tree_plugin.h 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion (tree-based version)
  3. * Internal non-public definitions that provide either classic
  4. * or preemptible semantics.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, you can access it online at
  18. * http://www.gnu.org/licenses/gpl-2.0.html.
  19. *
  20. * Copyright Red Hat, 2009
  21. * Copyright IBM Corporation, 2009
  22. *
  23. * Author: Ingo Molnar <mingo@elte.hu>
  24. * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/gfp.h>
  28. #include <linux/oom.h>
  29. #include <linux/smpboot.h>
  30. #include "../time/tick-internal.h"
  31. #define RCU_KTHREAD_PRIO 1
  32. #ifdef CONFIG_RCU_BOOST
  33. #include "../locking/rtmutex_common.h"
  34. #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
  35. #else
  36. #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
  37. #endif
  38. #ifdef CONFIG_RCU_NOCB_CPU
  39. static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  40. static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
  41. static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
  42. static char __initdata nocb_buf[NR_CPUS * 5];
  43. #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  44. /*
  45. * Check the RCU kernel configuration parameters and print informative
  46. * messages about anything out of the ordinary. If you like #ifdef, you
  47. * will love this function.
  48. */
  49. static void __init rcu_bootup_announce_oddness(void)
  50. {
  51. #ifdef CONFIG_RCU_TRACE
  52. pr_info("\tRCU debugfs-based tracing is enabled.\n");
  53. #endif
  54. #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
  55. pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  56. CONFIG_RCU_FANOUT);
  57. #endif
  58. #ifdef CONFIG_RCU_FANOUT_EXACT
  59. pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  60. #endif
  61. #ifdef CONFIG_RCU_FAST_NO_HZ
  62. pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  63. #endif
  64. #ifdef CONFIG_PROVE_RCU
  65. pr_info("\tRCU lockdep checking is enabled.\n");
  66. #endif
  67. #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
  68. pr_info("\tRCU torture testing starts during boot.\n");
  69. #endif
  70. #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
  71. pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
  72. #endif
  73. #if defined(CONFIG_RCU_CPU_STALL_INFO)
  74. pr_info("\tAdditional per-CPU info printed with stalls.\n");
  75. #endif
  76. #if NUM_RCU_LVL_4 != 0
  77. pr_info("\tFour-level hierarchy is enabled.\n");
  78. #endif
  79. if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
  80. pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  81. if (nr_cpu_ids != NR_CPUS)
  82. pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  83. #ifdef CONFIG_RCU_NOCB_CPU
  84. #ifndef CONFIG_RCU_NOCB_CPU_NONE
  85. if (!have_rcu_nocb_mask) {
  86. zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
  87. have_rcu_nocb_mask = true;
  88. }
  89. #ifdef CONFIG_RCU_NOCB_CPU_ZERO
  90. pr_info("\tOffload RCU callbacks from CPU 0\n");
  91. cpumask_set_cpu(0, rcu_nocb_mask);
  92. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
  93. #ifdef CONFIG_RCU_NOCB_CPU_ALL
  94. pr_info("\tOffload RCU callbacks from all CPUs\n");
  95. cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
  96. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
  97. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
  98. if (have_rcu_nocb_mask) {
  99. if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
  100. pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
  101. cpumask_and(rcu_nocb_mask, cpu_possible_mask,
  102. rcu_nocb_mask);
  103. }
  104. cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
  105. pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
  106. if (rcu_nocb_poll)
  107. pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
  108. }
  109. #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  110. }
  111. #ifdef CONFIG_TREE_PREEMPT_RCU
  112. RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
  113. static struct rcu_state *rcu_state_p = &rcu_preempt_state;
  114. static int rcu_preempted_readers_exp(struct rcu_node *rnp);
  115. /*
  116. * Tell them what RCU they are running.
  117. */
  118. static void __init rcu_bootup_announce(void)
  119. {
  120. pr_info("Preemptible hierarchical RCU implementation.\n");
  121. rcu_bootup_announce_oddness();
  122. }
  123. /*
  124. * Return the number of RCU-preempt batches processed thus far
  125. * for debug and statistics.
  126. */
  127. long rcu_batches_completed_preempt(void)
  128. {
  129. return rcu_preempt_state.completed;
  130. }
  131. EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
  132. /*
  133. * Return the number of RCU batches processed thus far for debug & stats.
  134. */
  135. long rcu_batches_completed(void)
  136. {
  137. return rcu_batches_completed_preempt();
  138. }
  139. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  140. /*
  141. * Record a preemptible-RCU quiescent state for the specified CPU. Note
  142. * that this just means that the task currently running on the CPU is
  143. * not in a quiescent state. There might be any number of tasks blocked
  144. * while in an RCU read-side critical section.
  145. *
  146. * Unlike the other rcu_*_qs() functions, callers to this function
  147. * must disable irqs in order to protect the assignment to
  148. * ->rcu_read_unlock_special.
  149. */
  150. static void rcu_preempt_qs(int cpu)
  151. {
  152. struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
  153. if (rdp->passed_quiesce == 0)
  154. trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
  155. rdp->passed_quiesce = 1;
  156. current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
  157. }
  158. /*
  159. * We have entered the scheduler, and the current task might soon be
  160. * context-switched away from. If this task is in an RCU read-side
  161. * critical section, we will no longer be able to rely on the CPU to
  162. * record that fact, so we enqueue the task on the blkd_tasks list.
  163. * The task will dequeue itself when it exits the outermost enclosing
  164. * RCU read-side critical section. Therefore, the current grace period
  165. * cannot be permitted to complete until the blkd_tasks list entries
  166. * predating the current grace period drain, in other words, until
  167. * rnp->gp_tasks becomes NULL.
  168. *
  169. * Caller must disable preemption.
  170. */
  171. static void rcu_preempt_note_context_switch(int cpu)
  172. {
  173. struct task_struct *t = current;
  174. unsigned long flags;
  175. struct rcu_data *rdp;
  176. struct rcu_node *rnp;
  177. if (t->rcu_read_lock_nesting > 0 &&
  178. (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
  179. /* Possibly blocking in an RCU read-side critical section. */
  180. rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
  181. rnp = rdp->mynode;
  182. raw_spin_lock_irqsave(&rnp->lock, flags);
  183. smp_mb__after_unlock_lock();
  184. t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
  185. t->rcu_blocked_node = rnp;
  186. /*
  187. * If this CPU has already checked in, then this task
  188. * will hold up the next grace period rather than the
  189. * current grace period. Queue the task accordingly.
  190. * If the task is queued for the current grace period
  191. * (i.e., this CPU has not yet passed through a quiescent
  192. * state for the current grace period), then as long
  193. * as that task remains queued, the current grace period
  194. * cannot end. Note that there is some uncertainty as
  195. * to exactly when the current grace period started.
  196. * We take a conservative approach, which can result
  197. * in unnecessarily waiting on tasks that started very
  198. * slightly after the current grace period began. C'est
  199. * la vie!!!
  200. *
  201. * But first, note that the current CPU must still be
  202. * on line!
  203. */
  204. WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
  205. WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
  206. if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
  207. list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
  208. rnp->gp_tasks = &t->rcu_node_entry;
  209. #ifdef CONFIG_RCU_BOOST
  210. if (rnp->boost_tasks != NULL)
  211. rnp->boost_tasks = rnp->gp_tasks;
  212. #endif /* #ifdef CONFIG_RCU_BOOST */
  213. } else {
  214. list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
  215. if (rnp->qsmask & rdp->grpmask)
  216. rnp->gp_tasks = &t->rcu_node_entry;
  217. }
  218. trace_rcu_preempt_task(rdp->rsp->name,
  219. t->pid,
  220. (rnp->qsmask & rdp->grpmask)
  221. ? rnp->gpnum
  222. : rnp->gpnum + 1);
  223. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  224. } else if (t->rcu_read_lock_nesting < 0 &&
  225. t->rcu_read_unlock_special) {
  226. /*
  227. * Complete exit from RCU read-side critical section on
  228. * behalf of preempted instance of __rcu_read_unlock().
  229. */
  230. rcu_read_unlock_special(t);
  231. }
  232. /*
  233. * Either we were not in an RCU read-side critical section to
  234. * begin with, or we have now recorded that critical section
  235. * globally. Either way, we can now note a quiescent state
  236. * for this CPU. Again, if we were in an RCU read-side critical
  237. * section, and if that critical section was blocking the current
  238. * grace period, then the fact that the task has been enqueued
  239. * means that we continue to block the current grace period.
  240. */
  241. local_irq_save(flags);
  242. rcu_preempt_qs(cpu);
  243. local_irq_restore(flags);
  244. }
  245. /*
  246. * Check for preempted RCU readers blocking the current grace period
  247. * for the specified rcu_node structure. If the caller needs a reliable
  248. * answer, it must hold the rcu_node's ->lock.
  249. */
  250. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  251. {
  252. return rnp->gp_tasks != NULL;
  253. }
  254. /*
  255. * Record a quiescent state for all tasks that were previously queued
  256. * on the specified rcu_node structure and that were blocking the current
  257. * RCU grace period. The caller must hold the specified rnp->lock with
  258. * irqs disabled, and this lock is released upon return, but irqs remain
  259. * disabled.
  260. */
  261. static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
  262. __releases(rnp->lock)
  263. {
  264. unsigned long mask;
  265. struct rcu_node *rnp_p;
  266. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  267. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  268. return; /* Still need more quiescent states! */
  269. }
  270. rnp_p = rnp->parent;
  271. if (rnp_p == NULL) {
  272. /*
  273. * Either there is only one rcu_node in the tree,
  274. * or tasks were kicked up to root rcu_node due to
  275. * CPUs going offline.
  276. */
  277. rcu_report_qs_rsp(&rcu_preempt_state, flags);
  278. return;
  279. }
  280. /* Report up the rest of the hierarchy. */
  281. mask = rnp->grpmask;
  282. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  283. raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
  284. smp_mb__after_unlock_lock();
  285. rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
  286. }
  287. /*
  288. * Advance a ->blkd_tasks-list pointer to the next entry, instead
  289. * returning NULL if at the end of the list.
  290. */
  291. static struct list_head *rcu_next_node_entry(struct task_struct *t,
  292. struct rcu_node *rnp)
  293. {
  294. struct list_head *np;
  295. np = t->rcu_node_entry.next;
  296. if (np == &rnp->blkd_tasks)
  297. np = NULL;
  298. return np;
  299. }
  300. /*
  301. * Handle special cases during rcu_read_unlock(), such as needing to
  302. * notify RCU core processing or task having blocked during the RCU
  303. * read-side critical section.
  304. */
  305. void rcu_read_unlock_special(struct task_struct *t)
  306. {
  307. int empty;
  308. int empty_exp;
  309. int empty_exp_now;
  310. unsigned long flags;
  311. struct list_head *np;
  312. #ifdef CONFIG_RCU_BOOST
  313. bool drop_boost_mutex = false;
  314. #endif /* #ifdef CONFIG_RCU_BOOST */
  315. struct rcu_node *rnp;
  316. int special;
  317. /* NMI handlers cannot block and cannot safely manipulate state. */
  318. if (in_nmi())
  319. return;
  320. local_irq_save(flags);
  321. /*
  322. * If RCU core is waiting for this CPU to exit critical section,
  323. * let it know that we have done so.
  324. */
  325. special = t->rcu_read_unlock_special;
  326. if (special & RCU_READ_UNLOCK_NEED_QS) {
  327. rcu_preempt_qs(smp_processor_id());
  328. if (!t->rcu_read_unlock_special) {
  329. local_irq_restore(flags);
  330. return;
  331. }
  332. }
  333. /* Hardware IRQ handlers cannot block, complain if they get here. */
  334. if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
  335. local_irq_restore(flags);
  336. return;
  337. }
  338. /* Clean up if blocked during RCU read-side critical section. */
  339. if (special & RCU_READ_UNLOCK_BLOCKED) {
  340. t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
  341. /*
  342. * Remove this task from the list it blocked on. The
  343. * task can migrate while we acquire the lock, but at
  344. * most one time. So at most two passes through loop.
  345. */
  346. for (;;) {
  347. rnp = t->rcu_blocked_node;
  348. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  349. smp_mb__after_unlock_lock();
  350. if (rnp == t->rcu_blocked_node)
  351. break;
  352. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  353. }
  354. empty = !rcu_preempt_blocked_readers_cgp(rnp);
  355. empty_exp = !rcu_preempted_readers_exp(rnp);
  356. smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
  357. np = rcu_next_node_entry(t, rnp);
  358. list_del_init(&t->rcu_node_entry);
  359. t->rcu_blocked_node = NULL;
  360. trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
  361. rnp->gpnum, t->pid);
  362. if (&t->rcu_node_entry == rnp->gp_tasks)
  363. rnp->gp_tasks = np;
  364. if (&t->rcu_node_entry == rnp->exp_tasks)
  365. rnp->exp_tasks = np;
  366. #ifdef CONFIG_RCU_BOOST
  367. if (&t->rcu_node_entry == rnp->boost_tasks)
  368. rnp->boost_tasks = np;
  369. /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
  370. drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
  371. #endif /* #ifdef CONFIG_RCU_BOOST */
  372. /*
  373. * If this was the last task on the current list, and if
  374. * we aren't waiting on any CPUs, report the quiescent state.
  375. * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
  376. * so we must take a snapshot of the expedited state.
  377. */
  378. empty_exp_now = !rcu_preempted_readers_exp(rnp);
  379. if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
  380. trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
  381. rnp->gpnum,
  382. 0, rnp->qsmask,
  383. rnp->level,
  384. rnp->grplo,
  385. rnp->grphi,
  386. !!rnp->gp_tasks);
  387. rcu_report_unblock_qs_rnp(rnp, flags);
  388. } else {
  389. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  390. }
  391. #ifdef CONFIG_RCU_BOOST
  392. /* Unboost if we were boosted. */
  393. if (drop_boost_mutex) {
  394. rt_mutex_unlock(&rnp->boost_mtx);
  395. complete(&rnp->boost_completion);
  396. }
  397. #endif /* #ifdef CONFIG_RCU_BOOST */
  398. /*
  399. * If this was the last task on the expedited lists,
  400. * then we need to report up the rcu_node hierarchy.
  401. */
  402. if (!empty_exp && empty_exp_now)
  403. rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
  404. } else {
  405. local_irq_restore(flags);
  406. }
  407. }
  408. #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
  409. /*
  410. * Dump detailed information for all tasks blocking the current RCU
  411. * grace period on the specified rcu_node structure.
  412. */
  413. static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
  414. {
  415. unsigned long flags;
  416. struct task_struct *t;
  417. raw_spin_lock_irqsave(&rnp->lock, flags);
  418. if (!rcu_preempt_blocked_readers_cgp(rnp)) {
  419. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  420. return;
  421. }
  422. t = list_entry(rnp->gp_tasks,
  423. struct task_struct, rcu_node_entry);
  424. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
  425. sched_show_task(t);
  426. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  427. }
  428. /*
  429. * Dump detailed information for all tasks blocking the current RCU
  430. * grace period.
  431. */
  432. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  433. {
  434. struct rcu_node *rnp = rcu_get_root(rsp);
  435. rcu_print_detail_task_stall_rnp(rnp);
  436. rcu_for_each_leaf_node(rsp, rnp)
  437. rcu_print_detail_task_stall_rnp(rnp);
  438. }
  439. #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
  440. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  441. {
  442. }
  443. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
  444. #ifdef CONFIG_RCU_CPU_STALL_INFO
  445. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  446. {
  447. pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
  448. rnp->level, rnp->grplo, rnp->grphi);
  449. }
  450. static void rcu_print_task_stall_end(void)
  451. {
  452. pr_cont("\n");
  453. }
  454. #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
  455. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  456. {
  457. }
  458. static void rcu_print_task_stall_end(void)
  459. {
  460. }
  461. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
  462. /*
  463. * Scan the current list of tasks blocked within RCU read-side critical
  464. * sections, printing out the tid of each.
  465. */
  466. static int rcu_print_task_stall(struct rcu_node *rnp)
  467. {
  468. struct task_struct *t;
  469. int ndetected = 0;
  470. if (!rcu_preempt_blocked_readers_cgp(rnp))
  471. return 0;
  472. rcu_print_task_stall_begin(rnp);
  473. t = list_entry(rnp->gp_tasks,
  474. struct task_struct, rcu_node_entry);
  475. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
  476. pr_cont(" P%d", t->pid);
  477. ndetected++;
  478. }
  479. rcu_print_task_stall_end();
  480. return ndetected;
  481. }
  482. /*
  483. * Check that the list of blocked tasks for the newly completed grace
  484. * period is in fact empty. It is a serious bug to complete a grace
  485. * period that still has RCU readers blocked! This function must be
  486. * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
  487. * must be held by the caller.
  488. *
  489. * Also, if there are blocked tasks on the list, they automatically
  490. * block the newly created grace period, so set up ->gp_tasks accordingly.
  491. */
  492. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  493. {
  494. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  495. if (!list_empty(&rnp->blkd_tasks))
  496. rnp->gp_tasks = rnp->blkd_tasks.next;
  497. WARN_ON_ONCE(rnp->qsmask);
  498. }
  499. #ifdef CONFIG_HOTPLUG_CPU
  500. /*
  501. * Handle tasklist migration for case in which all CPUs covered by the
  502. * specified rcu_node have gone offline. Move them up to the root
  503. * rcu_node. The reason for not just moving them to the immediate
  504. * parent is to remove the need for rcu_read_unlock_special() to
  505. * make more than two attempts to acquire the target rcu_node's lock.
  506. * Returns true if there were tasks blocking the current RCU grace
  507. * period.
  508. *
  509. * Returns 1 if there was previously a task blocking the current grace
  510. * period on the specified rcu_node structure.
  511. *
  512. * The caller must hold rnp->lock with irqs disabled.
  513. */
  514. static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
  515. struct rcu_node *rnp,
  516. struct rcu_data *rdp)
  517. {
  518. struct list_head *lp;
  519. struct list_head *lp_root;
  520. int retval = 0;
  521. struct rcu_node *rnp_root = rcu_get_root(rsp);
  522. struct task_struct *t;
  523. if (rnp == rnp_root) {
  524. WARN_ONCE(1, "Last CPU thought to be offlined?");
  525. return 0; /* Shouldn't happen: at least one CPU online. */
  526. }
  527. /* If we are on an internal node, complain bitterly. */
  528. WARN_ON_ONCE(rnp != rdp->mynode);
  529. /*
  530. * Move tasks up to root rcu_node. Don't try to get fancy for
  531. * this corner-case operation -- just put this node's tasks
  532. * at the head of the root node's list, and update the root node's
  533. * ->gp_tasks and ->exp_tasks pointers to those of this node's,
  534. * if non-NULL. This might result in waiting for more tasks than
  535. * absolutely necessary, but this is a good performance/complexity
  536. * tradeoff.
  537. */
  538. if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
  539. retval |= RCU_OFL_TASKS_NORM_GP;
  540. if (rcu_preempted_readers_exp(rnp))
  541. retval |= RCU_OFL_TASKS_EXP_GP;
  542. lp = &rnp->blkd_tasks;
  543. lp_root = &rnp_root->blkd_tasks;
  544. while (!list_empty(lp)) {
  545. t = list_entry(lp->next, typeof(*t), rcu_node_entry);
  546. raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
  547. smp_mb__after_unlock_lock();
  548. list_del(&t->rcu_node_entry);
  549. t->rcu_blocked_node = rnp_root;
  550. list_add(&t->rcu_node_entry, lp_root);
  551. if (&t->rcu_node_entry == rnp->gp_tasks)
  552. rnp_root->gp_tasks = rnp->gp_tasks;
  553. if (&t->rcu_node_entry == rnp->exp_tasks)
  554. rnp_root->exp_tasks = rnp->exp_tasks;
  555. #ifdef CONFIG_RCU_BOOST
  556. if (&t->rcu_node_entry == rnp->boost_tasks)
  557. rnp_root->boost_tasks = rnp->boost_tasks;
  558. #endif /* #ifdef CONFIG_RCU_BOOST */
  559. raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
  560. }
  561. rnp->gp_tasks = NULL;
  562. rnp->exp_tasks = NULL;
  563. #ifdef CONFIG_RCU_BOOST
  564. rnp->boost_tasks = NULL;
  565. /*
  566. * In case root is being boosted and leaf was not. Make sure
  567. * that we boost the tasks blocking the current grace period
  568. * in this case.
  569. */
  570. raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
  571. smp_mb__after_unlock_lock();
  572. if (rnp_root->boost_tasks != NULL &&
  573. rnp_root->boost_tasks != rnp_root->gp_tasks &&
  574. rnp_root->boost_tasks != rnp_root->exp_tasks)
  575. rnp_root->boost_tasks = rnp_root->gp_tasks;
  576. raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
  577. #endif /* #ifdef CONFIG_RCU_BOOST */
  578. return retval;
  579. }
  580. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  581. /*
  582. * Check for a quiescent state from the current CPU. When a task blocks,
  583. * the task is recorded in the corresponding CPU's rcu_node structure,
  584. * which is checked elsewhere.
  585. *
  586. * Caller must disable hard irqs.
  587. */
  588. static void rcu_preempt_check_callbacks(int cpu)
  589. {
  590. struct task_struct *t = current;
  591. if (t->rcu_read_lock_nesting == 0) {
  592. rcu_preempt_qs(cpu);
  593. return;
  594. }
  595. if (t->rcu_read_lock_nesting > 0 &&
  596. per_cpu(rcu_preempt_data, cpu).qs_pending)
  597. t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
  598. }
  599. #ifdef CONFIG_RCU_BOOST
  600. static void rcu_preempt_do_callbacks(void)
  601. {
  602. rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
  603. }
  604. #endif /* #ifdef CONFIG_RCU_BOOST */
  605. /*
  606. * Queue a preemptible-RCU callback for invocation after a grace period.
  607. */
  608. void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  609. {
  610. __call_rcu(head, func, &rcu_preempt_state, -1, 0);
  611. }
  612. EXPORT_SYMBOL_GPL(call_rcu);
  613. /**
  614. * synchronize_rcu - wait until a grace period has elapsed.
  615. *
  616. * Control will return to the caller some time after a full grace
  617. * period has elapsed, in other words after all currently executing RCU
  618. * read-side critical sections have completed. Note, however, that
  619. * upon return from synchronize_rcu(), the caller might well be executing
  620. * concurrently with new RCU read-side critical sections that began while
  621. * synchronize_rcu() was waiting. RCU read-side critical sections are
  622. * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
  623. *
  624. * See the description of synchronize_sched() for more detailed information
  625. * on memory ordering guarantees.
  626. */
  627. void synchronize_rcu(void)
  628. {
  629. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  630. !lock_is_held(&rcu_lock_map) &&
  631. !lock_is_held(&rcu_sched_lock_map),
  632. "Illegal synchronize_rcu() in RCU read-side critical section");
  633. if (!rcu_scheduler_active)
  634. return;
  635. if (rcu_expedited)
  636. synchronize_rcu_expedited();
  637. else
  638. wait_rcu_gp(call_rcu);
  639. }
  640. EXPORT_SYMBOL_GPL(synchronize_rcu);
  641. static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
  642. static unsigned long sync_rcu_preempt_exp_count;
  643. static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
  644. /*
  645. * Return non-zero if there are any tasks in RCU read-side critical
  646. * sections blocking the current preemptible-RCU expedited grace period.
  647. * If there is no preemptible-RCU expedited grace period currently in
  648. * progress, returns zero unconditionally.
  649. */
  650. static int rcu_preempted_readers_exp(struct rcu_node *rnp)
  651. {
  652. return rnp->exp_tasks != NULL;
  653. }
  654. /*
  655. * return non-zero if there is no RCU expedited grace period in progress
  656. * for the specified rcu_node structure, in other words, if all CPUs and
  657. * tasks covered by the specified rcu_node structure have done their bit
  658. * for the current expedited grace period. Works only for preemptible
  659. * RCU -- other RCU implementation use other means.
  660. *
  661. * Caller must hold sync_rcu_preempt_exp_mutex.
  662. */
  663. static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
  664. {
  665. return !rcu_preempted_readers_exp(rnp) &&
  666. ACCESS_ONCE(rnp->expmask) == 0;
  667. }
  668. /*
  669. * Report the exit from RCU read-side critical section for the last task
  670. * that queued itself during or before the current expedited preemptible-RCU
  671. * grace period. This event is reported either to the rcu_node structure on
  672. * which the task was queued or to one of that rcu_node structure's ancestors,
  673. * recursively up the tree. (Calm down, calm down, we do the recursion
  674. * iteratively!)
  675. *
  676. * Most callers will set the "wake" flag, but the task initiating the
  677. * expedited grace period need not wake itself.
  678. *
  679. * Caller must hold sync_rcu_preempt_exp_mutex.
  680. */
  681. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  682. bool wake)
  683. {
  684. unsigned long flags;
  685. unsigned long mask;
  686. raw_spin_lock_irqsave(&rnp->lock, flags);
  687. smp_mb__after_unlock_lock();
  688. for (;;) {
  689. if (!sync_rcu_preempt_exp_done(rnp)) {
  690. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  691. break;
  692. }
  693. if (rnp->parent == NULL) {
  694. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  695. if (wake) {
  696. smp_mb(); /* EGP done before wake_up(). */
  697. wake_up(&sync_rcu_preempt_exp_wq);
  698. }
  699. break;
  700. }
  701. mask = rnp->grpmask;
  702. raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
  703. rnp = rnp->parent;
  704. raw_spin_lock(&rnp->lock); /* irqs already disabled */
  705. smp_mb__after_unlock_lock();
  706. rnp->expmask &= ~mask;
  707. }
  708. }
  709. /*
  710. * Snapshot the tasks blocking the newly started preemptible-RCU expedited
  711. * grace period for the specified rcu_node structure. If there are no such
  712. * tasks, report it up the rcu_node hierarchy.
  713. *
  714. * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
  715. * CPU hotplug operations.
  716. */
  717. static void
  718. sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
  719. {
  720. unsigned long flags;
  721. int must_wait = 0;
  722. raw_spin_lock_irqsave(&rnp->lock, flags);
  723. smp_mb__after_unlock_lock();
  724. if (list_empty(&rnp->blkd_tasks)) {
  725. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  726. } else {
  727. rnp->exp_tasks = rnp->blkd_tasks.next;
  728. rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
  729. must_wait = 1;
  730. }
  731. if (!must_wait)
  732. rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
  733. }
  734. /**
  735. * synchronize_rcu_expedited - Brute-force RCU grace period
  736. *
  737. * Wait for an RCU-preempt grace period, but expedite it. The basic
  738. * idea is to invoke synchronize_sched_expedited() to push all the tasks to
  739. * the ->blkd_tasks lists and wait for this list to drain. This consumes
  740. * significant time on all CPUs and is unfriendly to real-time workloads,
  741. * so is thus not recommended for any sort of common-case code.
  742. * In fact, if you are using synchronize_rcu_expedited() in a loop,
  743. * please restructure your code to batch your updates, and then Use a
  744. * single synchronize_rcu() instead.
  745. *
  746. * Note that it is illegal to call this function while holding any lock
  747. * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
  748. * to call this function from a CPU-hotplug notifier. Failing to observe
  749. * these restriction will result in deadlock.
  750. */
  751. void synchronize_rcu_expedited(void)
  752. {
  753. unsigned long flags;
  754. struct rcu_node *rnp;
  755. struct rcu_state *rsp = &rcu_preempt_state;
  756. unsigned long snap;
  757. int trycount = 0;
  758. smp_mb(); /* Caller's modifications seen first by other CPUs. */
  759. snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
  760. smp_mb(); /* Above access cannot bleed into critical section. */
  761. /*
  762. * Block CPU-hotplug operations. This means that any CPU-hotplug
  763. * operation that finds an rcu_node structure with tasks in the
  764. * process of being boosted will know that all tasks blocking
  765. * this expedited grace period will already be in the process of
  766. * being boosted. This simplifies the process of moving tasks
  767. * from leaf to root rcu_node structures.
  768. */
  769. get_online_cpus();
  770. /*
  771. * Acquire lock, falling back to synchronize_rcu() if too many
  772. * lock-acquisition failures. Of course, if someone does the
  773. * expedited grace period for us, just leave.
  774. */
  775. while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
  776. if (ULONG_CMP_LT(snap,
  777. ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
  778. put_online_cpus();
  779. goto mb_ret; /* Others did our work for us. */
  780. }
  781. if (trycount++ < 10) {
  782. udelay(trycount * num_online_cpus());
  783. } else {
  784. put_online_cpus();
  785. wait_rcu_gp(call_rcu);
  786. return;
  787. }
  788. }
  789. if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
  790. put_online_cpus();
  791. goto unlock_mb_ret; /* Others did our work for us. */
  792. }
  793. /* force all RCU readers onto ->blkd_tasks lists. */
  794. synchronize_sched_expedited();
  795. /* Initialize ->expmask for all non-leaf rcu_node structures. */
  796. rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
  797. raw_spin_lock_irqsave(&rnp->lock, flags);
  798. smp_mb__after_unlock_lock();
  799. rnp->expmask = rnp->qsmaskinit;
  800. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  801. }
  802. /* Snapshot current state of ->blkd_tasks lists. */
  803. rcu_for_each_leaf_node(rsp, rnp)
  804. sync_rcu_preempt_exp_init(rsp, rnp);
  805. if (NUM_RCU_NODES > 1)
  806. sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
  807. put_online_cpus();
  808. /* Wait for snapshotted ->blkd_tasks lists to drain. */
  809. rnp = rcu_get_root(rsp);
  810. wait_event(sync_rcu_preempt_exp_wq,
  811. sync_rcu_preempt_exp_done(rnp));
  812. /* Clean up and exit. */
  813. smp_mb(); /* ensure expedited GP seen before counter increment. */
  814. ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
  815. unlock_mb_ret:
  816. mutex_unlock(&sync_rcu_preempt_exp_mutex);
  817. mb_ret:
  818. smp_mb(); /* ensure subsequent action seen after grace period. */
  819. }
  820. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  821. /**
  822. * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
  823. *
  824. * Note that this primitive does not necessarily wait for an RCU grace period
  825. * to complete. For example, if there are no RCU callbacks queued anywhere
  826. * in the system, then rcu_barrier() is within its rights to return
  827. * immediately, without waiting for anything, much less an RCU grace period.
  828. */
  829. void rcu_barrier(void)
  830. {
  831. _rcu_barrier(&rcu_preempt_state);
  832. }
  833. EXPORT_SYMBOL_GPL(rcu_barrier);
  834. /*
  835. * Initialize preemptible RCU's state structures.
  836. */
  837. static void __init __rcu_init_preempt(void)
  838. {
  839. rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
  840. }
  841. /*
  842. * Check for a task exiting while in a preemptible-RCU read-side
  843. * critical section, clean up if so. No need to issue warnings,
  844. * as debug_check_no_locks_held() already does this if lockdep
  845. * is enabled.
  846. */
  847. void exit_rcu(void)
  848. {
  849. struct task_struct *t = current;
  850. if (likely(list_empty(&current->rcu_node_entry)))
  851. return;
  852. t->rcu_read_lock_nesting = 1;
  853. barrier();
  854. t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
  855. __rcu_read_unlock();
  856. }
  857. #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
  858. static struct rcu_state *rcu_state_p = &rcu_sched_state;
  859. /*
  860. * Tell them what RCU they are running.
  861. */
  862. static void __init rcu_bootup_announce(void)
  863. {
  864. pr_info("Hierarchical RCU implementation.\n");
  865. rcu_bootup_announce_oddness();
  866. }
  867. /*
  868. * Return the number of RCU batches processed thus far for debug & stats.
  869. */
  870. long rcu_batches_completed(void)
  871. {
  872. return rcu_batches_completed_sched();
  873. }
  874. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  875. /*
  876. * Because preemptible RCU does not exist, we never have to check for
  877. * CPUs being in quiescent states.
  878. */
  879. static void rcu_preempt_note_context_switch(int cpu)
  880. {
  881. }
  882. /*
  883. * Because preemptible RCU does not exist, there are never any preempted
  884. * RCU readers.
  885. */
  886. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  887. {
  888. return 0;
  889. }
  890. #ifdef CONFIG_HOTPLUG_CPU
  891. /* Because preemptible RCU does not exist, no quieting of tasks. */
  892. static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
  893. __releases(rnp->lock)
  894. {
  895. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  896. }
  897. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  898. /*
  899. * Because preemptible RCU does not exist, we never have to check for
  900. * tasks blocked within RCU read-side critical sections.
  901. */
  902. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  903. {
  904. }
  905. /*
  906. * Because preemptible RCU does not exist, we never have to check for
  907. * tasks blocked within RCU read-side critical sections.
  908. */
  909. static int rcu_print_task_stall(struct rcu_node *rnp)
  910. {
  911. return 0;
  912. }
  913. /*
  914. * Because there is no preemptible RCU, there can be no readers blocked,
  915. * so there is no need to check for blocked tasks. So check only for
  916. * bogus qsmask values.
  917. */
  918. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  919. {
  920. WARN_ON_ONCE(rnp->qsmask);
  921. }
  922. #ifdef CONFIG_HOTPLUG_CPU
  923. /*
  924. * Because preemptible RCU does not exist, it never needs to migrate
  925. * tasks that were blocked within RCU read-side critical sections, and
  926. * such non-existent tasks cannot possibly have been blocking the current
  927. * grace period.
  928. */
  929. static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
  930. struct rcu_node *rnp,
  931. struct rcu_data *rdp)
  932. {
  933. return 0;
  934. }
  935. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  936. /*
  937. * Because preemptible RCU does not exist, it never has any callbacks
  938. * to check.
  939. */
  940. static void rcu_preempt_check_callbacks(int cpu)
  941. {
  942. }
  943. /*
  944. * Wait for an rcu-preempt grace period, but make it happen quickly.
  945. * But because preemptible RCU does not exist, map to rcu-sched.
  946. */
  947. void synchronize_rcu_expedited(void)
  948. {
  949. synchronize_sched_expedited();
  950. }
  951. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  952. #ifdef CONFIG_HOTPLUG_CPU
  953. /*
  954. * Because preemptible RCU does not exist, there is never any need to
  955. * report on tasks preempted in RCU read-side critical sections during
  956. * expedited RCU grace periods.
  957. */
  958. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  959. bool wake)
  960. {
  961. }
  962. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  963. /*
  964. * Because preemptible RCU does not exist, rcu_barrier() is just
  965. * another name for rcu_barrier_sched().
  966. */
  967. void rcu_barrier(void)
  968. {
  969. rcu_barrier_sched();
  970. }
  971. EXPORT_SYMBOL_GPL(rcu_barrier);
  972. /*
  973. * Because preemptible RCU does not exist, it need not be initialized.
  974. */
  975. static void __init __rcu_init_preempt(void)
  976. {
  977. }
  978. /*
  979. * Because preemptible RCU does not exist, tasks cannot possibly exit
  980. * while in preemptible RCU read-side critical sections.
  981. */
  982. void exit_rcu(void)
  983. {
  984. }
  985. #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
  986. #ifdef CONFIG_RCU_BOOST
  987. #include "../locking/rtmutex_common.h"
  988. #ifdef CONFIG_RCU_TRACE
  989. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  990. {
  991. if (list_empty(&rnp->blkd_tasks))
  992. rnp->n_balk_blkd_tasks++;
  993. else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
  994. rnp->n_balk_exp_gp_tasks++;
  995. else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
  996. rnp->n_balk_boost_tasks++;
  997. else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
  998. rnp->n_balk_notblocked++;
  999. else if (rnp->gp_tasks != NULL &&
  1000. ULONG_CMP_LT(jiffies, rnp->boost_time))
  1001. rnp->n_balk_notyet++;
  1002. else
  1003. rnp->n_balk_nos++;
  1004. }
  1005. #else /* #ifdef CONFIG_RCU_TRACE */
  1006. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  1007. {
  1008. }
  1009. #endif /* #else #ifdef CONFIG_RCU_TRACE */
  1010. static void rcu_wake_cond(struct task_struct *t, int status)
  1011. {
  1012. /*
  1013. * If the thread is yielding, only wake it when this
  1014. * is invoked from idle
  1015. */
  1016. if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
  1017. wake_up_process(t);
  1018. }
  1019. /*
  1020. * Carry out RCU priority boosting on the task indicated by ->exp_tasks
  1021. * or ->boost_tasks, advancing the pointer to the next task in the
  1022. * ->blkd_tasks list.
  1023. *
  1024. * Note that irqs must be enabled: boosting the task can block.
  1025. * Returns 1 if there are more tasks needing to be boosted.
  1026. */
  1027. static int rcu_boost(struct rcu_node *rnp)
  1028. {
  1029. unsigned long flags;
  1030. struct task_struct *t;
  1031. struct list_head *tb;
  1032. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
  1033. return 0; /* Nothing left to boost. */
  1034. raw_spin_lock_irqsave(&rnp->lock, flags);
  1035. smp_mb__after_unlock_lock();
  1036. /*
  1037. * Recheck under the lock: all tasks in need of boosting
  1038. * might exit their RCU read-side critical sections on their own.
  1039. */
  1040. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
  1041. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1042. return 0;
  1043. }
  1044. /*
  1045. * Preferentially boost tasks blocking expedited grace periods.
  1046. * This cannot starve the normal grace periods because a second
  1047. * expedited grace period must boost all blocked tasks, including
  1048. * those blocking the pre-existing normal grace period.
  1049. */
  1050. if (rnp->exp_tasks != NULL) {
  1051. tb = rnp->exp_tasks;
  1052. rnp->n_exp_boosts++;
  1053. } else {
  1054. tb = rnp->boost_tasks;
  1055. rnp->n_normal_boosts++;
  1056. }
  1057. rnp->n_tasks_boosted++;
  1058. /*
  1059. * We boost task t by manufacturing an rt_mutex that appears to
  1060. * be held by task t. We leave a pointer to that rt_mutex where
  1061. * task t can find it, and task t will release the mutex when it
  1062. * exits its outermost RCU read-side critical section. Then
  1063. * simply acquiring this artificial rt_mutex will boost task
  1064. * t's priority. (Thanks to tglx for suggesting this approach!)
  1065. *
  1066. * Note that task t must acquire rnp->lock to remove itself from
  1067. * the ->blkd_tasks list, which it will do from exit() if from
  1068. * nowhere else. We therefore are guaranteed that task t will
  1069. * stay around at least until we drop rnp->lock. Note that
  1070. * rnp->lock also resolves races between our priority boosting
  1071. * and task t's exiting its outermost RCU read-side critical
  1072. * section.
  1073. */
  1074. t = container_of(tb, struct task_struct, rcu_node_entry);
  1075. rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
  1076. init_completion(&rnp->boost_completion);
  1077. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1078. /* Lock only for side effect: boosts task t's priority. */
  1079. rt_mutex_lock(&rnp->boost_mtx);
  1080. rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
  1081. /* Wait for boostee to be done w/boost_mtx before reinitializing. */
  1082. wait_for_completion(&rnp->boost_completion);
  1083. return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
  1084. ACCESS_ONCE(rnp->boost_tasks) != NULL;
  1085. }
  1086. /*
  1087. * Priority-boosting kthread. One per leaf rcu_node and one for the
  1088. * root rcu_node.
  1089. */
  1090. static int rcu_boost_kthread(void *arg)
  1091. {
  1092. struct rcu_node *rnp = (struct rcu_node *)arg;
  1093. int spincnt = 0;
  1094. int more2boost;
  1095. trace_rcu_utilization(TPS("Start boost kthread@init"));
  1096. for (;;) {
  1097. rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
  1098. trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
  1099. rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
  1100. trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
  1101. rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
  1102. more2boost = rcu_boost(rnp);
  1103. if (more2boost)
  1104. spincnt++;
  1105. else
  1106. spincnt = 0;
  1107. if (spincnt > 10) {
  1108. rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
  1109. trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
  1110. schedule_timeout_interruptible(2);
  1111. trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
  1112. spincnt = 0;
  1113. }
  1114. }
  1115. /* NOTREACHED */
  1116. trace_rcu_utilization(TPS("End boost kthread@notreached"));
  1117. return 0;
  1118. }
  1119. /*
  1120. * Check to see if it is time to start boosting RCU readers that are
  1121. * blocking the current grace period, and, if so, tell the per-rcu_node
  1122. * kthread to start boosting them. If there is an expedited grace
  1123. * period in progress, it is always time to boost.
  1124. *
  1125. * The caller must hold rnp->lock, which this function releases.
  1126. * The ->boost_kthread_task is immortal, so we don't need to worry
  1127. * about it going away.
  1128. */
  1129. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1130. __releases(rnp->lock)
  1131. {
  1132. struct task_struct *t;
  1133. if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
  1134. rnp->n_balk_exp_gp_tasks++;
  1135. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1136. return;
  1137. }
  1138. if (rnp->exp_tasks != NULL ||
  1139. (rnp->gp_tasks != NULL &&
  1140. rnp->boost_tasks == NULL &&
  1141. rnp->qsmask == 0 &&
  1142. ULONG_CMP_GE(jiffies, rnp->boost_time))) {
  1143. if (rnp->exp_tasks == NULL)
  1144. rnp->boost_tasks = rnp->gp_tasks;
  1145. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1146. t = rnp->boost_kthread_task;
  1147. if (t)
  1148. rcu_wake_cond(t, rnp->boost_kthread_status);
  1149. } else {
  1150. rcu_initiate_boost_trace(rnp);
  1151. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1152. }
  1153. }
  1154. /*
  1155. * Wake up the per-CPU kthread to invoke RCU callbacks.
  1156. */
  1157. static void invoke_rcu_callbacks_kthread(void)
  1158. {
  1159. unsigned long flags;
  1160. local_irq_save(flags);
  1161. __this_cpu_write(rcu_cpu_has_work, 1);
  1162. if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
  1163. current != __this_cpu_read(rcu_cpu_kthread_task)) {
  1164. rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
  1165. __this_cpu_read(rcu_cpu_kthread_status));
  1166. }
  1167. local_irq_restore(flags);
  1168. }
  1169. /*
  1170. * Is the current CPU running the RCU-callbacks kthread?
  1171. * Caller must have preemption disabled.
  1172. */
  1173. static bool rcu_is_callbacks_kthread(void)
  1174. {
  1175. return __this_cpu_read(rcu_cpu_kthread_task) == current;
  1176. }
  1177. #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
  1178. /*
  1179. * Do priority-boost accounting for the start of a new grace period.
  1180. */
  1181. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1182. {
  1183. rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
  1184. }
  1185. /*
  1186. * Create an RCU-boost kthread for the specified node if one does not
  1187. * already exist. We only create this kthread for preemptible RCU.
  1188. * Returns zero if all is well, a negated errno otherwise.
  1189. */
  1190. static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
  1191. struct rcu_node *rnp)
  1192. {
  1193. int rnp_index = rnp - &rsp->node[0];
  1194. unsigned long flags;
  1195. struct sched_param sp;
  1196. struct task_struct *t;
  1197. if (&rcu_preempt_state != rsp)
  1198. return 0;
  1199. if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
  1200. return 0;
  1201. rsp->boost = 1;
  1202. if (rnp->boost_kthread_task != NULL)
  1203. return 0;
  1204. t = kthread_create(rcu_boost_kthread, (void *)rnp,
  1205. "rcub/%d", rnp_index);
  1206. if (IS_ERR(t))
  1207. return PTR_ERR(t);
  1208. raw_spin_lock_irqsave(&rnp->lock, flags);
  1209. smp_mb__after_unlock_lock();
  1210. rnp->boost_kthread_task = t;
  1211. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1212. sp.sched_priority = RCU_BOOST_PRIO;
  1213. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  1214. wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
  1215. return 0;
  1216. }
  1217. static void rcu_kthread_do_work(void)
  1218. {
  1219. rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
  1220. rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
  1221. rcu_preempt_do_callbacks();
  1222. }
  1223. static void rcu_cpu_kthread_setup(unsigned int cpu)
  1224. {
  1225. struct sched_param sp;
  1226. sp.sched_priority = RCU_KTHREAD_PRIO;
  1227. sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
  1228. }
  1229. static void rcu_cpu_kthread_park(unsigned int cpu)
  1230. {
  1231. per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
  1232. }
  1233. static int rcu_cpu_kthread_should_run(unsigned int cpu)
  1234. {
  1235. return __this_cpu_read(rcu_cpu_has_work);
  1236. }
  1237. /*
  1238. * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
  1239. * RCU softirq used in flavors and configurations of RCU that do not
  1240. * support RCU priority boosting.
  1241. */
  1242. static void rcu_cpu_kthread(unsigned int cpu)
  1243. {
  1244. unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
  1245. char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
  1246. int spincnt;
  1247. for (spincnt = 0; spincnt < 10; spincnt++) {
  1248. trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
  1249. local_bh_disable();
  1250. *statusp = RCU_KTHREAD_RUNNING;
  1251. this_cpu_inc(rcu_cpu_kthread_loops);
  1252. local_irq_disable();
  1253. work = *workp;
  1254. *workp = 0;
  1255. local_irq_enable();
  1256. if (work)
  1257. rcu_kthread_do_work();
  1258. local_bh_enable();
  1259. if (*workp == 0) {
  1260. trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
  1261. *statusp = RCU_KTHREAD_WAITING;
  1262. return;
  1263. }
  1264. }
  1265. *statusp = RCU_KTHREAD_YIELDING;
  1266. trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
  1267. schedule_timeout_interruptible(2);
  1268. trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
  1269. *statusp = RCU_KTHREAD_WAITING;
  1270. }
  1271. /*
  1272. * Set the per-rcu_node kthread's affinity to cover all CPUs that are
  1273. * served by the rcu_node in question. The CPU hotplug lock is still
  1274. * held, so the value of rnp->qsmaskinit will be stable.
  1275. *
  1276. * We don't include outgoingcpu in the affinity set, use -1 if there is
  1277. * no outgoing CPU. If there are no CPUs left in the affinity set,
  1278. * this function allows the kthread to execute on any CPU.
  1279. */
  1280. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1281. {
  1282. struct task_struct *t = rnp->boost_kthread_task;
  1283. unsigned long mask = rnp->qsmaskinit;
  1284. cpumask_var_t cm;
  1285. int cpu;
  1286. if (!t)
  1287. return;
  1288. if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
  1289. return;
  1290. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
  1291. if ((mask & 0x1) && cpu != outgoingcpu)
  1292. cpumask_set_cpu(cpu, cm);
  1293. if (cpumask_weight(cm) == 0) {
  1294. cpumask_setall(cm);
  1295. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
  1296. cpumask_clear_cpu(cpu, cm);
  1297. WARN_ON_ONCE(cpumask_weight(cm) == 0);
  1298. }
  1299. set_cpus_allowed_ptr(t, cm);
  1300. free_cpumask_var(cm);
  1301. }
  1302. static struct smp_hotplug_thread rcu_cpu_thread_spec = {
  1303. .store = &rcu_cpu_kthread_task,
  1304. .thread_should_run = rcu_cpu_kthread_should_run,
  1305. .thread_fn = rcu_cpu_kthread,
  1306. .thread_comm = "rcuc/%u",
  1307. .setup = rcu_cpu_kthread_setup,
  1308. .park = rcu_cpu_kthread_park,
  1309. };
  1310. /*
  1311. * Spawn all kthreads -- called as soon as the scheduler is running.
  1312. */
  1313. static int __init rcu_spawn_kthreads(void)
  1314. {
  1315. struct rcu_node *rnp;
  1316. int cpu;
  1317. rcu_scheduler_fully_active = 1;
  1318. for_each_possible_cpu(cpu)
  1319. per_cpu(rcu_cpu_has_work, cpu) = 0;
  1320. BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
  1321. rnp = rcu_get_root(rcu_state_p);
  1322. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1323. if (NUM_RCU_NODES > 1) {
  1324. rcu_for_each_leaf_node(rcu_state_p, rnp)
  1325. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1326. }
  1327. return 0;
  1328. }
  1329. early_initcall(rcu_spawn_kthreads);
  1330. static void rcu_prepare_kthreads(int cpu)
  1331. {
  1332. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  1333. struct rcu_node *rnp = rdp->mynode;
  1334. /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
  1335. if (rcu_scheduler_fully_active)
  1336. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1337. }
  1338. #else /* #ifdef CONFIG_RCU_BOOST */
  1339. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1340. __releases(rnp->lock)
  1341. {
  1342. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1343. }
  1344. static void invoke_rcu_callbacks_kthread(void)
  1345. {
  1346. WARN_ON_ONCE(1);
  1347. }
  1348. static bool rcu_is_callbacks_kthread(void)
  1349. {
  1350. return false;
  1351. }
  1352. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1353. {
  1354. }
  1355. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1356. {
  1357. }
  1358. static int __init rcu_scheduler_really_started(void)
  1359. {
  1360. rcu_scheduler_fully_active = 1;
  1361. return 0;
  1362. }
  1363. early_initcall(rcu_scheduler_really_started);
  1364. static void rcu_prepare_kthreads(int cpu)
  1365. {
  1366. }
  1367. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  1368. #if !defined(CONFIG_RCU_FAST_NO_HZ)
  1369. /*
  1370. * Check to see if any future RCU-related work will need to be done
  1371. * by the current CPU, even if none need be done immediately, returning
  1372. * 1 if so. This function is part of the RCU implementation; it is -not-
  1373. * an exported member of the RCU API.
  1374. *
  1375. * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
  1376. * any flavor of RCU.
  1377. */
  1378. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1379. int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
  1380. {
  1381. *delta_jiffies = ULONG_MAX;
  1382. return rcu_cpu_has_callbacks(cpu, NULL);
  1383. }
  1384. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1385. /*
  1386. * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
  1387. * after it.
  1388. */
  1389. static void rcu_cleanup_after_idle(int cpu)
  1390. {
  1391. }
  1392. /*
  1393. * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
  1394. * is nothing.
  1395. */
  1396. static void rcu_prepare_for_idle(int cpu)
  1397. {
  1398. }
  1399. /*
  1400. * Don't bother keeping a running count of the number of RCU callbacks
  1401. * posted because CONFIG_RCU_FAST_NO_HZ=n.
  1402. */
  1403. static void rcu_idle_count_callbacks_posted(void)
  1404. {
  1405. }
  1406. #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1407. /*
  1408. * This code is invoked when a CPU goes idle, at which point we want
  1409. * to have the CPU do everything required for RCU so that it can enter
  1410. * the energy-efficient dyntick-idle mode. This is handled by a
  1411. * state machine implemented by rcu_prepare_for_idle() below.
  1412. *
  1413. * The following three proprocessor symbols control this state machine:
  1414. *
  1415. * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
  1416. * to sleep in dyntick-idle mode with RCU callbacks pending. This
  1417. * is sized to be roughly one RCU grace period. Those energy-efficiency
  1418. * benchmarkers who might otherwise be tempted to set this to a large
  1419. * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
  1420. * system. And if you are -that- concerned about energy efficiency,
  1421. * just power the system down and be done with it!
  1422. * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
  1423. * permitted to sleep in dyntick-idle mode with only lazy RCU
  1424. * callbacks pending. Setting this too high can OOM your system.
  1425. *
  1426. * The values below work well in practice. If future workloads require
  1427. * adjustment, they can be converted into kernel config parameters, though
  1428. * making the state machine smarter might be a better option.
  1429. */
  1430. #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
  1431. #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
  1432. static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
  1433. module_param(rcu_idle_gp_delay, int, 0644);
  1434. static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
  1435. module_param(rcu_idle_lazy_gp_delay, int, 0644);
  1436. extern int tick_nohz_active;
  1437. /*
  1438. * Try to advance callbacks for all flavors of RCU on the current CPU, but
  1439. * only if it has been awhile since the last time we did so. Afterwards,
  1440. * if there are any callbacks ready for immediate invocation, return true.
  1441. */
  1442. static bool __maybe_unused rcu_try_advance_all_cbs(void)
  1443. {
  1444. bool cbs_ready = false;
  1445. struct rcu_data *rdp;
  1446. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1447. struct rcu_node *rnp;
  1448. struct rcu_state *rsp;
  1449. /* Exit early if we advanced recently. */
  1450. if (jiffies == rdtp->last_advance_all)
  1451. return 0;
  1452. rdtp->last_advance_all = jiffies;
  1453. for_each_rcu_flavor(rsp) {
  1454. rdp = this_cpu_ptr(rsp->rda);
  1455. rnp = rdp->mynode;
  1456. /*
  1457. * Don't bother checking unless a grace period has
  1458. * completed since we last checked and there are
  1459. * callbacks not yet ready to invoke.
  1460. */
  1461. if (rdp->completed != rnp->completed &&
  1462. rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
  1463. note_gp_changes(rsp, rdp);
  1464. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1465. cbs_ready = true;
  1466. }
  1467. return cbs_ready;
  1468. }
  1469. /*
  1470. * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
  1471. * to invoke. If the CPU has callbacks, try to advance them. Tell the
  1472. * caller to set the timeout based on whether or not there are non-lazy
  1473. * callbacks.
  1474. *
  1475. * The caller must have disabled interrupts.
  1476. */
  1477. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1478. int rcu_needs_cpu(int cpu, unsigned long *dj)
  1479. {
  1480. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1481. /* Snapshot to detect later posting of non-lazy callback. */
  1482. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1483. /* If no callbacks, RCU doesn't need the CPU. */
  1484. if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
  1485. *dj = ULONG_MAX;
  1486. return 0;
  1487. }
  1488. /* Attempt to advance callbacks. */
  1489. if (rcu_try_advance_all_cbs()) {
  1490. /* Some ready to invoke, so initiate later invocation. */
  1491. invoke_rcu_core();
  1492. return 1;
  1493. }
  1494. rdtp->last_accelerate = jiffies;
  1495. /* Request timer delay depending on laziness, and round. */
  1496. if (!rdtp->all_lazy) {
  1497. *dj = round_up(rcu_idle_gp_delay + jiffies,
  1498. rcu_idle_gp_delay) - jiffies;
  1499. } else {
  1500. *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
  1501. }
  1502. return 0;
  1503. }
  1504. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1505. /*
  1506. * Prepare a CPU for idle from an RCU perspective. The first major task
  1507. * is to sense whether nohz mode has been enabled or disabled via sysfs.
  1508. * The second major task is to check to see if a non-lazy callback has
  1509. * arrived at a CPU that previously had only lazy callbacks. The third
  1510. * major task is to accelerate (that is, assign grace-period numbers to)
  1511. * any recently arrived callbacks.
  1512. *
  1513. * The caller must have disabled interrupts.
  1514. */
  1515. static void rcu_prepare_for_idle(int cpu)
  1516. {
  1517. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1518. bool needwake;
  1519. struct rcu_data *rdp;
  1520. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1521. struct rcu_node *rnp;
  1522. struct rcu_state *rsp;
  1523. int tne;
  1524. /* Handle nohz enablement switches conservatively. */
  1525. tne = ACCESS_ONCE(tick_nohz_active);
  1526. if (tne != rdtp->tick_nohz_enabled_snap) {
  1527. if (rcu_cpu_has_callbacks(cpu, NULL))
  1528. invoke_rcu_core(); /* force nohz to see update. */
  1529. rdtp->tick_nohz_enabled_snap = tne;
  1530. return;
  1531. }
  1532. if (!tne)
  1533. return;
  1534. /* If this is a no-CBs CPU, no callbacks, just return. */
  1535. if (rcu_is_nocb_cpu(cpu))
  1536. return;
  1537. /*
  1538. * If a non-lazy callback arrived at a CPU having only lazy
  1539. * callbacks, invoke RCU core for the side-effect of recalculating
  1540. * idle duration on re-entry to idle.
  1541. */
  1542. if (rdtp->all_lazy &&
  1543. rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
  1544. rdtp->all_lazy = false;
  1545. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1546. invoke_rcu_core();
  1547. return;
  1548. }
  1549. /*
  1550. * If we have not yet accelerated this jiffy, accelerate all
  1551. * callbacks on this CPU.
  1552. */
  1553. if (rdtp->last_accelerate == jiffies)
  1554. return;
  1555. rdtp->last_accelerate = jiffies;
  1556. for_each_rcu_flavor(rsp) {
  1557. rdp = per_cpu_ptr(rsp->rda, cpu);
  1558. if (!*rdp->nxttail[RCU_DONE_TAIL])
  1559. continue;
  1560. rnp = rdp->mynode;
  1561. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  1562. smp_mb__after_unlock_lock();
  1563. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  1564. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1565. if (needwake)
  1566. rcu_gp_kthread_wake(rsp);
  1567. }
  1568. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1569. }
  1570. /*
  1571. * Clean up for exit from idle. Attempt to advance callbacks based on
  1572. * any grace periods that elapsed while the CPU was idle, and if any
  1573. * callbacks are now ready to invoke, initiate invocation.
  1574. */
  1575. static void rcu_cleanup_after_idle(int cpu)
  1576. {
  1577. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1578. if (rcu_is_nocb_cpu(cpu))
  1579. return;
  1580. if (rcu_try_advance_all_cbs())
  1581. invoke_rcu_core();
  1582. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1583. }
  1584. /*
  1585. * Keep a running count of the number of non-lazy callbacks posted
  1586. * on this CPU. This running counter (which is never decremented) allows
  1587. * rcu_prepare_for_idle() to detect when something out of the idle loop
  1588. * posts a callback, even if an equal number of callbacks are invoked.
  1589. * Of course, callbacks should only be posted from within a trace event
  1590. * designed to be called from idle or from within RCU_NONIDLE().
  1591. */
  1592. static void rcu_idle_count_callbacks_posted(void)
  1593. {
  1594. __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
  1595. }
  1596. /*
  1597. * Data for flushing lazy RCU callbacks at OOM time.
  1598. */
  1599. static atomic_t oom_callback_count;
  1600. static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
  1601. /*
  1602. * RCU OOM callback -- decrement the outstanding count and deliver the
  1603. * wake-up if we are the last one.
  1604. */
  1605. static void rcu_oom_callback(struct rcu_head *rhp)
  1606. {
  1607. if (atomic_dec_and_test(&oom_callback_count))
  1608. wake_up(&oom_callback_wq);
  1609. }
  1610. /*
  1611. * Post an rcu_oom_notify callback on the current CPU if it has at
  1612. * least one lazy callback. This will unnecessarily post callbacks
  1613. * to CPUs that already have a non-lazy callback at the end of their
  1614. * callback list, but this is an infrequent operation, so accept some
  1615. * extra overhead to keep things simple.
  1616. */
  1617. static void rcu_oom_notify_cpu(void *unused)
  1618. {
  1619. struct rcu_state *rsp;
  1620. struct rcu_data *rdp;
  1621. for_each_rcu_flavor(rsp) {
  1622. rdp = raw_cpu_ptr(rsp->rda);
  1623. if (rdp->qlen_lazy != 0) {
  1624. atomic_inc(&oom_callback_count);
  1625. rsp->call(&rdp->oom_head, rcu_oom_callback);
  1626. }
  1627. }
  1628. }
  1629. /*
  1630. * If low on memory, ensure that each CPU has a non-lazy callback.
  1631. * This will wake up CPUs that have only lazy callbacks, in turn
  1632. * ensuring that they free up the corresponding memory in a timely manner.
  1633. * Because an uncertain amount of memory will be freed in some uncertain
  1634. * timeframe, we do not claim to have freed anything.
  1635. */
  1636. static int rcu_oom_notify(struct notifier_block *self,
  1637. unsigned long notused, void *nfreed)
  1638. {
  1639. int cpu;
  1640. /* Wait for callbacks from earlier instance to complete. */
  1641. wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
  1642. smp_mb(); /* Ensure callback reuse happens after callback invocation. */
  1643. /*
  1644. * Prevent premature wakeup: ensure that all increments happen
  1645. * before there is a chance of the counter reaching zero.
  1646. */
  1647. atomic_set(&oom_callback_count, 1);
  1648. get_online_cpus();
  1649. for_each_online_cpu(cpu) {
  1650. smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
  1651. cond_resched();
  1652. }
  1653. put_online_cpus();
  1654. /* Unconditionally decrement: no need to wake ourselves up. */
  1655. atomic_dec(&oom_callback_count);
  1656. return NOTIFY_OK;
  1657. }
  1658. static struct notifier_block rcu_oom_nb = {
  1659. .notifier_call = rcu_oom_notify
  1660. };
  1661. static int __init rcu_register_oom_notifier(void)
  1662. {
  1663. register_oom_notifier(&rcu_oom_nb);
  1664. return 0;
  1665. }
  1666. early_initcall(rcu_register_oom_notifier);
  1667. #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1668. #ifdef CONFIG_RCU_CPU_STALL_INFO
  1669. #ifdef CONFIG_RCU_FAST_NO_HZ
  1670. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1671. {
  1672. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1673. unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
  1674. sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
  1675. rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
  1676. ulong2long(nlpd),
  1677. rdtp->all_lazy ? 'L' : '.',
  1678. rdtp->tick_nohz_enabled_snap ? '.' : 'D');
  1679. }
  1680. #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
  1681. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1682. {
  1683. *cp = '\0';
  1684. }
  1685. #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
  1686. /* Initiate the stall-info list. */
  1687. static void print_cpu_stall_info_begin(void)
  1688. {
  1689. pr_cont("\n");
  1690. }
  1691. /*
  1692. * Print out diagnostic information for the specified stalled CPU.
  1693. *
  1694. * If the specified CPU is aware of the current RCU grace period
  1695. * (flavor specified by rsp), then print the number of scheduling
  1696. * clock interrupts the CPU has taken during the time that it has
  1697. * been aware. Otherwise, print the number of RCU grace periods
  1698. * that this CPU is ignorant of, for example, "1" if the CPU was
  1699. * aware of the previous grace period.
  1700. *
  1701. * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
  1702. */
  1703. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1704. {
  1705. char fast_no_hz[72];
  1706. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1707. struct rcu_dynticks *rdtp = rdp->dynticks;
  1708. char *ticks_title;
  1709. unsigned long ticks_value;
  1710. if (rsp->gpnum == rdp->gpnum) {
  1711. ticks_title = "ticks this GP";
  1712. ticks_value = rdp->ticks_this_gp;
  1713. } else {
  1714. ticks_title = "GPs behind";
  1715. ticks_value = rsp->gpnum - rdp->gpnum;
  1716. }
  1717. print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
  1718. pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
  1719. cpu, ticks_value, ticks_title,
  1720. atomic_read(&rdtp->dynticks) & 0xfff,
  1721. rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
  1722. rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
  1723. fast_no_hz);
  1724. }
  1725. /* Terminate the stall-info list. */
  1726. static void print_cpu_stall_info_end(void)
  1727. {
  1728. pr_err("\t");
  1729. }
  1730. /* Zero ->ticks_this_gp for all flavors of RCU. */
  1731. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1732. {
  1733. rdp->ticks_this_gp = 0;
  1734. rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
  1735. }
  1736. /* Increment ->ticks_this_gp for all flavors of RCU. */
  1737. static void increment_cpu_stall_ticks(void)
  1738. {
  1739. struct rcu_state *rsp;
  1740. for_each_rcu_flavor(rsp)
  1741. raw_cpu_inc(rsp->rda->ticks_this_gp);
  1742. }
  1743. #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
  1744. static void print_cpu_stall_info_begin(void)
  1745. {
  1746. pr_cont(" {");
  1747. }
  1748. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1749. {
  1750. pr_cont(" %d", cpu);
  1751. }
  1752. static void print_cpu_stall_info_end(void)
  1753. {
  1754. pr_cont("} ");
  1755. }
  1756. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1757. {
  1758. }
  1759. static void increment_cpu_stall_ticks(void)
  1760. {
  1761. }
  1762. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
  1763. #ifdef CONFIG_RCU_NOCB_CPU
  1764. /*
  1765. * Offload callback processing from the boot-time-specified set of CPUs
  1766. * specified by rcu_nocb_mask. For each CPU in the set, there is a
  1767. * kthread created that pulls the callbacks from the corresponding CPU,
  1768. * waits for a grace period to elapse, and invokes the callbacks.
  1769. * The no-CBs CPUs do a wake_up() on their kthread when they insert
  1770. * a callback into any empty list, unless the rcu_nocb_poll boot parameter
  1771. * has been specified, in which case each kthread actively polls its
  1772. * CPU. (Which isn't so great for energy efficiency, but which does
  1773. * reduce RCU's overhead on that CPU.)
  1774. *
  1775. * This is intended to be used in conjunction with Frederic Weisbecker's
  1776. * adaptive-idle work, which would seriously reduce OS jitter on CPUs
  1777. * running CPU-bound user-mode computations.
  1778. *
  1779. * Offloading of callback processing could also in theory be used as
  1780. * an energy-efficiency measure because CPUs with no RCU callbacks
  1781. * queued are more aggressive about entering dyntick-idle mode.
  1782. */
  1783. /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
  1784. static int __init rcu_nocb_setup(char *str)
  1785. {
  1786. alloc_bootmem_cpumask_var(&rcu_nocb_mask);
  1787. have_rcu_nocb_mask = true;
  1788. cpulist_parse(str, rcu_nocb_mask);
  1789. return 1;
  1790. }
  1791. __setup("rcu_nocbs=", rcu_nocb_setup);
  1792. static int __init parse_rcu_nocb_poll(char *arg)
  1793. {
  1794. rcu_nocb_poll = 1;
  1795. return 0;
  1796. }
  1797. early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
  1798. /*
  1799. * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
  1800. * grace period.
  1801. */
  1802. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1803. {
  1804. wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
  1805. }
  1806. /*
  1807. * Set the root rcu_node structure's ->need_future_gp field
  1808. * based on the sum of those of all rcu_node structures. This does
  1809. * double-count the root rcu_node structure's requests, but this
  1810. * is necessary to handle the possibility of a rcu_nocb_kthread()
  1811. * having awakened during the time that the rcu_node structures
  1812. * were being updated for the end of the previous grace period.
  1813. */
  1814. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  1815. {
  1816. rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
  1817. }
  1818. static void rcu_init_one_nocb(struct rcu_node *rnp)
  1819. {
  1820. init_waitqueue_head(&rnp->nocb_gp_wq[0]);
  1821. init_waitqueue_head(&rnp->nocb_gp_wq[1]);
  1822. }
  1823. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1824. /* Is the specified CPU a no-CBs CPU? */
  1825. bool rcu_is_nocb_cpu(int cpu)
  1826. {
  1827. if (have_rcu_nocb_mask)
  1828. return cpumask_test_cpu(cpu, rcu_nocb_mask);
  1829. return false;
  1830. }
  1831. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1832. /*
  1833. * Kick the leader kthread for this NOCB group.
  1834. */
  1835. static void wake_nocb_leader(struct rcu_data *rdp, bool force)
  1836. {
  1837. struct rcu_data *rdp_leader = rdp->nocb_leader;
  1838. if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
  1839. return;
  1840. if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
  1841. /* Prior xchg orders against prior callback enqueue. */
  1842. ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
  1843. wake_up(&rdp_leader->nocb_wq);
  1844. }
  1845. }
  1846. /*
  1847. * Enqueue the specified string of rcu_head structures onto the specified
  1848. * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
  1849. * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
  1850. * counts are supplied by rhcount and rhcount_lazy.
  1851. *
  1852. * If warranted, also wake up the kthread servicing this CPUs queues.
  1853. */
  1854. static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
  1855. struct rcu_head *rhp,
  1856. struct rcu_head **rhtp,
  1857. int rhcount, int rhcount_lazy,
  1858. unsigned long flags)
  1859. {
  1860. int len;
  1861. struct rcu_head **old_rhpp;
  1862. struct task_struct *t;
  1863. /* Enqueue the callback on the nocb list and update counts. */
  1864. old_rhpp = xchg(&rdp->nocb_tail, rhtp);
  1865. ACCESS_ONCE(*old_rhpp) = rhp;
  1866. atomic_long_add(rhcount, &rdp->nocb_q_count);
  1867. atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
  1868. /* If we are not being polled and there is a kthread, awaken it ... */
  1869. t = ACCESS_ONCE(rdp->nocb_kthread);
  1870. if (rcu_nocb_poll || !t) {
  1871. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1872. TPS("WakeNotPoll"));
  1873. return;
  1874. }
  1875. len = atomic_long_read(&rdp->nocb_q_count);
  1876. if (old_rhpp == &rdp->nocb_head) {
  1877. if (!irqs_disabled_flags(flags)) {
  1878. /* ... if queue was empty ... */
  1879. wake_nocb_leader(rdp, false);
  1880. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1881. TPS("WakeEmpty"));
  1882. } else {
  1883. rdp->nocb_defer_wakeup = true;
  1884. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1885. TPS("WakeEmptyIsDeferred"));
  1886. }
  1887. rdp->qlen_last_fqs_check = 0;
  1888. } else if (len > rdp->qlen_last_fqs_check + qhimark) {
  1889. /* ... or if many callbacks queued. */
  1890. wake_nocb_leader(rdp, true);
  1891. rdp->qlen_last_fqs_check = LONG_MAX / 2;
  1892. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
  1893. } else {
  1894. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
  1895. }
  1896. return;
  1897. }
  1898. /*
  1899. * This is a helper for __call_rcu(), which invokes this when the normal
  1900. * callback queue is inoperable. If this is not a no-CBs CPU, this
  1901. * function returns failure back to __call_rcu(), which can complain
  1902. * appropriately.
  1903. *
  1904. * Otherwise, this function queues the callback where the corresponding
  1905. * "rcuo" kthread can find it.
  1906. */
  1907. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  1908. bool lazy, unsigned long flags)
  1909. {
  1910. if (!rcu_is_nocb_cpu(rdp->cpu))
  1911. return 0;
  1912. __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
  1913. if (__is_kfree_rcu_offset((unsigned long)rhp->func))
  1914. trace_rcu_kfree_callback(rdp->rsp->name, rhp,
  1915. (unsigned long)rhp->func,
  1916. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1917. -atomic_long_read(&rdp->nocb_q_count));
  1918. else
  1919. trace_rcu_callback(rdp->rsp->name, rhp,
  1920. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1921. -atomic_long_read(&rdp->nocb_q_count));
  1922. return 1;
  1923. }
  1924. /*
  1925. * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
  1926. * not a no-CBs CPU.
  1927. */
  1928. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  1929. struct rcu_data *rdp,
  1930. unsigned long flags)
  1931. {
  1932. long ql = rsp->qlen;
  1933. long qll = rsp->qlen_lazy;
  1934. /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
  1935. if (!rcu_is_nocb_cpu(smp_processor_id()))
  1936. return 0;
  1937. rsp->qlen = 0;
  1938. rsp->qlen_lazy = 0;
  1939. /* First, enqueue the donelist, if any. This preserves CB ordering. */
  1940. if (rsp->orphan_donelist != NULL) {
  1941. __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
  1942. rsp->orphan_donetail, ql, qll, flags);
  1943. ql = qll = 0;
  1944. rsp->orphan_donelist = NULL;
  1945. rsp->orphan_donetail = &rsp->orphan_donelist;
  1946. }
  1947. if (rsp->orphan_nxtlist != NULL) {
  1948. __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
  1949. rsp->orphan_nxttail, ql, qll, flags);
  1950. ql = qll = 0;
  1951. rsp->orphan_nxtlist = NULL;
  1952. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1953. }
  1954. return 1;
  1955. }
  1956. /*
  1957. * If necessary, kick off a new grace period, and either way wait
  1958. * for a subsequent grace period to complete.
  1959. */
  1960. static void rcu_nocb_wait_gp(struct rcu_data *rdp)
  1961. {
  1962. unsigned long c;
  1963. bool d;
  1964. unsigned long flags;
  1965. bool needwake;
  1966. struct rcu_node *rnp = rdp->mynode;
  1967. raw_spin_lock_irqsave(&rnp->lock, flags);
  1968. smp_mb__after_unlock_lock();
  1969. needwake = rcu_start_future_gp(rnp, rdp, &c);
  1970. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1971. if (needwake)
  1972. rcu_gp_kthread_wake(rdp->rsp);
  1973. /*
  1974. * Wait for the grace period. Do so interruptibly to avoid messing
  1975. * up the load average.
  1976. */
  1977. trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
  1978. for (;;) {
  1979. wait_event_interruptible(
  1980. rnp->nocb_gp_wq[c & 0x1],
  1981. (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
  1982. if (likely(d))
  1983. break;
  1984. flush_signals(current);
  1985. trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
  1986. }
  1987. trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
  1988. smp_mb(); /* Ensure that CB invocation happens after GP end. */
  1989. }
  1990. /*
  1991. * Leaders come here to wait for additional callbacks to show up.
  1992. * This function does not return until callbacks appear.
  1993. */
  1994. static void nocb_leader_wait(struct rcu_data *my_rdp)
  1995. {
  1996. bool firsttime = true;
  1997. bool gotcbs;
  1998. struct rcu_data *rdp;
  1999. struct rcu_head **tail;
  2000. wait_again:
  2001. /* Wait for callbacks to appear. */
  2002. if (!rcu_nocb_poll) {
  2003. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
  2004. wait_event_interruptible(my_rdp->nocb_wq,
  2005. !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
  2006. /* Memory barrier handled by smp_mb() calls below and repoll. */
  2007. } else if (firsttime) {
  2008. firsttime = false; /* Don't drown trace log with "Poll"! */
  2009. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
  2010. }
  2011. /*
  2012. * Each pass through the following loop checks a follower for CBs.
  2013. * We are our own first follower. Any CBs found are moved to
  2014. * nocb_gp_head, where they await a grace period.
  2015. */
  2016. gotcbs = false;
  2017. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  2018. rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
  2019. if (!rdp->nocb_gp_head)
  2020. continue; /* No CBs here, try next follower. */
  2021. /* Move callbacks to wait-for-GP list, which is empty. */
  2022. ACCESS_ONCE(rdp->nocb_head) = NULL;
  2023. rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
  2024. rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
  2025. rdp->nocb_gp_count_lazy =
  2026. atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
  2027. gotcbs = true;
  2028. }
  2029. /*
  2030. * If there were no callbacks, sleep a bit, rescan after a
  2031. * memory barrier, and go retry.
  2032. */
  2033. if (unlikely(!gotcbs)) {
  2034. if (!rcu_nocb_poll)
  2035. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
  2036. "WokeEmpty");
  2037. flush_signals(current);
  2038. schedule_timeout_interruptible(1);
  2039. /* Rescan in case we were a victim of memory ordering. */
  2040. my_rdp->nocb_leader_sleep = true;
  2041. smp_mb(); /* Ensure _sleep true before scan. */
  2042. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
  2043. if (ACCESS_ONCE(rdp->nocb_head)) {
  2044. /* Found CB, so short-circuit next wait. */
  2045. my_rdp->nocb_leader_sleep = false;
  2046. break;
  2047. }
  2048. goto wait_again;
  2049. }
  2050. /* Wait for one grace period. */
  2051. rcu_nocb_wait_gp(my_rdp);
  2052. /*
  2053. * We left ->nocb_leader_sleep unset to reduce cache thrashing.
  2054. * We set it now, but recheck for new callbacks while
  2055. * traversing our follower list.
  2056. */
  2057. my_rdp->nocb_leader_sleep = true;
  2058. smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
  2059. /* Each pass through the following loop wakes a follower, if needed. */
  2060. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  2061. if (ACCESS_ONCE(rdp->nocb_head))
  2062. my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
  2063. if (!rdp->nocb_gp_head)
  2064. continue; /* No CBs, so no need to wake follower. */
  2065. /* Append callbacks to follower's "done" list. */
  2066. tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
  2067. *tail = rdp->nocb_gp_head;
  2068. atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
  2069. atomic_long_add(rdp->nocb_gp_count_lazy,
  2070. &rdp->nocb_follower_count_lazy);
  2071. if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
  2072. /*
  2073. * List was empty, wake up the follower.
  2074. * Memory barriers supplied by atomic_long_add().
  2075. */
  2076. wake_up(&rdp->nocb_wq);
  2077. }
  2078. }
  2079. /* If we (the leader) don't have CBs, go wait some more. */
  2080. if (!my_rdp->nocb_follower_head)
  2081. goto wait_again;
  2082. }
  2083. /*
  2084. * Followers come here to wait for additional callbacks to show up.
  2085. * This function does not return until callbacks appear.
  2086. */
  2087. static void nocb_follower_wait(struct rcu_data *rdp)
  2088. {
  2089. bool firsttime = true;
  2090. for (;;) {
  2091. if (!rcu_nocb_poll) {
  2092. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2093. "FollowerSleep");
  2094. wait_event_interruptible(rdp->nocb_wq,
  2095. ACCESS_ONCE(rdp->nocb_follower_head));
  2096. } else if (firsttime) {
  2097. /* Don't drown trace log with "Poll"! */
  2098. firsttime = false;
  2099. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
  2100. }
  2101. if (smp_load_acquire(&rdp->nocb_follower_head)) {
  2102. /* ^^^ Ensure CB invocation follows _head test. */
  2103. return;
  2104. }
  2105. if (!rcu_nocb_poll)
  2106. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2107. "WokeEmpty");
  2108. flush_signals(current);
  2109. schedule_timeout_interruptible(1);
  2110. }
  2111. }
  2112. /*
  2113. * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
  2114. * callbacks queued by the corresponding no-CBs CPU, however, there is
  2115. * an optional leader-follower relationship so that the grace-period
  2116. * kthreads don't have to do quite so many wakeups.
  2117. */
  2118. static int rcu_nocb_kthread(void *arg)
  2119. {
  2120. int c, cl;
  2121. struct rcu_head *list;
  2122. struct rcu_head *next;
  2123. struct rcu_head **tail;
  2124. struct rcu_data *rdp = arg;
  2125. /* Each pass through this loop invokes one batch of callbacks */
  2126. for (;;) {
  2127. /* Wait for callbacks. */
  2128. if (rdp->nocb_leader == rdp)
  2129. nocb_leader_wait(rdp);
  2130. else
  2131. nocb_follower_wait(rdp);
  2132. /* Pull the ready-to-invoke callbacks onto local list. */
  2133. list = ACCESS_ONCE(rdp->nocb_follower_head);
  2134. BUG_ON(!list);
  2135. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
  2136. ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
  2137. tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
  2138. c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
  2139. cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
  2140. rdp->nocb_p_count += c;
  2141. rdp->nocb_p_count_lazy += cl;
  2142. /* Each pass through the following loop invokes a callback. */
  2143. trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
  2144. c = cl = 0;
  2145. while (list) {
  2146. next = list->next;
  2147. /* Wait for enqueuing to complete, if needed. */
  2148. while (next == NULL && &list->next != tail) {
  2149. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2150. TPS("WaitQueue"));
  2151. schedule_timeout_interruptible(1);
  2152. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2153. TPS("WokeQueue"));
  2154. next = list->next;
  2155. }
  2156. debug_rcu_head_unqueue(list);
  2157. local_bh_disable();
  2158. if (__rcu_reclaim(rdp->rsp->name, list))
  2159. cl++;
  2160. c++;
  2161. local_bh_enable();
  2162. list = next;
  2163. }
  2164. trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
  2165. ACCESS_ONCE(rdp->nocb_p_count) -= c;
  2166. ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
  2167. rdp->n_nocbs_invoked += c;
  2168. }
  2169. return 0;
  2170. }
  2171. /* Is a deferred wakeup of rcu_nocb_kthread() required? */
  2172. static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2173. {
  2174. return ACCESS_ONCE(rdp->nocb_defer_wakeup);
  2175. }
  2176. /* Do a deferred wakeup of rcu_nocb_kthread(). */
  2177. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2178. {
  2179. if (!rcu_nocb_need_deferred_wakeup(rdp))
  2180. return;
  2181. ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
  2182. wake_nocb_leader(rdp, false);
  2183. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
  2184. }
  2185. /* Initialize per-rcu_data variables for no-CBs CPUs. */
  2186. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2187. {
  2188. rdp->nocb_tail = &rdp->nocb_head;
  2189. init_waitqueue_head(&rdp->nocb_wq);
  2190. rdp->nocb_follower_tail = &rdp->nocb_follower_head;
  2191. }
  2192. /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
  2193. static int rcu_nocb_leader_stride = -1;
  2194. module_param(rcu_nocb_leader_stride, int, 0444);
  2195. /*
  2196. * Create a kthread for each RCU flavor for each no-CBs CPU.
  2197. * Also initialize leader-follower relationships.
  2198. */
  2199. static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
  2200. {
  2201. int cpu;
  2202. int ls = rcu_nocb_leader_stride;
  2203. int nl = 0; /* Next leader. */
  2204. struct rcu_data *rdp;
  2205. struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
  2206. struct rcu_data *rdp_prev = NULL;
  2207. struct task_struct *t;
  2208. if (rcu_nocb_mask == NULL)
  2209. return;
  2210. #if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL)
  2211. if (tick_nohz_full_running)
  2212. cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
  2213. #endif /* #if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL) */
  2214. if (ls == -1) {
  2215. ls = int_sqrt(nr_cpu_ids);
  2216. rcu_nocb_leader_stride = ls;
  2217. }
  2218. /*
  2219. * Each pass through this loop sets up one rcu_data structure and
  2220. * spawns one rcu_nocb_kthread().
  2221. */
  2222. for_each_cpu(cpu, rcu_nocb_mask) {
  2223. rdp = per_cpu_ptr(rsp->rda, cpu);
  2224. if (rdp->cpu >= nl) {
  2225. /* New leader, set up for followers & next leader. */
  2226. nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
  2227. rdp->nocb_leader = rdp;
  2228. rdp_leader = rdp;
  2229. } else {
  2230. /* Another follower, link to previous leader. */
  2231. rdp->nocb_leader = rdp_leader;
  2232. rdp_prev->nocb_next_follower = rdp;
  2233. }
  2234. rdp_prev = rdp;
  2235. /* Spawn the kthread for this CPU. */
  2236. t = kthread_run(rcu_nocb_kthread, rdp,
  2237. "rcuo%c/%d", rsp->abbr, cpu);
  2238. BUG_ON(IS_ERR(t));
  2239. ACCESS_ONCE(rdp->nocb_kthread) = t;
  2240. }
  2241. }
  2242. /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
  2243. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2244. {
  2245. if (rcu_nocb_mask == NULL ||
  2246. !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
  2247. return false;
  2248. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2249. return true;
  2250. }
  2251. #else /* #ifdef CONFIG_RCU_NOCB_CPU */
  2252. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  2253. {
  2254. }
  2255. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  2256. {
  2257. }
  2258. static void rcu_init_one_nocb(struct rcu_node *rnp)
  2259. {
  2260. }
  2261. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  2262. bool lazy, unsigned long flags)
  2263. {
  2264. return 0;
  2265. }
  2266. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  2267. struct rcu_data *rdp,
  2268. unsigned long flags)
  2269. {
  2270. return 0;
  2271. }
  2272. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2273. {
  2274. }
  2275. static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2276. {
  2277. return false;
  2278. }
  2279. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2280. {
  2281. }
  2282. static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
  2283. {
  2284. }
  2285. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2286. {
  2287. return false;
  2288. }
  2289. #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
  2290. /*
  2291. * An adaptive-ticks CPU can potentially execute in kernel mode for an
  2292. * arbitrarily long period of time with the scheduling-clock tick turned
  2293. * off. RCU will be paying attention to this CPU because it is in the
  2294. * kernel, but the CPU cannot be guaranteed to be executing the RCU state
  2295. * machine because the scheduling-clock tick has been disabled. Therefore,
  2296. * if an adaptive-ticks CPU is failing to respond to the current grace
  2297. * period and has not be idle from an RCU perspective, kick it.
  2298. */
  2299. static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
  2300. {
  2301. #ifdef CONFIG_NO_HZ_FULL
  2302. if (tick_nohz_full_cpu(cpu))
  2303. smp_send_reschedule(cpu);
  2304. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2305. }
  2306. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2307. /*
  2308. * Define RCU flavor that holds sysidle state. This needs to be the
  2309. * most active flavor of RCU.
  2310. */
  2311. #ifdef CONFIG_PREEMPT_RCU
  2312. static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
  2313. #else /* #ifdef CONFIG_PREEMPT_RCU */
  2314. static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
  2315. #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  2316. static int full_sysidle_state; /* Current system-idle state. */
  2317. #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
  2318. #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
  2319. #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
  2320. #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
  2321. #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
  2322. /*
  2323. * Invoked to note exit from irq or task transition to idle. Note that
  2324. * usermode execution does -not- count as idle here! After all, we want
  2325. * to detect full-system idle states, not RCU quiescent states and grace
  2326. * periods. The caller must have disabled interrupts.
  2327. */
  2328. static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
  2329. {
  2330. unsigned long j;
  2331. /* Adjust nesting, check for fully idle. */
  2332. if (irq) {
  2333. rdtp->dynticks_idle_nesting--;
  2334. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2335. if (rdtp->dynticks_idle_nesting != 0)
  2336. return; /* Still not fully idle. */
  2337. } else {
  2338. if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
  2339. DYNTICK_TASK_NEST_VALUE) {
  2340. rdtp->dynticks_idle_nesting = 0;
  2341. } else {
  2342. rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
  2343. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2344. return; /* Still not fully idle. */
  2345. }
  2346. }
  2347. /* Record start of fully idle period. */
  2348. j = jiffies;
  2349. ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
  2350. smp_mb__before_atomic();
  2351. atomic_inc(&rdtp->dynticks_idle);
  2352. smp_mb__after_atomic();
  2353. WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
  2354. }
  2355. /*
  2356. * Unconditionally force exit from full system-idle state. This is
  2357. * invoked when a normal CPU exits idle, but must be called separately
  2358. * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
  2359. * is that the timekeeping CPU is permitted to take scheduling-clock
  2360. * interrupts while the system is in system-idle state, and of course
  2361. * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
  2362. * interrupt from any other type of interrupt.
  2363. */
  2364. void rcu_sysidle_force_exit(void)
  2365. {
  2366. int oldstate = ACCESS_ONCE(full_sysidle_state);
  2367. int newoldstate;
  2368. /*
  2369. * Each pass through the following loop attempts to exit full
  2370. * system-idle state. If contention proves to be a problem,
  2371. * a trylock-based contention tree could be used here.
  2372. */
  2373. while (oldstate > RCU_SYSIDLE_SHORT) {
  2374. newoldstate = cmpxchg(&full_sysidle_state,
  2375. oldstate, RCU_SYSIDLE_NOT);
  2376. if (oldstate == newoldstate &&
  2377. oldstate == RCU_SYSIDLE_FULL_NOTED) {
  2378. rcu_kick_nohz_cpu(tick_do_timer_cpu);
  2379. return; /* We cleared it, done! */
  2380. }
  2381. oldstate = newoldstate;
  2382. }
  2383. smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
  2384. }
  2385. /*
  2386. * Invoked to note entry to irq or task transition from idle. Note that
  2387. * usermode execution does -not- count as idle here! The caller must
  2388. * have disabled interrupts.
  2389. */
  2390. static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
  2391. {
  2392. /* Adjust nesting, check for already non-idle. */
  2393. if (irq) {
  2394. rdtp->dynticks_idle_nesting++;
  2395. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2396. if (rdtp->dynticks_idle_nesting != 1)
  2397. return; /* Already non-idle. */
  2398. } else {
  2399. /*
  2400. * Allow for irq misnesting. Yes, it really is possible
  2401. * to enter an irq handler then never leave it, and maybe
  2402. * also vice versa. Handle both possibilities.
  2403. */
  2404. if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
  2405. rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
  2406. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2407. return; /* Already non-idle. */
  2408. } else {
  2409. rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
  2410. }
  2411. }
  2412. /* Record end of idle period. */
  2413. smp_mb__before_atomic();
  2414. atomic_inc(&rdtp->dynticks_idle);
  2415. smp_mb__after_atomic();
  2416. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
  2417. /*
  2418. * If we are the timekeeping CPU, we are permitted to be non-idle
  2419. * during a system-idle state. This must be the case, because
  2420. * the timekeeping CPU has to take scheduling-clock interrupts
  2421. * during the time that the system is transitioning to full
  2422. * system-idle state. This means that the timekeeping CPU must
  2423. * invoke rcu_sysidle_force_exit() directly if it does anything
  2424. * more than take a scheduling-clock interrupt.
  2425. */
  2426. if (smp_processor_id() == tick_do_timer_cpu)
  2427. return;
  2428. /* Update system-idle state: We are clearly no longer fully idle! */
  2429. rcu_sysidle_force_exit();
  2430. }
  2431. /*
  2432. * Check to see if the current CPU is idle. Note that usermode execution
  2433. * does not count as idle. The caller must have disabled interrupts.
  2434. */
  2435. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2436. unsigned long *maxj)
  2437. {
  2438. int cur;
  2439. unsigned long j;
  2440. struct rcu_dynticks *rdtp = rdp->dynticks;
  2441. /*
  2442. * If some other CPU has already reported non-idle, if this is
  2443. * not the flavor of RCU that tracks sysidle state, or if this
  2444. * is an offline or the timekeeping CPU, nothing to do.
  2445. */
  2446. if (!*isidle || rdp->rsp != rcu_sysidle_state ||
  2447. cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
  2448. return;
  2449. if (rcu_gp_in_progress(rdp->rsp))
  2450. WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
  2451. /* Pick up current idle and NMI-nesting counter and check. */
  2452. cur = atomic_read(&rdtp->dynticks_idle);
  2453. if (cur & 0x1) {
  2454. *isidle = false; /* We are not idle! */
  2455. return;
  2456. }
  2457. smp_mb(); /* Read counters before timestamps. */
  2458. /* Pick up timestamps. */
  2459. j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
  2460. /* If this CPU entered idle more recently, update maxj timestamp. */
  2461. if (ULONG_CMP_LT(*maxj, j))
  2462. *maxj = j;
  2463. }
  2464. /*
  2465. * Is this the flavor of RCU that is handling full-system idle?
  2466. */
  2467. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2468. {
  2469. return rsp == rcu_sysidle_state;
  2470. }
  2471. /*
  2472. * Return a delay in jiffies based on the number of CPUs, rcu_node
  2473. * leaf fanout, and jiffies tick rate. The idea is to allow larger
  2474. * systems more time to transition to full-idle state in order to
  2475. * avoid the cache thrashing that otherwise occur on the state variable.
  2476. * Really small systems (less than a couple of tens of CPUs) should
  2477. * instead use a single global atomically incremented counter, and later
  2478. * versions of this will automatically reconfigure themselves accordingly.
  2479. */
  2480. static unsigned long rcu_sysidle_delay(void)
  2481. {
  2482. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2483. return 0;
  2484. return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
  2485. }
  2486. /*
  2487. * Advance the full-system-idle state. This is invoked when all of
  2488. * the non-timekeeping CPUs are idle.
  2489. */
  2490. static void rcu_sysidle(unsigned long j)
  2491. {
  2492. /* Check the current state. */
  2493. switch (ACCESS_ONCE(full_sysidle_state)) {
  2494. case RCU_SYSIDLE_NOT:
  2495. /* First time all are idle, so note a short idle period. */
  2496. ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
  2497. break;
  2498. case RCU_SYSIDLE_SHORT:
  2499. /*
  2500. * Idle for a bit, time to advance to next state?
  2501. * cmpxchg failure means race with non-idle, let them win.
  2502. */
  2503. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2504. (void)cmpxchg(&full_sysidle_state,
  2505. RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
  2506. break;
  2507. case RCU_SYSIDLE_LONG:
  2508. /*
  2509. * Do an additional check pass before advancing to full.
  2510. * cmpxchg failure means race with non-idle, let them win.
  2511. */
  2512. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2513. (void)cmpxchg(&full_sysidle_state,
  2514. RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
  2515. break;
  2516. default:
  2517. break;
  2518. }
  2519. }
  2520. /*
  2521. * Found a non-idle non-timekeeping CPU, so kick the system-idle state
  2522. * back to the beginning.
  2523. */
  2524. static void rcu_sysidle_cancel(void)
  2525. {
  2526. smp_mb();
  2527. if (full_sysidle_state > RCU_SYSIDLE_SHORT)
  2528. ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
  2529. }
  2530. /*
  2531. * Update the sysidle state based on the results of a force-quiescent-state
  2532. * scan of the CPUs' dyntick-idle state.
  2533. */
  2534. static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
  2535. unsigned long maxj, bool gpkt)
  2536. {
  2537. if (rsp != rcu_sysidle_state)
  2538. return; /* Wrong flavor, ignore. */
  2539. if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2540. return; /* Running state machine from timekeeping CPU. */
  2541. if (isidle)
  2542. rcu_sysidle(maxj); /* More idle! */
  2543. else
  2544. rcu_sysidle_cancel(); /* Idle is over. */
  2545. }
  2546. /*
  2547. * Wrapper for rcu_sysidle_report() when called from the grace-period
  2548. * kthread's context.
  2549. */
  2550. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2551. unsigned long maxj)
  2552. {
  2553. rcu_sysidle_report(rsp, isidle, maxj, true);
  2554. }
  2555. /* Callback and function for forcing an RCU grace period. */
  2556. struct rcu_sysidle_head {
  2557. struct rcu_head rh;
  2558. int inuse;
  2559. };
  2560. static void rcu_sysidle_cb(struct rcu_head *rhp)
  2561. {
  2562. struct rcu_sysidle_head *rshp;
  2563. /*
  2564. * The following memory barrier is needed to replace the
  2565. * memory barriers that would normally be in the memory
  2566. * allocator.
  2567. */
  2568. smp_mb(); /* grace period precedes setting inuse. */
  2569. rshp = container_of(rhp, struct rcu_sysidle_head, rh);
  2570. ACCESS_ONCE(rshp->inuse) = 0;
  2571. }
  2572. /*
  2573. * Check to see if the system is fully idle, other than the timekeeping CPU.
  2574. * The caller must have disabled interrupts.
  2575. */
  2576. bool rcu_sys_is_idle(void)
  2577. {
  2578. static struct rcu_sysidle_head rsh;
  2579. int rss = ACCESS_ONCE(full_sysidle_state);
  2580. if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
  2581. return false;
  2582. /* Handle small-system case by doing a full scan of CPUs. */
  2583. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
  2584. int oldrss = rss - 1;
  2585. /*
  2586. * One pass to advance to each state up to _FULL.
  2587. * Give up if any pass fails to advance the state.
  2588. */
  2589. while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
  2590. int cpu;
  2591. bool isidle = true;
  2592. unsigned long maxj = jiffies - ULONG_MAX / 4;
  2593. struct rcu_data *rdp;
  2594. /* Scan all the CPUs looking for nonidle CPUs. */
  2595. for_each_possible_cpu(cpu) {
  2596. rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
  2597. rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
  2598. if (!isidle)
  2599. break;
  2600. }
  2601. rcu_sysidle_report(rcu_sysidle_state,
  2602. isidle, maxj, false);
  2603. oldrss = rss;
  2604. rss = ACCESS_ONCE(full_sysidle_state);
  2605. }
  2606. }
  2607. /* If this is the first observation of an idle period, record it. */
  2608. if (rss == RCU_SYSIDLE_FULL) {
  2609. rss = cmpxchg(&full_sysidle_state,
  2610. RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
  2611. return rss == RCU_SYSIDLE_FULL;
  2612. }
  2613. smp_mb(); /* ensure rss load happens before later caller actions. */
  2614. /* If already fully idle, tell the caller (in case of races). */
  2615. if (rss == RCU_SYSIDLE_FULL_NOTED)
  2616. return true;
  2617. /*
  2618. * If we aren't there yet, and a grace period is not in flight,
  2619. * initiate a grace period. Either way, tell the caller that
  2620. * we are not there yet. We use an xchg() rather than an assignment
  2621. * to make up for the memory barriers that would otherwise be
  2622. * provided by the memory allocator.
  2623. */
  2624. if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
  2625. !rcu_gp_in_progress(rcu_sysidle_state) &&
  2626. !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
  2627. call_rcu(&rsh.rh, rcu_sysidle_cb);
  2628. return false;
  2629. }
  2630. /*
  2631. * Initialize dynticks sysidle state for CPUs coming online.
  2632. */
  2633. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2634. {
  2635. rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
  2636. }
  2637. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2638. static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
  2639. {
  2640. }
  2641. static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
  2642. {
  2643. }
  2644. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2645. unsigned long *maxj)
  2646. {
  2647. }
  2648. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2649. {
  2650. return false;
  2651. }
  2652. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2653. unsigned long maxj)
  2654. {
  2655. }
  2656. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2657. {
  2658. }
  2659. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2660. /*
  2661. * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
  2662. * grace-period kthread will do force_quiescent_state() processing?
  2663. * The idea is to avoid waking up RCU core processing on such a
  2664. * CPU unless the grace period has extended for too long.
  2665. *
  2666. * This code relies on the fact that all NO_HZ_FULL CPUs are also
  2667. * CONFIG_RCU_NOCB_CPU CPUs.
  2668. */
  2669. static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
  2670. {
  2671. #ifdef CONFIG_NO_HZ_FULL
  2672. if (tick_nohz_full_cpu(smp_processor_id()) &&
  2673. (!rcu_gp_in_progress(rsp) ||
  2674. ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
  2675. return 1;
  2676. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2677. return 0;
  2678. }
  2679. /*
  2680. * Bind the grace-period kthread for the sysidle flavor of RCU to the
  2681. * timekeeping CPU.
  2682. */
  2683. static void rcu_bind_gp_kthread(void)
  2684. {
  2685. int __maybe_unused cpu;
  2686. if (!tick_nohz_full_enabled())
  2687. return;
  2688. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2689. cpu = tick_do_timer_cpu;
  2690. if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
  2691. set_cpus_allowed_ptr(current, cpumask_of(cpu));
  2692. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2693. if (!is_housekeeping_cpu(raw_smp_processor_id()))
  2694. housekeeping_affine(current);
  2695. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2696. }