smpboot.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676
  1. /*
  2. * x86 SMP booting functions
  3. *
  4. * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
  5. * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
  6. * Copyright 2001 Andi Kleen, SuSE Labs.
  7. *
  8. * Much of the core SMP work is based on previous work by Thomas Radke, to
  9. * whom a great many thanks are extended.
  10. *
  11. * Thanks to Intel for making available several different Pentium,
  12. * Pentium Pro and Pentium-II/Xeon MP machines.
  13. * Original development of Linux SMP code supported by Caldera.
  14. *
  15. * This code is released under the GNU General Public License version 2 or
  16. * later.
  17. *
  18. * Fixes
  19. * Felix Koop : NR_CPUS used properly
  20. * Jose Renau : Handle single CPU case.
  21. * Alan Cox : By repeated request 8) - Total BogoMIPS report.
  22. * Greg Wright : Fix for kernel stacks panic.
  23. * Erich Boleyn : MP v1.4 and additional changes.
  24. * Matthias Sattler : Changes for 2.1 kernel map.
  25. * Michel Lespinasse : Changes for 2.1 kernel map.
  26. * Michael Chastain : Change trampoline.S to gnu as.
  27. * Alan Cox : Dumb bug: 'B' step PPro's are fine
  28. * Ingo Molnar : Added APIC timers, based on code
  29. * from Jose Renau
  30. * Ingo Molnar : various cleanups and rewrites
  31. * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
  32. * Maciej W. Rozycki : Bits for genuine 82489DX APICs
  33. * Andi Kleen : Changed for SMP boot into long mode.
  34. * Martin J. Bligh : Added support for multi-quad systems
  35. * Dave Jones : Report invalid combinations of Athlon CPUs.
  36. * Rusty Russell : Hacked into shape for new "hotplug" boot process.
  37. * Andi Kleen : Converted to new state machine.
  38. * Ashok Raj : CPU hotplug support
  39. * Glauber Costa : i386 and x86_64 integration
  40. */
  41. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  42. #include <linux/init.h>
  43. #include <linux/smp.h>
  44. #include <linux/export.h>
  45. #include <linux/sched.h>
  46. #include <linux/sched/topology.h>
  47. #include <linux/sched/hotplug.h>
  48. #include <linux/sched/task_stack.h>
  49. #include <linux/percpu.h>
  50. #include <linux/bootmem.h>
  51. #include <linux/err.h>
  52. #include <linux/nmi.h>
  53. #include <linux/tboot.h>
  54. #include <linux/stackprotector.h>
  55. #include <linux/gfp.h>
  56. #include <linux/cpuidle.h>
  57. #include <asm/acpi.h>
  58. #include <asm/desc.h>
  59. #include <asm/nmi.h>
  60. #include <asm/irq.h>
  61. #include <asm/realmode.h>
  62. #include <asm/cpu.h>
  63. #include <asm/numa.h>
  64. #include <asm/pgtable.h>
  65. #include <asm/tlbflush.h>
  66. #include <asm/mtrr.h>
  67. #include <asm/mwait.h>
  68. #include <asm/apic.h>
  69. #include <asm/io_apic.h>
  70. #include <asm/fpu/internal.h>
  71. #include <asm/setup.h>
  72. #include <asm/uv/uv.h>
  73. #include <linux/mc146818rtc.h>
  74. #include <asm/i8259.h>
  75. #include <asm/misc.h>
  76. #include <asm/qspinlock.h>
  77. #include <asm/intel-family.h>
  78. #include <asm/cpu_device_id.h>
  79. #include <asm/spec-ctrl.h>
  80. /* representing HT siblings of each logical CPU */
  81. DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  82. EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  83. /* representing HT and core siblings of each logical CPU */
  84. DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  85. EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  86. DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
  87. /* Per CPU bogomips and other parameters */
  88. DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
  89. EXPORT_PER_CPU_SYMBOL(cpu_info);
  90. /* Logical package management. We might want to allocate that dynamically */
  91. unsigned int __max_logical_packages __read_mostly;
  92. EXPORT_SYMBOL(__max_logical_packages);
  93. static unsigned int logical_packages __read_mostly;
  94. /* Maximum number of SMT threads on any online core */
  95. int __read_mostly __max_smt_threads = 1;
  96. /* Flag to indicate if a complete sched domain rebuild is required */
  97. bool x86_topology_update;
  98. int arch_update_cpu_topology(void)
  99. {
  100. int retval = x86_topology_update;
  101. x86_topology_update = false;
  102. return retval;
  103. }
  104. static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
  105. {
  106. unsigned long flags;
  107. spin_lock_irqsave(&rtc_lock, flags);
  108. CMOS_WRITE(0xa, 0xf);
  109. spin_unlock_irqrestore(&rtc_lock, flags);
  110. *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
  111. start_eip >> 4;
  112. *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
  113. start_eip & 0xf;
  114. }
  115. static inline void smpboot_restore_warm_reset_vector(void)
  116. {
  117. unsigned long flags;
  118. /*
  119. * Paranoid: Set warm reset code and vector here back
  120. * to default values.
  121. */
  122. spin_lock_irqsave(&rtc_lock, flags);
  123. CMOS_WRITE(0, 0xf);
  124. spin_unlock_irqrestore(&rtc_lock, flags);
  125. *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
  126. }
  127. /*
  128. * Report back to the Boot Processor during boot time or to the caller processor
  129. * during CPU online.
  130. */
  131. static void smp_callin(void)
  132. {
  133. int cpuid, phys_id;
  134. /*
  135. * If waken up by an INIT in an 82489DX configuration
  136. * cpu_callout_mask guarantees we don't get here before
  137. * an INIT_deassert IPI reaches our local APIC, so it is
  138. * now safe to touch our local APIC.
  139. */
  140. cpuid = smp_processor_id();
  141. /*
  142. * (This works even if the APIC is not enabled.)
  143. */
  144. phys_id = read_apic_id();
  145. /*
  146. * the boot CPU has finished the init stage and is spinning
  147. * on callin_map until we finish. We are free to set up this
  148. * CPU, first the APIC. (this is probably redundant on most
  149. * boards)
  150. */
  151. apic_ap_setup();
  152. /*
  153. * Save our processor parameters. Note: this information
  154. * is needed for clock calibration.
  155. */
  156. smp_store_cpu_info(cpuid);
  157. /*
  158. * The topology information must be up to date before
  159. * calibrate_delay() and notify_cpu_starting().
  160. */
  161. set_cpu_sibling_map(raw_smp_processor_id());
  162. /*
  163. * Get our bogomips.
  164. * Update loops_per_jiffy in cpu_data. Previous call to
  165. * smp_store_cpu_info() stored a value that is close but not as
  166. * accurate as the value just calculated.
  167. */
  168. calibrate_delay();
  169. cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
  170. pr_debug("Stack at about %p\n", &cpuid);
  171. wmb();
  172. notify_cpu_starting(cpuid);
  173. /*
  174. * Allow the master to continue.
  175. */
  176. cpumask_set_cpu(cpuid, cpu_callin_mask);
  177. }
  178. static int cpu0_logical_apicid;
  179. static int enable_start_cpu0;
  180. /*
  181. * Activate a secondary processor.
  182. */
  183. static void notrace start_secondary(void *unused)
  184. {
  185. /*
  186. * Don't put *anything* except direct CPU state initialization
  187. * before cpu_init(), SMP booting is too fragile that we want to
  188. * limit the things done here to the most necessary things.
  189. */
  190. if (boot_cpu_has(X86_FEATURE_PCID))
  191. __write_cr4(__read_cr4() | X86_CR4_PCIDE);
  192. #ifdef CONFIG_X86_32
  193. /* switch away from the initial page table */
  194. load_cr3(swapper_pg_dir);
  195. __flush_tlb_all();
  196. #endif
  197. load_current_idt();
  198. cpu_init();
  199. x86_cpuinit.early_percpu_clock_init();
  200. preempt_disable();
  201. smp_callin();
  202. enable_start_cpu0 = 0;
  203. /* otherwise gcc will move up smp_processor_id before the cpu_init */
  204. barrier();
  205. /*
  206. * Check TSC synchronization with the boot CPU:
  207. */
  208. check_tsc_sync_target();
  209. speculative_store_bypass_ht_init();
  210. /*
  211. * Lock vector_lock, set CPU online and bring the vector
  212. * allocator online. Online must be set with vector_lock held
  213. * to prevent a concurrent irq setup/teardown from seeing a
  214. * half valid vector space.
  215. */
  216. lock_vector_lock();
  217. set_cpu_online(smp_processor_id(), true);
  218. lapic_online();
  219. unlock_vector_lock();
  220. cpu_set_state_online(smp_processor_id());
  221. x86_platform.nmi_init();
  222. /* enable local interrupts */
  223. local_irq_enable();
  224. /* to prevent fake stack check failure in clock setup */
  225. boot_init_stack_canary();
  226. x86_cpuinit.setup_percpu_clockev();
  227. wmb();
  228. cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
  229. }
  230. /**
  231. * topology_phys_to_logical_pkg - Map a physical package id to a logical
  232. *
  233. * Returns logical package id or -1 if not found
  234. */
  235. int topology_phys_to_logical_pkg(unsigned int phys_pkg)
  236. {
  237. int cpu;
  238. for_each_possible_cpu(cpu) {
  239. struct cpuinfo_x86 *c = &cpu_data(cpu);
  240. if (c->initialized && c->phys_proc_id == phys_pkg)
  241. return c->logical_proc_id;
  242. }
  243. return -1;
  244. }
  245. EXPORT_SYMBOL(topology_phys_to_logical_pkg);
  246. /**
  247. * topology_update_package_map - Update the physical to logical package map
  248. * @pkg: The physical package id as retrieved via CPUID
  249. * @cpu: The cpu for which this is updated
  250. */
  251. int topology_update_package_map(unsigned int pkg, unsigned int cpu)
  252. {
  253. int new;
  254. /* Already available somewhere? */
  255. new = topology_phys_to_logical_pkg(pkg);
  256. if (new >= 0)
  257. goto found;
  258. new = logical_packages++;
  259. if (new != pkg) {
  260. pr_info("CPU %u Converting physical %u to logical package %u\n",
  261. cpu, pkg, new);
  262. }
  263. found:
  264. cpu_data(cpu).logical_proc_id = new;
  265. return 0;
  266. }
  267. void __init smp_store_boot_cpu_info(void)
  268. {
  269. int id = 0; /* CPU 0 */
  270. struct cpuinfo_x86 *c = &cpu_data(id);
  271. *c = boot_cpu_data;
  272. c->cpu_index = id;
  273. topology_update_package_map(c->phys_proc_id, id);
  274. c->initialized = true;
  275. }
  276. /*
  277. * The bootstrap kernel entry code has set these up. Save them for
  278. * a given CPU
  279. */
  280. void smp_store_cpu_info(int id)
  281. {
  282. struct cpuinfo_x86 *c = &cpu_data(id);
  283. /* Copy boot_cpu_data only on the first bringup */
  284. if (!c->initialized)
  285. *c = boot_cpu_data;
  286. c->cpu_index = id;
  287. /*
  288. * During boot time, CPU0 has this setup already. Save the info when
  289. * bringing up AP or offlined CPU0.
  290. */
  291. identify_secondary_cpu(c);
  292. c->initialized = true;
  293. }
  294. static bool
  295. topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
  296. {
  297. int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
  298. return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
  299. }
  300. static bool
  301. topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
  302. {
  303. int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
  304. return !WARN_ONCE(!topology_same_node(c, o),
  305. "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
  306. "[node: %d != %d]. Ignoring dependency.\n",
  307. cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
  308. }
  309. #define link_mask(mfunc, c1, c2) \
  310. do { \
  311. cpumask_set_cpu((c1), mfunc(c2)); \
  312. cpumask_set_cpu((c2), mfunc(c1)); \
  313. } while (0)
  314. static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
  315. {
  316. if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
  317. int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
  318. if (c->phys_proc_id == o->phys_proc_id &&
  319. per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
  320. if (c->cpu_core_id == o->cpu_core_id)
  321. return topology_sane(c, o, "smt");
  322. if ((c->cu_id != 0xff) &&
  323. (o->cu_id != 0xff) &&
  324. (c->cu_id == o->cu_id))
  325. return topology_sane(c, o, "smt");
  326. }
  327. } else if (c->phys_proc_id == o->phys_proc_id &&
  328. c->cpu_core_id == o->cpu_core_id) {
  329. return topology_sane(c, o, "smt");
  330. }
  331. return false;
  332. }
  333. /*
  334. * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
  335. *
  336. * These are Intel CPUs that enumerate an LLC that is shared by
  337. * multiple NUMA nodes. The LLC on these systems is shared for
  338. * off-package data access but private to the NUMA node (half
  339. * of the package) for on-package access.
  340. *
  341. * CPUID (the source of the information about the LLC) can only
  342. * enumerate the cache as being shared *or* unshared, but not
  343. * this particular configuration. The CPU in this case enumerates
  344. * the cache to be shared across the entire package (spanning both
  345. * NUMA nodes).
  346. */
  347. static const struct x86_cpu_id snc_cpu[] = {
  348. { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X },
  349. {}
  350. };
  351. static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
  352. {
  353. int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
  354. /* Do not match if we do not have a valid APICID for cpu: */
  355. if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
  356. return false;
  357. /* Do not match if LLC id does not match: */
  358. if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
  359. return false;
  360. /*
  361. * Allow the SNC topology without warning. Return of false
  362. * means 'c' does not share the LLC of 'o'. This will be
  363. * reflected to userspace.
  364. */
  365. if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
  366. return false;
  367. return topology_sane(c, o, "llc");
  368. }
  369. /*
  370. * Unlike the other levels, we do not enforce keeping a
  371. * multicore group inside a NUMA node. If this happens, we will
  372. * discard the MC level of the topology later.
  373. */
  374. static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
  375. {
  376. if (c->phys_proc_id == o->phys_proc_id)
  377. return true;
  378. return false;
  379. }
  380. #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
  381. static inline int x86_sched_itmt_flags(void)
  382. {
  383. return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
  384. }
  385. #ifdef CONFIG_SCHED_MC
  386. static int x86_core_flags(void)
  387. {
  388. return cpu_core_flags() | x86_sched_itmt_flags();
  389. }
  390. #endif
  391. #ifdef CONFIG_SCHED_SMT
  392. static int x86_smt_flags(void)
  393. {
  394. return cpu_smt_flags() | x86_sched_itmt_flags();
  395. }
  396. #endif
  397. #endif
  398. static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
  399. #ifdef CONFIG_SCHED_SMT
  400. { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
  401. #endif
  402. #ifdef CONFIG_SCHED_MC
  403. { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
  404. #endif
  405. { NULL, },
  406. };
  407. static struct sched_domain_topology_level x86_topology[] = {
  408. #ifdef CONFIG_SCHED_SMT
  409. { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
  410. #endif
  411. #ifdef CONFIG_SCHED_MC
  412. { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
  413. #endif
  414. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  415. { NULL, },
  416. };
  417. /*
  418. * Set if a package/die has multiple NUMA nodes inside.
  419. * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
  420. * Sub-NUMA Clustering have this.
  421. */
  422. static bool x86_has_numa_in_package;
  423. void set_cpu_sibling_map(int cpu)
  424. {
  425. bool has_smt = smp_num_siblings > 1;
  426. bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
  427. struct cpuinfo_x86 *c = &cpu_data(cpu);
  428. struct cpuinfo_x86 *o;
  429. int i, threads;
  430. cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
  431. if (!has_mp) {
  432. cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
  433. cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
  434. cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
  435. c->booted_cores = 1;
  436. return;
  437. }
  438. for_each_cpu(i, cpu_sibling_setup_mask) {
  439. o = &cpu_data(i);
  440. if ((i == cpu) || (has_smt && match_smt(c, o)))
  441. link_mask(topology_sibling_cpumask, cpu, i);
  442. if ((i == cpu) || (has_mp && match_llc(c, o)))
  443. link_mask(cpu_llc_shared_mask, cpu, i);
  444. }
  445. /*
  446. * This needs a separate iteration over the cpus because we rely on all
  447. * topology_sibling_cpumask links to be set-up.
  448. */
  449. for_each_cpu(i, cpu_sibling_setup_mask) {
  450. o = &cpu_data(i);
  451. if ((i == cpu) || (has_mp && match_die(c, o))) {
  452. link_mask(topology_core_cpumask, cpu, i);
  453. /*
  454. * Does this new cpu bringup a new core?
  455. */
  456. if (cpumask_weight(
  457. topology_sibling_cpumask(cpu)) == 1) {
  458. /*
  459. * for each core in package, increment
  460. * the booted_cores for this new cpu
  461. */
  462. if (cpumask_first(
  463. topology_sibling_cpumask(i)) == i)
  464. c->booted_cores++;
  465. /*
  466. * increment the core count for all
  467. * the other cpus in this package
  468. */
  469. if (i != cpu)
  470. cpu_data(i).booted_cores++;
  471. } else if (i != cpu && !c->booted_cores)
  472. c->booted_cores = cpu_data(i).booted_cores;
  473. }
  474. if (match_die(c, o) && !topology_same_node(c, o))
  475. x86_has_numa_in_package = true;
  476. }
  477. threads = cpumask_weight(topology_sibling_cpumask(cpu));
  478. if (threads > __max_smt_threads)
  479. __max_smt_threads = threads;
  480. }
  481. /* maps the cpu to the sched domain representing multi-core */
  482. const struct cpumask *cpu_coregroup_mask(int cpu)
  483. {
  484. return cpu_llc_shared_mask(cpu);
  485. }
  486. static void impress_friends(void)
  487. {
  488. int cpu;
  489. unsigned long bogosum = 0;
  490. /*
  491. * Allow the user to impress friends.
  492. */
  493. pr_debug("Before bogomips\n");
  494. for_each_possible_cpu(cpu)
  495. if (cpumask_test_cpu(cpu, cpu_callout_mask))
  496. bogosum += cpu_data(cpu).loops_per_jiffy;
  497. pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
  498. num_online_cpus(),
  499. bogosum/(500000/HZ),
  500. (bogosum/(5000/HZ))%100);
  501. pr_debug("Before bogocount - setting activated=1\n");
  502. }
  503. void __inquire_remote_apic(int apicid)
  504. {
  505. unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
  506. const char * const names[] = { "ID", "VERSION", "SPIV" };
  507. int timeout;
  508. u32 status;
  509. pr_info("Inquiring remote APIC 0x%x...\n", apicid);
  510. for (i = 0; i < ARRAY_SIZE(regs); i++) {
  511. pr_info("... APIC 0x%x %s: ", apicid, names[i]);
  512. /*
  513. * Wait for idle.
  514. */
  515. status = safe_apic_wait_icr_idle();
  516. if (status)
  517. pr_cont("a previous APIC delivery may have failed\n");
  518. apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
  519. timeout = 0;
  520. do {
  521. udelay(100);
  522. status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
  523. } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
  524. switch (status) {
  525. case APIC_ICR_RR_VALID:
  526. status = apic_read(APIC_RRR);
  527. pr_cont("%08x\n", status);
  528. break;
  529. default:
  530. pr_cont("failed\n");
  531. }
  532. }
  533. }
  534. /*
  535. * The Multiprocessor Specification 1.4 (1997) example code suggests
  536. * that there should be a 10ms delay between the BSP asserting INIT
  537. * and de-asserting INIT, when starting a remote processor.
  538. * But that slows boot and resume on modern processors, which include
  539. * many cores and don't require that delay.
  540. *
  541. * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
  542. * Modern processor families are quirked to remove the delay entirely.
  543. */
  544. #define UDELAY_10MS_DEFAULT 10000
  545. static unsigned int init_udelay = UINT_MAX;
  546. static int __init cpu_init_udelay(char *str)
  547. {
  548. get_option(&str, &init_udelay);
  549. return 0;
  550. }
  551. early_param("cpu_init_udelay", cpu_init_udelay);
  552. static void __init smp_quirk_init_udelay(void)
  553. {
  554. /* if cmdline changed it from default, leave it alone */
  555. if (init_udelay != UINT_MAX)
  556. return;
  557. /* if modern processor, use no delay */
  558. if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
  559. ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
  560. init_udelay = 0;
  561. return;
  562. }
  563. /* else, use legacy delay */
  564. init_udelay = UDELAY_10MS_DEFAULT;
  565. }
  566. /*
  567. * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
  568. * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
  569. * won't ... remember to clear down the APIC, etc later.
  570. */
  571. int
  572. wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
  573. {
  574. unsigned long send_status, accept_status = 0;
  575. int maxlvt;
  576. /* Target chip */
  577. /* Boot on the stack */
  578. /* Kick the second */
  579. apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
  580. pr_debug("Waiting for send to finish...\n");
  581. send_status = safe_apic_wait_icr_idle();
  582. /*
  583. * Give the other CPU some time to accept the IPI.
  584. */
  585. udelay(200);
  586. if (APIC_INTEGRATED(boot_cpu_apic_version)) {
  587. maxlvt = lapic_get_maxlvt();
  588. if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
  589. apic_write(APIC_ESR, 0);
  590. accept_status = (apic_read(APIC_ESR) & 0xEF);
  591. }
  592. pr_debug("NMI sent\n");
  593. if (send_status)
  594. pr_err("APIC never delivered???\n");
  595. if (accept_status)
  596. pr_err("APIC delivery error (%lx)\n", accept_status);
  597. return (send_status | accept_status);
  598. }
  599. static int
  600. wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
  601. {
  602. unsigned long send_status = 0, accept_status = 0;
  603. int maxlvt, num_starts, j;
  604. maxlvt = lapic_get_maxlvt();
  605. /*
  606. * Be paranoid about clearing APIC errors.
  607. */
  608. if (APIC_INTEGRATED(boot_cpu_apic_version)) {
  609. if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
  610. apic_write(APIC_ESR, 0);
  611. apic_read(APIC_ESR);
  612. }
  613. pr_debug("Asserting INIT\n");
  614. /*
  615. * Turn INIT on target chip
  616. */
  617. /*
  618. * Send IPI
  619. */
  620. apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
  621. phys_apicid);
  622. pr_debug("Waiting for send to finish...\n");
  623. send_status = safe_apic_wait_icr_idle();
  624. udelay(init_udelay);
  625. pr_debug("Deasserting INIT\n");
  626. /* Target chip */
  627. /* Send IPI */
  628. apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
  629. pr_debug("Waiting for send to finish...\n");
  630. send_status = safe_apic_wait_icr_idle();
  631. mb();
  632. /*
  633. * Should we send STARTUP IPIs ?
  634. *
  635. * Determine this based on the APIC version.
  636. * If we don't have an integrated APIC, don't send the STARTUP IPIs.
  637. */
  638. if (APIC_INTEGRATED(boot_cpu_apic_version))
  639. num_starts = 2;
  640. else
  641. num_starts = 0;
  642. /*
  643. * Run STARTUP IPI loop.
  644. */
  645. pr_debug("#startup loops: %d\n", num_starts);
  646. for (j = 1; j <= num_starts; j++) {
  647. pr_debug("Sending STARTUP #%d\n", j);
  648. if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
  649. apic_write(APIC_ESR, 0);
  650. apic_read(APIC_ESR);
  651. pr_debug("After apic_write\n");
  652. /*
  653. * STARTUP IPI
  654. */
  655. /* Target chip */
  656. /* Boot on the stack */
  657. /* Kick the second */
  658. apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
  659. phys_apicid);
  660. /*
  661. * Give the other CPU some time to accept the IPI.
  662. */
  663. if (init_udelay == 0)
  664. udelay(10);
  665. else
  666. udelay(300);
  667. pr_debug("Startup point 1\n");
  668. pr_debug("Waiting for send to finish...\n");
  669. send_status = safe_apic_wait_icr_idle();
  670. /*
  671. * Give the other CPU some time to accept the IPI.
  672. */
  673. if (init_udelay == 0)
  674. udelay(10);
  675. else
  676. udelay(200);
  677. if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
  678. apic_write(APIC_ESR, 0);
  679. accept_status = (apic_read(APIC_ESR) & 0xEF);
  680. if (send_status || accept_status)
  681. break;
  682. }
  683. pr_debug("After Startup\n");
  684. if (send_status)
  685. pr_err("APIC never delivered???\n");
  686. if (accept_status)
  687. pr_err("APIC delivery error (%lx)\n", accept_status);
  688. return (send_status | accept_status);
  689. }
  690. /* reduce the number of lines printed when booting a large cpu count system */
  691. static void announce_cpu(int cpu, int apicid)
  692. {
  693. static int current_node = -1;
  694. int node = early_cpu_to_node(cpu);
  695. static int width, node_width;
  696. if (!width)
  697. width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
  698. if (!node_width)
  699. node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
  700. if (cpu == 1)
  701. printk(KERN_INFO "x86: Booting SMP configuration:\n");
  702. if (system_state < SYSTEM_RUNNING) {
  703. if (node != current_node) {
  704. if (current_node > (-1))
  705. pr_cont("\n");
  706. current_node = node;
  707. printk(KERN_INFO ".... node %*s#%d, CPUs: ",
  708. node_width - num_digits(node), " ", node);
  709. }
  710. /* Add padding for the BSP */
  711. if (cpu == 1)
  712. pr_cont("%*s", width + 1, " ");
  713. pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
  714. } else
  715. pr_info("Booting Node %d Processor %d APIC 0x%x\n",
  716. node, cpu, apicid);
  717. }
  718. static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
  719. {
  720. int cpu;
  721. cpu = smp_processor_id();
  722. if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
  723. return NMI_HANDLED;
  724. return NMI_DONE;
  725. }
  726. /*
  727. * Wake up AP by INIT, INIT, STARTUP sequence.
  728. *
  729. * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
  730. * boot-strap code which is not a desired behavior for waking up BSP. To
  731. * void the boot-strap code, wake up CPU0 by NMI instead.
  732. *
  733. * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
  734. * (i.e. physically hot removed and then hot added), NMI won't wake it up.
  735. * We'll change this code in the future to wake up hard offlined CPU0 if
  736. * real platform and request are available.
  737. */
  738. static int
  739. wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
  740. int *cpu0_nmi_registered)
  741. {
  742. int id;
  743. int boot_error;
  744. preempt_disable();
  745. /*
  746. * Wake up AP by INIT, INIT, STARTUP sequence.
  747. */
  748. if (cpu) {
  749. boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
  750. goto out;
  751. }
  752. /*
  753. * Wake up BSP by nmi.
  754. *
  755. * Register a NMI handler to help wake up CPU0.
  756. */
  757. boot_error = register_nmi_handler(NMI_LOCAL,
  758. wakeup_cpu0_nmi, 0, "wake_cpu0");
  759. if (!boot_error) {
  760. enable_start_cpu0 = 1;
  761. *cpu0_nmi_registered = 1;
  762. if (apic->dest_logical == APIC_DEST_LOGICAL)
  763. id = cpu0_logical_apicid;
  764. else
  765. id = apicid;
  766. boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
  767. }
  768. out:
  769. preempt_enable();
  770. return boot_error;
  771. }
  772. void common_cpu_up(unsigned int cpu, struct task_struct *idle)
  773. {
  774. /* Just in case we booted with a single CPU. */
  775. alternatives_enable_smp();
  776. per_cpu(current_task, cpu) = idle;
  777. #ifdef CONFIG_X86_32
  778. /* Stack for startup_32 can be just as for start_secondary onwards */
  779. irq_ctx_init(cpu);
  780. per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
  781. #else
  782. initial_gs = per_cpu_offset(cpu);
  783. #endif
  784. }
  785. /*
  786. * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
  787. * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
  788. * Returns zero if CPU booted OK, else error code from
  789. * ->wakeup_secondary_cpu.
  790. */
  791. static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
  792. int *cpu0_nmi_registered)
  793. {
  794. volatile u32 *trampoline_status =
  795. (volatile u32 *) __va(real_mode_header->trampoline_status);
  796. /* start_ip had better be page-aligned! */
  797. unsigned long start_ip = real_mode_header->trampoline_start;
  798. unsigned long boot_error = 0;
  799. unsigned long timeout;
  800. idle->thread.sp = (unsigned long)task_pt_regs(idle);
  801. early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
  802. initial_code = (unsigned long)start_secondary;
  803. initial_stack = idle->thread.sp;
  804. /* Enable the espfix hack for this CPU */
  805. init_espfix_ap(cpu);
  806. /* So we see what's up */
  807. announce_cpu(cpu, apicid);
  808. /*
  809. * This grunge runs the startup process for
  810. * the targeted processor.
  811. */
  812. if (x86_platform.legacy.warm_reset) {
  813. pr_debug("Setting warm reset code and vector.\n");
  814. smpboot_setup_warm_reset_vector(start_ip);
  815. /*
  816. * Be paranoid about clearing APIC errors.
  817. */
  818. if (APIC_INTEGRATED(boot_cpu_apic_version)) {
  819. apic_write(APIC_ESR, 0);
  820. apic_read(APIC_ESR);
  821. }
  822. }
  823. /*
  824. * AP might wait on cpu_callout_mask in cpu_init() with
  825. * cpu_initialized_mask set if previous attempt to online
  826. * it timed-out. Clear cpu_initialized_mask so that after
  827. * INIT/SIPI it could start with a clean state.
  828. */
  829. cpumask_clear_cpu(cpu, cpu_initialized_mask);
  830. smp_mb();
  831. /*
  832. * Wake up a CPU in difference cases:
  833. * - Use the method in the APIC driver if it's defined
  834. * Otherwise,
  835. * - Use an INIT boot APIC message for APs or NMI for BSP.
  836. */
  837. if (apic->wakeup_secondary_cpu)
  838. boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
  839. else
  840. boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
  841. cpu0_nmi_registered);
  842. if (!boot_error) {
  843. /*
  844. * Wait 10s total for first sign of life from AP
  845. */
  846. boot_error = -1;
  847. timeout = jiffies + 10*HZ;
  848. while (time_before(jiffies, timeout)) {
  849. if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
  850. /*
  851. * Tell AP to proceed with initialization
  852. */
  853. cpumask_set_cpu(cpu, cpu_callout_mask);
  854. boot_error = 0;
  855. break;
  856. }
  857. schedule();
  858. }
  859. }
  860. if (!boot_error) {
  861. /*
  862. * Wait till AP completes initial initialization
  863. */
  864. while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
  865. /*
  866. * Allow other tasks to run while we wait for the
  867. * AP to come online. This also gives a chance
  868. * for the MTRR work(triggered by the AP coming online)
  869. * to be completed in the stop machine context.
  870. */
  871. schedule();
  872. }
  873. }
  874. /* mark "stuck" area as not stuck */
  875. *trampoline_status = 0;
  876. if (x86_platform.legacy.warm_reset) {
  877. /*
  878. * Cleanup possible dangling ends...
  879. */
  880. smpboot_restore_warm_reset_vector();
  881. }
  882. return boot_error;
  883. }
  884. int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
  885. {
  886. int apicid = apic->cpu_present_to_apicid(cpu);
  887. int cpu0_nmi_registered = 0;
  888. unsigned long flags;
  889. int err, ret = 0;
  890. lockdep_assert_irqs_enabled();
  891. pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
  892. if (apicid == BAD_APICID ||
  893. !physid_isset(apicid, phys_cpu_present_map) ||
  894. !apic->apic_id_valid(apicid)) {
  895. pr_err("%s: bad cpu %d\n", __func__, cpu);
  896. return -EINVAL;
  897. }
  898. /*
  899. * Already booted CPU?
  900. */
  901. if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
  902. pr_debug("do_boot_cpu %d Already started\n", cpu);
  903. return -ENOSYS;
  904. }
  905. /*
  906. * Save current MTRR state in case it was changed since early boot
  907. * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
  908. */
  909. mtrr_save_state();
  910. /* x86 CPUs take themselves offline, so delayed offline is OK. */
  911. err = cpu_check_up_prepare(cpu);
  912. if (err && err != -EBUSY)
  913. return err;
  914. /* the FPU context is blank, nobody can own it */
  915. per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
  916. common_cpu_up(cpu, tidle);
  917. err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
  918. if (err) {
  919. pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
  920. ret = -EIO;
  921. goto unreg_nmi;
  922. }
  923. /*
  924. * Check TSC synchronization with the AP (keep irqs disabled
  925. * while doing so):
  926. */
  927. local_irq_save(flags);
  928. check_tsc_sync_source(cpu);
  929. local_irq_restore(flags);
  930. while (!cpu_online(cpu)) {
  931. cpu_relax();
  932. touch_nmi_watchdog();
  933. }
  934. unreg_nmi:
  935. /*
  936. * Clean up the nmi handler. Do this after the callin and callout sync
  937. * to avoid impact of possible long unregister time.
  938. */
  939. if (cpu0_nmi_registered)
  940. unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
  941. return ret;
  942. }
  943. /**
  944. * arch_disable_smp_support() - disables SMP support for x86 at runtime
  945. */
  946. void arch_disable_smp_support(void)
  947. {
  948. disable_ioapic_support();
  949. }
  950. /*
  951. * Fall back to non SMP mode after errors.
  952. *
  953. * RED-PEN audit/test this more. I bet there is more state messed up here.
  954. */
  955. static __init void disable_smp(void)
  956. {
  957. pr_info("SMP disabled\n");
  958. disable_ioapic_support();
  959. init_cpu_present(cpumask_of(0));
  960. init_cpu_possible(cpumask_of(0));
  961. if (smp_found_config)
  962. physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
  963. else
  964. physid_set_mask_of_physid(0, &phys_cpu_present_map);
  965. cpumask_set_cpu(0, topology_sibling_cpumask(0));
  966. cpumask_set_cpu(0, topology_core_cpumask(0));
  967. }
  968. /*
  969. * Various sanity checks.
  970. */
  971. static void __init smp_sanity_check(void)
  972. {
  973. preempt_disable();
  974. #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
  975. if (def_to_bigsmp && nr_cpu_ids > 8) {
  976. unsigned int cpu;
  977. unsigned nr;
  978. pr_warn("More than 8 CPUs detected - skipping them\n"
  979. "Use CONFIG_X86_BIGSMP\n");
  980. nr = 0;
  981. for_each_present_cpu(cpu) {
  982. if (nr >= 8)
  983. set_cpu_present(cpu, false);
  984. nr++;
  985. }
  986. nr = 0;
  987. for_each_possible_cpu(cpu) {
  988. if (nr >= 8)
  989. set_cpu_possible(cpu, false);
  990. nr++;
  991. }
  992. nr_cpu_ids = 8;
  993. }
  994. #endif
  995. if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
  996. pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
  997. hard_smp_processor_id());
  998. physid_set(hard_smp_processor_id(), phys_cpu_present_map);
  999. }
  1000. /*
  1001. * Should not be necessary because the MP table should list the boot
  1002. * CPU too, but we do it for the sake of robustness anyway.
  1003. */
  1004. if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
  1005. pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
  1006. boot_cpu_physical_apicid);
  1007. physid_set(hard_smp_processor_id(), phys_cpu_present_map);
  1008. }
  1009. preempt_enable();
  1010. }
  1011. static void __init smp_cpu_index_default(void)
  1012. {
  1013. int i;
  1014. struct cpuinfo_x86 *c;
  1015. for_each_possible_cpu(i) {
  1016. c = &cpu_data(i);
  1017. /* mark all to hotplug */
  1018. c->cpu_index = nr_cpu_ids;
  1019. }
  1020. }
  1021. static void __init smp_get_logical_apicid(void)
  1022. {
  1023. if (x2apic_mode)
  1024. cpu0_logical_apicid = apic_read(APIC_LDR);
  1025. else
  1026. cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
  1027. }
  1028. /*
  1029. * Prepare for SMP bootup.
  1030. * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
  1031. * for common interface support.
  1032. */
  1033. void __init native_smp_prepare_cpus(unsigned int max_cpus)
  1034. {
  1035. unsigned int i;
  1036. smp_cpu_index_default();
  1037. /*
  1038. * Setup boot CPU information
  1039. */
  1040. smp_store_boot_cpu_info(); /* Final full version of the data */
  1041. cpumask_copy(cpu_callin_mask, cpumask_of(0));
  1042. mb();
  1043. for_each_possible_cpu(i) {
  1044. zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
  1045. zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
  1046. zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
  1047. }
  1048. /*
  1049. * Set 'default' x86 topology, this matches default_topology() in that
  1050. * it has NUMA nodes as a topology level. See also
  1051. * native_smp_cpus_done().
  1052. *
  1053. * Must be done before set_cpus_sibling_map() is ran.
  1054. */
  1055. set_sched_topology(x86_topology);
  1056. set_cpu_sibling_map(0);
  1057. smp_sanity_check();
  1058. switch (apic_intr_mode) {
  1059. case APIC_PIC:
  1060. case APIC_VIRTUAL_WIRE_NO_CONFIG:
  1061. disable_smp();
  1062. return;
  1063. case APIC_SYMMETRIC_IO_NO_ROUTING:
  1064. disable_smp();
  1065. /* Setup local timer */
  1066. x86_init.timers.setup_percpu_clockev();
  1067. return;
  1068. case APIC_VIRTUAL_WIRE:
  1069. case APIC_SYMMETRIC_IO:
  1070. break;
  1071. }
  1072. /* Setup local timer */
  1073. x86_init.timers.setup_percpu_clockev();
  1074. smp_get_logical_apicid();
  1075. pr_info("CPU0: ");
  1076. print_cpu_info(&cpu_data(0));
  1077. native_pv_lock_init();
  1078. uv_system_init();
  1079. set_mtrr_aps_delayed_init();
  1080. smp_quirk_init_udelay();
  1081. speculative_store_bypass_ht_init();
  1082. }
  1083. void arch_enable_nonboot_cpus_begin(void)
  1084. {
  1085. set_mtrr_aps_delayed_init();
  1086. }
  1087. void arch_enable_nonboot_cpus_end(void)
  1088. {
  1089. mtrr_aps_init();
  1090. }
  1091. /*
  1092. * Early setup to make printk work.
  1093. */
  1094. void __init native_smp_prepare_boot_cpu(void)
  1095. {
  1096. int me = smp_processor_id();
  1097. switch_to_new_gdt(me);
  1098. /* already set me in cpu_online_mask in boot_cpu_init() */
  1099. cpumask_set_cpu(me, cpu_callout_mask);
  1100. cpu_set_state_online(me);
  1101. }
  1102. void __init calculate_max_logical_packages(void)
  1103. {
  1104. int ncpus;
  1105. /*
  1106. * Today neither Intel nor AMD support heterogenous systems so
  1107. * extrapolate the boot cpu's data to all packages.
  1108. */
  1109. ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
  1110. __max_logical_packages = DIV_ROUND_UP(nr_cpu_ids, ncpus);
  1111. pr_info("Max logical packages: %u\n", __max_logical_packages);
  1112. }
  1113. void __init native_smp_cpus_done(unsigned int max_cpus)
  1114. {
  1115. pr_debug("Boot done\n");
  1116. calculate_max_logical_packages();
  1117. if (x86_has_numa_in_package)
  1118. set_sched_topology(x86_numa_in_package_topology);
  1119. nmi_selftest();
  1120. impress_friends();
  1121. mtrr_aps_init();
  1122. }
  1123. static int __initdata setup_possible_cpus = -1;
  1124. static int __init _setup_possible_cpus(char *str)
  1125. {
  1126. get_option(&str, &setup_possible_cpus);
  1127. return 0;
  1128. }
  1129. early_param("possible_cpus", _setup_possible_cpus);
  1130. /*
  1131. * cpu_possible_mask should be static, it cannot change as cpu's
  1132. * are onlined, or offlined. The reason is per-cpu data-structures
  1133. * are allocated by some modules at init time, and dont expect to
  1134. * do this dynamically on cpu arrival/departure.
  1135. * cpu_present_mask on the other hand can change dynamically.
  1136. * In case when cpu_hotplug is not compiled, then we resort to current
  1137. * behaviour, which is cpu_possible == cpu_present.
  1138. * - Ashok Raj
  1139. *
  1140. * Three ways to find out the number of additional hotplug CPUs:
  1141. * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
  1142. * - The user can overwrite it with possible_cpus=NUM
  1143. * - Otherwise don't reserve additional CPUs.
  1144. * We do this because additional CPUs waste a lot of memory.
  1145. * -AK
  1146. */
  1147. __init void prefill_possible_map(void)
  1148. {
  1149. int i, possible;
  1150. /* No boot processor was found in mptable or ACPI MADT */
  1151. if (!num_processors) {
  1152. if (boot_cpu_has(X86_FEATURE_APIC)) {
  1153. int apicid = boot_cpu_physical_apicid;
  1154. int cpu = hard_smp_processor_id();
  1155. pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
  1156. /* Make sure boot cpu is enumerated */
  1157. if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
  1158. apic->apic_id_valid(apicid))
  1159. generic_processor_info(apicid, boot_cpu_apic_version);
  1160. }
  1161. if (!num_processors)
  1162. num_processors = 1;
  1163. }
  1164. i = setup_max_cpus ?: 1;
  1165. if (setup_possible_cpus == -1) {
  1166. possible = num_processors;
  1167. #ifdef CONFIG_HOTPLUG_CPU
  1168. if (setup_max_cpus)
  1169. possible += disabled_cpus;
  1170. #else
  1171. if (possible > i)
  1172. possible = i;
  1173. #endif
  1174. } else
  1175. possible = setup_possible_cpus;
  1176. total_cpus = max_t(int, possible, num_processors + disabled_cpus);
  1177. /* nr_cpu_ids could be reduced via nr_cpus= */
  1178. if (possible > nr_cpu_ids) {
  1179. pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
  1180. possible, nr_cpu_ids);
  1181. possible = nr_cpu_ids;
  1182. }
  1183. #ifdef CONFIG_HOTPLUG_CPU
  1184. if (!setup_max_cpus)
  1185. #endif
  1186. if (possible > i) {
  1187. pr_warn("%d Processors exceeds max_cpus limit of %u\n",
  1188. possible, setup_max_cpus);
  1189. possible = i;
  1190. }
  1191. nr_cpu_ids = possible;
  1192. pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
  1193. possible, max_t(int, possible - num_processors, 0));
  1194. reset_cpu_possible_mask();
  1195. for (i = 0; i < possible; i++)
  1196. set_cpu_possible(i, true);
  1197. }
  1198. #ifdef CONFIG_HOTPLUG_CPU
  1199. /* Recompute SMT state for all CPUs on offline */
  1200. static void recompute_smt_state(void)
  1201. {
  1202. int max_threads, cpu;
  1203. max_threads = 0;
  1204. for_each_online_cpu (cpu) {
  1205. int threads = cpumask_weight(topology_sibling_cpumask(cpu));
  1206. if (threads > max_threads)
  1207. max_threads = threads;
  1208. }
  1209. __max_smt_threads = max_threads;
  1210. }
  1211. static void remove_siblinginfo(int cpu)
  1212. {
  1213. int sibling;
  1214. struct cpuinfo_x86 *c = &cpu_data(cpu);
  1215. for_each_cpu(sibling, topology_core_cpumask(cpu)) {
  1216. cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
  1217. /*/
  1218. * last thread sibling in this cpu core going down
  1219. */
  1220. if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
  1221. cpu_data(sibling).booted_cores--;
  1222. }
  1223. for_each_cpu(sibling, topology_sibling_cpumask(cpu))
  1224. cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
  1225. for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
  1226. cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
  1227. cpumask_clear(cpu_llc_shared_mask(cpu));
  1228. cpumask_clear(topology_sibling_cpumask(cpu));
  1229. cpumask_clear(topology_core_cpumask(cpu));
  1230. c->cpu_core_id = 0;
  1231. c->booted_cores = 0;
  1232. cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
  1233. recompute_smt_state();
  1234. }
  1235. static void remove_cpu_from_maps(int cpu)
  1236. {
  1237. set_cpu_online(cpu, false);
  1238. cpumask_clear_cpu(cpu, cpu_callout_mask);
  1239. cpumask_clear_cpu(cpu, cpu_callin_mask);
  1240. /* was set by cpu_init() */
  1241. cpumask_clear_cpu(cpu, cpu_initialized_mask);
  1242. numa_remove_cpu(cpu);
  1243. }
  1244. void cpu_disable_common(void)
  1245. {
  1246. int cpu = smp_processor_id();
  1247. remove_siblinginfo(cpu);
  1248. /* It's now safe to remove this processor from the online map */
  1249. lock_vector_lock();
  1250. remove_cpu_from_maps(cpu);
  1251. unlock_vector_lock();
  1252. fixup_irqs();
  1253. lapic_offline();
  1254. }
  1255. int native_cpu_disable(void)
  1256. {
  1257. int ret;
  1258. ret = lapic_can_unplug_cpu();
  1259. if (ret)
  1260. return ret;
  1261. clear_local_APIC();
  1262. cpu_disable_common();
  1263. return 0;
  1264. }
  1265. int common_cpu_die(unsigned int cpu)
  1266. {
  1267. int ret = 0;
  1268. /* We don't do anything here: idle task is faking death itself. */
  1269. /* They ack this in play_dead() by setting CPU_DEAD */
  1270. if (cpu_wait_death(cpu, 5)) {
  1271. if (system_state == SYSTEM_RUNNING)
  1272. pr_info("CPU %u is now offline\n", cpu);
  1273. } else {
  1274. pr_err("CPU %u didn't die...\n", cpu);
  1275. ret = -1;
  1276. }
  1277. return ret;
  1278. }
  1279. void native_cpu_die(unsigned int cpu)
  1280. {
  1281. common_cpu_die(cpu);
  1282. }
  1283. void play_dead_common(void)
  1284. {
  1285. idle_task_exit();
  1286. /* Ack it */
  1287. (void)cpu_report_death();
  1288. /*
  1289. * With physical CPU hotplug, we should halt the cpu
  1290. */
  1291. local_irq_disable();
  1292. }
  1293. static bool wakeup_cpu0(void)
  1294. {
  1295. if (smp_processor_id() == 0 && enable_start_cpu0)
  1296. return true;
  1297. return false;
  1298. }
  1299. /*
  1300. * We need to flush the caches before going to sleep, lest we have
  1301. * dirty data in our caches when we come back up.
  1302. */
  1303. static inline void mwait_play_dead(void)
  1304. {
  1305. unsigned int eax, ebx, ecx, edx;
  1306. unsigned int highest_cstate = 0;
  1307. unsigned int highest_subcstate = 0;
  1308. void *mwait_ptr;
  1309. int i;
  1310. if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
  1311. return;
  1312. if (!this_cpu_has(X86_FEATURE_MWAIT))
  1313. return;
  1314. if (!this_cpu_has(X86_FEATURE_CLFLUSH))
  1315. return;
  1316. if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
  1317. return;
  1318. eax = CPUID_MWAIT_LEAF;
  1319. ecx = 0;
  1320. native_cpuid(&eax, &ebx, &ecx, &edx);
  1321. /*
  1322. * eax will be 0 if EDX enumeration is not valid.
  1323. * Initialized below to cstate, sub_cstate value when EDX is valid.
  1324. */
  1325. if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
  1326. eax = 0;
  1327. } else {
  1328. edx >>= MWAIT_SUBSTATE_SIZE;
  1329. for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
  1330. if (edx & MWAIT_SUBSTATE_MASK) {
  1331. highest_cstate = i;
  1332. highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
  1333. }
  1334. }
  1335. eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
  1336. (highest_subcstate - 1);
  1337. }
  1338. /*
  1339. * This should be a memory location in a cache line which is
  1340. * unlikely to be touched by other processors. The actual
  1341. * content is immaterial as it is not actually modified in any way.
  1342. */
  1343. mwait_ptr = &current_thread_info()->flags;
  1344. wbinvd();
  1345. while (1) {
  1346. /*
  1347. * The CLFLUSH is a workaround for erratum AAI65 for
  1348. * the Xeon 7400 series. It's not clear it is actually
  1349. * needed, but it should be harmless in either case.
  1350. * The WBINVD is insufficient due to the spurious-wakeup
  1351. * case where we return around the loop.
  1352. */
  1353. mb();
  1354. clflush(mwait_ptr);
  1355. mb();
  1356. __monitor(mwait_ptr, 0, 0);
  1357. mb();
  1358. __mwait(eax, 0);
  1359. /*
  1360. * If NMI wants to wake up CPU0, start CPU0.
  1361. */
  1362. if (wakeup_cpu0())
  1363. start_cpu0();
  1364. }
  1365. }
  1366. void hlt_play_dead(void)
  1367. {
  1368. if (__this_cpu_read(cpu_info.x86) >= 4)
  1369. wbinvd();
  1370. while (1) {
  1371. native_halt();
  1372. /*
  1373. * If NMI wants to wake up CPU0, start CPU0.
  1374. */
  1375. if (wakeup_cpu0())
  1376. start_cpu0();
  1377. }
  1378. }
  1379. void native_play_dead(void)
  1380. {
  1381. play_dead_common();
  1382. tboot_shutdown(TB_SHUTDOWN_WFS);
  1383. mwait_play_dead(); /* Only returns on failure */
  1384. if (cpuidle_play_dead())
  1385. hlt_play_dead();
  1386. }
  1387. #else /* ... !CONFIG_HOTPLUG_CPU */
  1388. int native_cpu_disable(void)
  1389. {
  1390. return -ENOSYS;
  1391. }
  1392. void native_cpu_die(unsigned int cpu)
  1393. {
  1394. /* We said "no" in __cpu_disable */
  1395. BUG();
  1396. }
  1397. void native_play_dead(void)
  1398. {
  1399. BUG();
  1400. }
  1401. #endif