sdma_v3_0.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  56. MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
  57. MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
  58. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  59. {
  60. SDMA0_REGISTER_OFFSET,
  61. SDMA1_REGISTER_OFFSET
  62. };
  63. static const u32 golden_settings_tonga_a11[] =
  64. {
  65. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  66. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  67. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  69. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  70. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  71. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  72. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  73. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  74. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  75. };
  76. static const u32 tonga_mgcg_cgcg_init[] =
  77. {
  78. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  79. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  80. };
  81. static const u32 golden_settings_fiji_a10[] =
  82. {
  83. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  84. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  85. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  86. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  88. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  89. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  90. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  91. };
  92. static const u32 fiji_mgcg_cgcg_init[] =
  93. {
  94. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  95. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  96. };
  97. static const u32 golden_settings_polaris11_a11[] =
  98. {
  99. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  100. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  101. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  102. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  103. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  104. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  105. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  106. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  107. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  108. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  109. };
  110. static const u32 golden_settings_polaris10_a11[] =
  111. {
  112. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  113. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  114. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  115. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  116. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  117. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  118. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  119. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  120. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  121. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  122. };
  123. static const u32 cz_golden_settings_a11[] =
  124. {
  125. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  126. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  127. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  128. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  129. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  130. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  131. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  132. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  133. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  134. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  135. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  136. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  137. };
  138. static const u32 cz_mgcg_cgcg_init[] =
  139. {
  140. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  141. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  142. };
  143. static const u32 stoney_golden_settings_a11[] =
  144. {
  145. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  146. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  147. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  148. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  149. };
  150. static const u32 stoney_mgcg_cgcg_init[] =
  151. {
  152. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  153. };
  154. /*
  155. * sDMA - System DMA
  156. * Starting with CIK, the GPU has new asynchronous
  157. * DMA engines. These engines are used for compute
  158. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  159. * and each one supports 1 ring buffer used for gfx
  160. * and 2 queues used for compute.
  161. *
  162. * The programming model is very similar to the CP
  163. * (ring buffer, IBs, etc.), but sDMA has it's own
  164. * packet format that is different from the PM4 format
  165. * used by the CP. sDMA supports copying data, writing
  166. * embedded data, solid fills, and a number of other
  167. * things. It also has support for tiling/detiling of
  168. * buffers.
  169. */
  170. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  171. {
  172. switch (adev->asic_type) {
  173. case CHIP_FIJI:
  174. amdgpu_program_register_sequence(adev,
  175. fiji_mgcg_cgcg_init,
  176. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  177. amdgpu_program_register_sequence(adev,
  178. golden_settings_fiji_a10,
  179. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  180. break;
  181. case CHIP_TONGA:
  182. amdgpu_program_register_sequence(adev,
  183. tonga_mgcg_cgcg_init,
  184. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  185. amdgpu_program_register_sequence(adev,
  186. golden_settings_tonga_a11,
  187. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  188. break;
  189. case CHIP_POLARIS11:
  190. case CHIP_POLARIS12:
  191. amdgpu_program_register_sequence(adev,
  192. golden_settings_polaris11_a11,
  193. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  194. break;
  195. case CHIP_POLARIS10:
  196. amdgpu_program_register_sequence(adev,
  197. golden_settings_polaris10_a11,
  198. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  199. break;
  200. case CHIP_CARRIZO:
  201. amdgpu_program_register_sequence(adev,
  202. cz_mgcg_cgcg_init,
  203. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  204. amdgpu_program_register_sequence(adev,
  205. cz_golden_settings_a11,
  206. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  207. break;
  208. case CHIP_STONEY:
  209. amdgpu_program_register_sequence(adev,
  210. stoney_mgcg_cgcg_init,
  211. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  212. amdgpu_program_register_sequence(adev,
  213. stoney_golden_settings_a11,
  214. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  215. break;
  216. default:
  217. break;
  218. }
  219. }
  220. static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
  221. {
  222. int i;
  223. for (i = 0; i < adev->sdma.num_instances; i++) {
  224. release_firmware(adev->sdma.instance[i].fw);
  225. adev->sdma.instance[i].fw = NULL;
  226. }
  227. }
  228. /**
  229. * sdma_v3_0_init_microcode - load ucode images from disk
  230. *
  231. * @adev: amdgpu_device pointer
  232. *
  233. * Use the firmware interface to load the ucode images into
  234. * the driver (not loaded into hw).
  235. * Returns 0 on success, error on failure.
  236. */
  237. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  238. {
  239. const char *chip_name;
  240. char fw_name[30];
  241. int err = 0, i;
  242. struct amdgpu_firmware_info *info = NULL;
  243. const struct common_firmware_header *header = NULL;
  244. const struct sdma_firmware_header_v1_0 *hdr;
  245. DRM_DEBUG("\n");
  246. switch (adev->asic_type) {
  247. case CHIP_TONGA:
  248. chip_name = "tonga";
  249. break;
  250. case CHIP_FIJI:
  251. chip_name = "fiji";
  252. break;
  253. case CHIP_POLARIS11:
  254. chip_name = "polaris11";
  255. break;
  256. case CHIP_POLARIS10:
  257. chip_name = "polaris10";
  258. break;
  259. case CHIP_POLARIS12:
  260. chip_name = "polaris12";
  261. break;
  262. case CHIP_CARRIZO:
  263. chip_name = "carrizo";
  264. break;
  265. case CHIP_STONEY:
  266. chip_name = "stoney";
  267. break;
  268. default: BUG();
  269. }
  270. for (i = 0; i < adev->sdma.num_instances; i++) {
  271. if (i == 0)
  272. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  273. else
  274. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  275. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  276. if (err)
  277. goto out;
  278. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  279. if (err)
  280. goto out;
  281. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  282. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  283. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  284. if (adev->sdma.instance[i].feature_version >= 20)
  285. adev->sdma.instance[i].burst_nop = true;
  286. if (adev->firmware.smu_load) {
  287. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  288. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  289. info->fw = adev->sdma.instance[i].fw;
  290. header = (const struct common_firmware_header *)info->fw->data;
  291. adev->firmware.fw_size +=
  292. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  293. }
  294. }
  295. out:
  296. if (err) {
  297. printk(KERN_ERR
  298. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  299. fw_name);
  300. for (i = 0; i < adev->sdma.num_instances; i++) {
  301. release_firmware(adev->sdma.instance[i].fw);
  302. adev->sdma.instance[i].fw = NULL;
  303. }
  304. }
  305. return err;
  306. }
  307. /**
  308. * sdma_v3_0_ring_get_rptr - get the current read pointer
  309. *
  310. * @ring: amdgpu ring pointer
  311. *
  312. * Get the current rptr from the hardware (VI+).
  313. */
  314. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  315. {
  316. /* XXX check if swapping is necessary on BE */
  317. return ring->adev->wb.wb[ring->rptr_offs] >> 2;
  318. }
  319. /**
  320. * sdma_v3_0_ring_get_wptr - get the current write pointer
  321. *
  322. * @ring: amdgpu ring pointer
  323. *
  324. * Get the current wptr from the hardware (VI+).
  325. */
  326. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  327. {
  328. struct amdgpu_device *adev = ring->adev;
  329. u32 wptr;
  330. if (ring->use_doorbell) {
  331. /* XXX check if swapping is necessary on BE */
  332. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  333. } else {
  334. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  335. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  336. }
  337. return wptr;
  338. }
  339. /**
  340. * sdma_v3_0_ring_set_wptr - commit the write pointer
  341. *
  342. * @ring: amdgpu ring pointer
  343. *
  344. * Write the wptr back to the hardware (VI+).
  345. */
  346. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  347. {
  348. struct amdgpu_device *adev = ring->adev;
  349. if (ring->use_doorbell) {
  350. /* XXX check if swapping is necessary on BE */
  351. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  352. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  353. } else {
  354. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  355. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  356. }
  357. }
  358. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  359. {
  360. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  361. int i;
  362. for (i = 0; i < count; i++)
  363. if (sdma && sdma->burst_nop && (i == 0))
  364. amdgpu_ring_write(ring, ring->funcs->nop |
  365. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  366. else
  367. amdgpu_ring_write(ring, ring->funcs->nop);
  368. }
  369. /**
  370. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  371. *
  372. * @ring: amdgpu ring pointer
  373. * @ib: IB object to schedule
  374. *
  375. * Schedule an IB in the DMA ring (VI).
  376. */
  377. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  378. struct amdgpu_ib *ib,
  379. unsigned vm_id, bool ctx_switch)
  380. {
  381. u32 vmid = vm_id & 0xf;
  382. /* IB packet must end on a 8 DW boundary */
  383. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  384. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  385. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  386. /* base must be 32 byte aligned */
  387. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  388. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  389. amdgpu_ring_write(ring, ib->length_dw);
  390. amdgpu_ring_write(ring, 0);
  391. amdgpu_ring_write(ring, 0);
  392. }
  393. /**
  394. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  395. *
  396. * @ring: amdgpu ring pointer
  397. *
  398. * Emit an hdp flush packet on the requested DMA ring.
  399. */
  400. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  401. {
  402. u32 ref_and_mask = 0;
  403. if (ring == &ring->adev->sdma.instance[0].ring)
  404. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  405. else
  406. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  407. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  408. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  409. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  410. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  411. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  412. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  413. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  414. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  415. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  416. }
  417. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  418. {
  419. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  420. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  421. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  422. amdgpu_ring_write(ring, 1);
  423. }
  424. /**
  425. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  426. *
  427. * @ring: amdgpu ring pointer
  428. * @fence: amdgpu fence object
  429. *
  430. * Add a DMA fence packet to the ring to write
  431. * the fence seq number and DMA trap packet to generate
  432. * an interrupt if needed (VI).
  433. */
  434. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  435. unsigned flags)
  436. {
  437. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  438. /* write the fence */
  439. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  440. amdgpu_ring_write(ring, lower_32_bits(addr));
  441. amdgpu_ring_write(ring, upper_32_bits(addr));
  442. amdgpu_ring_write(ring, lower_32_bits(seq));
  443. /* optionally write high bits as well */
  444. if (write64bit) {
  445. addr += 4;
  446. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  447. amdgpu_ring_write(ring, lower_32_bits(addr));
  448. amdgpu_ring_write(ring, upper_32_bits(addr));
  449. amdgpu_ring_write(ring, upper_32_bits(seq));
  450. }
  451. /* generate an interrupt */
  452. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  453. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  454. }
  455. /**
  456. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  457. *
  458. * @adev: amdgpu_device pointer
  459. *
  460. * Stop the gfx async dma ring buffers (VI).
  461. */
  462. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  463. {
  464. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  465. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  466. u32 rb_cntl, ib_cntl;
  467. int i;
  468. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  469. (adev->mman.buffer_funcs_ring == sdma1))
  470. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  471. for (i = 0; i < adev->sdma.num_instances; i++) {
  472. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  473. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  474. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  475. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  476. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  477. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  478. }
  479. sdma0->ready = false;
  480. sdma1->ready = false;
  481. }
  482. /**
  483. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  484. *
  485. * @adev: amdgpu_device pointer
  486. *
  487. * Stop the compute async dma queues (VI).
  488. */
  489. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  490. {
  491. /* XXX todo */
  492. }
  493. /**
  494. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  495. *
  496. * @adev: amdgpu_device pointer
  497. * @enable: enable/disable the DMA MEs context switch.
  498. *
  499. * Halt or unhalt the async dma engines context switch (VI).
  500. */
  501. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  502. {
  503. u32 f32_cntl;
  504. int i;
  505. for (i = 0; i < adev->sdma.num_instances; i++) {
  506. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  507. if (enable)
  508. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  509. AUTO_CTXSW_ENABLE, 1);
  510. else
  511. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  512. AUTO_CTXSW_ENABLE, 0);
  513. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  514. }
  515. }
  516. /**
  517. * sdma_v3_0_enable - stop the async dma engines
  518. *
  519. * @adev: amdgpu_device pointer
  520. * @enable: enable/disable the DMA MEs.
  521. *
  522. * Halt or unhalt the async dma engines (VI).
  523. */
  524. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  525. {
  526. u32 f32_cntl;
  527. int i;
  528. if (!enable) {
  529. sdma_v3_0_gfx_stop(adev);
  530. sdma_v3_0_rlc_stop(adev);
  531. }
  532. for (i = 0; i < adev->sdma.num_instances; i++) {
  533. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  534. if (enable)
  535. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  536. else
  537. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  538. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  539. }
  540. }
  541. /**
  542. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  543. *
  544. * @adev: amdgpu_device pointer
  545. *
  546. * Set up the gfx DMA ring buffers and enable them (VI).
  547. * Returns 0 for success, error for failure.
  548. */
  549. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  550. {
  551. struct amdgpu_ring *ring;
  552. u32 rb_cntl, ib_cntl;
  553. u32 rb_bufsz;
  554. u32 wb_offset;
  555. u32 doorbell;
  556. int i, j, r;
  557. for (i = 0; i < adev->sdma.num_instances; i++) {
  558. ring = &adev->sdma.instance[i].ring;
  559. amdgpu_ring_clear_ring(ring);
  560. wb_offset = (ring->rptr_offs * 4);
  561. mutex_lock(&adev->srbm_mutex);
  562. for (j = 0; j < 16; j++) {
  563. vi_srbm_select(adev, 0, 0, 0, j);
  564. /* SDMA GFX */
  565. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  566. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  567. }
  568. vi_srbm_select(adev, 0, 0, 0, 0);
  569. mutex_unlock(&adev->srbm_mutex);
  570. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  571. adev->gfx.config.gb_addr_config & 0x70);
  572. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  573. /* Set ring buffer size in dwords */
  574. rb_bufsz = order_base_2(ring->ring_size / 4);
  575. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  576. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  577. #ifdef __BIG_ENDIAN
  578. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  579. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  580. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  581. #endif
  582. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  583. /* Initialize the ring buffer's read and write pointers */
  584. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  585. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  586. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  587. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  588. /* set the wb address whether it's enabled or not */
  589. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  590. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  591. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  592. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  593. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  594. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  595. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  596. ring->wptr = 0;
  597. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  598. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  599. if (ring->use_doorbell) {
  600. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  601. OFFSET, ring->doorbell_index);
  602. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  603. } else {
  604. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  605. }
  606. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  607. /* enable DMA RB */
  608. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  609. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  610. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  611. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  612. #ifdef __BIG_ENDIAN
  613. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  614. #endif
  615. /* enable DMA IBs */
  616. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  617. ring->ready = true;
  618. }
  619. /* unhalt the MEs */
  620. sdma_v3_0_enable(adev, true);
  621. /* enable sdma ring preemption */
  622. sdma_v3_0_ctx_switch_enable(adev, true);
  623. for (i = 0; i < adev->sdma.num_instances; i++) {
  624. ring = &adev->sdma.instance[i].ring;
  625. r = amdgpu_ring_test_ring(ring);
  626. if (r) {
  627. ring->ready = false;
  628. return r;
  629. }
  630. if (adev->mman.buffer_funcs_ring == ring)
  631. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  632. }
  633. return 0;
  634. }
  635. /**
  636. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  637. *
  638. * @adev: amdgpu_device pointer
  639. *
  640. * Set up the compute DMA queues and enable them (VI).
  641. * Returns 0 for success, error for failure.
  642. */
  643. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  644. {
  645. /* XXX todo */
  646. return 0;
  647. }
  648. /**
  649. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  650. *
  651. * @adev: amdgpu_device pointer
  652. *
  653. * Loads the sDMA0/1 ucode.
  654. * Returns 0 for success, -EINVAL if the ucode is not available.
  655. */
  656. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  657. {
  658. const struct sdma_firmware_header_v1_0 *hdr;
  659. const __le32 *fw_data;
  660. u32 fw_size;
  661. int i, j;
  662. /* halt the MEs */
  663. sdma_v3_0_enable(adev, false);
  664. for (i = 0; i < adev->sdma.num_instances; i++) {
  665. if (!adev->sdma.instance[i].fw)
  666. return -EINVAL;
  667. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  668. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  669. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  670. fw_data = (const __le32 *)
  671. (adev->sdma.instance[i].fw->data +
  672. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  673. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  674. for (j = 0; j < fw_size; j++)
  675. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  676. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  677. }
  678. return 0;
  679. }
  680. /**
  681. * sdma_v3_0_start - setup and start the async dma engines
  682. *
  683. * @adev: amdgpu_device pointer
  684. *
  685. * Set up the DMA engines and enable them (VI).
  686. * Returns 0 for success, error for failure.
  687. */
  688. static int sdma_v3_0_start(struct amdgpu_device *adev)
  689. {
  690. int r, i;
  691. if (!adev->pp_enabled) {
  692. if (!adev->firmware.smu_load) {
  693. r = sdma_v3_0_load_microcode(adev);
  694. if (r)
  695. return r;
  696. } else {
  697. for (i = 0; i < adev->sdma.num_instances; i++) {
  698. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  699. (i == 0) ?
  700. AMDGPU_UCODE_ID_SDMA0 :
  701. AMDGPU_UCODE_ID_SDMA1);
  702. if (r)
  703. return -EINVAL;
  704. }
  705. }
  706. }
  707. /* disable sdma engine before programing it */
  708. sdma_v3_0_ctx_switch_enable(adev, false);
  709. sdma_v3_0_enable(adev, false);
  710. /* start the gfx rings and rlc compute queues */
  711. r = sdma_v3_0_gfx_resume(adev);
  712. if (r)
  713. return r;
  714. r = sdma_v3_0_rlc_resume(adev);
  715. if (r)
  716. return r;
  717. return 0;
  718. }
  719. /**
  720. * sdma_v3_0_ring_test_ring - simple async dma engine test
  721. *
  722. * @ring: amdgpu_ring structure holding ring information
  723. *
  724. * Test the DMA engine by writing using it to write an
  725. * value to memory. (VI).
  726. * Returns 0 for success, error for failure.
  727. */
  728. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  729. {
  730. struct amdgpu_device *adev = ring->adev;
  731. unsigned i;
  732. unsigned index;
  733. int r;
  734. u32 tmp;
  735. u64 gpu_addr;
  736. r = amdgpu_wb_get(adev, &index);
  737. if (r) {
  738. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  739. return r;
  740. }
  741. gpu_addr = adev->wb.gpu_addr + (index * 4);
  742. tmp = 0xCAFEDEAD;
  743. adev->wb.wb[index] = cpu_to_le32(tmp);
  744. r = amdgpu_ring_alloc(ring, 5);
  745. if (r) {
  746. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  747. amdgpu_wb_free(adev, index);
  748. return r;
  749. }
  750. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  751. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  752. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  753. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  754. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  755. amdgpu_ring_write(ring, 0xDEADBEEF);
  756. amdgpu_ring_commit(ring);
  757. for (i = 0; i < adev->usec_timeout; i++) {
  758. tmp = le32_to_cpu(adev->wb.wb[index]);
  759. if (tmp == 0xDEADBEEF)
  760. break;
  761. DRM_UDELAY(1);
  762. }
  763. if (i < adev->usec_timeout) {
  764. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  765. } else {
  766. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  767. ring->idx, tmp);
  768. r = -EINVAL;
  769. }
  770. amdgpu_wb_free(adev, index);
  771. return r;
  772. }
  773. /**
  774. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  775. *
  776. * @ring: amdgpu_ring structure holding ring information
  777. *
  778. * Test a simple IB in the DMA ring (VI).
  779. * Returns 0 on success, error on failure.
  780. */
  781. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  782. {
  783. struct amdgpu_device *adev = ring->adev;
  784. struct amdgpu_ib ib;
  785. struct dma_fence *f = NULL;
  786. unsigned index;
  787. u32 tmp = 0;
  788. u64 gpu_addr;
  789. long r;
  790. r = amdgpu_wb_get(adev, &index);
  791. if (r) {
  792. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  793. return r;
  794. }
  795. gpu_addr = adev->wb.gpu_addr + (index * 4);
  796. tmp = 0xCAFEDEAD;
  797. adev->wb.wb[index] = cpu_to_le32(tmp);
  798. memset(&ib, 0, sizeof(ib));
  799. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  800. if (r) {
  801. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  802. goto err0;
  803. }
  804. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  805. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  806. ib.ptr[1] = lower_32_bits(gpu_addr);
  807. ib.ptr[2] = upper_32_bits(gpu_addr);
  808. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  809. ib.ptr[4] = 0xDEADBEEF;
  810. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  811. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  812. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  813. ib.length_dw = 8;
  814. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  815. if (r)
  816. goto err1;
  817. r = dma_fence_wait_timeout(f, false, timeout);
  818. if (r == 0) {
  819. DRM_ERROR("amdgpu: IB test timed out\n");
  820. r = -ETIMEDOUT;
  821. goto err1;
  822. } else if (r < 0) {
  823. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  824. goto err1;
  825. }
  826. tmp = le32_to_cpu(adev->wb.wb[index]);
  827. if (tmp == 0xDEADBEEF) {
  828. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  829. r = 0;
  830. } else {
  831. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  832. r = -EINVAL;
  833. }
  834. err1:
  835. amdgpu_ib_free(adev, &ib, NULL);
  836. dma_fence_put(f);
  837. err0:
  838. amdgpu_wb_free(adev, index);
  839. return r;
  840. }
  841. /**
  842. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  843. *
  844. * @ib: indirect buffer to fill with commands
  845. * @pe: addr of the page entry
  846. * @src: src addr to copy from
  847. * @count: number of page entries to update
  848. *
  849. * Update PTEs by copying them from the GART using sDMA (CIK).
  850. */
  851. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  852. uint64_t pe, uint64_t src,
  853. unsigned count)
  854. {
  855. unsigned bytes = count * 8;
  856. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  857. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  858. ib->ptr[ib->length_dw++] = bytes;
  859. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  860. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  861. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  862. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  863. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  864. }
  865. /**
  866. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  867. *
  868. * @ib: indirect buffer to fill with commands
  869. * @pe: addr of the page entry
  870. * @value: dst addr to write into pe
  871. * @count: number of page entries to update
  872. * @incr: increase next addr by incr bytes
  873. *
  874. * Update PTEs by writing them manually using sDMA (CIK).
  875. */
  876. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  877. uint64_t value, unsigned count,
  878. uint32_t incr)
  879. {
  880. unsigned ndw = count * 2;
  881. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  882. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  883. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  884. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  885. ib->ptr[ib->length_dw++] = ndw;
  886. for (; ndw > 0; ndw -= 2) {
  887. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  888. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  889. value += incr;
  890. }
  891. }
  892. /**
  893. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  894. *
  895. * @ib: indirect buffer to fill with commands
  896. * @pe: addr of the page entry
  897. * @addr: dst addr to write into pe
  898. * @count: number of page entries to update
  899. * @incr: increase next addr by incr bytes
  900. * @flags: access flags
  901. *
  902. * Update the page tables using sDMA (CIK).
  903. */
  904. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
  905. uint64_t addr, unsigned count,
  906. uint32_t incr, uint32_t flags)
  907. {
  908. /* for physically contiguous pages (vram) */
  909. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  910. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  911. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  912. ib->ptr[ib->length_dw++] = flags; /* mask */
  913. ib->ptr[ib->length_dw++] = 0;
  914. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  915. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  916. ib->ptr[ib->length_dw++] = incr; /* increment size */
  917. ib->ptr[ib->length_dw++] = 0;
  918. ib->ptr[ib->length_dw++] = count; /* number of entries */
  919. }
  920. /**
  921. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  922. *
  923. * @ib: indirect buffer to fill with padding
  924. *
  925. */
  926. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  927. {
  928. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  929. u32 pad_count;
  930. int i;
  931. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  932. for (i = 0; i < pad_count; i++)
  933. if (sdma && sdma->burst_nop && (i == 0))
  934. ib->ptr[ib->length_dw++] =
  935. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  936. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  937. else
  938. ib->ptr[ib->length_dw++] =
  939. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  940. }
  941. /**
  942. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  943. *
  944. * @ring: amdgpu_ring pointer
  945. *
  946. * Make sure all previous operations are completed (CIK).
  947. */
  948. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  949. {
  950. uint32_t seq = ring->fence_drv.sync_seq;
  951. uint64_t addr = ring->fence_drv.gpu_addr;
  952. /* wait for idle */
  953. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  954. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  955. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  956. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  957. amdgpu_ring_write(ring, addr & 0xfffffffc);
  958. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  959. amdgpu_ring_write(ring, seq); /* reference */
  960. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  961. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  962. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  963. }
  964. /**
  965. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  966. *
  967. * @ring: amdgpu_ring pointer
  968. * @vm: amdgpu_vm pointer
  969. *
  970. * Update the page table base and flush the VM TLB
  971. * using sDMA (VI).
  972. */
  973. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  974. unsigned vm_id, uint64_t pd_addr)
  975. {
  976. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  977. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  978. if (vm_id < 8) {
  979. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  980. } else {
  981. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  982. }
  983. amdgpu_ring_write(ring, pd_addr >> 12);
  984. /* flush TLB */
  985. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  986. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  987. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  988. amdgpu_ring_write(ring, 1 << vm_id);
  989. /* wait for flush */
  990. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  991. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  992. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  993. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  994. amdgpu_ring_write(ring, 0);
  995. amdgpu_ring_write(ring, 0); /* reference */
  996. amdgpu_ring_write(ring, 0); /* mask */
  997. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  998. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  999. }
  1000. static int sdma_v3_0_early_init(void *handle)
  1001. {
  1002. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1003. switch (adev->asic_type) {
  1004. case CHIP_STONEY:
  1005. adev->sdma.num_instances = 1;
  1006. break;
  1007. default:
  1008. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1009. break;
  1010. }
  1011. sdma_v3_0_set_ring_funcs(adev);
  1012. sdma_v3_0_set_buffer_funcs(adev);
  1013. sdma_v3_0_set_vm_pte_funcs(adev);
  1014. sdma_v3_0_set_irq_funcs(adev);
  1015. return 0;
  1016. }
  1017. static int sdma_v3_0_sw_init(void *handle)
  1018. {
  1019. struct amdgpu_ring *ring;
  1020. int r, i;
  1021. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1022. /* SDMA trap event */
  1023. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  1024. if (r)
  1025. return r;
  1026. /* SDMA Privileged inst */
  1027. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  1028. if (r)
  1029. return r;
  1030. /* SDMA Privileged inst */
  1031. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  1032. if (r)
  1033. return r;
  1034. r = sdma_v3_0_init_microcode(adev);
  1035. if (r) {
  1036. DRM_ERROR("Failed to load sdma firmware!\n");
  1037. return r;
  1038. }
  1039. for (i = 0; i < adev->sdma.num_instances; i++) {
  1040. ring = &adev->sdma.instance[i].ring;
  1041. ring->ring_obj = NULL;
  1042. ring->use_doorbell = true;
  1043. ring->doorbell_index = (i == 0) ?
  1044. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1045. sprintf(ring->name, "sdma%d", i);
  1046. r = amdgpu_ring_init(adev, ring, 1024,
  1047. &adev->sdma.trap_irq,
  1048. (i == 0) ?
  1049. AMDGPU_SDMA_IRQ_TRAP0 :
  1050. AMDGPU_SDMA_IRQ_TRAP1);
  1051. if (r)
  1052. return r;
  1053. }
  1054. return r;
  1055. }
  1056. static int sdma_v3_0_sw_fini(void *handle)
  1057. {
  1058. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1059. int i;
  1060. for (i = 0; i < adev->sdma.num_instances; i++)
  1061. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1062. sdma_v3_0_free_microcode(adev);
  1063. return 0;
  1064. }
  1065. static int sdma_v3_0_hw_init(void *handle)
  1066. {
  1067. int r;
  1068. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1069. sdma_v3_0_init_golden_registers(adev);
  1070. r = sdma_v3_0_start(adev);
  1071. if (r)
  1072. return r;
  1073. return r;
  1074. }
  1075. static int sdma_v3_0_hw_fini(void *handle)
  1076. {
  1077. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1078. sdma_v3_0_ctx_switch_enable(adev, false);
  1079. sdma_v3_0_enable(adev, false);
  1080. return 0;
  1081. }
  1082. static int sdma_v3_0_suspend(void *handle)
  1083. {
  1084. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1085. return sdma_v3_0_hw_fini(adev);
  1086. }
  1087. static int sdma_v3_0_resume(void *handle)
  1088. {
  1089. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1090. return sdma_v3_0_hw_init(adev);
  1091. }
  1092. static bool sdma_v3_0_is_idle(void *handle)
  1093. {
  1094. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1095. u32 tmp = RREG32(mmSRBM_STATUS2);
  1096. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1097. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1098. return false;
  1099. return true;
  1100. }
  1101. static int sdma_v3_0_wait_for_idle(void *handle)
  1102. {
  1103. unsigned i;
  1104. u32 tmp;
  1105. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1106. for (i = 0; i < adev->usec_timeout; i++) {
  1107. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1108. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1109. if (!tmp)
  1110. return 0;
  1111. udelay(1);
  1112. }
  1113. return -ETIMEDOUT;
  1114. }
  1115. static bool sdma_v3_0_check_soft_reset(void *handle)
  1116. {
  1117. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1118. u32 srbm_soft_reset = 0;
  1119. u32 tmp = RREG32(mmSRBM_STATUS2);
  1120. if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
  1121. (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
  1122. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1123. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1124. }
  1125. if (srbm_soft_reset) {
  1126. adev->sdma.srbm_soft_reset = srbm_soft_reset;
  1127. return true;
  1128. } else {
  1129. adev->sdma.srbm_soft_reset = 0;
  1130. return false;
  1131. }
  1132. }
  1133. static int sdma_v3_0_pre_soft_reset(void *handle)
  1134. {
  1135. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1136. u32 srbm_soft_reset = 0;
  1137. if (!adev->sdma.srbm_soft_reset)
  1138. return 0;
  1139. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1140. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1141. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1142. sdma_v3_0_ctx_switch_enable(adev, false);
  1143. sdma_v3_0_enable(adev, false);
  1144. }
  1145. return 0;
  1146. }
  1147. static int sdma_v3_0_post_soft_reset(void *handle)
  1148. {
  1149. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1150. u32 srbm_soft_reset = 0;
  1151. if (!adev->sdma.srbm_soft_reset)
  1152. return 0;
  1153. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1154. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1155. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1156. sdma_v3_0_gfx_resume(adev);
  1157. sdma_v3_0_rlc_resume(adev);
  1158. }
  1159. return 0;
  1160. }
  1161. static int sdma_v3_0_soft_reset(void *handle)
  1162. {
  1163. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1164. u32 srbm_soft_reset = 0;
  1165. u32 tmp;
  1166. if (!adev->sdma.srbm_soft_reset)
  1167. return 0;
  1168. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1169. if (srbm_soft_reset) {
  1170. tmp = RREG32(mmSRBM_SOFT_RESET);
  1171. tmp |= srbm_soft_reset;
  1172. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1173. WREG32(mmSRBM_SOFT_RESET, tmp);
  1174. tmp = RREG32(mmSRBM_SOFT_RESET);
  1175. udelay(50);
  1176. tmp &= ~srbm_soft_reset;
  1177. WREG32(mmSRBM_SOFT_RESET, tmp);
  1178. tmp = RREG32(mmSRBM_SOFT_RESET);
  1179. /* Wait a little for things to settle down */
  1180. udelay(50);
  1181. }
  1182. return 0;
  1183. }
  1184. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1185. struct amdgpu_irq_src *source,
  1186. unsigned type,
  1187. enum amdgpu_interrupt_state state)
  1188. {
  1189. u32 sdma_cntl;
  1190. switch (type) {
  1191. case AMDGPU_SDMA_IRQ_TRAP0:
  1192. switch (state) {
  1193. case AMDGPU_IRQ_STATE_DISABLE:
  1194. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1195. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1196. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1197. break;
  1198. case AMDGPU_IRQ_STATE_ENABLE:
  1199. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1200. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1201. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1202. break;
  1203. default:
  1204. break;
  1205. }
  1206. break;
  1207. case AMDGPU_SDMA_IRQ_TRAP1:
  1208. switch (state) {
  1209. case AMDGPU_IRQ_STATE_DISABLE:
  1210. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1211. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1212. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1213. break;
  1214. case AMDGPU_IRQ_STATE_ENABLE:
  1215. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1216. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1217. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1218. break;
  1219. default:
  1220. break;
  1221. }
  1222. break;
  1223. default:
  1224. break;
  1225. }
  1226. return 0;
  1227. }
  1228. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1229. struct amdgpu_irq_src *source,
  1230. struct amdgpu_iv_entry *entry)
  1231. {
  1232. u8 instance_id, queue_id;
  1233. instance_id = (entry->ring_id & 0x3) >> 0;
  1234. queue_id = (entry->ring_id & 0xc) >> 2;
  1235. DRM_DEBUG("IH: SDMA trap\n");
  1236. switch (instance_id) {
  1237. case 0:
  1238. switch (queue_id) {
  1239. case 0:
  1240. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1241. break;
  1242. case 1:
  1243. /* XXX compute */
  1244. break;
  1245. case 2:
  1246. /* XXX compute */
  1247. break;
  1248. }
  1249. break;
  1250. case 1:
  1251. switch (queue_id) {
  1252. case 0:
  1253. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1254. break;
  1255. case 1:
  1256. /* XXX compute */
  1257. break;
  1258. case 2:
  1259. /* XXX compute */
  1260. break;
  1261. }
  1262. break;
  1263. }
  1264. return 0;
  1265. }
  1266. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1267. struct amdgpu_irq_src *source,
  1268. struct amdgpu_iv_entry *entry)
  1269. {
  1270. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1271. schedule_work(&adev->reset_work);
  1272. return 0;
  1273. }
  1274. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1275. struct amdgpu_device *adev,
  1276. bool enable)
  1277. {
  1278. uint32_t temp, data;
  1279. int i;
  1280. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1281. for (i = 0; i < adev->sdma.num_instances; i++) {
  1282. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1283. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1284. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1285. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1286. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1287. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1288. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1289. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1290. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1291. if (data != temp)
  1292. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1293. }
  1294. } else {
  1295. for (i = 0; i < adev->sdma.num_instances; i++) {
  1296. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1297. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1298. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1299. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1300. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1301. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1302. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1303. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1304. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1305. if (data != temp)
  1306. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1307. }
  1308. }
  1309. }
  1310. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1311. struct amdgpu_device *adev,
  1312. bool enable)
  1313. {
  1314. uint32_t temp, data;
  1315. int i;
  1316. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1317. for (i = 0; i < adev->sdma.num_instances; i++) {
  1318. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1319. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1320. if (temp != data)
  1321. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1322. }
  1323. } else {
  1324. for (i = 0; i < adev->sdma.num_instances; i++) {
  1325. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1326. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1327. if (temp != data)
  1328. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1329. }
  1330. }
  1331. }
  1332. static int sdma_v3_0_set_clockgating_state(void *handle,
  1333. enum amd_clockgating_state state)
  1334. {
  1335. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1336. if (amdgpu_sriov_vf(adev))
  1337. return 0;
  1338. switch (adev->asic_type) {
  1339. case CHIP_FIJI:
  1340. case CHIP_CARRIZO:
  1341. case CHIP_STONEY:
  1342. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1343. state == AMD_CG_STATE_GATE ? true : false);
  1344. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1345. state == AMD_CG_STATE_GATE ? true : false);
  1346. break;
  1347. default:
  1348. break;
  1349. }
  1350. return 0;
  1351. }
  1352. static int sdma_v3_0_set_powergating_state(void *handle,
  1353. enum amd_powergating_state state)
  1354. {
  1355. return 0;
  1356. }
  1357. static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
  1358. {
  1359. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1360. int data;
  1361. if (amdgpu_sriov_vf(adev))
  1362. *flags = 0;
  1363. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1364. data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
  1365. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
  1366. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1367. /* AMD_CG_SUPPORT_SDMA_LS */
  1368. data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
  1369. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1370. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1371. }
  1372. static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1373. .name = "sdma_v3_0",
  1374. .early_init = sdma_v3_0_early_init,
  1375. .late_init = NULL,
  1376. .sw_init = sdma_v3_0_sw_init,
  1377. .sw_fini = sdma_v3_0_sw_fini,
  1378. .hw_init = sdma_v3_0_hw_init,
  1379. .hw_fini = sdma_v3_0_hw_fini,
  1380. .suspend = sdma_v3_0_suspend,
  1381. .resume = sdma_v3_0_resume,
  1382. .is_idle = sdma_v3_0_is_idle,
  1383. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1384. .check_soft_reset = sdma_v3_0_check_soft_reset,
  1385. .pre_soft_reset = sdma_v3_0_pre_soft_reset,
  1386. .post_soft_reset = sdma_v3_0_post_soft_reset,
  1387. .soft_reset = sdma_v3_0_soft_reset,
  1388. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1389. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1390. .get_clockgating_state = sdma_v3_0_get_clockgating_state,
  1391. };
  1392. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1393. .type = AMDGPU_RING_TYPE_SDMA,
  1394. .align_mask = 0xf,
  1395. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1396. .get_rptr = sdma_v3_0_ring_get_rptr,
  1397. .get_wptr = sdma_v3_0_ring_get_wptr,
  1398. .set_wptr = sdma_v3_0_ring_set_wptr,
  1399. .emit_frame_size =
  1400. 6 + /* sdma_v3_0_ring_emit_hdp_flush */
  1401. 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
  1402. 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
  1403. 12 + /* sdma_v3_0_ring_emit_vm_flush */
  1404. 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
  1405. .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
  1406. .emit_ib = sdma_v3_0_ring_emit_ib,
  1407. .emit_fence = sdma_v3_0_ring_emit_fence,
  1408. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1409. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1410. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1411. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1412. .test_ring = sdma_v3_0_ring_test_ring,
  1413. .test_ib = sdma_v3_0_ring_test_ib,
  1414. .insert_nop = sdma_v3_0_ring_insert_nop,
  1415. .pad_ib = sdma_v3_0_ring_pad_ib,
  1416. };
  1417. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1418. {
  1419. int i;
  1420. for (i = 0; i < adev->sdma.num_instances; i++)
  1421. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1422. }
  1423. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1424. .set = sdma_v3_0_set_trap_irq_state,
  1425. .process = sdma_v3_0_process_trap_irq,
  1426. };
  1427. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1428. .process = sdma_v3_0_process_illegal_inst_irq,
  1429. };
  1430. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1431. {
  1432. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1433. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1434. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1435. }
  1436. /**
  1437. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1438. *
  1439. * @ring: amdgpu_ring structure holding ring information
  1440. * @src_offset: src GPU address
  1441. * @dst_offset: dst GPU address
  1442. * @byte_count: number of bytes to xfer
  1443. *
  1444. * Copy GPU buffers using the DMA engine (VI).
  1445. * Used by the amdgpu ttm implementation to move pages if
  1446. * registered as the asic copy callback.
  1447. */
  1448. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1449. uint64_t src_offset,
  1450. uint64_t dst_offset,
  1451. uint32_t byte_count)
  1452. {
  1453. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1454. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1455. ib->ptr[ib->length_dw++] = byte_count;
  1456. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1457. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1458. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1459. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1460. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1461. }
  1462. /**
  1463. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1464. *
  1465. * @ring: amdgpu_ring structure holding ring information
  1466. * @src_data: value to write to buffer
  1467. * @dst_offset: dst GPU address
  1468. * @byte_count: number of bytes to xfer
  1469. *
  1470. * Fill GPU buffers using the DMA engine (VI).
  1471. */
  1472. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1473. uint32_t src_data,
  1474. uint64_t dst_offset,
  1475. uint32_t byte_count)
  1476. {
  1477. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1478. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1479. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1480. ib->ptr[ib->length_dw++] = src_data;
  1481. ib->ptr[ib->length_dw++] = byte_count;
  1482. }
  1483. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1484. .copy_max_bytes = 0x1fffff,
  1485. .copy_num_dw = 7,
  1486. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1487. .fill_max_bytes = 0x1fffff,
  1488. .fill_num_dw = 5,
  1489. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1490. };
  1491. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1492. {
  1493. if (adev->mman.buffer_funcs == NULL) {
  1494. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1495. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1496. }
  1497. }
  1498. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1499. .copy_pte = sdma_v3_0_vm_copy_pte,
  1500. .write_pte = sdma_v3_0_vm_write_pte,
  1501. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1502. };
  1503. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1504. {
  1505. unsigned i;
  1506. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1507. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1508. for (i = 0; i < adev->sdma.num_instances; i++)
  1509. adev->vm_manager.vm_pte_rings[i] =
  1510. &adev->sdma.instance[i].ring;
  1511. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1512. }
  1513. }
  1514. const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
  1515. {
  1516. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1517. .major = 3,
  1518. .minor = 0,
  1519. .rev = 0,
  1520. .funcs = &sdma_v3_0_ip_funcs,
  1521. };
  1522. const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
  1523. {
  1524. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1525. .major = 3,
  1526. .minor = 1,
  1527. .rev = 0,
  1528. .funcs = &sdma_v3_0_ip_funcs,
  1529. };