flow_dissector.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941
  1. #include <linux/kernel.h>
  2. #include <linux/skbuff.h>
  3. #include <linux/export.h>
  4. #include <linux/ip.h>
  5. #include <linux/ipv6.h>
  6. #include <linux/if_vlan.h>
  7. #include <net/ip.h>
  8. #include <net/ipv6.h>
  9. #include <linux/igmp.h>
  10. #include <linux/icmp.h>
  11. #include <linux/sctp.h>
  12. #include <linux/dccp.h>
  13. #include <linux/if_tunnel.h>
  14. #include <linux/if_pppox.h>
  15. #include <linux/ppp_defs.h>
  16. #include <linux/stddef.h>
  17. #include <linux/if_ether.h>
  18. #include <linux/mpls.h>
  19. #include <net/flow_dissector.h>
  20. #include <scsi/fc/fc_fcoe.h>
  21. static void dissector_set_key(struct flow_dissector *flow_dissector,
  22. enum flow_dissector_key_id key_id)
  23. {
  24. flow_dissector->used_keys |= (1 << key_id);
  25. }
  26. void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
  27. const struct flow_dissector_key *key,
  28. unsigned int key_count)
  29. {
  30. unsigned int i;
  31. memset(flow_dissector, 0, sizeof(*flow_dissector));
  32. for (i = 0; i < key_count; i++, key++) {
  33. /* User should make sure that every key target offset is withing
  34. * boundaries of unsigned short.
  35. */
  36. BUG_ON(key->offset > USHRT_MAX);
  37. BUG_ON(dissector_uses_key(flow_dissector,
  38. key->key_id));
  39. dissector_set_key(flow_dissector, key->key_id);
  40. flow_dissector->offset[key->key_id] = key->offset;
  41. }
  42. /* Ensure that the dissector always includes control and basic key.
  43. * That way we are able to avoid handling lack of these in fast path.
  44. */
  45. BUG_ON(!dissector_uses_key(flow_dissector,
  46. FLOW_DISSECTOR_KEY_CONTROL));
  47. BUG_ON(!dissector_uses_key(flow_dissector,
  48. FLOW_DISSECTOR_KEY_BASIC));
  49. }
  50. EXPORT_SYMBOL(skb_flow_dissector_init);
  51. /**
  52. * __skb_flow_get_ports - extract the upper layer ports and return them
  53. * @skb: sk_buff to extract the ports from
  54. * @thoff: transport header offset
  55. * @ip_proto: protocol for which to get port offset
  56. * @data: raw buffer pointer to the packet, if NULL use skb->data
  57. * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
  58. *
  59. * The function will try to retrieve the ports at offset thoff + poff where poff
  60. * is the protocol port offset returned from proto_ports_offset
  61. */
  62. __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
  63. void *data, int hlen)
  64. {
  65. int poff = proto_ports_offset(ip_proto);
  66. if (!data) {
  67. data = skb->data;
  68. hlen = skb_headlen(skb);
  69. }
  70. if (poff >= 0) {
  71. __be32 *ports, _ports;
  72. ports = __skb_header_pointer(skb, thoff + poff,
  73. sizeof(_ports), data, hlen, &_ports);
  74. if (ports)
  75. return *ports;
  76. }
  77. return 0;
  78. }
  79. EXPORT_SYMBOL(__skb_flow_get_ports);
  80. /**
  81. * __skb_flow_dissect - extract the flow_keys struct and return it
  82. * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
  83. * @flow_dissector: list of keys to dissect
  84. * @target_container: target structure to put dissected values into
  85. * @data: raw buffer pointer to the packet, if NULL use skb->data
  86. * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
  87. * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
  88. * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
  89. *
  90. * The function will try to retrieve individual keys into target specified
  91. * by flow_dissector from either the skbuff or a raw buffer specified by the
  92. * rest parameters.
  93. *
  94. * Caller must take care of zeroing target container memory.
  95. */
  96. bool __skb_flow_dissect(const struct sk_buff *skb,
  97. struct flow_dissector *flow_dissector,
  98. void *target_container,
  99. void *data, __be16 proto, int nhoff, int hlen,
  100. unsigned int flags)
  101. {
  102. struct flow_dissector_key_control *key_control;
  103. struct flow_dissector_key_basic *key_basic;
  104. struct flow_dissector_key_addrs *key_addrs;
  105. struct flow_dissector_key_ports *key_ports;
  106. struct flow_dissector_key_tags *key_tags;
  107. struct flow_dissector_key_keyid *key_keyid;
  108. u8 ip_proto = 0;
  109. bool ret = false;
  110. if (!data) {
  111. data = skb->data;
  112. proto = skb->protocol;
  113. nhoff = skb_network_offset(skb);
  114. hlen = skb_headlen(skb);
  115. }
  116. /* It is ensured by skb_flow_dissector_init() that control key will
  117. * be always present.
  118. */
  119. key_control = skb_flow_dissector_target(flow_dissector,
  120. FLOW_DISSECTOR_KEY_CONTROL,
  121. target_container);
  122. /* It is ensured by skb_flow_dissector_init() that basic key will
  123. * be always present.
  124. */
  125. key_basic = skb_flow_dissector_target(flow_dissector,
  126. FLOW_DISSECTOR_KEY_BASIC,
  127. target_container);
  128. if (dissector_uses_key(flow_dissector,
  129. FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
  130. struct ethhdr *eth = eth_hdr(skb);
  131. struct flow_dissector_key_eth_addrs *key_eth_addrs;
  132. key_eth_addrs = skb_flow_dissector_target(flow_dissector,
  133. FLOW_DISSECTOR_KEY_ETH_ADDRS,
  134. target_container);
  135. memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
  136. }
  137. again:
  138. switch (proto) {
  139. case htons(ETH_P_IP): {
  140. const struct iphdr *iph;
  141. struct iphdr _iph;
  142. ip:
  143. iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
  144. if (!iph || iph->ihl < 5)
  145. goto out_bad;
  146. nhoff += iph->ihl * 4;
  147. ip_proto = iph->protocol;
  148. if (dissector_uses_key(flow_dissector,
  149. FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
  150. key_addrs = skb_flow_dissector_target(flow_dissector,
  151. FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  152. target_container);
  153. memcpy(&key_addrs->v4addrs, &iph->saddr,
  154. sizeof(key_addrs->v4addrs));
  155. key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  156. }
  157. if (ip_is_fragment(iph)) {
  158. key_control->flags |= FLOW_DIS_IS_FRAGMENT;
  159. if (iph->frag_off & htons(IP_OFFSET)) {
  160. goto out_good;
  161. } else {
  162. key_control->flags |= FLOW_DIS_FIRST_FRAG;
  163. if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
  164. goto out_good;
  165. }
  166. }
  167. if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
  168. goto out_good;
  169. break;
  170. }
  171. case htons(ETH_P_IPV6): {
  172. const struct ipv6hdr *iph;
  173. struct ipv6hdr _iph;
  174. ipv6:
  175. iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
  176. if (!iph)
  177. goto out_bad;
  178. ip_proto = iph->nexthdr;
  179. nhoff += sizeof(struct ipv6hdr);
  180. if (dissector_uses_key(flow_dissector,
  181. FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
  182. key_addrs = skb_flow_dissector_target(flow_dissector,
  183. FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  184. target_container);
  185. memcpy(&key_addrs->v6addrs, &iph->saddr,
  186. sizeof(key_addrs->v6addrs));
  187. key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  188. }
  189. if ((dissector_uses_key(flow_dissector,
  190. FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
  191. (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
  192. ip6_flowlabel(iph)) {
  193. __be32 flow_label = ip6_flowlabel(iph);
  194. if (dissector_uses_key(flow_dissector,
  195. FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
  196. key_tags = skb_flow_dissector_target(flow_dissector,
  197. FLOW_DISSECTOR_KEY_FLOW_LABEL,
  198. target_container);
  199. key_tags->flow_label = ntohl(flow_label);
  200. }
  201. if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
  202. goto out_good;
  203. }
  204. if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
  205. goto out_good;
  206. break;
  207. }
  208. case htons(ETH_P_8021AD):
  209. case htons(ETH_P_8021Q): {
  210. const struct vlan_hdr *vlan;
  211. struct vlan_hdr _vlan;
  212. vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
  213. if (!vlan)
  214. goto out_bad;
  215. if (dissector_uses_key(flow_dissector,
  216. FLOW_DISSECTOR_KEY_VLANID)) {
  217. key_tags = skb_flow_dissector_target(flow_dissector,
  218. FLOW_DISSECTOR_KEY_VLANID,
  219. target_container);
  220. key_tags->vlan_id = skb_vlan_tag_get_id(skb);
  221. }
  222. proto = vlan->h_vlan_encapsulated_proto;
  223. nhoff += sizeof(*vlan);
  224. goto again;
  225. }
  226. case htons(ETH_P_PPP_SES): {
  227. struct {
  228. struct pppoe_hdr hdr;
  229. __be16 proto;
  230. } *hdr, _hdr;
  231. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
  232. if (!hdr)
  233. goto out_bad;
  234. proto = hdr->proto;
  235. nhoff += PPPOE_SES_HLEN;
  236. switch (proto) {
  237. case htons(PPP_IP):
  238. goto ip;
  239. case htons(PPP_IPV6):
  240. goto ipv6;
  241. default:
  242. goto out_bad;
  243. }
  244. }
  245. case htons(ETH_P_TIPC): {
  246. struct {
  247. __be32 pre[3];
  248. __be32 srcnode;
  249. } *hdr, _hdr;
  250. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
  251. if (!hdr)
  252. goto out_bad;
  253. if (dissector_uses_key(flow_dissector,
  254. FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
  255. key_addrs = skb_flow_dissector_target(flow_dissector,
  256. FLOW_DISSECTOR_KEY_TIPC_ADDRS,
  257. target_container);
  258. key_addrs->tipcaddrs.srcnode = hdr->srcnode;
  259. key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
  260. }
  261. goto out_good;
  262. }
  263. case htons(ETH_P_MPLS_UC):
  264. case htons(ETH_P_MPLS_MC): {
  265. struct mpls_label *hdr, _hdr[2];
  266. mpls:
  267. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
  268. hlen, &_hdr);
  269. if (!hdr)
  270. goto out_bad;
  271. if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
  272. MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
  273. if (dissector_uses_key(flow_dissector,
  274. FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
  275. key_keyid = skb_flow_dissector_target(flow_dissector,
  276. FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
  277. target_container);
  278. key_keyid->keyid = hdr[1].entry &
  279. htonl(MPLS_LS_LABEL_MASK);
  280. }
  281. goto out_good;
  282. }
  283. goto out_good;
  284. }
  285. case htons(ETH_P_FCOE):
  286. if ((hlen - nhoff) < FCOE_HEADER_LEN)
  287. goto out_bad;
  288. nhoff += FCOE_HEADER_LEN;
  289. goto out_good;
  290. default:
  291. goto out_bad;
  292. }
  293. ip_proto_again:
  294. switch (ip_proto) {
  295. case IPPROTO_GRE: {
  296. struct gre_hdr {
  297. __be16 flags;
  298. __be16 proto;
  299. } *hdr, _hdr;
  300. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
  301. if (!hdr)
  302. goto out_bad;
  303. /*
  304. * Only look inside GRE if version zero and no
  305. * routing
  306. */
  307. if (hdr->flags & (GRE_VERSION | GRE_ROUTING))
  308. break;
  309. proto = hdr->proto;
  310. nhoff += 4;
  311. if (hdr->flags & GRE_CSUM)
  312. nhoff += 4;
  313. if (hdr->flags & GRE_KEY) {
  314. const __be32 *keyid;
  315. __be32 _keyid;
  316. keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid),
  317. data, hlen, &_keyid);
  318. if (!keyid)
  319. goto out_bad;
  320. if (dissector_uses_key(flow_dissector,
  321. FLOW_DISSECTOR_KEY_GRE_KEYID)) {
  322. key_keyid = skb_flow_dissector_target(flow_dissector,
  323. FLOW_DISSECTOR_KEY_GRE_KEYID,
  324. target_container);
  325. key_keyid->keyid = *keyid;
  326. }
  327. nhoff += 4;
  328. }
  329. if (hdr->flags & GRE_SEQ)
  330. nhoff += 4;
  331. if (proto == htons(ETH_P_TEB)) {
  332. const struct ethhdr *eth;
  333. struct ethhdr _eth;
  334. eth = __skb_header_pointer(skb, nhoff,
  335. sizeof(_eth),
  336. data, hlen, &_eth);
  337. if (!eth)
  338. goto out_bad;
  339. proto = eth->h_proto;
  340. nhoff += sizeof(*eth);
  341. /* Cap headers that we access via pointers at the
  342. * end of the Ethernet header as our maximum alignment
  343. * at that point is only 2 bytes.
  344. */
  345. if (NET_IP_ALIGN)
  346. hlen = nhoff;
  347. }
  348. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  349. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
  350. goto out_good;
  351. goto again;
  352. }
  353. case NEXTHDR_HOP:
  354. case NEXTHDR_ROUTING:
  355. case NEXTHDR_DEST: {
  356. u8 _opthdr[2], *opthdr;
  357. if (proto != htons(ETH_P_IPV6))
  358. break;
  359. opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
  360. data, hlen, &_opthdr);
  361. if (!opthdr)
  362. goto out_bad;
  363. ip_proto = opthdr[0];
  364. nhoff += (opthdr[1] + 1) << 3;
  365. goto ip_proto_again;
  366. }
  367. case NEXTHDR_FRAGMENT: {
  368. struct frag_hdr _fh, *fh;
  369. if (proto != htons(ETH_P_IPV6))
  370. break;
  371. fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
  372. data, hlen, &_fh);
  373. if (!fh)
  374. goto out_bad;
  375. key_control->flags |= FLOW_DIS_IS_FRAGMENT;
  376. nhoff += sizeof(_fh);
  377. ip_proto = fh->nexthdr;
  378. if (!(fh->frag_off & htons(IP6_OFFSET))) {
  379. key_control->flags |= FLOW_DIS_FIRST_FRAG;
  380. if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
  381. goto ip_proto_again;
  382. }
  383. goto out_good;
  384. }
  385. case IPPROTO_IPIP:
  386. proto = htons(ETH_P_IP);
  387. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  388. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
  389. goto out_good;
  390. goto ip;
  391. case IPPROTO_IPV6:
  392. proto = htons(ETH_P_IPV6);
  393. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  394. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
  395. goto out_good;
  396. goto ipv6;
  397. case IPPROTO_MPLS:
  398. proto = htons(ETH_P_MPLS_UC);
  399. goto mpls;
  400. default:
  401. break;
  402. }
  403. if (dissector_uses_key(flow_dissector,
  404. FLOW_DISSECTOR_KEY_PORTS)) {
  405. key_ports = skb_flow_dissector_target(flow_dissector,
  406. FLOW_DISSECTOR_KEY_PORTS,
  407. target_container);
  408. key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
  409. data, hlen);
  410. }
  411. out_good:
  412. ret = true;
  413. out_bad:
  414. key_basic->n_proto = proto;
  415. key_basic->ip_proto = ip_proto;
  416. key_control->thoff = (u16)nhoff;
  417. return ret;
  418. }
  419. EXPORT_SYMBOL(__skb_flow_dissect);
  420. static u32 hashrnd __read_mostly;
  421. static __always_inline void __flow_hash_secret_init(void)
  422. {
  423. net_get_random_once(&hashrnd, sizeof(hashrnd));
  424. }
  425. static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
  426. u32 keyval)
  427. {
  428. return jhash2(words, length, keyval);
  429. }
  430. static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
  431. {
  432. const void *p = flow;
  433. BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
  434. return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
  435. }
  436. static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
  437. {
  438. size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
  439. BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
  440. BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
  441. sizeof(*flow) - sizeof(flow->addrs));
  442. switch (flow->control.addr_type) {
  443. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  444. diff -= sizeof(flow->addrs.v4addrs);
  445. break;
  446. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  447. diff -= sizeof(flow->addrs.v6addrs);
  448. break;
  449. case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
  450. diff -= sizeof(flow->addrs.tipcaddrs);
  451. break;
  452. }
  453. return (sizeof(*flow) - diff) / sizeof(u32);
  454. }
  455. __be32 flow_get_u32_src(const struct flow_keys *flow)
  456. {
  457. switch (flow->control.addr_type) {
  458. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  459. return flow->addrs.v4addrs.src;
  460. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  461. return (__force __be32)ipv6_addr_hash(
  462. &flow->addrs.v6addrs.src);
  463. case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
  464. return flow->addrs.tipcaddrs.srcnode;
  465. default:
  466. return 0;
  467. }
  468. }
  469. EXPORT_SYMBOL(flow_get_u32_src);
  470. __be32 flow_get_u32_dst(const struct flow_keys *flow)
  471. {
  472. switch (flow->control.addr_type) {
  473. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  474. return flow->addrs.v4addrs.dst;
  475. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  476. return (__force __be32)ipv6_addr_hash(
  477. &flow->addrs.v6addrs.dst);
  478. default:
  479. return 0;
  480. }
  481. }
  482. EXPORT_SYMBOL(flow_get_u32_dst);
  483. static inline void __flow_hash_consistentify(struct flow_keys *keys)
  484. {
  485. int addr_diff, i;
  486. switch (keys->control.addr_type) {
  487. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  488. addr_diff = (__force u32)keys->addrs.v4addrs.dst -
  489. (__force u32)keys->addrs.v4addrs.src;
  490. if ((addr_diff < 0) ||
  491. (addr_diff == 0 &&
  492. ((__force u16)keys->ports.dst <
  493. (__force u16)keys->ports.src))) {
  494. swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
  495. swap(keys->ports.src, keys->ports.dst);
  496. }
  497. break;
  498. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  499. addr_diff = memcmp(&keys->addrs.v6addrs.dst,
  500. &keys->addrs.v6addrs.src,
  501. sizeof(keys->addrs.v6addrs.dst));
  502. if ((addr_diff < 0) ||
  503. (addr_diff == 0 &&
  504. ((__force u16)keys->ports.dst <
  505. (__force u16)keys->ports.src))) {
  506. for (i = 0; i < 4; i++)
  507. swap(keys->addrs.v6addrs.src.s6_addr32[i],
  508. keys->addrs.v6addrs.dst.s6_addr32[i]);
  509. swap(keys->ports.src, keys->ports.dst);
  510. }
  511. break;
  512. }
  513. }
  514. static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
  515. {
  516. u32 hash;
  517. __flow_hash_consistentify(keys);
  518. hash = __flow_hash_words(flow_keys_hash_start(keys),
  519. flow_keys_hash_length(keys), keyval);
  520. if (!hash)
  521. hash = 1;
  522. return hash;
  523. }
  524. u32 flow_hash_from_keys(struct flow_keys *keys)
  525. {
  526. __flow_hash_secret_init();
  527. return __flow_hash_from_keys(keys, hashrnd);
  528. }
  529. EXPORT_SYMBOL(flow_hash_from_keys);
  530. static inline u32 ___skb_get_hash(const struct sk_buff *skb,
  531. struct flow_keys *keys, u32 keyval)
  532. {
  533. skb_flow_dissect_flow_keys(skb, keys,
  534. FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
  535. return __flow_hash_from_keys(keys, keyval);
  536. }
  537. struct _flow_keys_digest_data {
  538. __be16 n_proto;
  539. u8 ip_proto;
  540. u8 padding;
  541. __be32 ports;
  542. __be32 src;
  543. __be32 dst;
  544. };
  545. void make_flow_keys_digest(struct flow_keys_digest *digest,
  546. const struct flow_keys *flow)
  547. {
  548. struct _flow_keys_digest_data *data =
  549. (struct _flow_keys_digest_data *)digest;
  550. BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
  551. memset(digest, 0, sizeof(*digest));
  552. data->n_proto = flow->basic.n_proto;
  553. data->ip_proto = flow->basic.ip_proto;
  554. data->ports = flow->ports.ports;
  555. data->src = flow->addrs.v4addrs.src;
  556. data->dst = flow->addrs.v4addrs.dst;
  557. }
  558. EXPORT_SYMBOL(make_flow_keys_digest);
  559. static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
  560. u32 __skb_get_hash_symmetric(struct sk_buff *skb)
  561. {
  562. struct flow_keys keys;
  563. __flow_hash_secret_init();
  564. memset(&keys, 0, sizeof(keys));
  565. __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
  566. NULL, 0, 0, 0,
  567. FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
  568. return __flow_hash_from_keys(&keys, hashrnd);
  569. }
  570. EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
  571. /**
  572. * __skb_get_hash: calculate a flow hash
  573. * @skb: sk_buff to calculate flow hash from
  574. *
  575. * This function calculates a flow hash based on src/dst addresses
  576. * and src/dst port numbers. Sets hash in skb to non-zero hash value
  577. * on success, zero indicates no valid hash. Also, sets l4_hash in skb
  578. * if hash is a canonical 4-tuple hash over transport ports.
  579. */
  580. void __skb_get_hash(struct sk_buff *skb)
  581. {
  582. struct flow_keys keys;
  583. __flow_hash_secret_init();
  584. __skb_set_sw_hash(skb, ___skb_get_hash(skb, &keys, hashrnd),
  585. flow_keys_have_l4(&keys));
  586. }
  587. EXPORT_SYMBOL(__skb_get_hash);
  588. __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
  589. {
  590. struct flow_keys keys;
  591. return ___skb_get_hash(skb, &keys, perturb);
  592. }
  593. EXPORT_SYMBOL(skb_get_hash_perturb);
  594. __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
  595. {
  596. struct flow_keys keys;
  597. memset(&keys, 0, sizeof(keys));
  598. memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
  599. sizeof(keys.addrs.v6addrs.src));
  600. memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
  601. sizeof(keys.addrs.v6addrs.dst));
  602. keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  603. keys.ports.src = fl6->fl6_sport;
  604. keys.ports.dst = fl6->fl6_dport;
  605. keys.keyid.keyid = fl6->fl6_gre_key;
  606. keys.tags.flow_label = (__force u32)fl6->flowlabel;
  607. keys.basic.ip_proto = fl6->flowi6_proto;
  608. __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
  609. flow_keys_have_l4(&keys));
  610. return skb->hash;
  611. }
  612. EXPORT_SYMBOL(__skb_get_hash_flowi6);
  613. __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
  614. {
  615. struct flow_keys keys;
  616. memset(&keys, 0, sizeof(keys));
  617. keys.addrs.v4addrs.src = fl4->saddr;
  618. keys.addrs.v4addrs.dst = fl4->daddr;
  619. keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  620. keys.ports.src = fl4->fl4_sport;
  621. keys.ports.dst = fl4->fl4_dport;
  622. keys.keyid.keyid = fl4->fl4_gre_key;
  623. keys.basic.ip_proto = fl4->flowi4_proto;
  624. __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
  625. flow_keys_have_l4(&keys));
  626. return skb->hash;
  627. }
  628. EXPORT_SYMBOL(__skb_get_hash_flowi4);
  629. u32 __skb_get_poff(const struct sk_buff *skb, void *data,
  630. const struct flow_keys *keys, int hlen)
  631. {
  632. u32 poff = keys->control.thoff;
  633. /* skip L4 headers for fragments after the first */
  634. if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
  635. !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
  636. return poff;
  637. switch (keys->basic.ip_proto) {
  638. case IPPROTO_TCP: {
  639. /* access doff as u8 to avoid unaligned access */
  640. const u8 *doff;
  641. u8 _doff;
  642. doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
  643. data, hlen, &_doff);
  644. if (!doff)
  645. return poff;
  646. poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
  647. break;
  648. }
  649. case IPPROTO_UDP:
  650. case IPPROTO_UDPLITE:
  651. poff += sizeof(struct udphdr);
  652. break;
  653. /* For the rest, we do not really care about header
  654. * extensions at this point for now.
  655. */
  656. case IPPROTO_ICMP:
  657. poff += sizeof(struct icmphdr);
  658. break;
  659. case IPPROTO_ICMPV6:
  660. poff += sizeof(struct icmp6hdr);
  661. break;
  662. case IPPROTO_IGMP:
  663. poff += sizeof(struct igmphdr);
  664. break;
  665. case IPPROTO_DCCP:
  666. poff += sizeof(struct dccp_hdr);
  667. break;
  668. case IPPROTO_SCTP:
  669. poff += sizeof(struct sctphdr);
  670. break;
  671. }
  672. return poff;
  673. }
  674. /**
  675. * skb_get_poff - get the offset to the payload
  676. * @skb: sk_buff to get the payload offset from
  677. *
  678. * The function will get the offset to the payload as far as it could
  679. * be dissected. The main user is currently BPF, so that we can dynamically
  680. * truncate packets without needing to push actual payload to the user
  681. * space and can analyze headers only, instead.
  682. */
  683. u32 skb_get_poff(const struct sk_buff *skb)
  684. {
  685. struct flow_keys keys;
  686. if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
  687. return 0;
  688. return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
  689. }
  690. __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
  691. {
  692. memset(keys, 0, sizeof(*keys));
  693. memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
  694. sizeof(keys->addrs.v6addrs.src));
  695. memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
  696. sizeof(keys->addrs.v6addrs.dst));
  697. keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  698. keys->ports.src = fl6->fl6_sport;
  699. keys->ports.dst = fl6->fl6_dport;
  700. keys->keyid.keyid = fl6->fl6_gre_key;
  701. keys->tags.flow_label = (__force u32)fl6->flowlabel;
  702. keys->basic.ip_proto = fl6->flowi6_proto;
  703. return flow_hash_from_keys(keys);
  704. }
  705. EXPORT_SYMBOL(__get_hash_from_flowi6);
  706. __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
  707. {
  708. memset(keys, 0, sizeof(*keys));
  709. keys->addrs.v4addrs.src = fl4->saddr;
  710. keys->addrs.v4addrs.dst = fl4->daddr;
  711. keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  712. keys->ports.src = fl4->fl4_sport;
  713. keys->ports.dst = fl4->fl4_dport;
  714. keys->keyid.keyid = fl4->fl4_gre_key;
  715. keys->basic.ip_proto = fl4->flowi4_proto;
  716. return flow_hash_from_keys(keys);
  717. }
  718. EXPORT_SYMBOL(__get_hash_from_flowi4);
  719. static const struct flow_dissector_key flow_keys_dissector_keys[] = {
  720. {
  721. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  722. .offset = offsetof(struct flow_keys, control),
  723. },
  724. {
  725. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  726. .offset = offsetof(struct flow_keys, basic),
  727. },
  728. {
  729. .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  730. .offset = offsetof(struct flow_keys, addrs.v4addrs),
  731. },
  732. {
  733. .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  734. .offset = offsetof(struct flow_keys, addrs.v6addrs),
  735. },
  736. {
  737. .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
  738. .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
  739. },
  740. {
  741. .key_id = FLOW_DISSECTOR_KEY_PORTS,
  742. .offset = offsetof(struct flow_keys, ports),
  743. },
  744. {
  745. .key_id = FLOW_DISSECTOR_KEY_VLANID,
  746. .offset = offsetof(struct flow_keys, tags),
  747. },
  748. {
  749. .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
  750. .offset = offsetof(struct flow_keys, tags),
  751. },
  752. {
  753. .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
  754. .offset = offsetof(struct flow_keys, keyid),
  755. },
  756. };
  757. static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
  758. {
  759. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  760. .offset = offsetof(struct flow_keys, control),
  761. },
  762. {
  763. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  764. .offset = offsetof(struct flow_keys, basic),
  765. },
  766. {
  767. .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  768. .offset = offsetof(struct flow_keys, addrs.v4addrs),
  769. },
  770. {
  771. .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  772. .offset = offsetof(struct flow_keys, addrs.v6addrs),
  773. },
  774. {
  775. .key_id = FLOW_DISSECTOR_KEY_PORTS,
  776. .offset = offsetof(struct flow_keys, ports),
  777. },
  778. };
  779. static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
  780. {
  781. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  782. .offset = offsetof(struct flow_keys, control),
  783. },
  784. {
  785. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  786. .offset = offsetof(struct flow_keys, basic),
  787. },
  788. };
  789. struct flow_dissector flow_keys_dissector __read_mostly;
  790. EXPORT_SYMBOL(flow_keys_dissector);
  791. struct flow_dissector flow_keys_buf_dissector __read_mostly;
  792. static int __init init_default_flow_dissectors(void)
  793. {
  794. skb_flow_dissector_init(&flow_keys_dissector,
  795. flow_keys_dissector_keys,
  796. ARRAY_SIZE(flow_keys_dissector_keys));
  797. skb_flow_dissector_init(&flow_keys_dissector_symmetric,
  798. flow_keys_dissector_symmetric_keys,
  799. ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
  800. skb_flow_dissector_init(&flow_keys_buf_dissector,
  801. flow_keys_buf_dissector_keys,
  802. ARRAY_SIZE(flow_keys_buf_dissector_keys));
  803. return 0;
  804. }
  805. late_initcall_sync(init_default_flow_dissectors);