode_flags = device->mode_flags;
  1269. dsi->panel = of_drm_find_panel(device->dev.of_node);
  1270. if (dsi->panel) {
  1271. drm_panel_attach(dsi->panel, &dsi->connector);
  1272. dsi->connector.status = connector_status_connected;
  1273. }
  1274. exynos_drm_crtc_get_by_type(drm, EXYNOS_DISPLAY_TYPE_LCD)->i80_mode =
  1275. !(dsi->mode_flags & MIPI_DSI_MODE_VIDEO);
  1276. mutex_unlock(&drm->mode_config.mutex);
  1277. if (drm->mode_config.poll_enabled)
  1278. drm_kms_helper_hotplug_event(drm);
  1279. return 0;
  1280. }
  1281. static int exynos_dsi_host_detach(struct mipi_dsi_host *host,
  1282. struct mipi_dsi_device *device)
  1283. {
  1284. struct exynos_dsi *dsi = host_to_dsi(host);
  1285. struct drm_device *drm = dsi->connector.dev;
  1286. mutex_lock(&drm->mode_config.mutex);
  1287. if (dsi->panel) {
  1288. exynos_dsi_disable(&dsi->encoder);
  1289. drm_panel_detach(dsi->panel);
  1290. dsi->panel = NULL;
  1291. dsi->connector.status = connector_status_disconnected;
  1292. }
  1293. mutex_unlock(&drm->mode_config.mutex);
  1294. if (drm->mode_config.poll_enabled)
  1295. drm_kms_helper_hotplug_event(drm);
  1296. exynos_dsi_unregister_te_irq(dsi);
  1297. return 0;
  1298. }
  1299. static ssize_t exynos_dsi_host_transfer(struct mipi_dsi_host *host,
  1300. const struct mipi_dsi_msg *msg)
  1301. {
  1302. struct exynos_dsi *dsi = host_to_dsi(host);
  1303. struct exynos_dsi_transfer xfer;
  1304. int ret;
  1305. if (!(dsi->state & DSIM_STATE_ENABLED))
  1306. return -EINVAL;
  1307. if (!(dsi->state & DSIM_STATE_INITIALIZED)) {
  1308. ret = exynos_dsi_init(dsi);
  1309. if (ret)
  1310. return ret;
  1311. dsi->state |= DSIM_STATE_INITIALIZED;
  1312. }
  1313. ret = mipi_dsi_create_packet(&xfer.packet, msg);
  1314. if (ret < 0)
  1315. return ret;
  1316. xfer.rx_len = msg->rx_len;
  1317. xfer.rx_payload = msg->rx_buf;
  1318. xfer.flags = msg->flags;
  1319. ret = exynos_dsi_transfer(dsi, &xfer);
  1320. return (ret < 0) ? ret : xfer.rx_done;
  1321. }
  1322. static const struct mipi_dsi_host_ops exynos_dsi_ops = {
  1323. .attach = exynos_dsi_host_attach,
  1324. .detach = exynos_dsi_host_detach,
  1325. .transfer = exynos_dsi_host_transfer,
  1326. };
  1327. static int exynos_dsi_of_read_u32(const struct device_node *np,
  1328. const char *propname, u32 *out_value)
  1329. {
  1330. int ret = of_property_read_u32(np, propname, out_value);
  1331. if (ret < 0)
  1332. pr_err("%pOF: failed to get '%s' property\n", np, propname);
  1333. return ret;
  1334. }
  1335. enum {
  1336. DSI_PORT_IN,
  1337. DSI_PORT_OUT
  1338. };
  1339. static int exynos_dsi_parse_dt(struct exynos_dsi *dsi)
  1340. {
  1341. struct device *dev = dsi->dev;
  1342. struct device_node *node = dev->of_node;
  1343. int ret;
  1344. ret = exynos_dsi_of_read_u32(node, "samsung,pll-clock-frequency",
  1345. &dsi->pll_clk_rate);
  1346. if (ret < 0)
  1347. return ret;
  1348. ret = exynos_dsi_of_read_u32(node, "samsung,burst-clock-frequency",
  1349. &dsi->burst_clk_rate);
  1350. if (ret < 0)
  1351. return ret;
  1352. ret = exynos_dsi_of_read_u32(node, "samsung,esc-clock-frequency",
  1353. &dsi->esc_clk_rate);
  1354. if (ret < 0)
  1355. return ret;
  1356. dsi->bridge_node = of_graph_get_remote_node(node, DSI_PORT_IN, 0);
  1357. return 0;
  1358. }
  1359. static int exynos_dsi_bind(struct device *dev, struct device *master,
  1360. void *data)
  1361. {
  1362. struct drm_encoder *encoder = dev_get_drvdata(dev);
  1363. struct exynos_dsi *dsi = encoder_to_dsi(encoder);
  1364. struct drm_device *drm_dev = data;
  1365. struct drm_bridge *bridge;
  1366. int ret;
  1367. drm_encoder_init(drm_dev, encoder, &exynos_dsi_encoder_funcs,
  1368. DRM_MODE_ENCODER_TMDS, NULL);
  1369. drm_encoder_helper_add(encoder, &exynos_dsi_encoder_helper_funcs);
  1370. ret = exynos_drm_set_possible_crtcs(encoder, EXYNOS_DISPLAY_TYPE_LCD);
  1371. if (ret < 0)
  1372. return ret;
  1373. ret = exynos_dsi_create_connector(encoder);
  1374. if (ret) {
  1375. DRM_ERROR("failed to create connector ret = %d\n", ret);
  1376. drm_encoder_cleanup(encoder);
  1377. return ret;
  1378. }
  1379. if (dsi->bridge_node) {
  1380. bridge = of_drm_find_bridge(dsi->bridge_node);
  1381. if (bridge)
  1382. drm_bridge_attach(encoder, bridge, NULL);
  1383. }
  1384. return mipi_dsi_host_register(&dsi->dsi_host);
  1385. }
  1386. static void exynos_dsi_unbind(struct device *dev, struct device *master,
  1387. void *data)
  1388. {
  1389. struct drm_encoder *encoder = dev_get_drvdata(dev);
  1390. struct exynos_dsi *dsi = encoder_to_dsi(encoder);
  1391. exynos_dsi_disable(encoder);
  1392. mipi_dsi_host_unregister(&dsi->dsi_host);
  1393. }
  1394. static const struct component_ops exynos_dsi_component_ops = {
  1395. .bind = exynos_dsi_bind,
  1396. .unbind = exynos_dsi_unbind,
  1397. };
  1398. static int exynos_dsi_probe(struct platform_device *pdev)
  1399. {
  1400. struct device *dev = &pdev->dev;
  1401. struct resource *res;
  1402. struct exynos_dsi *dsi;
  1403. int ret, i;
  1404. dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
  1405. if (!dsi)
  1406. return -ENOMEM;
  1407. /* To be checked as invalid one */
  1408. dsi->te_gpio = -ENOENT;
  1409. init_completion(&dsi->completed);
  1410. spin_lock_init(&dsi->transfer_lock);
  1411. INIT_LIST_HEAD(&dsi->transfer_list);
  1412. dsi->dsi_host.ops = &exynos_dsi_ops;
  1413. dsi->dsi_host.dev = dev;
  1414. dsi->dev = dev;
  1415. dsi->driver_data = of_device_get_match_data(dev);
  1416. ret = exynos_dsi_parse_dt(dsi);
  1417. if (ret)
  1418. return ret;
  1419. dsi->supplies[0].supply = "vddcore";
  1420. dsi->supplies[1].supply = "vddio";
  1421. ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(dsi->supplies),
  1422. dsi->supplies);
  1423. if (ret) {
  1424. dev_info(dev, "failed to get regulators: %d\n", ret);
  1425. return -EPROBE_DEFER;
  1426. }
  1427. dsi->clks = devm_kcalloc(dev,
  1428. dsi->driver_data->num_clks, sizeof(*dsi->clks),
  1429. GFP_KERNEL);
  1430. if (!dsi->clks)
  1431. return -ENOMEM;
  1432. for (i = 0; i < dsi->driver_data->num_clks; i++) {
  1433. dsi->clks[i] = devm_clk_get(dev, clk_names[i]);
  1434. if (IS_ERR(dsi->clks[i])) {
  1435. if (strcmp(clk_names[i], "sclk_mipi") == 0) {
  1436. strcpy(clk_names[i], OLD_SCLK_MIPI_CLK_NAME);
  1437. i--;
  1438. continue;
  1439. }
  1440. dev_info(dev, "failed to get the clock: %s\n",
  1441. clk_names[i]);
  1442. return PTR_ERR(dsi->clks[i]);
  1443. }
  1444. }
  1445. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1446. dsi->reg_base = devm_ioremap_resource(dev, res);
  1447. if (IS_ERR(dsi->reg_base)) {
  1448. dev_err(dev, "failed to remap io region\n");
  1449. return PTR_ERR(dsi->reg_base);
  1450. }
  1451. dsi->phy = devm_phy_get(dev, "dsim");
  1452. if (IS_ERR(dsi->phy)) {
  1453. dev_info(dev, "failed to get dsim phy\n");
  1454. return PTR_ERR(dsi->phy);
  1455. }
  1456. dsi->irq = platform_get_irq(pdev, 0);
  1457. if (dsi->irq < 0) {
  1458. dev_err(dev, "failed to request dsi irq resource\n");
  1459. return dsi->irq;
  1460. }
  1461. irq_set_status_flags(dsi->irq, IRQ_NOAUTOEN);
  1462. ret = devm_request_threaded_irq(dev, dsi->irq, NULL,
  1463. exynos_dsi_irq, IRQF_ONESHOT,
  1464. dev_name(dev), dsi);
  1465. if (ret) {
  1466. dev_err(dev, "failed to request dsi irq\n");
  1467. return ret;
  1468. }
  1469. platform_set_drvdata(pdev, &dsi->encoder);
  1470. pm_runtime_enable(dev);
  1471. return component_add(dev, &exynos_dsi_component_ops);
  1472. }
  1473. static int exynos_dsi_remove(struct platform_device *pdev)
  1474. {
  1475. struct exynos_dsi *dsi = platform_get_drvdata(pdev);
  1476. of_node_put(dsi->bridge_node);
  1477. pm_runtime_disable(&pdev->dev);
  1478. component_del(&pdev->dev, &exynos_dsi_component_ops);
  1479. return 0;
  1480. }
  1481. static int __maybe_unused exynos_dsi_suspend(struct device *dev)
  1482. {
  1483. struct drm_encoder *encoder = dev_get_drvdata(dev);
  1484. struct exynos_dsi *dsi = encoder_to_dsi(encoder);
  1485. const struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
  1486. int ret, i;
  1487. usleep_range(10000, 20000);
  1488. if (dsi->state & DSIM_STATE_INITIALIZED) {
  1489. dsi->state &= ~DSIM_STATE_INITIALIZED;
  1490. exynos_dsi_disable_clock(dsi);
  1491. exynos_dsi_disable_irq(dsi);
  1492. }
  1493. dsi->state &= ~DSIM_STATE_CMD_LPM;
  1494. phy_power_off(dsi->phy);
  1495. for (i = driver_data->num_clks - 1; i > -1; i--)
  1496. clk_disable_unprepare(dsi->clks[i]);
  1497. ret = regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
  1498. if (ret < 0)
  1499. dev_err(dsi->dev, "cannot disable regulators %d\n", ret);
  1500. return 0;
  1501. }
  1502. static int __maybe_unused exynos_dsi_resume(struct device *dev)
  1503. {
  1504. struct drm_encoder *encoder = dev_get_drvdata(dev);
  1505. struct exynos_dsi *dsi = encoder_to_dsi(encoder);
  1506. const struct exynos_dsi_driver_data *driver_data = dsi->driver_data;
  1507. int ret, i;
  1508. ret = regulator_bulk_enable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
  1509. if (ret < 0) {
  1510. dev_err(dsi->dev, "cannot enable regulators %d\n", ret);
  1511. return ret;
  1512. }
  1513. for (i = 0; i < driver_data->num_clks; i++) {
  1514. ret = clk_prepare_enable(dsi->clks[i]);
  1515. if (ret < 0)
  1516. goto err_clk;
  1517. }
  1518. ret = phy_power_on(dsi->phy);
  1519. if (ret < 0) {
  1520. dev_err(dsi->dev, "cannot enable phy %d\n", ret);
  1521. goto err_clk;
  1522. }
  1523. return 0;
  1524. err_clk:
  1525. while (--i > -1)
  1526. clk_disable_unprepare(dsi->clks[i]);
  1527. regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
  1528. return ret;
  1529. }
  1530. static const struct dev_pm_ops exynos_dsi_pm_ops = {
  1531. SET_RUNTIME_PM_OPS(exynos_dsi_suspend, exynos_dsi_resume, NULL)
  1532. };
  1533. struct platform_driver dsi_driver = {
  1534. .probe = exynos_dsi_probe,
  1535. .remove = exynos_dsi_remove,
  1536. .driver = {
  1537. .name = "exynos-dsi",
  1538. .owner = THIS_MODULE,
  1539. .pm = &exynos_dsi_pm_ops,
  1540. .of_match_table = exynos_dsi_of_match,
  1541. },
  1542. };
  1543. MODULE_AUTHOR("Tomasz Figa <t.figa@samsung.com>");
  1544. MODULE_AUTHOR("Andrzej Hajda <a.hajda@samsung.com>");
  1545. MODULE_DESCRIPTION("Samsung SoC MIPI DSI Master");
  1546. MODULE_LICENSE("GPL v2");