intel.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/kernel.h>
  3. #include <linux/string.h>
  4. #include <linux/bitops.h>
  5. #include <linux/smp.h>
  6. #include <linux/sched.h>
  7. #include <linux/sched/clock.h>
  8. #include <linux/thread_info.h>
  9. #include <linux/init.h>
  10. #include <linux/uaccess.h>
  11. #include <asm/cpufeature.h>
  12. #include <asm/pgtable.h>
  13. #include <asm/msr.h>
  14. #include <asm/bugs.h>
  15. #include <asm/cpu.h>
  16. #include <asm/intel-family.h>
  17. #include <asm/microcode_intel.h>
  18. #include <asm/hwcap2.h>
  19. #include <asm/elf.h>
  20. #ifdef CONFIG_X86_64
  21. #include <linux/topology.h>
  22. #endif
  23. #include "cpu.h"
  24. #ifdef CONFIG_X86_LOCAL_APIC
  25. #include <asm/mpspec.h>
  26. #include <asm/apic.h>
  27. #endif
  28. /*
  29. * Just in case our CPU detection goes bad, or you have a weird system,
  30. * allow a way to override the automatic disabling of MPX.
  31. */
  32. static int forcempx;
  33. static int __init forcempx_setup(char *__unused)
  34. {
  35. forcempx = 1;
  36. return 1;
  37. }
  38. __setup("intel-skd-046-workaround=disable", forcempx_setup);
  39. void check_mpx_erratum(struct cpuinfo_x86 *c)
  40. {
  41. if (forcempx)
  42. return;
  43. /*
  44. * Turn off the MPX feature on CPUs where SMEP is not
  45. * available or disabled.
  46. *
  47. * Works around Intel Erratum SKD046: "Branch Instructions
  48. * May Initialize MPX Bound Registers Incorrectly".
  49. *
  50. * This might falsely disable MPX on systems without
  51. * SMEP, like Atom processors without SMEP. But there
  52. * is no such hardware known at the moment.
  53. */
  54. if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
  55. setup_clear_cpu_cap(X86_FEATURE_MPX);
  56. pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
  57. }
  58. }
  59. static bool ring3mwait_disabled __read_mostly;
  60. static int __init ring3mwait_disable(char *__unused)
  61. {
  62. ring3mwait_disabled = true;
  63. return 0;
  64. }
  65. __setup("ring3mwait=disable", ring3mwait_disable);
  66. static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
  67. {
  68. /*
  69. * Ring 3 MONITOR/MWAIT feature cannot be detected without
  70. * cpu model and family comparison.
  71. */
  72. if (c->x86 != 6)
  73. return;
  74. switch (c->x86_model) {
  75. case INTEL_FAM6_XEON_PHI_KNL:
  76. case INTEL_FAM6_XEON_PHI_KNM:
  77. break;
  78. default:
  79. return;
  80. }
  81. if (ring3mwait_disabled)
  82. return;
  83. set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
  84. this_cpu_or(msr_misc_features_shadow,
  85. 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
  86. if (c == &boot_cpu_data)
  87. ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
  88. }
  89. /*
  90. * Early microcode releases for the Spectre v2 mitigation were broken.
  91. * Information taken from;
  92. * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
  93. * - https://kb.vmware.com/s/article/52345
  94. * - Microcode revisions observed in the wild
  95. * - Release note from 20180108 microcode release
  96. */
  97. struct sku_microcode {
  98. u8 model;
  99. u8 stepping;
  100. u32 microcode;
  101. };
  102. static const struct sku_microcode spectre_bad_microcodes[] = {
  103. { INTEL_FAM6_KABYLAKE_DESKTOP, 0x0B, 0x80 },
  104. { INTEL_FAM6_KABYLAKE_DESKTOP, 0x0A, 0x80 },
  105. { INTEL_FAM6_KABYLAKE_DESKTOP, 0x09, 0x80 },
  106. { INTEL_FAM6_KABYLAKE_MOBILE, 0x0A, 0x80 },
  107. { INTEL_FAM6_KABYLAKE_MOBILE, 0x09, 0x80 },
  108. { INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e },
  109. { INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c },
  110. { INTEL_FAM6_BROADWELL_CORE, 0x04, 0x28 },
  111. { INTEL_FAM6_BROADWELL_GT3E, 0x01, 0x1b },
  112. { INTEL_FAM6_BROADWELL_XEON_D, 0x02, 0x14 },
  113. { INTEL_FAM6_BROADWELL_XEON_D, 0x03, 0x07000011 },
  114. { INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 },
  115. { INTEL_FAM6_HASWELL_ULT, 0x01, 0x21 },
  116. { INTEL_FAM6_HASWELL_GT3E, 0x01, 0x18 },
  117. { INTEL_FAM6_HASWELL_CORE, 0x03, 0x23 },
  118. { INTEL_FAM6_HASWELL_X, 0x02, 0x3b },
  119. { INTEL_FAM6_HASWELL_X, 0x04, 0x10 },
  120. { INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a },
  121. /* Observed in the wild */
  122. { INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b },
  123. { INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 },
  124. };
  125. static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
  126. {
  127. int i;
  128. /*
  129. * We know that the hypervisor lie to us on the microcode version so
  130. * we may as well hope that it is running the correct version.
  131. */
  132. if (cpu_has(c, X86_FEATURE_HYPERVISOR))
  133. return false;
  134. for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
  135. if (c->x86_model == spectre_bad_microcodes[i].model &&
  136. c->x86_stepping == spectre_bad_microcodes[i].stepping)
  137. return (c->microcode <= spectre_bad_microcodes[i].microcode);
  138. }
  139. return false;
  140. }
  141. static void early_init_intel(struct cpuinfo_x86 *c)
  142. {
  143. u64 misc_enable;
  144. /* Unmask CPUID levels if masked: */
  145. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  146. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  147. MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
  148. c->cpuid_level = cpuid_eax(0);
  149. get_cpu_cap(c);
  150. }
  151. }
  152. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  153. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  154. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  155. if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
  156. c->microcode = intel_get_microcode_revision();
  157. /* Now if any of them are set, check the blacklist and clear the lot */
  158. if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
  159. cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
  160. cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
  161. cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
  162. pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
  163. setup_clear_cpu_cap(X86_FEATURE_IBRS);
  164. setup_clear_cpu_cap(X86_FEATURE_IBPB);
  165. setup_clear_cpu_cap(X86_FEATURE_STIBP);
  166. setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
  167. setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
  168. setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
  169. setup_clear_cpu_cap(X86_FEATURE_SSBD);
  170. setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
  171. }
  172. /*
  173. * Atom erratum AAE44/AAF40/AAG38/AAH41:
  174. *
  175. * A race condition between speculative fetches and invalidating
  176. * a large page. This is worked around in microcode, but we
  177. * need the microcode to have already been loaded... so if it is
  178. * not, recommend a BIOS update and disable large pages.
  179. */
  180. if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
  181. c->microcode < 0x20e) {
  182. pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
  183. clear_cpu_cap(c, X86_FEATURE_PSE);
  184. }
  185. #ifdef CONFIG_X86_64
  186. set_cpu_cap(c, X86_FEATURE_SYSENTER32);
  187. #else
  188. /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
  189. if (c->x86 == 15 && c->x86_cache_alignment == 64)
  190. c->x86_cache_alignment = 128;
  191. #endif
  192. /* CPUID workaround for 0F33/0F34 CPU */
  193. if (c->x86 == 0xF && c->x86_model == 0x3
  194. && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
  195. c->x86_phys_bits = 36;
  196. /*
  197. * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
  198. * with P/T states and does not stop in deep C-states.
  199. *
  200. * It is also reliable across cores and sockets. (but not across
  201. * cabinets - we turn it off in that case explicitly.)
  202. */
  203. if (c->x86_power & (1 << 8)) {
  204. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  205. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
  206. }
  207. /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
  208. if (c->x86 == 6) {
  209. switch (c->x86_model) {
  210. case 0x27: /* Penwell */
  211. case 0x35: /* Cloverview */
  212. case 0x4a: /* Merrifield */
  213. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
  214. break;
  215. default:
  216. break;
  217. }
  218. }
  219. /*
  220. * There is a known erratum on Pentium III and Core Solo
  221. * and Core Duo CPUs.
  222. * " Page with PAT set to WC while associated MTRR is UC
  223. * may consolidate to UC "
  224. * Because of this erratum, it is better to stick with
  225. * setting WC in MTRR rather than using PAT on these CPUs.
  226. *
  227. * Enable PAT WC only on P4, Core 2 or later CPUs.
  228. */
  229. if (c->x86 == 6 && c->x86_model < 15)
  230. clear_cpu_cap(c, X86_FEATURE_PAT);
  231. /*
  232. * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
  233. * clear the fast string and enhanced fast string CPU capabilities.
  234. */
  235. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  236. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  237. if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
  238. pr_info("Disabled fast string operations\n");
  239. setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
  240. setup_clear_cpu_cap(X86_FEATURE_ERMS);
  241. }
  242. }
  243. /*
  244. * Intel Quark Core DevMan_001.pdf section 6.4.11
  245. * "The operating system also is required to invalidate (i.e., flush)
  246. * the TLB when any changes are made to any of the page table entries.
  247. * The operating system must reload CR3 to cause the TLB to be flushed"
  248. *
  249. * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
  250. * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
  251. * to be modified.
  252. */
  253. if (c->x86 == 5 && c->x86_model == 9) {
  254. pr_info("Disabling PGE capability bit\n");
  255. setup_clear_cpu_cap(X86_FEATURE_PGE);
  256. }
  257. if (c->cpuid_level >= 0x00000001) {
  258. u32 eax, ebx, ecx, edx;
  259. cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
  260. /*
  261. * If HTT (EDX[28]) is set EBX[16:23] contain the number of
  262. * apicids which are reserved per package. Store the resulting
  263. * shift value for the package management code.
  264. */
  265. if (edx & (1U << 28))
  266. c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
  267. }
  268. check_mpx_erratum(c);
  269. }
  270. #ifdef CONFIG_X86_32
  271. /*
  272. * Early probe support logic for ppro memory erratum #50
  273. *
  274. * This is called before we do cpu ident work
  275. */
  276. int ppro_with_ram_bug(void)
  277. {
  278. /* Uses data from early_cpu_detect now */
  279. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  280. boot_cpu_data.x86 == 6 &&
  281. boot_cpu_data.x86_model == 1 &&
  282. boot_cpu_data.x86_stepping < 8) {
  283. pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
  284. return 1;
  285. }
  286. return 0;
  287. }
  288. static void intel_smp_check(struct cpuinfo_x86 *c)
  289. {
  290. /* calling is from identify_secondary_cpu() ? */
  291. if (!c->cpu_index)
  292. return;
  293. /*
  294. * Mask B, Pentium, but not Pentium MMX
  295. */
  296. if (c->x86 == 5 &&
  297. c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
  298. c->x86_model <= 3) {
  299. /*
  300. * Remember we have B step Pentia with bugs
  301. */
  302. WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
  303. "with B stepping processors.\n");
  304. }
  305. }
  306. static int forcepae;
  307. static int __init forcepae_setup(char *__unused)
  308. {
  309. forcepae = 1;
  310. return 1;
  311. }
  312. __setup("forcepae", forcepae_setup);
  313. static void intel_workarounds(struct cpuinfo_x86 *c)
  314. {
  315. #ifdef CONFIG_X86_F00F_BUG
  316. /*
  317. * All models of Pentium and Pentium with MMX technology CPUs
  318. * have the F0 0F bug, which lets nonprivileged users lock up the
  319. * system. Announce that the fault handler will be checking for it.
  320. * The Quark is also family 5, but does not have the same bug.
  321. */
  322. clear_cpu_bug(c, X86_BUG_F00F);
  323. if (c->x86 == 5 && c->x86_model < 9) {
  324. static int f00f_workaround_enabled;
  325. set_cpu_bug(c, X86_BUG_F00F);
  326. if (!f00f_workaround_enabled) {
  327. pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
  328. f00f_workaround_enabled = 1;
  329. }
  330. }
  331. #endif
  332. /*
  333. * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
  334. * model 3 mask 3
  335. */
  336. if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
  337. clear_cpu_cap(c, X86_FEATURE_SEP);
  338. /*
  339. * PAE CPUID issue: many Pentium M report no PAE but may have a
  340. * functionally usable PAE implementation.
  341. * Forcefully enable PAE if kernel parameter "forcepae" is present.
  342. */
  343. if (forcepae) {
  344. pr_warn("PAE forced!\n");
  345. set_cpu_cap(c, X86_FEATURE_PAE);
  346. add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
  347. }
  348. /*
  349. * P4 Xeon erratum 037 workaround.
  350. * Hardware prefetcher may cause stale data to be loaded into the cache.
  351. */
  352. if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
  353. if (msr_set_bit(MSR_IA32_MISC_ENABLE,
  354. MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
  355. pr_info("CPU: C0 stepping P4 Xeon detected.\n");
  356. pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
  357. }
  358. }
  359. /*
  360. * See if we have a good local APIC by checking for buggy Pentia,
  361. * i.e. all B steppings and the C2 stepping of P54C when using their
  362. * integrated APIC (see 11AP erratum in "Pentium Processor
  363. * Specification Update").
  364. */
  365. if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
  366. (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
  367. set_cpu_bug(c, X86_BUG_11AP);
  368. #ifdef CONFIG_X86_INTEL_USERCOPY
  369. /*
  370. * Set up the preferred alignment for movsl bulk memory moves
  371. */
  372. switch (c->x86) {
  373. case 4: /* 486: untested */
  374. break;
  375. case 5: /* Old Pentia: untested */
  376. break;
  377. case 6: /* PII/PIII only like movsl with 8-byte alignment */
  378. movsl_mask.mask = 7;
  379. break;
  380. case 15: /* P4 is OK down to 8-byte alignment */
  381. movsl_mask.mask = 7;
  382. break;
  383. }
  384. #endif
  385. intel_smp_check(c);
  386. }
  387. #else
  388. static void intel_workarounds(struct cpuinfo_x86 *c)
  389. {
  390. }
  391. #endif
  392. static void srat_detect_node(struct cpuinfo_x86 *c)
  393. {
  394. #ifdef CONFIG_NUMA
  395. unsigned node;
  396. int cpu = smp_processor_id();
  397. /* Don't do the funky fallback heuristics the AMD version employs
  398. for now. */
  399. node = numa_cpu_node(cpu);
  400. if (node == NUMA_NO_NODE || !node_online(node)) {
  401. /* reuse the value from init_cpu_to_node() */
  402. node = cpu_to_node(cpu);
  403. }
  404. numa_set_node(cpu, node);
  405. #endif
  406. }
  407. static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
  408. {
  409. /* Intel VMX MSR indicated features */
  410. #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
  411. #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
  412. #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
  413. #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
  414. #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
  415. #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
  416. u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
  417. clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  418. clear_cpu_cap(c, X86_FEATURE_VNMI);
  419. clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  420. clear_cpu_cap(c, X86_FEATURE_EPT);
  421. clear_cpu_cap(c, X86_FEATURE_VPID);
  422. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
  423. msr_ctl = vmx_msr_high | vmx_msr_low;
  424. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
  425. set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  426. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
  427. set_cpu_cap(c, X86_FEATURE_VNMI);
  428. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
  429. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  430. vmx_msr_low, vmx_msr_high);
  431. msr_ctl2 = vmx_msr_high | vmx_msr_low;
  432. if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
  433. (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
  434. set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  435. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
  436. set_cpu_cap(c, X86_FEATURE_EPT);
  437. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
  438. set_cpu_cap(c, X86_FEATURE_VPID);
  439. }
  440. }
  441. #define MSR_IA32_TME_ACTIVATE 0x982
  442. /* Helpers to access TME_ACTIVATE MSR */
  443. #define TME_ACTIVATE_LOCKED(x) (x & 0x1)
  444. #define TME_ACTIVATE_ENABLED(x) (x & 0x2)
  445. #define TME_ACTIVATE_POLICY(x) ((x >> 4) & 0xf) /* Bits 7:4 */
  446. #define TME_ACTIVATE_POLICY_AES_XTS_128 0
  447. #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */
  448. #define TME_ACTIVATE_CRYPTO_ALGS(x) ((x >> 48) & 0xffff) /* Bits 63:48 */
  449. #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1
  450. /* Values for mktme_status (SW only construct) */
  451. #define MKTME_ENABLED 0
  452. #define MKTME_DISABLED 1
  453. #define MKTME_UNINITIALIZED 2
  454. static int mktme_status = MKTME_UNINITIALIZED;
  455. static void detect_tme(struct cpuinfo_x86 *c)
  456. {
  457. u64 tme_activate, tme_policy, tme_crypto_algs;
  458. int keyid_bits = 0, nr_keyids = 0;
  459. static u64 tme_activate_cpu0 = 0;
  460. rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
  461. if (mktme_status != MKTME_UNINITIALIZED) {
  462. if (tme_activate != tme_activate_cpu0) {
  463. /* Broken BIOS? */
  464. pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
  465. pr_err_once("x86/tme: MKTME is not usable\n");
  466. mktme_status = MKTME_DISABLED;
  467. /* Proceed. We may need to exclude bits from x86_phys_bits. */
  468. }
  469. } else {
  470. tme_activate_cpu0 = tme_activate;
  471. }
  472. if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
  473. pr_info_once("x86/tme: not enabled by BIOS\n");
  474. mktme_status = MKTME_DISABLED;
  475. return;
  476. }
  477. if (mktme_status != MKTME_UNINITIALIZED)
  478. goto detect_keyid_bits;
  479. pr_info("x86/tme: enabled by BIOS\n");
  480. tme_policy = TME_ACTIVATE_POLICY(tme_activate);
  481. if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
  482. pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
  483. tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
  484. if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
  485. pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
  486. tme_crypto_algs);
  487. mktme_status = MKTME_DISABLED;
  488. }
  489. detect_keyid_bits:
  490. keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
  491. nr_keyids = (1UL << keyid_bits) - 1;
  492. if (nr_keyids) {
  493. pr_info_once("x86/mktme: enabled by BIOS\n");
  494. pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
  495. } else {
  496. pr_info_once("x86/mktme: disabled by BIOS\n");
  497. }
  498. if (mktme_status == MKTME_UNINITIALIZED) {
  499. /* MKTME is usable */
  500. mktme_status = MKTME_ENABLED;
  501. }
  502. /*
  503. * KeyID bits effectively lower the number of physical address
  504. * bits. Update cpuinfo_x86::x86_phys_bits accordingly.
  505. */
  506. c->x86_phys_bits -= keyid_bits;
  507. }
  508. static void init_intel_energy_perf(struct cpuinfo_x86 *c)
  509. {
  510. u64 epb;
  511. /*
  512. * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
  513. * (x86_energy_perf_policy(8) is available to change it at run-time.)
  514. */
  515. if (!cpu_has(c, X86_FEATURE_EPB))
  516. return;
  517. rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  518. if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
  519. return;
  520. pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
  521. pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
  522. epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
  523. wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  524. }
  525. static void intel_bsp_resume(struct cpuinfo_x86 *c)
  526. {
  527. /*
  528. * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
  529. * so reinitialize it properly like during bootup:
  530. */
  531. init_intel_energy_perf(c);
  532. }
  533. static void init_cpuid_fault(struct cpuinfo_x86 *c)
  534. {
  535. u64 msr;
  536. if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
  537. if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
  538. set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
  539. }
  540. }
  541. static void init_intel_misc_features(struct cpuinfo_x86 *c)
  542. {
  543. u64 msr;
  544. if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
  545. return;
  546. /* Clear all MISC features */
  547. this_cpu_write(msr_misc_features_shadow, 0);
  548. /* Check features and update capabilities and shadow control bits */
  549. init_cpuid_fault(c);
  550. probe_xeon_phi_r3mwait(c);
  551. msr = this_cpu_read(msr_misc_features_shadow);
  552. wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
  553. }
  554. static void init_intel(struct cpuinfo_x86 *c)
  555. {
  556. early_init_intel(c);
  557. intel_workarounds(c);
  558. /*
  559. * Detect the extended topology information if available. This
  560. * will reinitialise the initial_apicid which will be used
  561. * in init_intel_cacheinfo()
  562. */
  563. detect_extended_topology(c);
  564. if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
  565. /*
  566. * let's use the legacy cpuid vector 0x1 and 0x4 for topology
  567. * detection.
  568. */
  569. detect_num_cpu_cores(c);
  570. #ifdef CONFIG_X86_32
  571. detect_ht(c);
  572. #endif
  573. }
  574. init_intel_cacheinfo(c);
  575. if (c->cpuid_level > 9) {
  576. unsigned eax = cpuid_eax(10);
  577. /* Check for version and the number of counters */
  578. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  579. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  580. }
  581. if (cpu_has(c, X86_FEATURE_XMM2))
  582. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  583. if (boot_cpu_has(X86_FEATURE_DS)) {
  584. unsigned int l1, l2;
  585. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  586. if (!(l1 & (1<<11)))
  587. set_cpu_cap(c, X86_FEATURE_BTS);
  588. if (!(l1 & (1<<12)))
  589. set_cpu_cap(c, X86_FEATURE_PEBS);
  590. }
  591. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
  592. (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
  593. set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
  594. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
  595. ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
  596. set_cpu_bug(c, X86_BUG_MONITOR);
  597. #ifdef CONFIG_X86_64
  598. if (c->x86 == 15)
  599. c->x86_cache_alignment = c->x86_clflush_size * 2;
  600. if (c->x86 == 6)
  601. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  602. #else
  603. /*
  604. * Names for the Pentium II/Celeron processors
  605. * detectable only by also checking the cache size.
  606. * Dixon is NOT a Celeron.
  607. */
  608. if (c->x86 == 6) {
  609. unsigned int l2 = c->x86_cache_size;
  610. char *p = NULL;
  611. switch (c->x86_model) {
  612. case 5:
  613. if (l2 == 0)
  614. p = "Celeron (Covington)";
  615. else if (l2 == 256)
  616. p = "Mobile Pentium II (Dixon)";
  617. break;
  618. case 6:
  619. if (l2 == 128)
  620. p = "Celeron (Mendocino)";
  621. else if (c->x86_stepping == 0 || c->x86_stepping == 5)
  622. p = "Celeron-A";
  623. break;
  624. case 8:
  625. if (l2 == 128)
  626. p = "Celeron (Coppermine)";
  627. break;
  628. }
  629. if (p)
  630. strcpy(c->x86_model_id, p);
  631. }
  632. if (c->x86 == 15)
  633. set_cpu_cap(c, X86_FEATURE_P4);
  634. if (c->x86 == 6)
  635. set_cpu_cap(c, X86_FEATURE_P3);
  636. #endif
  637. /* Work around errata */
  638. srat_detect_node(c);
  639. if (cpu_has(c, X86_FEATURE_VMX))
  640. detect_vmx_virtcap(c);
  641. if (cpu_has(c, X86_FEATURE_TME))
  642. detect_tme(c);
  643. init_intel_energy_perf(c);
  644. init_intel_misc_features(c);
  645. }
  646. #ifdef CONFIG_X86_32
  647. static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
  648. {
  649. /*
  650. * Intel PIII Tualatin. This comes in two flavours.
  651. * One has 256kb of cache, the other 512. We have no way
  652. * to determine which, so we use a boottime override
  653. * for the 512kb model, and assume 256 otherwise.
  654. */
  655. if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
  656. size = 256;
  657. /*
  658. * Intel Quark SoC X1000 contains a 4-way set associative
  659. * 16K cache with a 16 byte cache line and 256 lines per tag
  660. */
  661. if ((c->x86 == 5) && (c->x86_model == 9))
  662. size = 16;
  663. return size;
  664. }
  665. #endif
  666. #define TLB_INST_4K 0x01
  667. #define TLB_INST_4M 0x02
  668. #define TLB_INST_2M_4M 0x03
  669. #define TLB_INST_ALL 0x05
  670. #define TLB_INST_1G 0x06
  671. #define TLB_DATA_4K 0x11
  672. #define TLB_DATA_4M 0x12
  673. #define TLB_DATA_2M_4M 0x13
  674. #define TLB_DATA_4K_4M 0x14
  675. #define TLB_DATA_1G 0x16
  676. #define TLB_DATA0_4K 0x21
  677. #define TLB_DATA0_4M 0x22
  678. #define TLB_DATA0_2M_4M 0x23
  679. #define STLB_4K 0x41
  680. #define STLB_4K_2M 0x42
  681. static const struct _tlb_table intel_tlb_table[] = {
  682. { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
  683. { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
  684. { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
  685. { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
  686. { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
  687. { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
  688. { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
  689. { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  690. { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  691. { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  692. { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  693. { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
  694. { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
  695. { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
  696. { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
  697. { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
  698. { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
  699. { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
  700. { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
  701. { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
  702. { 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" },
  703. { 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
  704. { 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" },
  705. { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  706. { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
  707. { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
  708. { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
  709. { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
  710. { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
  711. { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
  712. { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
  713. { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
  714. { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
  715. { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
  716. { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
  717. { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
  718. { 0x00, 0, 0 }
  719. };
  720. static void intel_tlb_lookup(const unsigned char desc)
  721. {
  722. unsigned char k;
  723. if (desc == 0)
  724. return;
  725. /* look up this descriptor in the table */
  726. for (k = 0; intel_tlb_table[k].descriptor != desc && \
  727. intel_tlb_table[k].descriptor != 0; k++)
  728. ;
  729. if (intel_tlb_table[k].tlb_type == 0)
  730. return;
  731. switch (intel_tlb_table[k].tlb_type) {
  732. case STLB_4K:
  733. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  734. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  735. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  736. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  737. break;
  738. case STLB_4K_2M:
  739. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  740. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  741. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  742. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  743. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  744. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  745. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  746. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  747. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  748. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  749. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  750. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  751. break;
  752. case TLB_INST_ALL:
  753. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  754. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  755. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  756. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  757. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  758. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  759. break;
  760. case TLB_INST_4K:
  761. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  762. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  763. break;
  764. case TLB_INST_4M:
  765. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  766. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  767. break;
  768. case TLB_INST_2M_4M:
  769. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  770. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  771. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  772. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  773. break;
  774. case TLB_DATA_4K:
  775. case TLB_DATA0_4K:
  776. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  777. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  778. break;
  779. case TLB_DATA_4M:
  780. case TLB_DATA0_4M:
  781. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  782. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  783. break;
  784. case TLB_DATA_2M_4M:
  785. case TLB_DATA0_2M_4M:
  786. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  787. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  788. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  789. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  790. break;
  791. case TLB_DATA_4K_4M:
  792. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  793. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  794. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  795. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  796. break;
  797. case TLB_DATA_1G:
  798. if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
  799. tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
  800. break;
  801. }
  802. }
  803. static void intel_detect_tlb(struct cpuinfo_x86 *c)
  804. {
  805. int i, j, n;
  806. unsigned int regs[4];
  807. unsigned char *desc = (unsigned char *)regs;
  808. if (c->cpuid_level < 2)
  809. return;
  810. /* Number of times to iterate */
  811. n = cpuid_eax(2) & 0xFF;
  812. for (i = 0 ; i < n ; i++) {
  813. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  814. /* If bit 31 is set, this is an unknown format */
  815. for (j = 0 ; j < 3 ; j++)
  816. if (regs[j] & (1 << 31))
  817. regs[j] = 0;
  818. /* Byte 0 is level count, not a descriptor */
  819. for (j = 1 ; j < 16 ; j++)
  820. intel_tlb_lookup(desc[j]);
  821. }
  822. }
  823. static const struct cpu_dev intel_cpu_dev = {
  824. .c_vendor = "Intel",
  825. .c_ident = { "GenuineIntel" },
  826. #ifdef CONFIG_X86_32
  827. .legacy_models = {
  828. { .family = 4, .model_names =
  829. {
  830. [0] = "486 DX-25/33",
  831. [1] = "486 DX-50",
  832. [2] = "486 SX",
  833. [3] = "486 DX/2",
  834. [4] = "486 SL",
  835. [5] = "486 SX/2",
  836. [7] = "486 DX/2-WB",
  837. [8] = "486 DX/4",
  838. [9] = "486 DX/4-WB"
  839. }
  840. },
  841. { .family = 5, .model_names =
  842. {
  843. [0] = "Pentium 60/66 A-step",
  844. [1] = "Pentium 60/66",
  845. [2] = "Pentium 75 - 200",
  846. [3] = "OverDrive PODP5V83",
  847. [4] = "Pentium MMX",
  848. [7] = "Mobile Pentium 75 - 200",
  849. [8] = "Mobile Pentium MMX",
  850. [9] = "Quark SoC X1000",
  851. }
  852. },
  853. { .family = 6, .model_names =
  854. {
  855. [0] = "Pentium Pro A-step",
  856. [1] = "Pentium Pro",
  857. [3] = "Pentium II (Klamath)",
  858. [4] = "Pentium II (Deschutes)",
  859. [5] = "Pentium II (Deschutes)",
  860. [6] = "Mobile Pentium II",
  861. [7] = "Pentium III (Katmai)",
  862. [8] = "Pentium III (Coppermine)",
  863. [10] = "Pentium III (Cascades)",
  864. [11] = "Pentium III (Tualatin)",
  865. }
  866. },
  867. { .family = 15, .model_names =
  868. {
  869. [0] = "Pentium 4 (Unknown)",
  870. [1] = "Pentium 4 (Willamette)",
  871. [2] = "Pentium 4 (Northwood)",
  872. [4] = "Pentium 4 (Foster)",
  873. [5] = "Pentium 4 (Foster)",
  874. }
  875. },
  876. },
  877. .legacy_cache_size = intel_size_cache,
  878. #endif
  879. .c_detect_tlb = intel_detect_tlb,
  880. .c_early_init = early_init_intel,
  881. .c_init = init_intel,
  882. .c_bsp_resume = intel_bsp_resume,
  883. .c_x86_vendor = X86_VENDOR_INTEL,
  884. };
  885. cpu_dev_register(intel_cpu_dev);