gss_krb5_crypto.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068
  1. /*
  2. * linux/net/sunrpc/gss_krb5_crypto.c
  3. *
  4. * Copyright (c) 2000-2008 The Regents of the University of Michigan.
  5. * All rights reserved.
  6. *
  7. * Andy Adamson <andros@umich.edu>
  8. * Bruce Fields <bfields@umich.edu>
  9. */
  10. /*
  11. * Copyright (C) 1998 by the FundsXpress, INC.
  12. *
  13. * All rights reserved.
  14. *
  15. * Export of this software from the United States of America may require
  16. * a specific license from the United States Government. It is the
  17. * responsibility of any person or organization contemplating export to
  18. * obtain such a license before exporting.
  19. *
  20. * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
  21. * distribute this software and its documentation for any purpose and
  22. * without fee is hereby granted, provided that the above copyright
  23. * notice appear in all copies and that both that copyright notice and
  24. * this permission notice appear in supporting documentation, and that
  25. * the name of FundsXpress. not be used in advertising or publicity pertaining
  26. * to distribution of the software without specific, written prior
  27. * permission. FundsXpress makes no representations about the suitability of
  28. * this software for any purpose. It is provided "as is" without express
  29. * or implied warranty.
  30. *
  31. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
  32. * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
  33. * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
  34. */
  35. #include <crypto/hash.h>
  36. #include <crypto/skcipher.h>
  37. #include <linux/err.h>
  38. #include <linux/types.h>
  39. #include <linux/mm.h>
  40. #include <linux/scatterlist.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/random.h>
  44. #include <linux/sunrpc/gss_krb5.h>
  45. #include <linux/sunrpc/xdr.h>
  46. #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  47. # define RPCDBG_FACILITY RPCDBG_AUTH
  48. #endif
  49. u32
  50. krb5_encrypt(
  51. struct crypto_skcipher *tfm,
  52. void * iv,
  53. void * in,
  54. void * out,
  55. int length)
  56. {
  57. u32 ret = -EINVAL;
  58. struct scatterlist sg[1];
  59. u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
  60. SKCIPHER_REQUEST_ON_STACK(req, tfm);
  61. if (length % crypto_skcipher_blocksize(tfm) != 0)
  62. goto out;
  63. if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
  64. dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
  65. crypto_skcipher_ivsize(tfm));
  66. goto out;
  67. }
  68. if (iv)
  69. memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm));
  70. memcpy(out, in, length);
  71. sg_init_one(sg, out, length);
  72. skcipher_request_set_tfm(req, tfm);
  73. skcipher_request_set_callback(req, 0, NULL, NULL);
  74. skcipher_request_set_crypt(req, sg, sg, length, local_iv);
  75. ret = crypto_skcipher_encrypt(req);
  76. skcipher_request_zero(req);
  77. out:
  78. dprintk("RPC: krb5_encrypt returns %d\n", ret);
  79. return ret;
  80. }
  81. u32
  82. krb5_decrypt(
  83. struct crypto_skcipher *tfm,
  84. void * iv,
  85. void * in,
  86. void * out,
  87. int length)
  88. {
  89. u32 ret = -EINVAL;
  90. struct scatterlist sg[1];
  91. u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
  92. SKCIPHER_REQUEST_ON_STACK(req, tfm);
  93. if (length % crypto_skcipher_blocksize(tfm) != 0)
  94. goto out;
  95. if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
  96. dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
  97. crypto_skcipher_ivsize(tfm));
  98. goto out;
  99. }
  100. if (iv)
  101. memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm));
  102. memcpy(out, in, length);
  103. sg_init_one(sg, out, length);
  104. skcipher_request_set_tfm(req, tfm);
  105. skcipher_request_set_callback(req, 0, NULL, NULL);
  106. skcipher_request_set_crypt(req, sg, sg, length, local_iv);
  107. ret = crypto_skcipher_decrypt(req);
  108. skcipher_request_zero(req);
  109. out:
  110. dprintk("RPC: gss_k5decrypt returns %d\n",ret);
  111. return ret;
  112. }
  113. static int
  114. checksummer(struct scatterlist *sg, void *data)
  115. {
  116. struct ahash_request *req = data;
  117. ahash_request_set_crypt(req, sg, NULL, sg->length);
  118. return crypto_ahash_update(req);
  119. }
  120. static int
  121. arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
  122. {
  123. unsigned int ms_usage;
  124. switch (usage) {
  125. case KG_USAGE_SIGN:
  126. ms_usage = 15;
  127. break;
  128. case KG_USAGE_SEAL:
  129. ms_usage = 13;
  130. break;
  131. default:
  132. return -EINVAL;
  133. }
  134. salt[0] = (ms_usage >> 0) & 0xff;
  135. salt[1] = (ms_usage >> 8) & 0xff;
  136. salt[2] = (ms_usage >> 16) & 0xff;
  137. salt[3] = (ms_usage >> 24) & 0xff;
  138. return 0;
  139. }
  140. static u32
  141. make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
  142. struct xdr_buf *body, int body_offset, u8 *cksumkey,
  143. unsigned int usage, struct xdr_netobj *cksumout)
  144. {
  145. struct scatterlist sg[1];
  146. int err;
  147. u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
  148. u8 rc4salt[4];
  149. struct crypto_ahash *md5;
  150. struct crypto_ahash *hmac_md5;
  151. struct ahash_request *req;
  152. if (cksumkey == NULL)
  153. return GSS_S_FAILURE;
  154. if (cksumout->len < kctx->gk5e->cksumlength) {
  155. dprintk("%s: checksum buffer length, %u, too small for %s\n",
  156. __func__, cksumout->len, kctx->gk5e->name);
  157. return GSS_S_FAILURE;
  158. }
  159. if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
  160. dprintk("%s: invalid usage value %u\n", __func__, usage);
  161. return GSS_S_FAILURE;
  162. }
  163. md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
  164. if (IS_ERR(md5))
  165. return GSS_S_FAILURE;
  166. hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
  167. CRYPTO_ALG_ASYNC);
  168. if (IS_ERR(hmac_md5)) {
  169. crypto_free_ahash(md5);
  170. return GSS_S_FAILURE;
  171. }
  172. req = ahash_request_alloc(md5, GFP_KERNEL);
  173. if (!req) {
  174. crypto_free_ahash(hmac_md5);
  175. crypto_free_ahash(md5);
  176. return GSS_S_FAILURE;
  177. }
  178. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
  179. err = crypto_ahash_init(req);
  180. if (err)
  181. goto out;
  182. sg_init_one(sg, rc4salt, 4);
  183. ahash_request_set_crypt(req, sg, NULL, 4);
  184. err = crypto_ahash_update(req);
  185. if (err)
  186. goto out;
  187. sg_init_one(sg, header, hdrlen);
  188. ahash_request_set_crypt(req, sg, NULL, hdrlen);
  189. err = crypto_ahash_update(req);
  190. if (err)
  191. goto out;
  192. err = xdr_process_buf(body, body_offset, body->len - body_offset,
  193. checksummer, req);
  194. if (err)
  195. goto out;
  196. ahash_request_set_crypt(req, NULL, checksumdata, 0);
  197. err = crypto_ahash_final(req);
  198. if (err)
  199. goto out;
  200. ahash_request_free(req);
  201. req = ahash_request_alloc(hmac_md5, GFP_KERNEL);
  202. if (!req) {
  203. crypto_free_ahash(hmac_md5);
  204. crypto_free_ahash(md5);
  205. return GSS_S_FAILURE;
  206. }
  207. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
  208. err = crypto_ahash_init(req);
  209. if (err)
  210. goto out;
  211. err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
  212. if (err)
  213. goto out;
  214. sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
  215. ahash_request_set_crypt(req, sg, checksumdata,
  216. crypto_ahash_digestsize(md5));
  217. err = crypto_ahash_digest(req);
  218. if (err)
  219. goto out;
  220. memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
  221. cksumout->len = kctx->gk5e->cksumlength;
  222. out:
  223. ahash_request_free(req);
  224. crypto_free_ahash(md5);
  225. crypto_free_ahash(hmac_md5);
  226. return err ? GSS_S_FAILURE : 0;
  227. }
  228. /*
  229. * checksum the plaintext data and hdrlen bytes of the token header
  230. * The checksum is performed over the first 8 bytes of the
  231. * gss token header and then over the data body
  232. */
  233. u32
  234. make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
  235. struct xdr_buf *body, int body_offset, u8 *cksumkey,
  236. unsigned int usage, struct xdr_netobj *cksumout)
  237. {
  238. struct crypto_ahash *tfm;
  239. struct ahash_request *req;
  240. struct scatterlist sg[1];
  241. int err;
  242. u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
  243. unsigned int checksumlen;
  244. if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
  245. return make_checksum_hmac_md5(kctx, header, hdrlen,
  246. body, body_offset,
  247. cksumkey, usage, cksumout);
  248. if (cksumout->len < kctx->gk5e->cksumlength) {
  249. dprintk("%s: checksum buffer length, %u, too small for %s\n",
  250. __func__, cksumout->len, kctx->gk5e->name);
  251. return GSS_S_FAILURE;
  252. }
  253. tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
  254. if (IS_ERR(tfm))
  255. return GSS_S_FAILURE;
  256. req = ahash_request_alloc(tfm, GFP_KERNEL);
  257. if (!req) {
  258. crypto_free_ahash(tfm);
  259. return GSS_S_FAILURE;
  260. }
  261. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
  262. checksumlen = crypto_ahash_digestsize(tfm);
  263. if (cksumkey != NULL) {
  264. err = crypto_ahash_setkey(tfm, cksumkey,
  265. kctx->gk5e->keylength);
  266. if (err)
  267. goto out;
  268. }
  269. err = crypto_ahash_init(req);
  270. if (err)
  271. goto out;
  272. sg_init_one(sg, header, hdrlen);
  273. ahash_request_set_crypt(req, sg, NULL, hdrlen);
  274. err = crypto_ahash_update(req);
  275. if (err)
  276. goto out;
  277. err = xdr_process_buf(body, body_offset, body->len - body_offset,
  278. checksummer, req);
  279. if (err)
  280. goto out;
  281. ahash_request_set_crypt(req, NULL, checksumdata, 0);
  282. err = crypto_ahash_final(req);
  283. if (err)
  284. goto out;
  285. switch (kctx->gk5e->ctype) {
  286. case CKSUMTYPE_RSA_MD5:
  287. err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
  288. checksumdata, checksumlen);
  289. if (err)
  290. goto out;
  291. memcpy(cksumout->data,
  292. checksumdata + checksumlen - kctx->gk5e->cksumlength,
  293. kctx->gk5e->cksumlength);
  294. break;
  295. case CKSUMTYPE_HMAC_SHA1_DES3:
  296. memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
  297. break;
  298. default:
  299. BUG();
  300. break;
  301. }
  302. cksumout->len = kctx->gk5e->cksumlength;
  303. out:
  304. ahash_request_free(req);
  305. crypto_free_ahash(tfm);
  306. return err ? GSS_S_FAILURE : 0;
  307. }
  308. /*
  309. * checksum the plaintext data and hdrlen bytes of the token header
  310. * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
  311. * body then over the first 16 octets of the MIC token
  312. * Inclusion of the header data in the calculation of the
  313. * checksum is optional.
  314. */
  315. u32
  316. make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
  317. struct xdr_buf *body, int body_offset, u8 *cksumkey,
  318. unsigned int usage, struct xdr_netobj *cksumout)
  319. {
  320. struct crypto_ahash *tfm;
  321. struct ahash_request *req;
  322. struct scatterlist sg[1];
  323. int err;
  324. u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
  325. unsigned int checksumlen;
  326. if (kctx->gk5e->keyed_cksum == 0) {
  327. dprintk("%s: expected keyed hash for %s\n",
  328. __func__, kctx->gk5e->name);
  329. return GSS_S_FAILURE;
  330. }
  331. if (cksumkey == NULL) {
  332. dprintk("%s: no key supplied for %s\n",
  333. __func__, kctx->gk5e->name);
  334. return GSS_S_FAILURE;
  335. }
  336. tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
  337. if (IS_ERR(tfm))
  338. return GSS_S_FAILURE;
  339. checksumlen = crypto_ahash_digestsize(tfm);
  340. req = ahash_request_alloc(tfm, GFP_KERNEL);
  341. if (!req) {
  342. crypto_free_ahash(tfm);
  343. return GSS_S_FAILURE;
  344. }
  345. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
  346. err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
  347. if (err)
  348. goto out;
  349. err = crypto_ahash_init(req);
  350. if (err)
  351. goto out;
  352. err = xdr_process_buf(body, body_offset, body->len - body_offset,
  353. checksummer, req);
  354. if (err)
  355. goto out;
  356. if (header != NULL) {
  357. sg_init_one(sg, header, hdrlen);
  358. ahash_request_set_crypt(req, sg, NULL, hdrlen);
  359. err = crypto_ahash_update(req);
  360. if (err)
  361. goto out;
  362. }
  363. ahash_request_set_crypt(req, NULL, checksumdata, 0);
  364. err = crypto_ahash_final(req);
  365. if (err)
  366. goto out;
  367. cksumout->len = kctx->gk5e->cksumlength;
  368. switch (kctx->gk5e->ctype) {
  369. case CKSUMTYPE_HMAC_SHA1_96_AES128:
  370. case CKSUMTYPE_HMAC_SHA1_96_AES256:
  371. /* note that this truncates the hash */
  372. memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
  373. break;
  374. default:
  375. BUG();
  376. break;
  377. }
  378. out:
  379. ahash_request_free(req);
  380. crypto_free_ahash(tfm);
  381. return err ? GSS_S_FAILURE : 0;
  382. }
  383. struct encryptor_desc {
  384. u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
  385. struct skcipher_request *req;
  386. int pos;
  387. struct xdr_buf *outbuf;
  388. struct page **pages;
  389. struct scatterlist infrags[4];
  390. struct scatterlist outfrags[4];
  391. int fragno;
  392. int fraglen;
  393. };
  394. static int
  395. encryptor(struct scatterlist *sg, void *data)
  396. {
  397. struct encryptor_desc *desc = data;
  398. struct xdr_buf *outbuf = desc->outbuf;
  399. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
  400. struct page *in_page;
  401. int thislen = desc->fraglen + sg->length;
  402. int fraglen, ret;
  403. int page_pos;
  404. /* Worst case is 4 fragments: head, end of page 1, start
  405. * of page 2, tail. Anything more is a bug. */
  406. BUG_ON(desc->fragno > 3);
  407. page_pos = desc->pos - outbuf->head[0].iov_len;
  408. if (page_pos >= 0 && page_pos < outbuf->page_len) {
  409. /* pages are not in place: */
  410. int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
  411. in_page = desc->pages[i];
  412. } else {
  413. in_page = sg_page(sg);
  414. }
  415. sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
  416. sg->offset);
  417. sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
  418. sg->offset);
  419. desc->fragno++;
  420. desc->fraglen += sg->length;
  421. desc->pos += sg->length;
  422. fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
  423. thislen -= fraglen;
  424. if (thislen == 0)
  425. return 0;
  426. sg_mark_end(&desc->infrags[desc->fragno - 1]);
  427. sg_mark_end(&desc->outfrags[desc->fragno - 1]);
  428. skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
  429. thislen, desc->iv);
  430. ret = crypto_skcipher_encrypt(desc->req);
  431. if (ret)
  432. return ret;
  433. sg_init_table(desc->infrags, 4);
  434. sg_init_table(desc->outfrags, 4);
  435. if (fraglen) {
  436. sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
  437. sg->offset + sg->length - fraglen);
  438. desc->infrags[0] = desc->outfrags[0];
  439. sg_assign_page(&desc->infrags[0], in_page);
  440. desc->fragno = 1;
  441. desc->fraglen = fraglen;
  442. } else {
  443. desc->fragno = 0;
  444. desc->fraglen = 0;
  445. }
  446. return 0;
  447. }
  448. int
  449. gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
  450. int offset, struct page **pages)
  451. {
  452. int ret;
  453. struct encryptor_desc desc;
  454. SKCIPHER_REQUEST_ON_STACK(req, tfm);
  455. BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
  456. skcipher_request_set_tfm(req, tfm);
  457. skcipher_request_set_callback(req, 0, NULL, NULL);
  458. memset(desc.iv, 0, sizeof(desc.iv));
  459. desc.req = req;
  460. desc.pos = offset;
  461. desc.outbuf = buf;
  462. desc.pages = pages;
  463. desc.fragno = 0;
  464. desc.fraglen = 0;
  465. sg_init_table(desc.infrags, 4);
  466. sg_init_table(desc.outfrags, 4);
  467. ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
  468. skcipher_request_zero(req);
  469. return ret;
  470. }
  471. struct decryptor_desc {
  472. u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
  473. struct skcipher_request *req;
  474. struct scatterlist frags[4];
  475. int fragno;
  476. int fraglen;
  477. };
  478. static int
  479. decryptor(struct scatterlist *sg, void *data)
  480. {
  481. struct decryptor_desc *desc = data;
  482. int thislen = desc->fraglen + sg->length;
  483. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
  484. int fraglen, ret;
  485. /* Worst case is 4 fragments: head, end of page 1, start
  486. * of page 2, tail. Anything more is a bug. */
  487. BUG_ON(desc->fragno > 3);
  488. sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
  489. sg->offset);
  490. desc->fragno++;
  491. desc->fraglen += sg->length;
  492. fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
  493. thislen -= fraglen;
  494. if (thislen == 0)
  495. return 0;
  496. sg_mark_end(&desc->frags[desc->fragno - 1]);
  497. skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
  498. thislen, desc->iv);
  499. ret = crypto_skcipher_decrypt(desc->req);
  500. if (ret)
  501. return ret;
  502. sg_init_table(desc->frags, 4);
  503. if (fraglen) {
  504. sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
  505. sg->offset + sg->length - fraglen);
  506. desc->fragno = 1;
  507. desc->fraglen = fraglen;
  508. } else {
  509. desc->fragno = 0;
  510. desc->fraglen = 0;
  511. }
  512. return 0;
  513. }
  514. int
  515. gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
  516. int offset)
  517. {
  518. int ret;
  519. struct decryptor_desc desc;
  520. SKCIPHER_REQUEST_ON_STACK(req, tfm);
  521. /* XXXJBF: */
  522. BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
  523. skcipher_request_set_tfm(req, tfm);
  524. skcipher_request_set_callback(req, 0, NULL, NULL);
  525. memset(desc.iv, 0, sizeof(desc.iv));
  526. desc.req = req;
  527. desc.fragno = 0;
  528. desc.fraglen = 0;
  529. sg_init_table(desc.frags, 4);
  530. ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
  531. skcipher_request_zero(req);
  532. return ret;
  533. }
  534. /*
  535. * This function makes the assumption that it was ultimately called
  536. * from gss_wrap().
  537. *
  538. * The client auth_gss code moves any existing tail data into a
  539. * separate page before calling gss_wrap.
  540. * The server svcauth_gss code ensures that both the head and the
  541. * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
  542. *
  543. * Even with that guarantee, this function may be called more than
  544. * once in the processing of gss_wrap(). The best we can do is
  545. * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
  546. * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
  547. * At run-time we can verify that a single invocation of this
  548. * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
  549. */
  550. int
  551. xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
  552. {
  553. u8 *p;
  554. if (shiftlen == 0)
  555. return 0;
  556. BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
  557. BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
  558. p = buf->head[0].iov_base + base;
  559. memmove(p + shiftlen, p, buf->head[0].iov_len - base);
  560. buf->head[0].iov_len += shiftlen;
  561. buf->len += shiftlen;
  562. return 0;
  563. }
  564. static u32
  565. gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf,
  566. u32 offset, u8 *iv, struct page **pages, int encrypt)
  567. {
  568. u32 ret;
  569. struct scatterlist sg[1];
  570. SKCIPHER_REQUEST_ON_STACK(req, cipher);
  571. u8 data[GSS_KRB5_MAX_BLOCKSIZE * 2];
  572. struct page **save_pages;
  573. u32 len = buf->len - offset;
  574. if (len > ARRAY_SIZE(data)) {
  575. WARN_ON(0);
  576. return -ENOMEM;
  577. }
  578. /*
  579. * For encryption, we want to read from the cleartext
  580. * page cache pages, and write the encrypted data to
  581. * the supplied xdr_buf pages.
  582. */
  583. save_pages = buf->pages;
  584. if (encrypt)
  585. buf->pages = pages;
  586. ret = read_bytes_from_xdr_buf(buf, offset, data, len);
  587. buf->pages = save_pages;
  588. if (ret)
  589. goto out;
  590. sg_init_one(sg, data, len);
  591. skcipher_request_set_tfm(req, cipher);
  592. skcipher_request_set_callback(req, 0, NULL, NULL);
  593. skcipher_request_set_crypt(req, sg, sg, len, iv);
  594. if (encrypt)
  595. ret = crypto_skcipher_encrypt(req);
  596. else
  597. ret = crypto_skcipher_decrypt(req);
  598. skcipher_request_zero(req);
  599. if (ret)
  600. goto out;
  601. ret = write_bytes_to_xdr_buf(buf, offset, data, len);
  602. out:
  603. return ret;
  604. }
  605. u32
  606. gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
  607. struct xdr_buf *buf, struct page **pages)
  608. {
  609. u32 err;
  610. struct xdr_netobj hmac;
  611. u8 *cksumkey;
  612. u8 *ecptr;
  613. struct crypto_skcipher *cipher, *aux_cipher;
  614. int blocksize;
  615. struct page **save_pages;
  616. int nblocks, nbytes;
  617. struct encryptor_desc desc;
  618. u32 cbcbytes;
  619. unsigned int usage;
  620. if (kctx->initiate) {
  621. cipher = kctx->initiator_enc;
  622. aux_cipher = kctx->initiator_enc_aux;
  623. cksumkey = kctx->initiator_integ;
  624. usage = KG_USAGE_INITIATOR_SEAL;
  625. } else {
  626. cipher = kctx->acceptor_enc;
  627. aux_cipher = kctx->acceptor_enc_aux;
  628. cksumkey = kctx->acceptor_integ;
  629. usage = KG_USAGE_ACCEPTOR_SEAL;
  630. }
  631. blocksize = crypto_skcipher_blocksize(cipher);
  632. /* hide the gss token header and insert the confounder */
  633. offset += GSS_KRB5_TOK_HDR_LEN;
  634. if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
  635. return GSS_S_FAILURE;
  636. gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
  637. offset -= GSS_KRB5_TOK_HDR_LEN;
  638. if (buf->tail[0].iov_base != NULL) {
  639. ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
  640. } else {
  641. buf->tail[0].iov_base = buf->head[0].iov_base
  642. + buf->head[0].iov_len;
  643. buf->tail[0].iov_len = 0;
  644. ecptr = buf->tail[0].iov_base;
  645. }
  646. /* copy plaintext gss token header after filler (if any) */
  647. memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
  648. buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
  649. buf->len += GSS_KRB5_TOK_HDR_LEN;
  650. /* Do the HMAC */
  651. hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
  652. hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
  653. /*
  654. * When we are called, pages points to the real page cache
  655. * data -- which we can't go and encrypt! buf->pages points
  656. * to scratch pages which we are going to send off to the
  657. * client/server. Swap in the plaintext pages to calculate
  658. * the hmac.
  659. */
  660. save_pages = buf->pages;
  661. buf->pages = pages;
  662. err = make_checksum_v2(kctx, NULL, 0, buf,
  663. offset + GSS_KRB5_TOK_HDR_LEN,
  664. cksumkey, usage, &hmac);
  665. buf->pages = save_pages;
  666. if (err)
  667. return GSS_S_FAILURE;
  668. nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
  669. nblocks = (nbytes + blocksize - 1) / blocksize;
  670. cbcbytes = 0;
  671. if (nblocks > 2)
  672. cbcbytes = (nblocks - 2) * blocksize;
  673. memset(desc.iv, 0, sizeof(desc.iv));
  674. if (cbcbytes) {
  675. SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
  676. desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
  677. desc.fragno = 0;
  678. desc.fraglen = 0;
  679. desc.pages = pages;
  680. desc.outbuf = buf;
  681. desc.req = req;
  682. skcipher_request_set_tfm(req, aux_cipher);
  683. skcipher_request_set_callback(req, 0, NULL, NULL);
  684. sg_init_table(desc.infrags, 4);
  685. sg_init_table(desc.outfrags, 4);
  686. err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
  687. cbcbytes, encryptor, &desc);
  688. skcipher_request_zero(req);
  689. if (err)
  690. goto out_err;
  691. }
  692. /* Make sure IV carries forward from any CBC results. */
  693. err = gss_krb5_cts_crypt(cipher, buf,
  694. offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
  695. desc.iv, pages, 1);
  696. if (err) {
  697. err = GSS_S_FAILURE;
  698. goto out_err;
  699. }
  700. /* Now update buf to account for HMAC */
  701. buf->tail[0].iov_len += kctx->gk5e->cksumlength;
  702. buf->len += kctx->gk5e->cksumlength;
  703. out_err:
  704. if (err)
  705. err = GSS_S_FAILURE;
  706. return err;
  707. }
  708. u32
  709. gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
  710. u32 *headskip, u32 *tailskip)
  711. {
  712. struct xdr_buf subbuf;
  713. u32 ret = 0;
  714. u8 *cksum_key;
  715. struct crypto_skcipher *cipher, *aux_cipher;
  716. struct xdr_netobj our_hmac_obj;
  717. u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
  718. u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
  719. int nblocks, blocksize, cbcbytes;
  720. struct decryptor_desc desc;
  721. unsigned int usage;
  722. if (kctx->initiate) {
  723. cipher = kctx->acceptor_enc;
  724. aux_cipher = kctx->acceptor_enc_aux;
  725. cksum_key = kctx->acceptor_integ;
  726. usage = KG_USAGE_ACCEPTOR_SEAL;
  727. } else {
  728. cipher = kctx->initiator_enc;
  729. aux_cipher = kctx->initiator_enc_aux;
  730. cksum_key = kctx->initiator_integ;
  731. usage = KG_USAGE_INITIATOR_SEAL;
  732. }
  733. blocksize = crypto_skcipher_blocksize(cipher);
  734. /* create a segment skipping the header and leaving out the checksum */
  735. xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
  736. (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
  737. kctx->gk5e->cksumlength));
  738. nblocks = (subbuf.len + blocksize - 1) / blocksize;
  739. cbcbytes = 0;
  740. if (nblocks > 2)
  741. cbcbytes = (nblocks - 2) * blocksize;
  742. memset(desc.iv, 0, sizeof(desc.iv));
  743. if (cbcbytes) {
  744. SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
  745. desc.fragno = 0;
  746. desc.fraglen = 0;
  747. desc.req = req;
  748. skcipher_request_set_tfm(req, aux_cipher);
  749. skcipher_request_set_callback(req, 0, NULL, NULL);
  750. sg_init_table(desc.frags, 4);
  751. ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
  752. skcipher_request_zero(req);
  753. if (ret)
  754. goto out_err;
  755. }
  756. /* Make sure IV carries forward from any CBC results. */
  757. ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
  758. if (ret)
  759. goto out_err;
  760. /* Calculate our hmac over the plaintext data */
  761. our_hmac_obj.len = sizeof(our_hmac);
  762. our_hmac_obj.data = our_hmac;
  763. ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
  764. cksum_key, usage, &our_hmac_obj);
  765. if (ret)
  766. goto out_err;
  767. /* Get the packet's hmac value */
  768. ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
  769. pkt_hmac, kctx->gk5e->cksumlength);
  770. if (ret)
  771. goto out_err;
  772. if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
  773. ret = GSS_S_BAD_SIG;
  774. goto out_err;
  775. }
  776. *headskip = kctx->gk5e->conflen;
  777. *tailskip = kctx->gk5e->cksumlength;
  778. out_err:
  779. if (ret && ret != GSS_S_BAD_SIG)
  780. ret = GSS_S_FAILURE;
  781. return ret;
  782. }
  783. /*
  784. * Compute Kseq given the initial session key and the checksum.
  785. * Set the key of the given cipher.
  786. */
  787. int
  788. krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
  789. unsigned char *cksum)
  790. {
  791. struct crypto_shash *hmac;
  792. struct shash_desc *desc;
  793. u8 Kseq[GSS_KRB5_MAX_KEYLEN];
  794. u32 zeroconstant = 0;
  795. int err;
  796. dprintk("%s: entered\n", __func__);
  797. hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
  798. if (IS_ERR(hmac)) {
  799. dprintk("%s: error %ld, allocating hash '%s'\n",
  800. __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
  801. return PTR_ERR(hmac);
  802. }
  803. desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
  804. GFP_KERNEL);
  805. if (!desc) {
  806. dprintk("%s: failed to allocate shash descriptor for '%s'\n",
  807. __func__, kctx->gk5e->cksum_name);
  808. crypto_free_shash(hmac);
  809. return -ENOMEM;
  810. }
  811. desc->tfm = hmac;
  812. desc->flags = 0;
  813. /* Compute intermediate Kseq from session key */
  814. err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
  815. if (err)
  816. goto out_err;
  817. err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
  818. if (err)
  819. goto out_err;
  820. /* Compute final Kseq from the checksum and intermediate Kseq */
  821. err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
  822. if (err)
  823. goto out_err;
  824. err = crypto_shash_digest(desc, cksum, 8, Kseq);
  825. if (err)
  826. goto out_err;
  827. err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
  828. if (err)
  829. goto out_err;
  830. err = 0;
  831. out_err:
  832. kzfree(desc);
  833. crypto_free_shash(hmac);
  834. dprintk("%s: returning %d\n", __func__, err);
  835. return err;
  836. }
  837. /*
  838. * Compute Kcrypt given the initial session key and the plaintext seqnum.
  839. * Set the key of cipher kctx->enc.
  840. */
  841. int
  842. krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
  843. s32 seqnum)
  844. {
  845. struct crypto_shash *hmac;
  846. struct shash_desc *desc;
  847. u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
  848. u8 zeroconstant[4] = {0};
  849. u8 seqnumarray[4];
  850. int err, i;
  851. dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
  852. hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
  853. if (IS_ERR(hmac)) {
  854. dprintk("%s: error %ld, allocating hash '%s'\n",
  855. __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
  856. return PTR_ERR(hmac);
  857. }
  858. desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
  859. GFP_KERNEL);
  860. if (!desc) {
  861. dprintk("%s: failed to allocate shash descriptor for '%s'\n",
  862. __func__, kctx->gk5e->cksum_name);
  863. crypto_free_shash(hmac);
  864. return -ENOMEM;
  865. }
  866. desc->tfm = hmac;
  867. desc->flags = 0;
  868. /* Compute intermediate Kcrypt from session key */
  869. for (i = 0; i < kctx->gk5e->keylength; i++)
  870. Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
  871. err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
  872. if (err)
  873. goto out_err;
  874. err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
  875. if (err)
  876. goto out_err;
  877. /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
  878. err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
  879. if (err)
  880. goto out_err;
  881. seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
  882. seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
  883. seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
  884. seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
  885. err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
  886. if (err)
  887. goto out_err;
  888. err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
  889. if (err)
  890. goto out_err;
  891. err = 0;
  892. out_err:
  893. kzfree(desc);
  894. crypto_free_shash(hmac);
  895. dprintk("%s: returning %d\n", __func__, err);
  896. return err;
  897. }