khugepaged.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/mm.h>
  3. #include <linux/sched.h>
  4. #include <linux/mmu_notifier.h>
  5. #include <linux/rmap.h>
  6. #include <linux/swap.h>
  7. #include <linux/mm_inline.h>
  8. #include <linux/kthread.h>
  9. #include <linux/khugepaged.h>
  10. #include <linux/freezer.h>
  11. #include <linux/mman.h>
  12. #include <linux/hashtable.h>
  13. #include <linux/userfaultfd_k.h>
  14. #include <linux/page_idle.h>
  15. #include <linux/swapops.h>
  16. #include <linux/shmem_fs.h>
  17. #include <asm/tlb.h>
  18. #include <asm/pgalloc.h>
  19. #include "internal.h"
  20. enum scan_result {
  21. SCAN_FAIL,
  22. SCAN_SUCCEED,
  23. SCAN_PMD_NULL,
  24. SCAN_EXCEED_NONE_PTE,
  25. SCAN_PTE_NON_PRESENT,
  26. SCAN_PAGE_RO,
  27. SCAN_LACK_REFERENCED_PAGE,
  28. SCAN_PAGE_NULL,
  29. SCAN_SCAN_ABORT,
  30. SCAN_PAGE_COUNT,
  31. SCAN_PAGE_LRU,
  32. SCAN_PAGE_LOCK,
  33. SCAN_PAGE_ANON,
  34. SCAN_PAGE_COMPOUND,
  35. SCAN_ANY_PROCESS,
  36. SCAN_VMA_NULL,
  37. SCAN_VMA_CHECK,
  38. SCAN_ADDRESS_RANGE,
  39. SCAN_SWAP_CACHE_PAGE,
  40. SCAN_DEL_PAGE_LRU,
  41. SCAN_ALLOC_HUGE_PAGE_FAIL,
  42. SCAN_CGROUP_CHARGE_FAIL,
  43. SCAN_EXCEED_SWAP_PTE,
  44. SCAN_TRUNCATED,
  45. };
  46. #define CREATE_TRACE_POINTS
  47. #include <trace/events/huge_memory.h>
  48. /* default scan 8*512 pte (or vmas) every 30 second */
  49. static unsigned int khugepaged_pages_to_scan __read_mostly;
  50. static unsigned int khugepaged_pages_collapsed;
  51. static unsigned int khugepaged_full_scans;
  52. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  53. /* during fragmentation poll the hugepage allocator once every minute */
  54. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  55. static unsigned long khugepaged_sleep_expire;
  56. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  57. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  58. /*
  59. * default collapse hugepages if there is at least one pte mapped like
  60. * it would have happened if the vma was large enough during page
  61. * fault.
  62. */
  63. static unsigned int khugepaged_max_ptes_none __read_mostly;
  64. static unsigned int khugepaged_max_ptes_swap __read_mostly;
  65. #define MM_SLOTS_HASH_BITS 10
  66. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  67. static struct kmem_cache *mm_slot_cache __read_mostly;
  68. /**
  69. * struct mm_slot - hash lookup from mm to mm_slot
  70. * @hash: hash collision list
  71. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72. * @mm: the mm that this information is valid for
  73. */
  74. struct mm_slot {
  75. struct hlist_node hash;
  76. struct list_head mm_node;
  77. struct mm_struct *mm;
  78. };
  79. /**
  80. * struct khugepaged_scan - cursor for scanning
  81. * @mm_head: the head of the mm list to scan
  82. * @mm_slot: the current mm_slot we are scanning
  83. * @address: the next address inside that to be scanned
  84. *
  85. * There is only the one khugepaged_scan instance of this cursor structure.
  86. */
  87. struct khugepaged_scan {
  88. struct list_head mm_head;
  89. struct mm_slot *mm_slot;
  90. unsigned long address;
  91. };
  92. static struct khugepaged_scan khugepaged_scan = {
  93. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94. };
  95. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  96. struct kobj_attribute *attr,
  97. char *buf)
  98. {
  99. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  100. }
  101. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  102. struct kobj_attribute *attr,
  103. const char *buf, size_t count)
  104. {
  105. unsigned long msecs;
  106. int err;
  107. err = kstrtoul(buf, 10, &msecs);
  108. if (err || msecs > UINT_MAX)
  109. return -EINVAL;
  110. khugepaged_scan_sleep_millisecs = msecs;
  111. khugepaged_sleep_expire = 0;
  112. wake_up_interruptible(&khugepaged_wait);
  113. return count;
  114. }
  115. static struct kobj_attribute scan_sleep_millisecs_attr =
  116. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  117. scan_sleep_millisecs_store);
  118. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  119. struct kobj_attribute *attr,
  120. char *buf)
  121. {
  122. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  123. }
  124. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  125. struct kobj_attribute *attr,
  126. const char *buf, size_t count)
  127. {
  128. unsigned long msecs;
  129. int err;
  130. err = kstrtoul(buf, 10, &msecs);
  131. if (err || msecs > UINT_MAX)
  132. return -EINVAL;
  133. khugepaged_alloc_sleep_millisecs = msecs;
  134. khugepaged_sleep_expire = 0;
  135. wake_up_interruptible(&khugepaged_wait);
  136. return count;
  137. }
  138. static struct kobj_attribute alloc_sleep_millisecs_attr =
  139. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  140. alloc_sleep_millisecs_store);
  141. static ssize_t pages_to_scan_show(struct kobject *kobj,
  142. struct kobj_attribute *attr,
  143. char *buf)
  144. {
  145. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  146. }
  147. static ssize_t pages_to_scan_store(struct kobject *kobj,
  148. struct kobj_attribute *attr,
  149. const char *buf, size_t count)
  150. {
  151. int err;
  152. unsigned long pages;
  153. err = kstrtoul(buf, 10, &pages);
  154. if (err || !pages || pages > UINT_MAX)
  155. return -EINVAL;
  156. khugepaged_pages_to_scan = pages;
  157. return count;
  158. }
  159. static struct kobj_attribute pages_to_scan_attr =
  160. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  161. pages_to_scan_store);
  162. static ssize_t pages_collapsed_show(struct kobject *kobj,
  163. struct kobj_attribute *attr,
  164. char *buf)
  165. {
  166. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  167. }
  168. static struct kobj_attribute pages_collapsed_attr =
  169. __ATTR_RO(pages_collapsed);
  170. static ssize_t full_scans_show(struct kobject *kobj,
  171. struct kobj_attribute *attr,
  172. char *buf)
  173. {
  174. return sprintf(buf, "%u\n", khugepaged_full_scans);
  175. }
  176. static struct kobj_attribute full_scans_attr =
  177. __ATTR_RO(full_scans);
  178. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  179. struct kobj_attribute *attr, char *buf)
  180. {
  181. return single_hugepage_flag_show(kobj, attr, buf,
  182. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  183. }
  184. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  185. struct kobj_attribute *attr,
  186. const char *buf, size_t count)
  187. {
  188. return single_hugepage_flag_store(kobj, attr, buf, count,
  189. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  190. }
  191. static struct kobj_attribute khugepaged_defrag_attr =
  192. __ATTR(defrag, 0644, khugepaged_defrag_show,
  193. khugepaged_defrag_store);
  194. /*
  195. * max_ptes_none controls if khugepaged should collapse hugepages over
  196. * any unmapped ptes in turn potentially increasing the memory
  197. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  198. * reduce the available free memory in the system as it
  199. * runs. Increasing max_ptes_none will instead potentially reduce the
  200. * free memory in the system during the khugepaged scan.
  201. */
  202. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  203. struct kobj_attribute *attr,
  204. char *buf)
  205. {
  206. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  207. }
  208. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  209. struct kobj_attribute *attr,
  210. const char *buf, size_t count)
  211. {
  212. int err;
  213. unsigned long max_ptes_none;
  214. err = kstrtoul(buf, 10, &max_ptes_none);
  215. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  216. return -EINVAL;
  217. khugepaged_max_ptes_none = max_ptes_none;
  218. return count;
  219. }
  220. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  221. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  222. khugepaged_max_ptes_none_store);
  223. static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
  224. struct kobj_attribute *attr,
  225. char *buf)
  226. {
  227. return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
  228. }
  229. static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
  230. struct kobj_attribute *attr,
  231. const char *buf, size_t count)
  232. {
  233. int err;
  234. unsigned long max_ptes_swap;
  235. err = kstrtoul(buf, 10, &max_ptes_swap);
  236. if (err || max_ptes_swap > HPAGE_PMD_NR-1)
  237. return -EINVAL;
  238. khugepaged_max_ptes_swap = max_ptes_swap;
  239. return count;
  240. }
  241. static struct kobj_attribute khugepaged_max_ptes_swap_attr =
  242. __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
  243. khugepaged_max_ptes_swap_store);
  244. static struct attribute *khugepaged_attr[] = {
  245. &khugepaged_defrag_attr.attr,
  246. &khugepaged_max_ptes_none_attr.attr,
  247. &pages_to_scan_attr.attr,
  248. &pages_collapsed_attr.attr,
  249. &full_scans_attr.attr,
  250. &scan_sleep_millisecs_attr.attr,
  251. &alloc_sleep_millisecs_attr.attr,
  252. &khugepaged_max_ptes_swap_attr.attr,
  253. NULL,
  254. };
  255. struct attribute_group khugepaged_attr_group = {
  256. .attrs = khugepaged_attr,
  257. .name = "khugepaged",
  258. };
  259. #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
  260. int hugepage_madvise(struct vm_area_struct *vma,
  261. unsigned long *vm_flags, int advice)
  262. {
  263. switch (advice) {
  264. case MADV_HUGEPAGE:
  265. #ifdef CONFIG_S390
  266. /*
  267. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  268. * can't handle this properly after s390_enable_sie, so we simply
  269. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  270. */
  271. if (mm_has_pgste(vma->vm_mm))
  272. return 0;
  273. #endif
  274. *vm_flags &= ~VM_NOHUGEPAGE;
  275. *vm_flags |= VM_HUGEPAGE;
  276. /*
  277. * If the vma become good for khugepaged to scan,
  278. * register it here without waiting a page fault that
  279. * may not happen any time soon.
  280. */
  281. if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
  282. khugepaged_enter_vma_merge(vma, *vm_flags))
  283. return -ENOMEM;
  284. break;
  285. case MADV_NOHUGEPAGE:
  286. *vm_flags &= ~VM_HUGEPAGE;
  287. *vm_flags |= VM_NOHUGEPAGE;
  288. /*
  289. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  290. * this vma even if we leave the mm registered in khugepaged if
  291. * it got registered before VM_NOHUGEPAGE was set.
  292. */
  293. break;
  294. }
  295. return 0;
  296. }
  297. int __init khugepaged_init(void)
  298. {
  299. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  300. sizeof(struct mm_slot),
  301. __alignof__(struct mm_slot), 0, NULL);
  302. if (!mm_slot_cache)
  303. return -ENOMEM;
  304. khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
  305. khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
  306. khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
  307. return 0;
  308. }
  309. void __init khugepaged_destroy(void)
  310. {
  311. kmem_cache_destroy(mm_slot_cache);
  312. }
  313. static inline struct mm_slot *alloc_mm_slot(void)
  314. {
  315. if (!mm_slot_cache) /* initialization failed */
  316. return NULL;
  317. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  318. }
  319. static inline void free_mm_slot(struct mm_slot *mm_slot)
  320. {
  321. kmem_cache_free(mm_slot_cache, mm_slot);
  322. }
  323. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  324. {
  325. struct mm_slot *mm_slot;
  326. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  327. if (mm == mm_slot->mm)
  328. return mm_slot;
  329. return NULL;
  330. }
  331. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  332. struct mm_slot *mm_slot)
  333. {
  334. mm_slot->mm = mm;
  335. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  336. }
  337. static inline int khugepaged_test_exit(struct mm_struct *mm)
  338. {
  339. return atomic_read(&mm->mm_users) == 0;
  340. }
  341. int __khugepaged_enter(struct mm_struct *mm)
  342. {
  343. struct mm_slot *mm_slot;
  344. int wakeup;
  345. mm_slot = alloc_mm_slot();
  346. if (!mm_slot)
  347. return -ENOMEM;
  348. /* __khugepaged_exit() must not run from under us */
  349. VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
  350. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  351. free_mm_slot(mm_slot);
  352. return 0;
  353. }
  354. spin_lock(&khugepaged_mm_lock);
  355. insert_to_mm_slots_hash(mm, mm_slot);
  356. /*
  357. * Insert just behind the scanning cursor, to let the area settle
  358. * down a little.
  359. */
  360. wakeup = list_empty(&khugepaged_scan.mm_head);
  361. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  362. spin_unlock(&khugepaged_mm_lock);
  363. atomic_inc(&mm->mm_count);
  364. if (wakeup)
  365. wake_up_interruptible(&khugepaged_wait);
  366. return 0;
  367. }
  368. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  369. unsigned long vm_flags)
  370. {
  371. unsigned long hstart, hend;
  372. if (!vma->anon_vma)
  373. /*
  374. * Not yet faulted in so we will register later in the
  375. * page fault if needed.
  376. */
  377. return 0;
  378. if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
  379. /* khugepaged not yet working on file or special mappings */
  380. return 0;
  381. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  382. hend = vma->vm_end & HPAGE_PMD_MASK;
  383. if (hstart < hend)
  384. return khugepaged_enter(vma, vm_flags);
  385. return 0;
  386. }
  387. void __khugepaged_exit(struct mm_struct *mm)
  388. {
  389. struct mm_slot *mm_slot;
  390. int free = 0;
  391. spin_lock(&khugepaged_mm_lock);
  392. mm_slot = get_mm_slot(mm);
  393. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  394. hash_del(&mm_slot->hash);
  395. list_del(&mm_slot->mm_node);
  396. free = 1;
  397. }
  398. spin_unlock(&khugepaged_mm_lock);
  399. if (free) {
  400. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  401. free_mm_slot(mm_slot);
  402. mmdrop(mm);
  403. } else if (mm_slot) {
  404. /*
  405. * This is required to serialize against
  406. * khugepaged_test_exit() (which is guaranteed to run
  407. * under mmap sem read mode). Stop here (after we
  408. * return all pagetables will be destroyed) until
  409. * khugepaged has finished working on the pagetables
  410. * under the mmap_sem.
  411. */
  412. down_write(&mm->mmap_sem);
  413. up_write(&mm->mmap_sem);
  414. }
  415. }
  416. static void release_pte_page(struct page *page)
  417. {
  418. /* 0 stands for page_is_file_cache(page) == false */
  419. dec_node_page_state(page, NR_ISOLATED_ANON + 0);
  420. unlock_page(page);
  421. putback_lru_page(page);
  422. }
  423. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  424. {
  425. while (--_pte >= pte) {
  426. pte_t pteval = *_pte;
  427. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  428. release_pte_page(pte_page(pteval));
  429. }
  430. }
  431. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  432. unsigned long address,
  433. pte_t *pte)
  434. {
  435. struct page *page = NULL;
  436. pte_t *_pte;
  437. int none_or_zero = 0, result = 0, referenced = 0;
  438. bool writable = false;
  439. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  440. _pte++, address += PAGE_SIZE) {
  441. pte_t pteval = *_pte;
  442. if (pte_none(pteval) || (pte_present(pteval) &&
  443. is_zero_pfn(pte_pfn(pteval)))) {
  444. if (!userfaultfd_armed(vma) &&
  445. ++none_or_zero <= khugepaged_max_ptes_none) {
  446. continue;
  447. } else {
  448. result = SCAN_EXCEED_NONE_PTE;
  449. goto out;
  450. }
  451. }
  452. if (!pte_present(pteval)) {
  453. result = SCAN_PTE_NON_PRESENT;
  454. goto out;
  455. }
  456. page = vm_normal_page(vma, address, pteval);
  457. if (unlikely(!page)) {
  458. result = SCAN_PAGE_NULL;
  459. goto out;
  460. }
  461. VM_BUG_ON_PAGE(PageCompound(page), page);
  462. VM_BUG_ON_PAGE(!PageAnon(page), page);
  463. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  464. /*
  465. * We can do it before isolate_lru_page because the
  466. * page can't be freed from under us. NOTE: PG_lock
  467. * is needed to serialize against split_huge_page
  468. * when invoked from the VM.
  469. */
  470. if (!trylock_page(page)) {
  471. result = SCAN_PAGE_LOCK;
  472. goto out;
  473. }
  474. /*
  475. * cannot use mapcount: can't collapse if there's a gup pin.
  476. * The page must only be referenced by the scanned process
  477. * and page swap cache.
  478. */
  479. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  480. unlock_page(page);
  481. result = SCAN_PAGE_COUNT;
  482. goto out;
  483. }
  484. if (pte_write(pteval)) {
  485. writable = true;
  486. } else {
  487. if (PageSwapCache(page) &&
  488. !reuse_swap_page(page, NULL)) {
  489. unlock_page(page);
  490. result = SCAN_SWAP_CACHE_PAGE;
  491. goto out;
  492. }
  493. /*
  494. * Page is not in the swap cache. It can be collapsed
  495. * into a THP.
  496. */
  497. }
  498. /*
  499. * Isolate the page to avoid collapsing an hugepage
  500. * currently in use by the VM.
  501. */
  502. if (isolate_lru_page(page)) {
  503. unlock_page(page);
  504. result = SCAN_DEL_PAGE_LRU;
  505. goto out;
  506. }
  507. /* 0 stands for page_is_file_cache(page) == false */
  508. inc_node_page_state(page, NR_ISOLATED_ANON + 0);
  509. VM_BUG_ON_PAGE(!PageLocked(page), page);
  510. VM_BUG_ON_PAGE(PageLRU(page), page);
  511. /* There should be enough young pte to collapse the page */
  512. if (pte_young(pteval) ||
  513. page_is_young(page) || PageReferenced(page) ||
  514. mmu_notifier_test_young(vma->vm_mm, address))
  515. referenced++;
  516. }
  517. if (likely(writable)) {
  518. if (likely(referenced)) {
  519. result = SCAN_SUCCEED;
  520. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  521. referenced, writable, result);
  522. return 1;
  523. }
  524. } else {
  525. result = SCAN_PAGE_RO;
  526. }
  527. out:
  528. release_pte_pages(pte, _pte);
  529. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  530. referenced, writable, result);
  531. return 0;
  532. }
  533. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  534. struct vm_area_struct *vma,
  535. unsigned long address,
  536. spinlock_t *ptl)
  537. {
  538. pte_t *_pte;
  539. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  540. pte_t pteval = *_pte;
  541. struct page *src_page;
  542. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  543. clear_user_highpage(page, address);
  544. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  545. if (is_zero_pfn(pte_pfn(pteval))) {
  546. /*
  547. * ptl mostly unnecessary.
  548. */
  549. spin_lock(ptl);
  550. /*
  551. * paravirt calls inside pte_clear here are
  552. * superfluous.
  553. */
  554. pte_clear(vma->vm_mm, address, _pte);
  555. spin_unlock(ptl);
  556. }
  557. } else {
  558. src_page = pte_page(pteval);
  559. copy_user_highpage(page, src_page, address, vma);
  560. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  561. release_pte_page(src_page);
  562. /*
  563. * ptl mostly unnecessary, but preempt has to
  564. * be disabled to update the per-cpu stats
  565. * inside page_remove_rmap().
  566. */
  567. spin_lock(ptl);
  568. /*
  569. * paravirt calls inside pte_clear here are
  570. * superfluous.
  571. */
  572. pte_clear(vma->vm_mm, address, _pte);
  573. page_remove_rmap(src_page, false);
  574. spin_unlock(ptl);
  575. free_page_and_swap_cache(src_page);
  576. }
  577. address += PAGE_SIZE;
  578. page++;
  579. }
  580. }
  581. static void khugepaged_alloc_sleep(void)
  582. {
  583. DEFINE_WAIT(wait);
  584. add_wait_queue(&khugepaged_wait, &wait);
  585. freezable_schedule_timeout_interruptible(
  586. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  587. remove_wait_queue(&khugepaged_wait, &wait);
  588. }
  589. static int khugepaged_node_load[MAX_NUMNODES];
  590. static bool khugepaged_scan_abort(int nid)
  591. {
  592. int i;
  593. /*
  594. * If node_reclaim_mode is disabled, then no extra effort is made to
  595. * allocate memory locally.
  596. */
  597. if (!node_reclaim_mode)
  598. return false;
  599. /* If there is a count for this node already, it must be acceptable */
  600. if (khugepaged_node_load[nid])
  601. return false;
  602. for (i = 0; i < MAX_NUMNODES; i++) {
  603. if (!khugepaged_node_load[i])
  604. continue;
  605. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  606. return true;
  607. }
  608. return false;
  609. }
  610. /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
  611. static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
  612. {
  613. return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
  614. }
  615. #ifdef CONFIG_NUMA
  616. static int khugepaged_find_target_node(void)
  617. {
  618. static int last_khugepaged_target_node = NUMA_NO_NODE;
  619. int nid, target_node = 0, max_value = 0;
  620. /* find first node with max normal pages hit */
  621. for (nid = 0; nid < MAX_NUMNODES; nid++)
  622. if (khugepaged_node_load[nid] > max_value) {
  623. max_value = khugepaged_node_load[nid];
  624. target_node = nid;
  625. }
  626. /* do some balance if several nodes have the same hit record */
  627. if (target_node <= last_khugepaged_target_node)
  628. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  629. nid++)
  630. if (max_value == khugepaged_node_load[nid]) {
  631. target_node = nid;
  632. break;
  633. }
  634. last_khugepaged_target_node = target_node;
  635. return target_node;
  636. }
  637. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  638. {
  639. if (IS_ERR(*hpage)) {
  640. if (!*wait)
  641. return false;
  642. *wait = false;
  643. *hpage = NULL;
  644. khugepaged_alloc_sleep();
  645. } else if (*hpage) {
  646. put_page(*hpage);
  647. *hpage = NULL;
  648. }
  649. return true;
  650. }
  651. static struct page *
  652. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
  653. {
  654. VM_BUG_ON_PAGE(*hpage, *hpage);
  655. *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
  656. if (unlikely(!*hpage)) {
  657. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  658. *hpage = ERR_PTR(-ENOMEM);
  659. return NULL;
  660. }
  661. prep_transhuge_page(*hpage);
  662. count_vm_event(THP_COLLAPSE_ALLOC);
  663. return *hpage;
  664. }
  665. #else
  666. static int khugepaged_find_target_node(void)
  667. {
  668. return 0;
  669. }
  670. static inline struct page *alloc_khugepaged_hugepage(void)
  671. {
  672. struct page *page;
  673. page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
  674. HPAGE_PMD_ORDER);
  675. if (page)
  676. prep_transhuge_page(page);
  677. return page;
  678. }
  679. static struct page *khugepaged_alloc_hugepage(bool *wait)
  680. {
  681. struct page *hpage;
  682. do {
  683. hpage = alloc_khugepaged_hugepage();
  684. if (!hpage) {
  685. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  686. if (!*wait)
  687. return NULL;
  688. *wait = false;
  689. khugepaged_alloc_sleep();
  690. } else
  691. count_vm_event(THP_COLLAPSE_ALLOC);
  692. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  693. return hpage;
  694. }
  695. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  696. {
  697. if (!*hpage)
  698. *hpage = khugepaged_alloc_hugepage(wait);
  699. if (unlikely(!*hpage))
  700. return false;
  701. return true;
  702. }
  703. static struct page *
  704. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
  705. {
  706. VM_BUG_ON(!*hpage);
  707. return *hpage;
  708. }
  709. #endif
  710. static bool hugepage_vma_check(struct vm_area_struct *vma)
  711. {
  712. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  713. (vma->vm_flags & VM_NOHUGEPAGE))
  714. return false;
  715. if (shmem_file(vma->vm_file)) {
  716. if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
  717. return false;
  718. return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
  719. HPAGE_PMD_NR);
  720. }
  721. if (!vma->anon_vma || vma->vm_ops)
  722. return false;
  723. if (is_vma_temporary_stack(vma))
  724. return false;
  725. return !(vma->vm_flags & VM_NO_KHUGEPAGED);
  726. }
  727. /*
  728. * If mmap_sem temporarily dropped, revalidate vma
  729. * before taking mmap_sem.
  730. * Return 0 if succeeds, otherwise return none-zero
  731. * value (scan code).
  732. */
  733. static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
  734. {
  735. struct vm_area_struct *vma;
  736. unsigned long hstart, hend;
  737. if (unlikely(khugepaged_test_exit(mm)))
  738. return SCAN_ANY_PROCESS;
  739. vma = find_vma(mm, address);
  740. if (!vma)
  741. return SCAN_VMA_NULL;
  742. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  743. hend = vma->vm_end & HPAGE_PMD_MASK;
  744. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  745. return SCAN_ADDRESS_RANGE;
  746. if (!hugepage_vma_check(vma))
  747. return SCAN_VMA_CHECK;
  748. return 0;
  749. }
  750. /*
  751. * Bring missing pages in from swap, to complete THP collapse.
  752. * Only done if khugepaged_scan_pmd believes it is worthwhile.
  753. *
  754. * Called and returns without pte mapped or spinlocks held,
  755. * but with mmap_sem held to protect against vma changes.
  756. */
  757. static bool __collapse_huge_page_swapin(struct mm_struct *mm,
  758. struct vm_area_struct *vma,
  759. unsigned long address, pmd_t *pmd,
  760. int referenced)
  761. {
  762. pte_t pteval;
  763. int swapped_in = 0, ret = 0;
  764. struct fault_env fe = {
  765. .vma = vma,
  766. .address = address,
  767. .flags = FAULT_FLAG_ALLOW_RETRY,
  768. .pmd = pmd,
  769. };
  770. fe.pte = pte_offset_map(pmd, address);
  771. for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
  772. fe.pte++, fe.address += PAGE_SIZE) {
  773. pteval = *fe.pte;
  774. if (!is_swap_pte(pteval))
  775. continue;
  776. swapped_in++;
  777. /* we only decide to swapin, if there is enough young ptes */
  778. if (referenced < HPAGE_PMD_NR/2) {
  779. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
  780. return false;
  781. }
  782. ret = do_swap_page(&fe, pteval);
  783. /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
  784. if (ret & VM_FAULT_RETRY) {
  785. down_read(&mm->mmap_sem);
  786. if (hugepage_vma_revalidate(mm, address)) {
  787. /* vma is no longer available, don't continue to swapin */
  788. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
  789. return false;
  790. }
  791. /* check if the pmd is still valid */
  792. if (mm_find_pmd(mm, address) != pmd)
  793. return false;
  794. }
  795. if (ret & VM_FAULT_ERROR) {
  796. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
  797. return false;
  798. }
  799. /* pte is unmapped now, we need to map it */
  800. fe.pte = pte_offset_map(pmd, fe.address);
  801. }
  802. fe.pte--;
  803. pte_unmap(fe.pte);
  804. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
  805. return true;
  806. }
  807. static void collapse_huge_page(struct mm_struct *mm,
  808. unsigned long address,
  809. struct page **hpage,
  810. struct vm_area_struct *vma,
  811. int node, int referenced)
  812. {
  813. pmd_t *pmd, _pmd;
  814. pte_t *pte;
  815. pgtable_t pgtable;
  816. struct page *new_page;
  817. spinlock_t *pmd_ptl, *pte_ptl;
  818. int isolated = 0, result = 0;
  819. struct mem_cgroup *memcg;
  820. unsigned long mmun_start; /* For mmu_notifiers */
  821. unsigned long mmun_end; /* For mmu_notifiers */
  822. gfp_t gfp;
  823. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  824. /* Only allocate from the target node */
  825. gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
  826. /*
  827. * Before allocating the hugepage, release the mmap_sem read lock.
  828. * The allocation can take potentially a long time if it involves
  829. * sync compaction, and we do not need to hold the mmap_sem during
  830. * that. We will recheck the vma after taking it again in write mode.
  831. */
  832. up_read(&mm->mmap_sem);
  833. new_page = khugepaged_alloc_page(hpage, gfp, node);
  834. if (!new_page) {
  835. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  836. goto out_nolock;
  837. }
  838. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  839. result = SCAN_CGROUP_CHARGE_FAIL;
  840. goto out_nolock;
  841. }
  842. down_read(&mm->mmap_sem);
  843. result = hugepage_vma_revalidate(mm, address);
  844. if (result) {
  845. mem_cgroup_cancel_charge(new_page, memcg, true);
  846. up_read(&mm->mmap_sem);
  847. goto out_nolock;
  848. }
  849. pmd = mm_find_pmd(mm, address);
  850. if (!pmd) {
  851. result = SCAN_PMD_NULL;
  852. mem_cgroup_cancel_charge(new_page, memcg, true);
  853. up_read(&mm->mmap_sem);
  854. goto out_nolock;
  855. }
  856. /*
  857. * __collapse_huge_page_swapin always returns with mmap_sem locked.
  858. * If it fails, we release mmap_sem and jump out_nolock.
  859. * Continuing to collapse causes inconsistency.
  860. */
  861. if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
  862. mem_cgroup_cancel_charge(new_page, memcg, true);
  863. up_read(&mm->mmap_sem);
  864. goto out_nolock;
  865. }
  866. up_read(&mm->mmap_sem);
  867. /*
  868. * Prevent all access to pagetables with the exception of
  869. * gup_fast later handled by the ptep_clear_flush and the VM
  870. * handled by the anon_vma lock + PG_lock.
  871. */
  872. down_write(&mm->mmap_sem);
  873. result = hugepage_vma_revalidate(mm, address);
  874. if (result)
  875. goto out;
  876. /* check if the pmd is still valid */
  877. if (mm_find_pmd(mm, address) != pmd)
  878. goto out;
  879. anon_vma_lock_write(vma->anon_vma);
  880. pte = pte_offset_map(pmd, address);
  881. pte_ptl = pte_lockptr(mm, pmd);
  882. mmun_start = address;
  883. mmun_end = address + HPAGE_PMD_SIZE;
  884. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  885. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  886. /*
  887. * After this gup_fast can't run anymore. This also removes
  888. * any huge TLB entry from the CPU so we won't allow
  889. * huge and small TLB entries for the same virtual address
  890. * to avoid the risk of CPU bugs in that area.
  891. */
  892. _pmd = pmdp_collapse_flush(vma, address, pmd);
  893. spin_unlock(pmd_ptl);
  894. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  895. spin_lock(pte_ptl);
  896. isolated = __collapse_huge_page_isolate(vma, address, pte);
  897. spin_unlock(pte_ptl);
  898. if (unlikely(!isolated)) {
  899. pte_unmap(pte);
  900. spin_lock(pmd_ptl);
  901. BUG_ON(!pmd_none(*pmd));
  902. /*
  903. * We can only use set_pmd_at when establishing
  904. * hugepmds and never for establishing regular pmds that
  905. * points to regular pagetables. Use pmd_populate for that
  906. */
  907. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  908. spin_unlock(pmd_ptl);
  909. anon_vma_unlock_write(vma->anon_vma);
  910. result = SCAN_FAIL;
  911. goto out;
  912. }
  913. /*
  914. * All pages are isolated and locked so anon_vma rmap
  915. * can't run anymore.
  916. */
  917. anon_vma_unlock_write(vma->anon_vma);
  918. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  919. pte_unmap(pte);
  920. __SetPageUptodate(new_page);
  921. pgtable = pmd_pgtable(_pmd);
  922. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  923. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  924. /*
  925. * spin_lock() below is not the equivalent of smp_wmb(), so
  926. * this is needed to avoid the copy_huge_page writes to become
  927. * visible after the set_pmd_at() write.
  928. */
  929. smp_wmb();
  930. spin_lock(pmd_ptl);
  931. BUG_ON(!pmd_none(*pmd));
  932. page_add_new_anon_rmap(new_page, vma, address, true);
  933. mem_cgroup_commit_charge(new_page, memcg, false, true);
  934. lru_cache_add_active_or_unevictable(new_page, vma);
  935. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  936. set_pmd_at(mm, address, pmd, _pmd);
  937. update_mmu_cache_pmd(vma, address, pmd);
  938. spin_unlock(pmd_ptl);
  939. *hpage = NULL;
  940. khugepaged_pages_collapsed++;
  941. result = SCAN_SUCCEED;
  942. out_up_write:
  943. up_write(&mm->mmap_sem);
  944. out_nolock:
  945. trace_mm_collapse_huge_page(mm, isolated, result);
  946. return;
  947. out:
  948. mem_cgroup_cancel_charge(new_page, memcg, true);
  949. goto out_up_write;
  950. }
  951. static int khugepaged_scan_pmd(struct mm_struct *mm,
  952. struct vm_area_struct *vma,
  953. unsigned long address,
  954. struct page **hpage)
  955. {
  956. pmd_t *pmd;
  957. pte_t *pte, *_pte;
  958. int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
  959. struct page *page = NULL;
  960. unsigned long _address;
  961. spinlock_t *ptl;
  962. int node = NUMA_NO_NODE, unmapped = 0;
  963. bool writable = false;
  964. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  965. pmd = mm_find_pmd(mm, address);
  966. if (!pmd) {
  967. result = SCAN_PMD_NULL;
  968. goto out;
  969. }
  970. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  971. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  972. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  973. _pte++, _address += PAGE_SIZE) {
  974. pte_t pteval = *_pte;
  975. if (is_swap_pte(pteval)) {
  976. if (++unmapped <= khugepaged_max_ptes_swap) {
  977. continue;
  978. } else {
  979. result = SCAN_EXCEED_SWAP_PTE;
  980. goto out_unmap;
  981. }
  982. }
  983. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  984. if (!userfaultfd_armed(vma) &&
  985. ++none_or_zero <= khugepaged_max_ptes_none) {
  986. continue;
  987. } else {
  988. result = SCAN_EXCEED_NONE_PTE;
  989. goto out_unmap;
  990. }
  991. }
  992. if (!pte_present(pteval)) {
  993. result = SCAN_PTE_NON_PRESENT;
  994. goto out_unmap;
  995. }
  996. if (pte_write(pteval))
  997. writable = true;
  998. page = vm_normal_page(vma, _address, pteval);
  999. if (unlikely(!page)) {
  1000. result = SCAN_PAGE_NULL;
  1001. goto out_unmap;
  1002. }
  1003. /* TODO: teach khugepaged to collapse THP mapped with pte */
  1004. if (PageCompound(page)) {
  1005. result = SCAN_PAGE_COMPOUND;
  1006. goto out_unmap;
  1007. }
  1008. /*
  1009. * Record which node the original page is from and save this
  1010. * information to khugepaged_node_load[].
  1011. * Khupaged will allocate hugepage from the node has the max
  1012. * hit record.
  1013. */
  1014. node = page_to_nid(page);
  1015. if (khugepaged_scan_abort(node)) {
  1016. result = SCAN_SCAN_ABORT;
  1017. goto out_unmap;
  1018. }
  1019. khugepaged_node_load[node]++;
  1020. if (!PageLRU(page)) {
  1021. result = SCAN_PAGE_LRU;
  1022. goto out_unmap;
  1023. }
  1024. if (PageLocked(page)) {
  1025. result = SCAN_PAGE_LOCK;
  1026. goto out_unmap;
  1027. }
  1028. if (!PageAnon(page)) {
  1029. result = SCAN_PAGE_ANON;
  1030. goto out_unmap;
  1031. }
  1032. /*
  1033. * cannot use mapcount: can't collapse if there's a gup pin.
  1034. * The page must only be referenced by the scanned process
  1035. * and page swap cache.
  1036. */
  1037. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  1038. result = SCAN_PAGE_COUNT;
  1039. goto out_unmap;
  1040. }
  1041. if (pte_young(pteval) ||
  1042. page_is_young(page) || PageReferenced(page) ||
  1043. mmu_notifier_test_young(vma->vm_mm, address))
  1044. referenced++;
  1045. }
  1046. if (writable) {
  1047. if (referenced) {
  1048. result = SCAN_SUCCEED;
  1049. ret = 1;
  1050. } else {
  1051. result = SCAN_LACK_REFERENCED_PAGE;
  1052. }
  1053. } else {
  1054. result = SCAN_PAGE_RO;
  1055. }
  1056. out_unmap:
  1057. pte_unmap_unlock(pte, ptl);
  1058. if (ret) {
  1059. node = khugepaged_find_target_node();
  1060. /* collapse_huge_page will return with the mmap_sem released */
  1061. collapse_huge_page(mm, address, hpage, vma, node, referenced);
  1062. }
  1063. out:
  1064. trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
  1065. none_or_zero, result, unmapped);
  1066. return ret;
  1067. }
  1068. static void collect_mm_slot(struct mm_slot *mm_slot)
  1069. {
  1070. struct mm_struct *mm = mm_slot->mm;
  1071. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1072. if (khugepaged_test_exit(mm)) {
  1073. /* free mm_slot */
  1074. hash_del(&mm_slot->hash);
  1075. list_del(&mm_slot->mm_node);
  1076. /*
  1077. * Not strictly needed because the mm exited already.
  1078. *
  1079. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1080. */
  1081. /* khugepaged_mm_lock actually not necessary for the below */
  1082. free_mm_slot(mm_slot);
  1083. mmdrop(mm);
  1084. }
  1085. }
  1086. #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
  1087. static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
  1088. {
  1089. struct vm_area_struct *vma;
  1090. unsigned long addr;
  1091. pmd_t *pmd, _pmd;
  1092. i_mmap_lock_write(mapping);
  1093. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1094. /* probably overkill */
  1095. if (vma->anon_vma)
  1096. continue;
  1097. addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  1098. if (addr & ~HPAGE_PMD_MASK)
  1099. continue;
  1100. if (vma->vm_end < addr + HPAGE_PMD_SIZE)
  1101. continue;
  1102. pmd = mm_find_pmd(vma->vm_mm, addr);
  1103. if (!pmd)
  1104. continue;
  1105. /*
  1106. * We need exclusive mmap_sem to retract page table.
  1107. * If trylock fails we would end up with pte-mapped THP after
  1108. * re-fault. Not ideal, but it's more important to not disturb
  1109. * the system too much.
  1110. */
  1111. if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
  1112. spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
  1113. /* assume page table is clear */
  1114. _pmd = pmdp_collapse_flush(vma, addr, pmd);
  1115. spin_unlock(ptl);
  1116. up_write(&vma->vm_mm->mmap_sem);
  1117. atomic_long_dec(&vma->vm_mm->nr_ptes);
  1118. pte_free(vma->vm_mm, pmd_pgtable(_pmd));
  1119. }
  1120. }
  1121. i_mmap_unlock_write(mapping);
  1122. }
  1123. /**
  1124. * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
  1125. *
  1126. * Basic scheme is simple, details are more complex:
  1127. * - allocate and freeze a new huge page;
  1128. * - scan over radix tree replacing old pages the new one
  1129. * + swap in pages if necessary;
  1130. * + fill in gaps;
  1131. * + keep old pages around in case if rollback is required;
  1132. * - if replacing succeed:
  1133. * + copy data over;
  1134. * + free old pages;
  1135. * + unfreeze huge page;
  1136. * - if replacing failed;
  1137. * + put all pages back and unfreeze them;
  1138. * + restore gaps in the radix-tree;
  1139. * + free huge page;
  1140. */
  1141. static void collapse_shmem(struct mm_struct *mm,
  1142. struct address_space *mapping, pgoff_t start,
  1143. struct page **hpage, int node)
  1144. {
  1145. gfp_t gfp;
  1146. struct page *page, *new_page, *tmp;
  1147. struct mem_cgroup *memcg;
  1148. pgoff_t index, end = start + HPAGE_PMD_NR;
  1149. LIST_HEAD(pagelist);
  1150. struct radix_tree_iter iter;
  1151. void **slot;
  1152. int nr_none = 0, result = SCAN_SUCCEED;
  1153. VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
  1154. /* Only allocate from the target node */
  1155. gfp = alloc_hugepage_khugepaged_gfpmask() |
  1156. __GFP_OTHER_NODE | __GFP_THISNODE;
  1157. new_page = khugepaged_alloc_page(hpage, gfp, node);
  1158. if (!new_page) {
  1159. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  1160. goto out;
  1161. }
  1162. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  1163. result = SCAN_CGROUP_CHARGE_FAIL;
  1164. goto out;
  1165. }
  1166. new_page->index = start;
  1167. new_page->mapping = mapping;
  1168. __SetPageSwapBacked(new_page);
  1169. __SetPageLocked(new_page);
  1170. BUG_ON(!page_ref_freeze(new_page, 1));
  1171. /*
  1172. * At this point the new_page is 'frozen' (page_count() is zero), locked
  1173. * and not up-to-date. It's safe to insert it into radix tree, because
  1174. * nobody would be able to map it or use it in other way until we
  1175. * unfreeze it.
  1176. */
  1177. index = start;
  1178. spin_lock_irq(&mapping->tree_lock);
  1179. radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
  1180. int n = min(iter.index, end) - index;
  1181. /*
  1182. * Handle holes in the radix tree: charge it from shmem and
  1183. * insert relevant subpage of new_page into the radix-tree.
  1184. */
  1185. if (n && !shmem_charge(mapping->host, n)) {
  1186. result = SCAN_FAIL;
  1187. break;
  1188. }
  1189. nr_none += n;
  1190. for (; index < min(iter.index, end); index++) {
  1191. radix_tree_insert(&mapping->page_tree, index,
  1192. new_page + (index % HPAGE_PMD_NR));
  1193. }
  1194. /* We are done. */
  1195. if (index >= end)
  1196. break;
  1197. page = radix_tree_deref_slot_protected(slot,
  1198. &mapping->tree_lock);
  1199. if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
  1200. spin_unlock_irq(&mapping->tree_lock);
  1201. /* swap in or instantiate fallocated page */
  1202. if (shmem_getpage(mapping->host, index, &page,
  1203. SGP_NOHUGE)) {
  1204. result = SCAN_FAIL;
  1205. goto tree_unlocked;
  1206. }
  1207. spin_lock_irq(&mapping->tree_lock);
  1208. } else if (trylock_page(page)) {
  1209. get_page(page);
  1210. } else {
  1211. result = SCAN_PAGE_LOCK;
  1212. break;
  1213. }
  1214. /*
  1215. * The page must be locked, so we can drop the tree_lock
  1216. * without racing with truncate.
  1217. */
  1218. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1219. VM_BUG_ON_PAGE(!PageUptodate(page), page);
  1220. VM_BUG_ON_PAGE(PageTransCompound(page), page);
  1221. if (page_mapping(page) != mapping) {
  1222. result = SCAN_TRUNCATED;
  1223. goto out_unlock;
  1224. }
  1225. spin_unlock_irq(&mapping->tree_lock);
  1226. if (isolate_lru_page(page)) {
  1227. result = SCAN_DEL_PAGE_LRU;
  1228. goto out_isolate_failed;
  1229. }
  1230. if (page_mapped(page))
  1231. unmap_mapping_range(mapping, index << PAGE_SHIFT,
  1232. PAGE_SIZE, 0);
  1233. spin_lock_irq(&mapping->tree_lock);
  1234. VM_BUG_ON_PAGE(page_mapped(page), page);
  1235. /*
  1236. * The page is expected to have page_count() == 3:
  1237. * - we hold a pin on it;
  1238. * - one reference from radix tree;
  1239. * - one from isolate_lru_page;
  1240. */
  1241. if (!page_ref_freeze(page, 3)) {
  1242. result = SCAN_PAGE_COUNT;
  1243. goto out_lru;
  1244. }
  1245. /*
  1246. * Add the page to the list to be able to undo the collapse if
  1247. * something go wrong.
  1248. */
  1249. list_add_tail(&page->lru, &pagelist);
  1250. /* Finally, replace with the new page. */
  1251. radix_tree_replace_slot(slot,
  1252. new_page + (index % HPAGE_PMD_NR));
  1253. index++;
  1254. continue;
  1255. out_lru:
  1256. spin_unlock_irq(&mapping->tree_lock);
  1257. putback_lru_page(page);
  1258. out_isolate_failed:
  1259. unlock_page(page);
  1260. put_page(page);
  1261. goto tree_unlocked;
  1262. out_unlock:
  1263. unlock_page(page);
  1264. put_page(page);
  1265. break;
  1266. }
  1267. /*
  1268. * Handle hole in radix tree at the end of the range.
  1269. * This code only triggers if there's nothing in radix tree
  1270. * beyond 'end'.
  1271. */
  1272. if (result == SCAN_SUCCEED && index < end) {
  1273. int n = end - index;
  1274. if (!shmem_charge(mapping->host, n)) {
  1275. result = SCAN_FAIL;
  1276. goto tree_locked;
  1277. }
  1278. for (; index < end; index++) {
  1279. radix_tree_insert(&mapping->page_tree, index,
  1280. new_page + (index % HPAGE_PMD_NR));
  1281. }
  1282. nr_none += n;
  1283. }
  1284. tree_locked:
  1285. spin_unlock_irq(&mapping->tree_lock);
  1286. tree_unlocked:
  1287. if (result == SCAN_SUCCEED) {
  1288. unsigned long flags;
  1289. struct zone *zone = page_zone(new_page);
  1290. /*
  1291. * Replacing old pages with new one has succeed, now we need to
  1292. * copy the content and free old pages.
  1293. */
  1294. list_for_each_entry_safe(page, tmp, &pagelist, lru) {
  1295. copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
  1296. page);
  1297. list_del(&page->lru);
  1298. unlock_page(page);
  1299. page_ref_unfreeze(page, 1);
  1300. page->mapping = NULL;
  1301. ClearPageActive(page);
  1302. ClearPageUnevictable(page);
  1303. put_page(page);
  1304. }
  1305. local_irq_save(flags);
  1306. __inc_node_page_state(new_page, NR_SHMEM_THPS);
  1307. if (nr_none) {
  1308. __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
  1309. __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
  1310. }
  1311. local_irq_restore(flags);
  1312. /*
  1313. * Remove pte page tables, so we can re-faulti
  1314. * the page as huge.
  1315. */
  1316. retract_page_tables(mapping, start);
  1317. /* Everything is ready, let's unfreeze the new_page */
  1318. set_page_dirty(new_page);
  1319. SetPageUptodate(new_page);
  1320. page_ref_unfreeze(new_page, HPAGE_PMD_NR);
  1321. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1322. lru_cache_add_anon(new_page);
  1323. unlock_page(new_page);
  1324. *hpage = NULL;
  1325. } else {
  1326. /* Something went wrong: rollback changes to the radix-tree */
  1327. shmem_uncharge(mapping->host, nr_none);
  1328. spin_lock_irq(&mapping->tree_lock);
  1329. radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
  1330. start) {
  1331. if (iter.index >= end)
  1332. break;
  1333. page = list_first_entry_or_null(&pagelist,
  1334. struct page, lru);
  1335. if (!page || iter.index < page->index) {
  1336. if (!nr_none)
  1337. break;
  1338. /* Put holes back where they were */
  1339. radix_tree_replace_slot(slot, NULL);
  1340. nr_none--;
  1341. continue;
  1342. }
  1343. VM_BUG_ON_PAGE(page->index != iter.index, page);
  1344. /* Unfreeze the page. */
  1345. list_del(&page->lru);
  1346. page_ref_unfreeze(page, 2);
  1347. radix_tree_replace_slot(slot, page);
  1348. spin_unlock_irq(&mapping->tree_lock);
  1349. putback_lru_page(page);
  1350. unlock_page(page);
  1351. spin_lock_irq(&mapping->tree_lock);
  1352. }
  1353. VM_BUG_ON(nr_none);
  1354. spin_unlock_irq(&mapping->tree_lock);
  1355. /* Unfreeze new_page, caller would take care about freeing it */
  1356. page_ref_unfreeze(new_page, 1);
  1357. mem_cgroup_cancel_charge(new_page, memcg, true);
  1358. unlock_page(new_page);
  1359. new_page->mapping = NULL;
  1360. }
  1361. out:
  1362. VM_BUG_ON(!list_empty(&pagelist));
  1363. /* TODO: tracepoints */
  1364. }
  1365. static void khugepaged_scan_shmem(struct mm_struct *mm,
  1366. struct address_space *mapping,
  1367. pgoff_t start, struct page **hpage)
  1368. {
  1369. struct page *page = NULL;
  1370. struct radix_tree_iter iter;
  1371. void **slot;
  1372. int present, swap;
  1373. int node = NUMA_NO_NODE;
  1374. int result = SCAN_SUCCEED;
  1375. present = 0;
  1376. swap = 0;
  1377. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  1378. rcu_read_lock();
  1379. radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
  1380. if (iter.index >= start + HPAGE_PMD_NR)
  1381. break;
  1382. page = radix_tree_deref_slot(slot);
  1383. if (radix_tree_deref_retry(page)) {
  1384. slot = radix_tree_iter_retry(&iter);
  1385. continue;
  1386. }
  1387. if (radix_tree_exception(page)) {
  1388. if (++swap > khugepaged_max_ptes_swap) {
  1389. result = SCAN_EXCEED_SWAP_PTE;
  1390. break;
  1391. }
  1392. continue;
  1393. }
  1394. if (PageTransCompound(page)) {
  1395. result = SCAN_PAGE_COMPOUND;
  1396. break;
  1397. }
  1398. node = page_to_nid(page);
  1399. if (khugepaged_scan_abort(node)) {
  1400. result = SCAN_SCAN_ABORT;
  1401. break;
  1402. }
  1403. khugepaged_node_load[node]++;
  1404. if (!PageLRU(page)) {
  1405. result = SCAN_PAGE_LRU;
  1406. break;
  1407. }
  1408. if (page_count(page) != 1 + page_mapcount(page)) {
  1409. result = SCAN_PAGE_COUNT;
  1410. break;
  1411. }
  1412. /*
  1413. * We probably should check if the page is referenced here, but
  1414. * nobody would transfer pte_young() to PageReferenced() for us.
  1415. * And rmap walk here is just too costly...
  1416. */
  1417. present++;
  1418. if (need_resched()) {
  1419. cond_resched_rcu();
  1420. slot = radix_tree_iter_next(&iter);
  1421. }
  1422. }
  1423. rcu_read_unlock();
  1424. if (result == SCAN_SUCCEED) {
  1425. if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
  1426. result = SCAN_EXCEED_NONE_PTE;
  1427. } else {
  1428. node = khugepaged_find_target_node();
  1429. collapse_shmem(mm, mapping, start, hpage, node);
  1430. }
  1431. }
  1432. /* TODO: tracepoints */
  1433. }
  1434. #else
  1435. static void khugepaged_scan_shmem(struct mm_struct *mm,
  1436. struct address_space *mapping,
  1437. pgoff_t start, struct page **hpage)
  1438. {
  1439. BUILD_BUG();
  1440. }
  1441. #endif
  1442. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1443. struct page **hpage)
  1444. __releases(&khugepaged_mm_lock)
  1445. __acquires(&khugepaged_mm_lock)
  1446. {
  1447. struct mm_slot *mm_slot;
  1448. struct mm_struct *mm;
  1449. struct vm_area_struct *vma;
  1450. int progress = 0;
  1451. VM_BUG_ON(!pages);
  1452. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1453. if (khugepaged_scan.mm_slot)
  1454. mm_slot = khugepaged_scan.mm_slot;
  1455. else {
  1456. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1457. struct mm_slot, mm_node);
  1458. khugepaged_scan.address = 0;
  1459. khugepaged_scan.mm_slot = mm_slot;
  1460. }
  1461. spin_unlock(&khugepaged_mm_lock);
  1462. mm = mm_slot->mm;
  1463. down_read(&mm->mmap_sem);
  1464. if (unlikely(khugepaged_test_exit(mm)))
  1465. vma = NULL;
  1466. else
  1467. vma = find_vma(mm, khugepaged_scan.address);
  1468. progress++;
  1469. for (; vma; vma = vma->vm_next) {
  1470. unsigned long hstart, hend;
  1471. cond_resched();
  1472. if (unlikely(khugepaged_test_exit(mm))) {
  1473. progress++;
  1474. break;
  1475. }
  1476. if (!hugepage_vma_check(vma)) {
  1477. skip:
  1478. progress++;
  1479. continue;
  1480. }
  1481. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1482. hend = vma->vm_end & HPAGE_PMD_MASK;
  1483. if (hstart >= hend)
  1484. goto skip;
  1485. if (khugepaged_scan.address > hend)
  1486. goto skip;
  1487. if (khugepaged_scan.address < hstart)
  1488. khugepaged_scan.address = hstart;
  1489. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1490. while (khugepaged_scan.address < hend) {
  1491. int ret;
  1492. cond_resched();
  1493. if (unlikely(khugepaged_test_exit(mm)))
  1494. goto breakouterloop;
  1495. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1496. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1497. hend);
  1498. if (shmem_file(vma->vm_file)) {
  1499. struct file *file;
  1500. pgoff_t pgoff = linear_page_index(vma,
  1501. khugepaged_scan.address);
  1502. if (!shmem_huge_enabled(vma))
  1503. goto skip;
  1504. file = get_file(vma->vm_file);
  1505. up_read(&mm->mmap_sem);
  1506. ret = 1;
  1507. khugepaged_scan_shmem(mm, file->f_mapping,
  1508. pgoff, hpage);
  1509. fput(file);
  1510. } else {
  1511. ret = khugepaged_scan_pmd(mm, vma,
  1512. khugepaged_scan.address,
  1513. hpage);
  1514. }
  1515. /* move to next address */
  1516. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1517. progress += HPAGE_PMD_NR;
  1518. if (ret)
  1519. /* we released mmap_sem so break loop */
  1520. goto breakouterloop_mmap_sem;
  1521. if (progress >= pages)
  1522. goto breakouterloop;
  1523. }
  1524. }
  1525. breakouterloop:
  1526. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1527. breakouterloop_mmap_sem:
  1528. spin_lock(&khugepaged_mm_lock);
  1529. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1530. /*
  1531. * Release the current mm_slot if this mm is about to die, or
  1532. * if we scanned all vmas of this mm.
  1533. */
  1534. if (khugepaged_test_exit(mm) || !vma) {
  1535. /*
  1536. * Make sure that if mm_users is reaching zero while
  1537. * khugepaged runs here, khugepaged_exit will find
  1538. * mm_slot not pointing to the exiting mm.
  1539. */
  1540. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1541. khugepaged_scan.mm_slot = list_entry(
  1542. mm_slot->mm_node.next,
  1543. struct mm_slot, mm_node);
  1544. khugepaged_scan.address = 0;
  1545. } else {
  1546. khugepaged_scan.mm_slot = NULL;
  1547. khugepaged_full_scans++;
  1548. }
  1549. collect_mm_slot(mm_slot);
  1550. }
  1551. return progress;
  1552. }
  1553. static int khugepaged_has_work(void)
  1554. {
  1555. return !list_empty(&khugepaged_scan.mm_head) &&
  1556. khugepaged_enabled();
  1557. }
  1558. static int khugepaged_wait_event(void)
  1559. {
  1560. return !list_empty(&khugepaged_scan.mm_head) ||
  1561. kthread_should_stop();
  1562. }
  1563. static void khugepaged_do_scan(void)
  1564. {
  1565. struct page *hpage = NULL;
  1566. unsigned int progress = 0, pass_through_head = 0;
  1567. unsigned int pages = khugepaged_pages_to_scan;
  1568. bool wait = true;
  1569. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1570. while (progress < pages) {
  1571. if (!khugepaged_prealloc_page(&hpage, &wait))
  1572. break;
  1573. cond_resched();
  1574. if (unlikely(kthread_should_stop() || try_to_freeze()))
  1575. break;
  1576. spin_lock(&khugepaged_mm_lock);
  1577. if (!khugepaged_scan.mm_slot)
  1578. pass_through_head++;
  1579. if (khugepaged_has_work() &&
  1580. pass_through_head < 2)
  1581. progress += khugepaged_scan_mm_slot(pages - progress,
  1582. &hpage);
  1583. else
  1584. progress = pages;
  1585. spin_unlock(&khugepaged_mm_lock);
  1586. }
  1587. if (!IS_ERR_OR_NULL(hpage))
  1588. put_page(hpage);
  1589. }
  1590. static bool khugepaged_should_wakeup(void)
  1591. {
  1592. return kthread_should_stop() ||
  1593. time_after_eq(jiffies, khugepaged_sleep_expire);
  1594. }
  1595. static void khugepaged_wait_work(void)
  1596. {
  1597. if (khugepaged_has_work()) {
  1598. const unsigned long scan_sleep_jiffies =
  1599. msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
  1600. if (!scan_sleep_jiffies)
  1601. return;
  1602. khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
  1603. wait_event_freezable_timeout(khugepaged_wait,
  1604. khugepaged_should_wakeup(),
  1605. scan_sleep_jiffies);
  1606. return;
  1607. }
  1608. if (khugepaged_enabled())
  1609. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  1610. }
  1611. static int khugepaged(void *none)
  1612. {
  1613. struct mm_slot *mm_slot;
  1614. set_freezable();
  1615. set_user_nice(current, MAX_NICE);
  1616. while (!kthread_should_stop()) {
  1617. khugepaged_do_scan();
  1618. khugepaged_wait_work();
  1619. }
  1620. spin_lock(&khugepaged_mm_lock);
  1621. mm_slot = khugepaged_scan.mm_slot;
  1622. khugepaged_scan.mm_slot = NULL;
  1623. if (mm_slot)
  1624. collect_mm_slot(mm_slot);
  1625. spin_unlock(&khugepaged_mm_lock);
  1626. return 0;
  1627. }
  1628. static void set_recommended_min_free_kbytes(void)
  1629. {
  1630. struct zone *zone;
  1631. int nr_zones = 0;
  1632. unsigned long recommended_min;
  1633. for_each_populated_zone(zone)
  1634. nr_zones++;
  1635. /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
  1636. recommended_min = pageblock_nr_pages * nr_zones * 2;
  1637. /*
  1638. * Make sure that on average at least two pageblocks are almost free
  1639. * of another type, one for a migratetype to fall back to and a
  1640. * second to avoid subsequent fallbacks of other types There are 3
  1641. * MIGRATE_TYPES we care about.
  1642. */
  1643. recommended_min += pageblock_nr_pages * nr_zones *
  1644. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  1645. /* don't ever allow to reserve more than 5% of the lowmem */
  1646. recommended_min = min(recommended_min,
  1647. (unsigned long) nr_free_buffer_pages() / 20);
  1648. recommended_min <<= (PAGE_SHIFT-10);
  1649. if (recommended_min > min_free_kbytes) {
  1650. if (user_min_free_kbytes >= 0)
  1651. pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
  1652. min_free_kbytes, recommended_min);
  1653. min_free_kbytes = recommended_min;
  1654. }
  1655. setup_per_zone_wmarks();
  1656. }
  1657. int start_stop_khugepaged(void)
  1658. {
  1659. static struct task_struct *khugepaged_thread __read_mostly;
  1660. static DEFINE_MUTEX(khugepaged_mutex);
  1661. int err = 0;
  1662. mutex_lock(&khugepaged_mutex);
  1663. if (khugepaged_enabled()) {
  1664. if (!khugepaged_thread)
  1665. khugepaged_thread = kthread_run(khugepaged, NULL,
  1666. "khugepaged");
  1667. if (IS_ERR(khugepaged_thread)) {
  1668. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  1669. err = PTR_ERR(khugepaged_thread);
  1670. khugepaged_thread = NULL;
  1671. goto fail;
  1672. }
  1673. if (!list_empty(&khugepaged_scan.mm_head))
  1674. wake_up_interruptible(&khugepaged_wait);
  1675. set_recommended_min_free_kbytes();
  1676. } else if (khugepaged_thread) {
  1677. kthread_stop(khugepaged_thread);
  1678. khugepaged_thread = NULL;
  1679. }
  1680. fail:
  1681. mutex_unlock(&khugepaged_mutex);
  1682. return err;
  1683. }