hugetlb.c 120 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462
  1. /*
  2. * Generic hugetlb support.
  3. * (C) Nadia Yvette Chambers, April 2004
  4. */
  5. #include <linux/list.h>
  6. #include <linux/init.h>
  7. #include <linux/mm.h>
  8. #include <linux/seq_file.h>
  9. #include <linux/sysctl.h>
  10. #include <linux/highmem.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/compiler.h>
  16. #include <linux/cpuset.h>
  17. #include <linux/mutex.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/sysfs.h>
  20. #include <linux/slab.h>
  21. #include <linux/rmap.h>
  22. #include <linux/swap.h>
  23. #include <linux/swapops.h>
  24. #include <linux/page-isolation.h>
  25. #include <linux/jhash.h>
  26. #include <asm/page.h>
  27. #include <asm/pgtable.h>
  28. #include <asm/tlb.h>
  29. #include <linux/io.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/hugetlb_cgroup.h>
  32. #include <linux/node.h>
  33. #include "internal.h"
  34. int hugepages_treat_as_movable;
  35. int hugetlb_max_hstate __read_mostly;
  36. unsigned int default_hstate_idx;
  37. struct hstate hstates[HUGE_MAX_HSTATE];
  38. /*
  39. * Minimum page order among possible hugepage sizes, set to a proper value
  40. * at boot time.
  41. */
  42. static unsigned int minimum_order __read_mostly = UINT_MAX;
  43. __initdata LIST_HEAD(huge_boot_pages);
  44. /* for command line parsing */
  45. static struct hstate * __initdata parsed_hstate;
  46. static unsigned long __initdata default_hstate_max_huge_pages;
  47. static unsigned long __initdata default_hstate_size;
  48. static bool __initdata parsed_valid_hugepagesz = true;
  49. /*
  50. * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  51. * free_huge_pages, and surplus_huge_pages.
  52. */
  53. DEFINE_SPINLOCK(hugetlb_lock);
  54. /*
  55. * Serializes faults on the same logical page. This is used to
  56. * prevent spurious OOMs when the hugepage pool is fully utilized.
  57. */
  58. static int num_fault_mutexes;
  59. struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  60. /* Forward declaration */
  61. static int hugetlb_acct_memory(struct hstate *h, long delta);
  62. static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  63. {
  64. bool free = (spool->count == 0) && (spool->used_hpages == 0);
  65. spin_unlock(&spool->lock);
  66. /* If no pages are used, and no other handles to the subpool
  67. * remain, give up any reservations mased on minimum size and
  68. * free the subpool */
  69. if (free) {
  70. if (spool->min_hpages != -1)
  71. hugetlb_acct_memory(spool->hstate,
  72. -spool->min_hpages);
  73. kfree(spool);
  74. }
  75. }
  76. struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  77. long min_hpages)
  78. {
  79. struct hugepage_subpool *spool;
  80. spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  81. if (!spool)
  82. return NULL;
  83. spin_lock_init(&spool->lock);
  84. spool->count = 1;
  85. spool->max_hpages = max_hpages;
  86. spool->hstate = h;
  87. spool->min_hpages = min_hpages;
  88. if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
  89. kfree(spool);
  90. return NULL;
  91. }
  92. spool->rsv_hpages = min_hpages;
  93. return spool;
  94. }
  95. void hugepage_put_subpool(struct hugepage_subpool *spool)
  96. {
  97. spin_lock(&spool->lock);
  98. BUG_ON(!spool->count);
  99. spool->count--;
  100. unlock_or_release_subpool(spool);
  101. }
  102. /*
  103. * Subpool accounting for allocating and reserving pages.
  104. * Return -ENOMEM if there are not enough resources to satisfy the
  105. * the request. Otherwise, return the number of pages by which the
  106. * global pools must be adjusted (upward). The returned value may
  107. * only be different than the passed value (delta) in the case where
  108. * a subpool minimum size must be manitained.
  109. */
  110. static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
  111. long delta)
  112. {
  113. long ret = delta;
  114. if (!spool)
  115. return ret;
  116. spin_lock(&spool->lock);
  117. if (spool->max_hpages != -1) { /* maximum size accounting */
  118. if ((spool->used_hpages + delta) <= spool->max_hpages)
  119. spool->used_hpages += delta;
  120. else {
  121. ret = -ENOMEM;
  122. goto unlock_ret;
  123. }
  124. }
  125. /* minimum size accounting */
  126. if (spool->min_hpages != -1 && spool->rsv_hpages) {
  127. if (delta > spool->rsv_hpages) {
  128. /*
  129. * Asking for more reserves than those already taken on
  130. * behalf of subpool. Return difference.
  131. */
  132. ret = delta - spool->rsv_hpages;
  133. spool->rsv_hpages = 0;
  134. } else {
  135. ret = 0; /* reserves already accounted for */
  136. spool->rsv_hpages -= delta;
  137. }
  138. }
  139. unlock_ret:
  140. spin_unlock(&spool->lock);
  141. return ret;
  142. }
  143. /*
  144. * Subpool accounting for freeing and unreserving pages.
  145. * Return the number of global page reservations that must be dropped.
  146. * The return value may only be different than the passed value (delta)
  147. * in the case where a subpool minimum size must be maintained.
  148. */
  149. static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
  150. long delta)
  151. {
  152. long ret = delta;
  153. if (!spool)
  154. return delta;
  155. spin_lock(&spool->lock);
  156. if (spool->max_hpages != -1) /* maximum size accounting */
  157. spool->used_hpages -= delta;
  158. /* minimum size accounting */
  159. if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
  160. if (spool->rsv_hpages + delta <= spool->min_hpages)
  161. ret = 0;
  162. else
  163. ret = spool->rsv_hpages + delta - spool->min_hpages;
  164. spool->rsv_hpages += delta;
  165. if (spool->rsv_hpages > spool->min_hpages)
  166. spool->rsv_hpages = spool->min_hpages;
  167. }
  168. /*
  169. * If hugetlbfs_put_super couldn't free spool due to an outstanding
  170. * quota reference, free it now.
  171. */
  172. unlock_or_release_subpool(spool);
  173. return ret;
  174. }
  175. static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
  176. {
  177. return HUGETLBFS_SB(inode->i_sb)->spool;
  178. }
  179. static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
  180. {
  181. return subpool_inode(file_inode(vma->vm_file));
  182. }
  183. /*
  184. * Region tracking -- allows tracking of reservations and instantiated pages
  185. * across the pages in a mapping.
  186. *
  187. * The region data structures are embedded into a resv_map and protected
  188. * by a resv_map's lock. The set of regions within the resv_map represent
  189. * reservations for huge pages, or huge pages that have already been
  190. * instantiated within the map. The from and to elements are huge page
  191. * indicies into the associated mapping. from indicates the starting index
  192. * of the region. to represents the first index past the end of the region.
  193. *
  194. * For example, a file region structure with from == 0 and to == 4 represents
  195. * four huge pages in a mapping. It is important to note that the to element
  196. * represents the first element past the end of the region. This is used in
  197. * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
  198. *
  199. * Interval notation of the form [from, to) will be used to indicate that
  200. * the endpoint from is inclusive and to is exclusive.
  201. */
  202. struct file_region {
  203. struct list_head link;
  204. long from;
  205. long to;
  206. };
  207. /*
  208. * Add the huge page range represented by [f, t) to the reserve
  209. * map. In the normal case, existing regions will be expanded
  210. * to accommodate the specified range. Sufficient regions should
  211. * exist for expansion due to the previous call to region_chg
  212. * with the same range. However, it is possible that region_del
  213. * could have been called after region_chg and modifed the map
  214. * in such a way that no region exists to be expanded. In this
  215. * case, pull a region descriptor from the cache associated with
  216. * the map and use that for the new range.
  217. *
  218. * Return the number of new huge pages added to the map. This
  219. * number is greater than or equal to zero.
  220. */
  221. static long region_add(struct resv_map *resv, long f, long t)
  222. {
  223. struct list_head *head = &resv->regions;
  224. struct file_region *rg, *nrg, *trg;
  225. long add = 0;
  226. spin_lock(&resv->lock);
  227. /* Locate the region we are either in or before. */
  228. list_for_each_entry(rg, head, link)
  229. if (f <= rg->to)
  230. break;
  231. /*
  232. * If no region exists which can be expanded to include the
  233. * specified range, the list must have been modified by an
  234. * interleving call to region_del(). Pull a region descriptor
  235. * from the cache and use it for this range.
  236. */
  237. if (&rg->link == head || t < rg->from) {
  238. VM_BUG_ON(resv->region_cache_count <= 0);
  239. resv->region_cache_count--;
  240. nrg = list_first_entry(&resv->region_cache, struct file_region,
  241. link);
  242. list_del(&nrg->link);
  243. nrg->from = f;
  244. nrg->to = t;
  245. list_add(&nrg->link, rg->link.prev);
  246. add += t - f;
  247. goto out_locked;
  248. }
  249. /* Round our left edge to the current segment if it encloses us. */
  250. if (f > rg->from)
  251. f = rg->from;
  252. /* Check for and consume any regions we now overlap with. */
  253. nrg = rg;
  254. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  255. if (&rg->link == head)
  256. break;
  257. if (rg->from > t)
  258. break;
  259. /* If this area reaches higher then extend our area to
  260. * include it completely. If this is not the first area
  261. * which we intend to reuse, free it. */
  262. if (rg->to > t)
  263. t = rg->to;
  264. if (rg != nrg) {
  265. /* Decrement return value by the deleted range.
  266. * Another range will span this area so that by
  267. * end of routine add will be >= zero
  268. */
  269. add -= (rg->to - rg->from);
  270. list_del(&rg->link);
  271. kfree(rg);
  272. }
  273. }
  274. add += (nrg->from - f); /* Added to beginning of region */
  275. nrg->from = f;
  276. add += t - nrg->to; /* Added to end of region */
  277. nrg->to = t;
  278. out_locked:
  279. resv->adds_in_progress--;
  280. spin_unlock(&resv->lock);
  281. VM_BUG_ON(add < 0);
  282. return add;
  283. }
  284. /*
  285. * Examine the existing reserve map and determine how many
  286. * huge pages in the specified range [f, t) are NOT currently
  287. * represented. This routine is called before a subsequent
  288. * call to region_add that will actually modify the reserve
  289. * map to add the specified range [f, t). region_chg does
  290. * not change the number of huge pages represented by the
  291. * map. However, if the existing regions in the map can not
  292. * be expanded to represent the new range, a new file_region
  293. * structure is added to the map as a placeholder. This is
  294. * so that the subsequent region_add call will have all the
  295. * regions it needs and will not fail.
  296. *
  297. * Upon entry, region_chg will also examine the cache of region descriptors
  298. * associated with the map. If there are not enough descriptors cached, one
  299. * will be allocated for the in progress add operation.
  300. *
  301. * Returns the number of huge pages that need to be added to the existing
  302. * reservation map for the range [f, t). This number is greater or equal to
  303. * zero. -ENOMEM is returned if a new file_region structure or cache entry
  304. * is needed and can not be allocated.
  305. */
  306. static long region_chg(struct resv_map *resv, long f, long t)
  307. {
  308. struct list_head *head = &resv->regions;
  309. struct file_region *rg, *nrg = NULL;
  310. long chg = 0;
  311. retry:
  312. spin_lock(&resv->lock);
  313. retry_locked:
  314. resv->adds_in_progress++;
  315. /*
  316. * Check for sufficient descriptors in the cache to accommodate
  317. * the number of in progress add operations.
  318. */
  319. if (resv->adds_in_progress > resv->region_cache_count) {
  320. struct file_region *trg;
  321. VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
  322. /* Must drop lock to allocate a new descriptor. */
  323. resv->adds_in_progress--;
  324. spin_unlock(&resv->lock);
  325. trg = kmalloc(sizeof(*trg), GFP_KERNEL);
  326. if (!trg) {
  327. kfree(nrg);
  328. return -ENOMEM;
  329. }
  330. spin_lock(&resv->lock);
  331. list_add(&trg->link, &resv->region_cache);
  332. resv->region_cache_count++;
  333. goto retry_locked;
  334. }
  335. /* Locate the region we are before or in. */
  336. list_for_each_entry(rg, head, link)
  337. if (f <= rg->to)
  338. break;
  339. /* If we are below the current region then a new region is required.
  340. * Subtle, allocate a new region at the position but make it zero
  341. * size such that we can guarantee to record the reservation. */
  342. if (&rg->link == head || t < rg->from) {
  343. if (!nrg) {
  344. resv->adds_in_progress--;
  345. spin_unlock(&resv->lock);
  346. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  347. if (!nrg)
  348. return -ENOMEM;
  349. nrg->from = f;
  350. nrg->to = f;
  351. INIT_LIST_HEAD(&nrg->link);
  352. goto retry;
  353. }
  354. list_add(&nrg->link, rg->link.prev);
  355. chg = t - f;
  356. goto out_nrg;
  357. }
  358. /* Round our left edge to the current segment if it encloses us. */
  359. if (f > rg->from)
  360. f = rg->from;
  361. chg = t - f;
  362. /* Check for and consume any regions we now overlap with. */
  363. list_for_each_entry(rg, rg->link.prev, link) {
  364. if (&rg->link == head)
  365. break;
  366. if (rg->from > t)
  367. goto out;
  368. /* We overlap with this area, if it extends further than
  369. * us then we must extend ourselves. Account for its
  370. * existing reservation. */
  371. if (rg->to > t) {
  372. chg += rg->to - t;
  373. t = rg->to;
  374. }
  375. chg -= rg->to - rg->from;
  376. }
  377. out:
  378. spin_unlock(&resv->lock);
  379. /* We already know we raced and no longer need the new region */
  380. kfree(nrg);
  381. return chg;
  382. out_nrg:
  383. spin_unlock(&resv->lock);
  384. return chg;
  385. }
  386. /*
  387. * Abort the in progress add operation. The adds_in_progress field
  388. * of the resv_map keeps track of the operations in progress between
  389. * calls to region_chg and region_add. Operations are sometimes
  390. * aborted after the call to region_chg. In such cases, region_abort
  391. * is called to decrement the adds_in_progress counter.
  392. *
  393. * NOTE: The range arguments [f, t) are not needed or used in this
  394. * routine. They are kept to make reading the calling code easier as
  395. * arguments will match the associated region_chg call.
  396. */
  397. static void region_abort(struct resv_map *resv, long f, long t)
  398. {
  399. spin_lock(&resv->lock);
  400. VM_BUG_ON(!resv->region_cache_count);
  401. resv->adds_in_progress--;
  402. spin_unlock(&resv->lock);
  403. }
  404. /*
  405. * Delete the specified range [f, t) from the reserve map. If the
  406. * t parameter is LONG_MAX, this indicates that ALL regions after f
  407. * should be deleted. Locate the regions which intersect [f, t)
  408. * and either trim, delete or split the existing regions.
  409. *
  410. * Returns the number of huge pages deleted from the reserve map.
  411. * In the normal case, the return value is zero or more. In the
  412. * case where a region must be split, a new region descriptor must
  413. * be allocated. If the allocation fails, -ENOMEM will be returned.
  414. * NOTE: If the parameter t == LONG_MAX, then we will never split
  415. * a region and possibly return -ENOMEM. Callers specifying
  416. * t == LONG_MAX do not need to check for -ENOMEM error.
  417. */
  418. static long region_del(struct resv_map *resv, long f, long t)
  419. {
  420. struct list_head *head = &resv->regions;
  421. struct file_region *rg, *trg;
  422. struct file_region *nrg = NULL;
  423. long del = 0;
  424. retry:
  425. spin_lock(&resv->lock);
  426. list_for_each_entry_safe(rg, trg, head, link) {
  427. /*
  428. * Skip regions before the range to be deleted. file_region
  429. * ranges are normally of the form [from, to). However, there
  430. * may be a "placeholder" entry in the map which is of the form
  431. * (from, to) with from == to. Check for placeholder entries
  432. * at the beginning of the range to be deleted.
  433. */
  434. if (rg->to <= f && (rg->to != rg->from || rg->to != f))
  435. continue;
  436. if (rg->from >= t)
  437. break;
  438. if (f > rg->from && t < rg->to) { /* Must split region */
  439. /*
  440. * Check for an entry in the cache before dropping
  441. * lock and attempting allocation.
  442. */
  443. if (!nrg &&
  444. resv->region_cache_count > resv->adds_in_progress) {
  445. nrg = list_first_entry(&resv->region_cache,
  446. struct file_region,
  447. link);
  448. list_del(&nrg->link);
  449. resv->region_cache_count--;
  450. }
  451. if (!nrg) {
  452. spin_unlock(&resv->lock);
  453. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  454. if (!nrg)
  455. return -ENOMEM;
  456. goto retry;
  457. }
  458. del += t - f;
  459. /* New entry for end of split region */
  460. nrg->from = t;
  461. nrg->to = rg->to;
  462. INIT_LIST_HEAD(&nrg->link);
  463. /* Original entry is trimmed */
  464. rg->to = f;
  465. list_add(&nrg->link, &rg->link);
  466. nrg = NULL;
  467. break;
  468. }
  469. if (f <= rg->from && t >= rg->to) { /* Remove entire region */
  470. del += rg->to - rg->from;
  471. list_del(&rg->link);
  472. kfree(rg);
  473. continue;
  474. }
  475. if (f <= rg->from) { /* Trim beginning of region */
  476. del += t - rg->from;
  477. rg->from = t;
  478. } else { /* Trim end of region */
  479. del += rg->to - f;
  480. rg->to = f;
  481. }
  482. }
  483. spin_unlock(&resv->lock);
  484. kfree(nrg);
  485. return del;
  486. }
  487. /*
  488. * A rare out of memory error was encountered which prevented removal of
  489. * the reserve map region for a page. The huge page itself was free'ed
  490. * and removed from the page cache. This routine will adjust the subpool
  491. * usage count, and the global reserve count if needed. By incrementing
  492. * these counts, the reserve map entry which could not be deleted will
  493. * appear as a "reserved" entry instead of simply dangling with incorrect
  494. * counts.
  495. */
  496. void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
  497. {
  498. struct hugepage_subpool *spool = subpool_inode(inode);
  499. long rsv_adjust;
  500. rsv_adjust = hugepage_subpool_get_pages(spool, 1);
  501. if (restore_reserve && rsv_adjust) {
  502. struct hstate *h = hstate_inode(inode);
  503. hugetlb_acct_memory(h, 1);
  504. }
  505. }
  506. /*
  507. * Count and return the number of huge pages in the reserve map
  508. * that intersect with the range [f, t).
  509. */
  510. static long region_count(struct resv_map *resv, long f, long t)
  511. {
  512. struct list_head *head = &resv->regions;
  513. struct file_region *rg;
  514. long chg = 0;
  515. spin_lock(&resv->lock);
  516. /* Locate each segment we overlap with, and count that overlap. */
  517. list_for_each_entry(rg, head, link) {
  518. long seg_from;
  519. long seg_to;
  520. if (rg->to <= f)
  521. continue;
  522. if (rg->from >= t)
  523. break;
  524. seg_from = max(rg->from, f);
  525. seg_to = min(rg->to, t);
  526. chg += seg_to - seg_from;
  527. }
  528. spin_unlock(&resv->lock);
  529. return chg;
  530. }
  531. /*
  532. * Convert the address within this vma to the page offset within
  533. * the mapping, in pagecache page units; huge pages here.
  534. */
  535. static pgoff_t vma_hugecache_offset(struct hstate *h,
  536. struct vm_area_struct *vma, unsigned long address)
  537. {
  538. return ((address - vma->vm_start) >> huge_page_shift(h)) +
  539. (vma->vm_pgoff >> huge_page_order(h));
  540. }
  541. pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
  542. unsigned long address)
  543. {
  544. return vma_hugecache_offset(hstate_vma(vma), vma, address);
  545. }
  546. EXPORT_SYMBOL_GPL(linear_hugepage_index);
  547. /*
  548. * Return the size of the pages allocated when backing a VMA. In the majority
  549. * cases this will be same size as used by the page table entries.
  550. */
  551. unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
  552. {
  553. struct hstate *hstate;
  554. if (!is_vm_hugetlb_page(vma))
  555. return PAGE_SIZE;
  556. hstate = hstate_vma(vma);
  557. return 1UL << huge_page_shift(hstate);
  558. }
  559. EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
  560. /*
  561. * Return the page size being used by the MMU to back a VMA. In the majority
  562. * of cases, the page size used by the kernel matches the MMU size. On
  563. * architectures where it differs, an architecture-specific version of this
  564. * function is required.
  565. */
  566. #ifndef vma_mmu_pagesize
  567. unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  568. {
  569. return vma_kernel_pagesize(vma);
  570. }
  571. #endif
  572. /*
  573. * Flags for MAP_PRIVATE reservations. These are stored in the bottom
  574. * bits of the reservation map pointer, which are always clear due to
  575. * alignment.
  576. */
  577. #define HPAGE_RESV_OWNER (1UL << 0)
  578. #define HPAGE_RESV_UNMAPPED (1UL << 1)
  579. #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
  580. /*
  581. * These helpers are used to track how many pages are reserved for
  582. * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
  583. * is guaranteed to have their future faults succeed.
  584. *
  585. * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
  586. * the reserve counters are updated with the hugetlb_lock held. It is safe
  587. * to reset the VMA at fork() time as it is not in use yet and there is no
  588. * chance of the global counters getting corrupted as a result of the values.
  589. *
  590. * The private mapping reservation is represented in a subtly different
  591. * manner to a shared mapping. A shared mapping has a region map associated
  592. * with the underlying file, this region map represents the backing file
  593. * pages which have ever had a reservation assigned which this persists even
  594. * after the page is instantiated. A private mapping has a region map
  595. * associated with the original mmap which is attached to all VMAs which
  596. * reference it, this region map represents those offsets which have consumed
  597. * reservation ie. where pages have been instantiated.
  598. */
  599. static unsigned long get_vma_private_data(struct vm_area_struct *vma)
  600. {
  601. return (unsigned long)vma->vm_private_data;
  602. }
  603. static void set_vma_private_data(struct vm_area_struct *vma,
  604. unsigned long value)
  605. {
  606. vma->vm_private_data = (void *)value;
  607. }
  608. struct resv_map *resv_map_alloc(void)
  609. {
  610. struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
  611. struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
  612. if (!resv_map || !rg) {
  613. kfree(resv_map);
  614. kfree(rg);
  615. return NULL;
  616. }
  617. kref_init(&resv_map->refs);
  618. spin_lock_init(&resv_map->lock);
  619. INIT_LIST_HEAD(&resv_map->regions);
  620. resv_map->adds_in_progress = 0;
  621. INIT_LIST_HEAD(&resv_map->region_cache);
  622. list_add(&rg->link, &resv_map->region_cache);
  623. resv_map->region_cache_count = 1;
  624. return resv_map;
  625. }
  626. void resv_map_release(struct kref *ref)
  627. {
  628. struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
  629. struct list_head *head = &resv_map->region_cache;
  630. struct file_region *rg, *trg;
  631. /* Clear out any active regions before we release the map. */
  632. region_del(resv_map, 0, LONG_MAX);
  633. /* ... and any entries left in the cache */
  634. list_for_each_entry_safe(rg, trg, head, link) {
  635. list_del(&rg->link);
  636. kfree(rg);
  637. }
  638. VM_BUG_ON(resv_map->adds_in_progress);
  639. kfree(resv_map);
  640. }
  641. static inline struct resv_map *inode_resv_map(struct inode *inode)
  642. {
  643. return inode->i_mapping->private_data;
  644. }
  645. static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
  646. {
  647. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  648. if (vma->vm_flags & VM_MAYSHARE) {
  649. struct address_space *mapping = vma->vm_file->f_mapping;
  650. struct inode *inode = mapping->host;
  651. return inode_resv_map(inode);
  652. } else {
  653. return (struct resv_map *)(get_vma_private_data(vma) &
  654. ~HPAGE_RESV_MASK);
  655. }
  656. }
  657. static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
  658. {
  659. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  660. VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
  661. set_vma_private_data(vma, (get_vma_private_data(vma) &
  662. HPAGE_RESV_MASK) | (unsigned long)map);
  663. }
  664. static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
  665. {
  666. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  667. VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
  668. set_vma_private_data(vma, get_vma_private_data(vma) | flags);
  669. }
  670. static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
  671. {
  672. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  673. return (get_vma_private_data(vma) & flag) != 0;
  674. }
  675. /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
  676. void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
  677. {
  678. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  679. if (!(vma->vm_flags & VM_MAYSHARE))
  680. vma->vm_private_data = (void *)0;
  681. }
  682. /* Returns true if the VMA has associated reserve pages */
  683. static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
  684. {
  685. if (vma->vm_flags & VM_NORESERVE) {
  686. /*
  687. * This address is already reserved by other process(chg == 0),
  688. * so, we should decrement reserved count. Without decrementing,
  689. * reserve count remains after releasing inode, because this
  690. * allocated page will go into page cache and is regarded as
  691. * coming from reserved pool in releasing step. Currently, we
  692. * don't have any other solution to deal with this situation
  693. * properly, so add work-around here.
  694. */
  695. if (vma->vm_flags & VM_MAYSHARE && chg == 0)
  696. return true;
  697. else
  698. return false;
  699. }
  700. /* Shared mappings always use reserves */
  701. if (vma->vm_flags & VM_MAYSHARE) {
  702. /*
  703. * We know VM_NORESERVE is not set. Therefore, there SHOULD
  704. * be a region map for all pages. The only situation where
  705. * there is no region map is if a hole was punched via
  706. * fallocate. In this case, there really are no reverves to
  707. * use. This situation is indicated if chg != 0.
  708. */
  709. if (chg)
  710. return false;
  711. else
  712. return true;
  713. }
  714. /*
  715. * Only the process that called mmap() has reserves for
  716. * private mappings.
  717. */
  718. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  719. /*
  720. * Like the shared case above, a hole punch or truncate
  721. * could have been performed on the private mapping.
  722. * Examine the value of chg to determine if reserves
  723. * actually exist or were previously consumed.
  724. * Very Subtle - The value of chg comes from a previous
  725. * call to vma_needs_reserves(). The reserve map for
  726. * private mappings has different (opposite) semantics
  727. * than that of shared mappings. vma_needs_reserves()
  728. * has already taken this difference in semantics into
  729. * account. Therefore, the meaning of chg is the same
  730. * as in the shared case above. Code could easily be
  731. * combined, but keeping it separate draws attention to
  732. * subtle differences.
  733. */
  734. if (chg)
  735. return false;
  736. else
  737. return true;
  738. }
  739. return false;
  740. }
  741. static void enqueue_huge_page(struct hstate *h, struct page *page)
  742. {
  743. int nid = page_to_nid(page);
  744. list_move(&page->lru, &h->hugepage_freelists[nid]);
  745. h->free_huge_pages++;
  746. h->free_huge_pages_node[nid]++;
  747. }
  748. static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
  749. {
  750. struct page *page;
  751. list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
  752. if (!is_migrate_isolate_page(page))
  753. break;
  754. /*
  755. * if 'non-isolated free hugepage' not found on the list,
  756. * the allocation fails.
  757. */
  758. if (&h->hugepage_freelists[nid] == &page->lru)
  759. return NULL;
  760. list_move(&page->lru, &h->hugepage_activelist);
  761. set_page_refcounted(page);
  762. h->free_huge_pages--;
  763. h->free_huge_pages_node[nid]--;
  764. return page;
  765. }
  766. /* Movability of hugepages depends on migration support. */
  767. static inline gfp_t htlb_alloc_mask(struct hstate *h)
  768. {
  769. if (hugepages_treat_as_movable || hugepage_migration_supported(h))
  770. return GFP_HIGHUSER_MOVABLE;
  771. else
  772. return GFP_HIGHUSER;
  773. }
  774. static struct page *dequeue_huge_page_vma(struct hstate *h,
  775. struct vm_area_struct *vma,
  776. unsigned long address, int avoid_reserve,
  777. long chg)
  778. {
  779. struct page *page = NULL;
  780. struct mempolicy *mpol;
  781. nodemask_t *nodemask;
  782. struct zonelist *zonelist;
  783. struct zone *zone;
  784. struct zoneref *z;
  785. unsigned int cpuset_mems_cookie;
  786. /*
  787. * A child process with MAP_PRIVATE mappings created by their parent
  788. * have no page reserves. This check ensures that reservations are
  789. * not "stolen". The child may still get SIGKILLed
  790. */
  791. if (!vma_has_reserves(vma, chg) &&
  792. h->free_huge_pages - h->resv_huge_pages == 0)
  793. goto err;
  794. /* If reserves cannot be used, ensure enough pages are in the pool */
  795. if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
  796. goto err;
  797. retry_cpuset:
  798. cpuset_mems_cookie = read_mems_allowed_begin();
  799. zonelist = huge_zonelist(vma, address,
  800. htlb_alloc_mask(h), &mpol, &nodemask);
  801. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  802. MAX_NR_ZONES - 1, nodemask) {
  803. if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
  804. page = dequeue_huge_page_node(h, zone_to_nid(zone));
  805. if (page) {
  806. if (avoid_reserve)
  807. break;
  808. if (!vma_has_reserves(vma, chg))
  809. break;
  810. SetPagePrivate(page);
  811. h->resv_huge_pages--;
  812. break;
  813. }
  814. }
  815. }
  816. mpol_cond_put(mpol);
  817. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  818. goto retry_cpuset;
  819. return page;
  820. err:
  821. return NULL;
  822. }
  823. /*
  824. * common helper functions for hstate_next_node_to_{alloc|free}.
  825. * We may have allocated or freed a huge page based on a different
  826. * nodes_allowed previously, so h->next_node_to_{alloc|free} might
  827. * be outside of *nodes_allowed. Ensure that we use an allowed
  828. * node for alloc or free.
  829. */
  830. static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
  831. {
  832. nid = next_node_in(nid, *nodes_allowed);
  833. VM_BUG_ON(nid >= MAX_NUMNODES);
  834. return nid;
  835. }
  836. static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
  837. {
  838. if (!node_isset(nid, *nodes_allowed))
  839. nid = next_node_allowed(nid, nodes_allowed);
  840. return nid;
  841. }
  842. /*
  843. * returns the previously saved node ["this node"] from which to
  844. * allocate a persistent huge page for the pool and advance the
  845. * next node from which to allocate, handling wrap at end of node
  846. * mask.
  847. */
  848. static int hstate_next_node_to_alloc(struct hstate *h,
  849. nodemask_t *nodes_allowed)
  850. {
  851. int nid;
  852. VM_BUG_ON(!nodes_allowed);
  853. nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
  854. h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
  855. return nid;
  856. }
  857. /*
  858. * helper for free_pool_huge_page() - return the previously saved
  859. * node ["this node"] from which to free a huge page. Advance the
  860. * next node id whether or not we find a free huge page to free so
  861. * that the next attempt to free addresses the next node.
  862. */
  863. static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
  864. {
  865. int nid;
  866. VM_BUG_ON(!nodes_allowed);
  867. nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
  868. h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
  869. return nid;
  870. }
  871. #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
  872. for (nr_nodes = nodes_weight(*mask); \
  873. nr_nodes > 0 && \
  874. ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
  875. nr_nodes--)
  876. #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
  877. for (nr_nodes = nodes_weight(*mask); \
  878. nr_nodes > 0 && \
  879. ((node = hstate_next_node_to_free(hs, mask)) || 1); \
  880. nr_nodes--)
  881. #if (defined(CONFIG_X86_64) || defined(CONFIG_S390)) && \
  882. ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
  883. defined(CONFIG_CMA))
  884. static void destroy_compound_gigantic_page(struct page *page,
  885. unsigned int order)
  886. {
  887. int i;
  888. int nr_pages = 1 << order;
  889. struct page *p = page + 1;
  890. atomic_set(compound_mapcount_ptr(page), 0);
  891. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  892. clear_compound_head(p);
  893. set_page_refcounted(p);
  894. }
  895. set_compound_order(page, 0);
  896. __ClearPageHead(page);
  897. }
  898. static void free_gigantic_page(struct page *page, unsigned int order)
  899. {
  900. free_contig_range(page_to_pfn(page), 1 << order);
  901. }
  902. static int __alloc_gigantic_page(unsigned long start_pfn,
  903. unsigned long nr_pages)
  904. {
  905. unsigned long end_pfn = start_pfn + nr_pages;
  906. return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
  907. }
  908. static bool pfn_range_valid_gigantic(struct zone *z,
  909. unsigned long start_pfn, unsigned long nr_pages)
  910. {
  911. unsigned long i, end_pfn = start_pfn + nr_pages;
  912. struct page *page;
  913. for (i = start_pfn; i < end_pfn; i++) {
  914. if (!pfn_valid(i))
  915. return false;
  916. page = pfn_to_page(i);
  917. if (page_zone(page) != z)
  918. return false;
  919. if (PageReserved(page))
  920. return false;
  921. if (page_count(page) > 0)
  922. return false;
  923. if (PageHuge(page))
  924. return false;
  925. }
  926. return true;
  927. }
  928. static bool zone_spans_last_pfn(const struct zone *zone,
  929. unsigned long start_pfn, unsigned long nr_pages)
  930. {
  931. unsigned long last_pfn = start_pfn + nr_pages - 1;
  932. return zone_spans_pfn(zone, last_pfn);
  933. }
  934. static struct page *alloc_gigantic_page(int nid, unsigned int order)
  935. {
  936. unsigned long nr_pages = 1 << order;
  937. unsigned long ret, pfn, flags;
  938. struct zone *z;
  939. z = NODE_DATA(nid)->node_zones;
  940. for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
  941. spin_lock_irqsave(&z->lock, flags);
  942. pfn = ALIGN(z->zone_start_pfn, nr_pages);
  943. while (zone_spans_last_pfn(z, pfn, nr_pages)) {
  944. if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
  945. /*
  946. * We release the zone lock here because
  947. * alloc_contig_range() will also lock the zone
  948. * at some point. If there's an allocation
  949. * spinning on this lock, it may win the race
  950. * and cause alloc_contig_range() to fail...
  951. */
  952. spin_unlock_irqrestore(&z->lock, flags);
  953. ret = __alloc_gigantic_page(pfn, nr_pages);
  954. if (!ret)
  955. return pfn_to_page(pfn);
  956. spin_lock_irqsave(&z->lock, flags);
  957. }
  958. pfn += nr_pages;
  959. }
  960. spin_unlock_irqrestore(&z->lock, flags);
  961. }
  962. return NULL;
  963. }
  964. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
  965. static void prep_compound_gigantic_page(struct page *page, unsigned int order);
  966. static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
  967. {
  968. struct page *page;
  969. page = alloc_gigantic_page(nid, huge_page_order(h));
  970. if (page) {
  971. prep_compound_gigantic_page(page, huge_page_order(h));
  972. prep_new_huge_page(h, page, nid);
  973. }
  974. return page;
  975. }
  976. static int alloc_fresh_gigantic_page(struct hstate *h,
  977. nodemask_t *nodes_allowed)
  978. {
  979. struct page *page = NULL;
  980. int nr_nodes, node;
  981. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  982. page = alloc_fresh_gigantic_page_node(h, node);
  983. if (page)
  984. return 1;
  985. }
  986. return 0;
  987. }
  988. static inline bool gigantic_page_supported(void) { return true; }
  989. #else
  990. static inline bool gigantic_page_supported(void) { return false; }
  991. static inline void free_gigantic_page(struct page *page, unsigned int order) { }
  992. static inline void destroy_compound_gigantic_page(struct page *page,
  993. unsigned int order) { }
  994. static inline int alloc_fresh_gigantic_page(struct hstate *h,
  995. nodemask_t *nodes_allowed) { return 0; }
  996. #endif
  997. static void update_and_free_page(struct hstate *h, struct page *page)
  998. {
  999. int i;
  1000. if (hstate_is_gigantic(h) && !gigantic_page_supported())
  1001. return;
  1002. h->nr_huge_pages--;
  1003. h->nr_huge_pages_node[page_to_nid(page)]--;
  1004. for (i = 0; i < pages_per_huge_page(h); i++) {
  1005. page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
  1006. 1 << PG_referenced | 1 << PG_dirty |
  1007. 1 << PG_active | 1 << PG_private |
  1008. 1 << PG_writeback);
  1009. }
  1010. VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
  1011. set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
  1012. set_page_refcounted(page);
  1013. if (hstate_is_gigantic(h)) {
  1014. destroy_compound_gigantic_page(page, huge_page_order(h));
  1015. free_gigantic_page(page, huge_page_order(h));
  1016. } else {
  1017. __free_pages(page, huge_page_order(h));
  1018. }
  1019. }
  1020. struct hstate *size_to_hstate(unsigned long size)
  1021. {
  1022. struct hstate *h;
  1023. for_each_hstate(h) {
  1024. if (huge_page_size(h) == size)
  1025. return h;
  1026. }
  1027. return NULL;
  1028. }
  1029. /*
  1030. * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
  1031. * to hstate->hugepage_activelist.)
  1032. *
  1033. * This function can be called for tail pages, but never returns true for them.
  1034. */
  1035. bool page_huge_active(struct page *page)
  1036. {
  1037. VM_BUG_ON_PAGE(!PageHuge(page), page);
  1038. return PageHead(page) && PagePrivate(&page[1]);
  1039. }
  1040. /* never called for tail page */
  1041. static void set_page_huge_active(struct page *page)
  1042. {
  1043. VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
  1044. SetPagePrivate(&page[1]);
  1045. }
  1046. static void clear_page_huge_active(struct page *page)
  1047. {
  1048. VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
  1049. ClearPagePrivate(&page[1]);
  1050. }
  1051. void free_huge_page(struct page *page)
  1052. {
  1053. /*
  1054. * Can't pass hstate in here because it is called from the
  1055. * compound page destructor.
  1056. */
  1057. struct hstate *h = page_hstate(page);
  1058. int nid = page_to_nid(page);
  1059. struct hugepage_subpool *spool =
  1060. (struct hugepage_subpool *)page_private(page);
  1061. bool restore_reserve;
  1062. set_page_private(page, 0);
  1063. page->mapping = NULL;
  1064. VM_BUG_ON_PAGE(page_count(page), page);
  1065. VM_BUG_ON_PAGE(page_mapcount(page), page);
  1066. restore_reserve = PagePrivate(page);
  1067. ClearPagePrivate(page);
  1068. /*
  1069. * A return code of zero implies that the subpool will be under its
  1070. * minimum size if the reservation is not restored after page is free.
  1071. * Therefore, force restore_reserve operation.
  1072. */
  1073. if (hugepage_subpool_put_pages(spool, 1) == 0)
  1074. restore_reserve = true;
  1075. spin_lock(&hugetlb_lock);
  1076. clear_page_huge_active(page);
  1077. hugetlb_cgroup_uncharge_page(hstate_index(h),
  1078. pages_per_huge_page(h), page);
  1079. if (restore_reserve)
  1080. h->resv_huge_pages++;
  1081. if (h->surplus_huge_pages_node[nid]) {
  1082. /* remove the page from active list */
  1083. list_del(&page->lru);
  1084. update_and_free_page(h, page);
  1085. h->surplus_huge_pages--;
  1086. h->surplus_huge_pages_node[nid]--;
  1087. } else {
  1088. arch_clear_hugepage_flags(page);
  1089. enqueue_huge_page(h, page);
  1090. }
  1091. spin_unlock(&hugetlb_lock);
  1092. }
  1093. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
  1094. {
  1095. INIT_LIST_HEAD(&page->lru);
  1096. set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
  1097. spin_lock(&hugetlb_lock);
  1098. set_hugetlb_cgroup(page, NULL);
  1099. h->nr_huge_pages++;
  1100. h->nr_huge_pages_node[nid]++;
  1101. spin_unlock(&hugetlb_lock);
  1102. put_page(page); /* free it into the hugepage allocator */
  1103. }
  1104. static void prep_compound_gigantic_page(struct page *page, unsigned int order)
  1105. {
  1106. int i;
  1107. int nr_pages = 1 << order;
  1108. struct page *p = page + 1;
  1109. /* we rely on prep_new_huge_page to set the destructor */
  1110. set_compound_order(page, order);
  1111. __ClearPageReserved(page);
  1112. __SetPageHead(page);
  1113. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  1114. /*
  1115. * For gigantic hugepages allocated through bootmem at
  1116. * boot, it's safer to be consistent with the not-gigantic
  1117. * hugepages and clear the PG_reserved bit from all tail pages
  1118. * too. Otherwse drivers using get_user_pages() to access tail
  1119. * pages may get the reference counting wrong if they see
  1120. * PG_reserved set on a tail page (despite the head page not
  1121. * having PG_reserved set). Enforcing this consistency between
  1122. * head and tail pages allows drivers to optimize away a check
  1123. * on the head page when they need know if put_page() is needed
  1124. * after get_user_pages().
  1125. */
  1126. __ClearPageReserved(p);
  1127. set_page_count(p, 0);
  1128. set_compound_head(p, page);
  1129. }
  1130. atomic_set(compound_mapcount_ptr(page), -1);
  1131. }
  1132. /*
  1133. * PageHuge() only returns true for hugetlbfs pages, but not for normal or
  1134. * transparent huge pages. See the PageTransHuge() documentation for more
  1135. * details.
  1136. */
  1137. int PageHuge(struct page *page)
  1138. {
  1139. if (!PageCompound(page))
  1140. return 0;
  1141. page = compound_head(page);
  1142. return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
  1143. }
  1144. EXPORT_SYMBOL_GPL(PageHuge);
  1145. /*
  1146. * PageHeadHuge() only returns true for hugetlbfs head page, but not for
  1147. * normal or transparent huge pages.
  1148. */
  1149. int PageHeadHuge(struct page *page_head)
  1150. {
  1151. if (!PageHead(page_head))
  1152. return 0;
  1153. return get_compound_page_dtor(page_head) == free_huge_page;
  1154. }
  1155. pgoff_t __basepage_index(struct page *page)
  1156. {
  1157. struct page *page_head = compound_head(page);
  1158. pgoff_t index = page_index(page_head);
  1159. unsigned long compound_idx;
  1160. if (!PageHuge(page_head))
  1161. return page_index(page);
  1162. if (compound_order(page_head) >= MAX_ORDER)
  1163. compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
  1164. else
  1165. compound_idx = page - page_head;
  1166. return (index << compound_order(page_head)) + compound_idx;
  1167. }
  1168. static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
  1169. {
  1170. struct page *page;
  1171. page = __alloc_pages_node(nid,
  1172. htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
  1173. __GFP_REPEAT|__GFP_NOWARN,
  1174. huge_page_order(h));
  1175. if (page) {
  1176. prep_new_huge_page(h, page, nid);
  1177. }
  1178. return page;
  1179. }
  1180. static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
  1181. {
  1182. struct page *page;
  1183. int nr_nodes, node;
  1184. int ret = 0;
  1185. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  1186. page = alloc_fresh_huge_page_node(h, node);
  1187. if (page) {
  1188. ret = 1;
  1189. break;
  1190. }
  1191. }
  1192. if (ret)
  1193. count_vm_event(HTLB_BUDDY_PGALLOC);
  1194. else
  1195. count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  1196. return ret;
  1197. }
  1198. /*
  1199. * Free huge page from pool from next node to free.
  1200. * Attempt to keep persistent huge pages more or less
  1201. * balanced over allowed nodes.
  1202. * Called with hugetlb_lock locked.
  1203. */
  1204. static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
  1205. bool acct_surplus)
  1206. {
  1207. int nr_nodes, node;
  1208. int ret = 0;
  1209. for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
  1210. /*
  1211. * If we're returning unused surplus pages, only examine
  1212. * nodes with surplus pages.
  1213. */
  1214. if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
  1215. !list_empty(&h->hugepage_freelists[node])) {
  1216. struct page *page =
  1217. list_entry(h->hugepage_freelists[node].next,
  1218. struct page, lru);
  1219. list_del(&page->lru);
  1220. h->free_huge_pages--;
  1221. h->free_huge_pages_node[node]--;
  1222. if (acct_surplus) {
  1223. h->surplus_huge_pages--;
  1224. h->surplus_huge_pages_node[node]--;
  1225. }
  1226. update_and_free_page(h, page);
  1227. ret = 1;
  1228. break;
  1229. }
  1230. }
  1231. return ret;
  1232. }
  1233. /*
  1234. * Dissolve a given free hugepage into free buddy pages. This function does
  1235. * nothing for in-use (including surplus) hugepages.
  1236. */
  1237. static void dissolve_free_huge_page(struct page *page)
  1238. {
  1239. spin_lock(&hugetlb_lock);
  1240. if (PageHuge(page) && !page_count(page)) {
  1241. struct hstate *h = page_hstate(page);
  1242. int nid = page_to_nid(page);
  1243. list_del(&page->lru);
  1244. h->free_huge_pages--;
  1245. h->free_huge_pages_node[nid]--;
  1246. h->max_huge_pages--;
  1247. update_and_free_page(h, page);
  1248. }
  1249. spin_unlock(&hugetlb_lock);
  1250. }
  1251. /*
  1252. * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
  1253. * make specified memory blocks removable from the system.
  1254. * Note that start_pfn should aligned with (minimum) hugepage size.
  1255. */
  1256. void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
  1257. {
  1258. unsigned long pfn;
  1259. if (!hugepages_supported())
  1260. return;
  1261. VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
  1262. for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
  1263. dissolve_free_huge_page(pfn_to_page(pfn));
  1264. }
  1265. /*
  1266. * There are 3 ways this can get called:
  1267. * 1. With vma+addr: we use the VMA's memory policy
  1268. * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
  1269. * page from any node, and let the buddy allocator itself figure
  1270. * it out.
  1271. * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
  1272. * strictly from 'nid'
  1273. */
  1274. static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
  1275. struct vm_area_struct *vma, unsigned long addr, int nid)
  1276. {
  1277. int order = huge_page_order(h);
  1278. gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
  1279. unsigned int cpuset_mems_cookie;
  1280. /*
  1281. * We need a VMA to get a memory policy. If we do not
  1282. * have one, we use the 'nid' argument.
  1283. *
  1284. * The mempolicy stuff below has some non-inlined bits
  1285. * and calls ->vm_ops. That makes it hard to optimize at
  1286. * compile-time, even when NUMA is off and it does
  1287. * nothing. This helps the compiler optimize it out.
  1288. */
  1289. if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
  1290. /*
  1291. * If a specific node is requested, make sure to
  1292. * get memory from there, but only when a node
  1293. * is explicitly specified.
  1294. */
  1295. if (nid != NUMA_NO_NODE)
  1296. gfp |= __GFP_THISNODE;
  1297. /*
  1298. * Make sure to call something that can handle
  1299. * nid=NUMA_NO_NODE
  1300. */
  1301. return alloc_pages_node(nid, gfp, order);
  1302. }
  1303. /*
  1304. * OK, so we have a VMA. Fetch the mempolicy and try to
  1305. * allocate a huge page with it. We will only reach this
  1306. * when CONFIG_NUMA=y.
  1307. */
  1308. do {
  1309. struct page *page;
  1310. struct mempolicy *mpol;
  1311. struct zonelist *zl;
  1312. nodemask_t *nodemask;
  1313. cpuset_mems_cookie = read_mems_allowed_begin();
  1314. zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
  1315. mpol_cond_put(mpol);
  1316. page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
  1317. if (page)
  1318. return page;
  1319. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  1320. return NULL;
  1321. }
  1322. /*
  1323. * There are two ways to allocate a huge page:
  1324. * 1. When you have a VMA and an address (like a fault)
  1325. * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
  1326. *
  1327. * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
  1328. * this case which signifies that the allocation should be done with
  1329. * respect for the VMA's memory policy.
  1330. *
  1331. * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
  1332. * implies that memory policies will not be taken in to account.
  1333. */
  1334. static struct page *__alloc_buddy_huge_page(struct hstate *h,
  1335. struct vm_area_struct *vma, unsigned long addr, int nid)
  1336. {
  1337. struct page *page;
  1338. unsigned int r_nid;
  1339. if (hstate_is_gigantic(h))
  1340. return NULL;
  1341. /*
  1342. * Make sure that anyone specifying 'nid' is not also specifying a VMA.
  1343. * This makes sure the caller is picking _one_ of the modes with which
  1344. * we can call this function, not both.
  1345. */
  1346. if (vma || (addr != -1)) {
  1347. VM_WARN_ON_ONCE(addr == -1);
  1348. VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
  1349. }
  1350. /*
  1351. * Assume we will successfully allocate the surplus page to
  1352. * prevent racing processes from causing the surplus to exceed
  1353. * overcommit
  1354. *
  1355. * This however introduces a different race, where a process B
  1356. * tries to grow the static hugepage pool while alloc_pages() is
  1357. * called by process A. B will only examine the per-node
  1358. * counters in determining if surplus huge pages can be
  1359. * converted to normal huge pages in adjust_pool_surplus(). A
  1360. * won't be able to increment the per-node counter, until the
  1361. * lock is dropped by B, but B doesn't drop hugetlb_lock until
  1362. * no more huge pages can be converted from surplus to normal
  1363. * state (and doesn't try to convert again). Thus, we have a
  1364. * case where a surplus huge page exists, the pool is grown, and
  1365. * the surplus huge page still exists after, even though it
  1366. * should just have been converted to a normal huge page. This
  1367. * does not leak memory, though, as the hugepage will be freed
  1368. * once it is out of use. It also does not allow the counters to
  1369. * go out of whack in adjust_pool_surplus() as we don't modify
  1370. * the node values until we've gotten the hugepage and only the
  1371. * per-node value is checked there.
  1372. */
  1373. spin_lock(&hugetlb_lock);
  1374. if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
  1375. spin_unlock(&hugetlb_lock);
  1376. return NULL;
  1377. } else {
  1378. h->nr_huge_pages++;
  1379. h->surplus_huge_pages++;
  1380. }
  1381. spin_unlock(&hugetlb_lock);
  1382. page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
  1383. spin_lock(&hugetlb_lock);
  1384. if (page) {
  1385. INIT_LIST_HEAD(&page->lru);
  1386. r_nid = page_to_nid(page);
  1387. set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
  1388. set_hugetlb_cgroup(page, NULL);
  1389. /*
  1390. * We incremented the global counters already
  1391. */
  1392. h->nr_huge_pages_node[r_nid]++;
  1393. h->surplus_huge_pages_node[r_nid]++;
  1394. __count_vm_event(HTLB_BUDDY_PGALLOC);
  1395. } else {
  1396. h->nr_huge_pages--;
  1397. h->surplus_huge_pages--;
  1398. __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  1399. }
  1400. spin_unlock(&hugetlb_lock);
  1401. return page;
  1402. }
  1403. /*
  1404. * Allocate a huge page from 'nid'. Note, 'nid' may be
  1405. * NUMA_NO_NODE, which means that it may be allocated
  1406. * anywhere.
  1407. */
  1408. static
  1409. struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
  1410. {
  1411. unsigned long addr = -1;
  1412. return __alloc_buddy_huge_page(h, NULL, addr, nid);
  1413. }
  1414. /*
  1415. * Use the VMA's mpolicy to allocate a huge page from the buddy.
  1416. */
  1417. static
  1418. struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
  1419. struct vm_area_struct *vma, unsigned long addr)
  1420. {
  1421. return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
  1422. }
  1423. /*
  1424. * This allocation function is useful in the context where vma is irrelevant.
  1425. * E.g. soft-offlining uses this function because it only cares physical
  1426. * address of error page.
  1427. */
  1428. struct page *alloc_huge_page_node(struct hstate *h, int nid)
  1429. {
  1430. struct page *page = NULL;
  1431. spin_lock(&hugetlb_lock);
  1432. if (h->free_huge_pages - h->resv_huge_pages > 0)
  1433. page = dequeue_huge_page_node(h, nid);
  1434. spin_unlock(&hugetlb_lock);
  1435. if (!page)
  1436. page = __alloc_buddy_huge_page_no_mpol(h, nid);
  1437. return page;
  1438. }
  1439. /*
  1440. * Increase the hugetlb pool such that it can accommodate a reservation
  1441. * of size 'delta'.
  1442. */
  1443. static int gather_surplus_pages(struct hstate *h, int delta)
  1444. {
  1445. struct list_head surplus_list;
  1446. struct page *page, *tmp;
  1447. int ret, i;
  1448. int needed, allocated;
  1449. bool alloc_ok = true;
  1450. needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
  1451. if (needed <= 0) {
  1452. h->resv_huge_pages += delta;
  1453. return 0;
  1454. }
  1455. allocated = 0;
  1456. INIT_LIST_HEAD(&surplus_list);
  1457. ret = -ENOMEM;
  1458. retry:
  1459. spin_unlock(&hugetlb_lock);
  1460. for (i = 0; i < needed; i++) {
  1461. page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
  1462. if (!page) {
  1463. alloc_ok = false;
  1464. break;
  1465. }
  1466. list_add(&page->lru, &surplus_list);
  1467. }
  1468. allocated += i;
  1469. /*
  1470. * After retaking hugetlb_lock, we need to recalculate 'needed'
  1471. * because either resv_huge_pages or free_huge_pages may have changed.
  1472. */
  1473. spin_lock(&hugetlb_lock);
  1474. needed = (h->resv_huge_pages + delta) -
  1475. (h->free_huge_pages + allocated);
  1476. if (needed > 0) {
  1477. if (alloc_ok)
  1478. goto retry;
  1479. /*
  1480. * We were not able to allocate enough pages to
  1481. * satisfy the entire reservation so we free what
  1482. * we've allocated so far.
  1483. */
  1484. goto free;
  1485. }
  1486. /*
  1487. * The surplus_list now contains _at_least_ the number of extra pages
  1488. * needed to accommodate the reservation. Add the appropriate number
  1489. * of pages to the hugetlb pool and free the extras back to the buddy
  1490. * allocator. Commit the entire reservation here to prevent another
  1491. * process from stealing the pages as they are added to the pool but
  1492. * before they are reserved.
  1493. */
  1494. needed += allocated;
  1495. h->resv_huge_pages += delta;
  1496. ret = 0;
  1497. /* Free the needed pages to the hugetlb pool */
  1498. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  1499. if ((--needed) < 0)
  1500. break;
  1501. /*
  1502. * This page is now managed by the hugetlb allocator and has
  1503. * no users -- drop the buddy allocator's reference.
  1504. */
  1505. put_page_testzero(page);
  1506. VM_BUG_ON_PAGE(page_count(page), page);
  1507. enqueue_huge_page(h, page);
  1508. }
  1509. free:
  1510. spin_unlock(&hugetlb_lock);
  1511. /* Free unnecessary surplus pages to the buddy allocator */
  1512. list_for_each_entry_safe(page, tmp, &surplus_list, lru)
  1513. put_page(page);
  1514. spin_lock(&hugetlb_lock);
  1515. return ret;
  1516. }
  1517. /*
  1518. * When releasing a hugetlb pool reservation, any surplus pages that were
  1519. * allocated to satisfy the reservation must be explicitly freed if they were
  1520. * never used.
  1521. * Called with hugetlb_lock held.
  1522. */
  1523. static void return_unused_surplus_pages(struct hstate *h,
  1524. unsigned long unused_resv_pages)
  1525. {
  1526. unsigned long nr_pages;
  1527. /* Uncommit the reservation */
  1528. h->resv_huge_pages -= unused_resv_pages;
  1529. /* Cannot return gigantic pages currently */
  1530. if (hstate_is_gigantic(h))
  1531. return;
  1532. nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
  1533. /*
  1534. * We want to release as many surplus pages as possible, spread
  1535. * evenly across all nodes with memory. Iterate across these nodes
  1536. * until we can no longer free unreserved surplus pages. This occurs
  1537. * when the nodes with surplus pages have no free pages.
  1538. * free_pool_huge_page() will balance the the freed pages across the
  1539. * on-line nodes with memory and will handle the hstate accounting.
  1540. */
  1541. while (nr_pages--) {
  1542. if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
  1543. break;
  1544. cond_resched_lock(&hugetlb_lock);
  1545. }
  1546. }
  1547. /*
  1548. * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
  1549. * are used by the huge page allocation routines to manage reservations.
  1550. *
  1551. * vma_needs_reservation is called to determine if the huge page at addr
  1552. * within the vma has an associated reservation. If a reservation is
  1553. * needed, the value 1 is returned. The caller is then responsible for
  1554. * managing the global reservation and subpool usage counts. After
  1555. * the huge page has been allocated, vma_commit_reservation is called
  1556. * to add the page to the reservation map. If the page allocation fails,
  1557. * the reservation must be ended instead of committed. vma_end_reservation
  1558. * is called in such cases.
  1559. *
  1560. * In the normal case, vma_commit_reservation returns the same value
  1561. * as the preceding vma_needs_reservation call. The only time this
  1562. * is not the case is if a reserve map was changed between calls. It
  1563. * is the responsibility of the caller to notice the difference and
  1564. * take appropriate action.
  1565. */
  1566. enum vma_resv_mode {
  1567. VMA_NEEDS_RESV,
  1568. VMA_COMMIT_RESV,
  1569. VMA_END_RESV,
  1570. };
  1571. static long __vma_reservation_common(struct hstate *h,
  1572. struct vm_area_struct *vma, unsigned long addr,
  1573. enum vma_resv_mode mode)
  1574. {
  1575. struct resv_map *resv;
  1576. pgoff_t idx;
  1577. long ret;
  1578. resv = vma_resv_map(vma);
  1579. if (!resv)
  1580. return 1;
  1581. idx = vma_hugecache_offset(h, vma, addr);
  1582. switch (mode) {
  1583. case VMA_NEEDS_RESV:
  1584. ret = region_chg(resv, idx, idx + 1);
  1585. break;
  1586. case VMA_COMMIT_RESV:
  1587. ret = region_add(resv, idx, idx + 1);
  1588. break;
  1589. case VMA_END_RESV:
  1590. region_abort(resv, idx, idx + 1);
  1591. ret = 0;
  1592. break;
  1593. default:
  1594. BUG();
  1595. }
  1596. if (vma->vm_flags & VM_MAYSHARE)
  1597. return ret;
  1598. else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
  1599. /*
  1600. * In most cases, reserves always exist for private mappings.
  1601. * However, a file associated with mapping could have been
  1602. * hole punched or truncated after reserves were consumed.
  1603. * As subsequent fault on such a range will not use reserves.
  1604. * Subtle - The reserve map for private mappings has the
  1605. * opposite meaning than that of shared mappings. If NO
  1606. * entry is in the reserve map, it means a reservation exists.
  1607. * If an entry exists in the reserve map, it means the
  1608. * reservation has already been consumed. As a result, the
  1609. * return value of this routine is the opposite of the
  1610. * value returned from reserve map manipulation routines above.
  1611. */
  1612. if (ret)
  1613. return 0;
  1614. else
  1615. return 1;
  1616. }
  1617. else
  1618. return ret < 0 ? ret : 0;
  1619. }
  1620. static long vma_needs_reservation(struct hstate *h,
  1621. struct vm_area_struct *vma, unsigned long addr)
  1622. {
  1623. return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
  1624. }
  1625. static long vma_commit_reservation(struct hstate *h,
  1626. struct vm_area_struct *vma, unsigned long addr)
  1627. {
  1628. return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
  1629. }
  1630. static void vma_end_reservation(struct hstate *h,
  1631. struct vm_area_struct *vma, unsigned long addr)
  1632. {
  1633. (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
  1634. }
  1635. struct page *alloc_huge_page(struct vm_area_struct *vma,
  1636. unsigned long addr, int avoid_reserve)
  1637. {
  1638. struct hugepage_subpool *spool = subpool_vma(vma);
  1639. struct hstate *h = hstate_vma(vma);
  1640. struct page *page;
  1641. long map_chg, map_commit;
  1642. long gbl_chg;
  1643. int ret, idx;
  1644. struct hugetlb_cgroup *h_cg;
  1645. idx = hstate_index(h);
  1646. /*
  1647. * Examine the region/reserve map to determine if the process
  1648. * has a reservation for the page to be allocated. A return
  1649. * code of zero indicates a reservation exists (no change).
  1650. */
  1651. map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
  1652. if (map_chg < 0)
  1653. return ERR_PTR(-ENOMEM);
  1654. /*
  1655. * Processes that did not create the mapping will have no
  1656. * reserves as indicated by the region/reserve map. Check
  1657. * that the allocation will not exceed the subpool limit.
  1658. * Allocations for MAP_NORESERVE mappings also need to be
  1659. * checked against any subpool limit.
  1660. */
  1661. if (map_chg || avoid_reserve) {
  1662. gbl_chg = hugepage_subpool_get_pages(spool, 1);
  1663. if (gbl_chg < 0) {
  1664. vma_end_reservation(h, vma, addr);
  1665. return ERR_PTR(-ENOSPC);
  1666. }
  1667. /*
  1668. * Even though there was no reservation in the region/reserve
  1669. * map, there could be reservations associated with the
  1670. * subpool that can be used. This would be indicated if the
  1671. * return value of hugepage_subpool_get_pages() is zero.
  1672. * However, if avoid_reserve is specified we still avoid even
  1673. * the subpool reservations.
  1674. */
  1675. if (avoid_reserve)
  1676. gbl_chg = 1;
  1677. }
  1678. ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
  1679. if (ret)
  1680. goto out_subpool_put;
  1681. spin_lock(&hugetlb_lock);
  1682. /*
  1683. * glb_chg is passed to indicate whether or not a page must be taken
  1684. * from the global free pool (global change). gbl_chg == 0 indicates
  1685. * a reservation exists for the allocation.
  1686. */
  1687. page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
  1688. if (!page) {
  1689. spin_unlock(&hugetlb_lock);
  1690. page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
  1691. if (!page)
  1692. goto out_uncharge_cgroup;
  1693. if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
  1694. SetPagePrivate(page);
  1695. h->resv_huge_pages--;
  1696. }
  1697. spin_lock(&hugetlb_lock);
  1698. list_move(&page->lru, &h->hugepage_activelist);
  1699. /* Fall through */
  1700. }
  1701. hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
  1702. spin_unlock(&hugetlb_lock);
  1703. set_page_private(page, (unsigned long)spool);
  1704. map_commit = vma_commit_reservation(h, vma, addr);
  1705. if (unlikely(map_chg > map_commit)) {
  1706. /*
  1707. * The page was added to the reservation map between
  1708. * vma_needs_reservation and vma_commit_reservation.
  1709. * This indicates a race with hugetlb_reserve_pages.
  1710. * Adjust for the subpool count incremented above AND
  1711. * in hugetlb_reserve_pages for the same page. Also,
  1712. * the reservation count added in hugetlb_reserve_pages
  1713. * no longer applies.
  1714. */
  1715. long rsv_adjust;
  1716. rsv_adjust = hugepage_subpool_put_pages(spool, 1);
  1717. hugetlb_acct_memory(h, -rsv_adjust);
  1718. }
  1719. return page;
  1720. out_uncharge_cgroup:
  1721. hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
  1722. out_subpool_put:
  1723. if (map_chg || avoid_reserve)
  1724. hugepage_subpool_put_pages(spool, 1);
  1725. vma_end_reservation(h, vma, addr);
  1726. return ERR_PTR(-ENOSPC);
  1727. }
  1728. /*
  1729. * alloc_huge_page()'s wrapper which simply returns the page if allocation
  1730. * succeeds, otherwise NULL. This function is called from new_vma_page(),
  1731. * where no ERR_VALUE is expected to be returned.
  1732. */
  1733. struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
  1734. unsigned long addr, int avoid_reserve)
  1735. {
  1736. struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
  1737. if (IS_ERR(page))
  1738. page = NULL;
  1739. return page;
  1740. }
  1741. int __weak alloc_bootmem_huge_page(struct hstate *h)
  1742. {
  1743. struct huge_bootmem_page *m;
  1744. int nr_nodes, node;
  1745. for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
  1746. void *addr;
  1747. addr = memblock_virt_alloc_try_nid_nopanic(
  1748. huge_page_size(h), huge_page_size(h),
  1749. 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
  1750. if (addr) {
  1751. /*
  1752. * Use the beginning of the huge page to store the
  1753. * huge_bootmem_page struct (until gather_bootmem
  1754. * puts them into the mem_map).
  1755. */
  1756. m = addr;
  1757. goto found;
  1758. }
  1759. }
  1760. return 0;
  1761. found:
  1762. BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
  1763. /* Put them into a private list first because mem_map is not up yet */
  1764. list_add(&m->list, &huge_boot_pages);
  1765. m->hstate = h;
  1766. return 1;
  1767. }
  1768. static void __init prep_compound_huge_page(struct page *page,
  1769. unsigned int order)
  1770. {
  1771. if (unlikely(order > (MAX_ORDER - 1)))
  1772. prep_compound_gigantic_page(page, order);
  1773. else
  1774. prep_compound_page(page, order);
  1775. }
  1776. /* Put bootmem huge pages into the standard lists after mem_map is up */
  1777. static void __init gather_bootmem_prealloc(void)
  1778. {
  1779. struct huge_bootmem_page *m;
  1780. list_for_each_entry(m, &huge_boot_pages, list) {
  1781. struct hstate *h = m->hstate;
  1782. struct page *page;
  1783. #ifdef CONFIG_HIGHMEM
  1784. page = pfn_to_page(m->phys >> PAGE_SHIFT);
  1785. memblock_free_late(__pa(m),
  1786. sizeof(struct huge_bootmem_page));
  1787. #else
  1788. page = virt_to_page(m);
  1789. #endif
  1790. WARN_ON(page_count(page) != 1);
  1791. prep_compound_huge_page(page, h->order);
  1792. WARN_ON(PageReserved(page));
  1793. prep_new_huge_page(h, page, page_to_nid(page));
  1794. /*
  1795. * If we had gigantic hugepages allocated at boot time, we need
  1796. * to restore the 'stolen' pages to totalram_pages in order to
  1797. * fix confusing memory reports from free(1) and another
  1798. * side-effects, like CommitLimit going negative.
  1799. */
  1800. if (hstate_is_gigantic(h))
  1801. adjust_managed_page_count(page, 1 << h->order);
  1802. }
  1803. }
  1804. static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
  1805. {
  1806. unsigned long i;
  1807. for (i = 0; i < h->max_huge_pages; ++i) {
  1808. if (hstate_is_gigantic(h)) {
  1809. if (!alloc_bootmem_huge_page(h))
  1810. break;
  1811. } else if (!alloc_fresh_huge_page(h,
  1812. &node_states[N_MEMORY]))
  1813. break;
  1814. }
  1815. h->max_huge_pages = i;
  1816. }
  1817. static void __init hugetlb_init_hstates(void)
  1818. {
  1819. struct hstate *h;
  1820. for_each_hstate(h) {
  1821. if (minimum_order > huge_page_order(h))
  1822. minimum_order = huge_page_order(h);
  1823. /* oversize hugepages were init'ed in early boot */
  1824. if (!hstate_is_gigantic(h))
  1825. hugetlb_hstate_alloc_pages(h);
  1826. }
  1827. VM_BUG_ON(minimum_order == UINT_MAX);
  1828. }
  1829. static char * __init memfmt(char *buf, unsigned long n)
  1830. {
  1831. if (n >= (1UL << 30))
  1832. sprintf(buf, "%lu GB", n >> 30);
  1833. else if (n >= (1UL << 20))
  1834. sprintf(buf, "%lu MB", n >> 20);
  1835. else
  1836. sprintf(buf, "%lu KB", n >> 10);
  1837. return buf;
  1838. }
  1839. static void __init report_hugepages(void)
  1840. {
  1841. struct hstate *h;
  1842. for_each_hstate(h) {
  1843. char buf[32];
  1844. pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
  1845. memfmt(buf, huge_page_size(h)),
  1846. h->free_huge_pages);
  1847. }
  1848. }
  1849. #ifdef CONFIG_HIGHMEM
  1850. static void try_to_free_low(struct hstate *h, unsigned long count,
  1851. nodemask_t *nodes_allowed)
  1852. {
  1853. int i;
  1854. if (hstate_is_gigantic(h))
  1855. return;
  1856. for_each_node_mask(i, *nodes_allowed) {
  1857. struct page *page, *next;
  1858. struct list_head *freel = &h->hugepage_freelists[i];
  1859. list_for_each_entry_safe(page, next, freel, lru) {
  1860. if (count >= h->nr_huge_pages)
  1861. return;
  1862. if (PageHighMem(page))
  1863. continue;
  1864. list_del(&page->lru);
  1865. update_and_free_page(h, page);
  1866. h->free_huge_pages--;
  1867. h->free_huge_pages_node[page_to_nid(page)]--;
  1868. }
  1869. }
  1870. }
  1871. #else
  1872. static inline void try_to_free_low(struct hstate *h, unsigned long count,
  1873. nodemask_t *nodes_allowed)
  1874. {
  1875. }
  1876. #endif
  1877. /*
  1878. * Increment or decrement surplus_huge_pages. Keep node-specific counters
  1879. * balanced by operating on them in a round-robin fashion.
  1880. * Returns 1 if an adjustment was made.
  1881. */
  1882. static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
  1883. int delta)
  1884. {
  1885. int nr_nodes, node;
  1886. VM_BUG_ON(delta != -1 && delta != 1);
  1887. if (delta < 0) {
  1888. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  1889. if (h->surplus_huge_pages_node[node])
  1890. goto found;
  1891. }
  1892. } else {
  1893. for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
  1894. if (h->surplus_huge_pages_node[node] <
  1895. h->nr_huge_pages_node[node])
  1896. goto found;
  1897. }
  1898. }
  1899. return 0;
  1900. found:
  1901. h->surplus_huge_pages += delta;
  1902. h->surplus_huge_pages_node[node] += delta;
  1903. return 1;
  1904. }
  1905. #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
  1906. static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
  1907. nodemask_t *nodes_allowed)
  1908. {
  1909. unsigned long min_count, ret;
  1910. if (hstate_is_gigantic(h) && !gigantic_page_supported())
  1911. return h->max_huge_pages;
  1912. /*
  1913. * Increase the pool size
  1914. * First take pages out of surplus state. Then make up the
  1915. * remaining difference by allocating fresh huge pages.
  1916. *
  1917. * We might race with __alloc_buddy_huge_page() here and be unable
  1918. * to convert a surplus huge page to a normal huge page. That is
  1919. * not critical, though, it just means the overall size of the
  1920. * pool might be one hugepage larger than it needs to be, but
  1921. * within all the constraints specified by the sysctls.
  1922. */
  1923. spin_lock(&hugetlb_lock);
  1924. while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
  1925. if (!adjust_pool_surplus(h, nodes_allowed, -1))
  1926. break;
  1927. }
  1928. while (count > persistent_huge_pages(h)) {
  1929. /*
  1930. * If this allocation races such that we no longer need the
  1931. * page, free_huge_page will handle it by freeing the page
  1932. * and reducing the surplus.
  1933. */
  1934. spin_unlock(&hugetlb_lock);
  1935. /* yield cpu to avoid soft lockup */
  1936. cond_resched();
  1937. if (hstate_is_gigantic(h))
  1938. ret = alloc_fresh_gigantic_page(h, nodes_allowed);
  1939. else
  1940. ret = alloc_fresh_huge_page(h, nodes_allowed);
  1941. spin_lock(&hugetlb_lock);
  1942. if (!ret)
  1943. goto out;
  1944. /* Bail for signals. Probably ctrl-c from user */
  1945. if (signal_pending(current))
  1946. goto out;
  1947. }
  1948. /*
  1949. * Decrease the pool size
  1950. * First return free pages to the buddy allocator (being careful
  1951. * to keep enough around to satisfy reservations). Then place
  1952. * pages into surplus state as needed so the pool will shrink
  1953. * to the desired size as pages become free.
  1954. *
  1955. * By placing pages into the surplus state independent of the
  1956. * overcommit value, we are allowing the surplus pool size to
  1957. * exceed overcommit. There are few sane options here. Since
  1958. * __alloc_buddy_huge_page() is checking the global counter,
  1959. * though, we'll note that we're not allowed to exceed surplus
  1960. * and won't grow the pool anywhere else. Not until one of the
  1961. * sysctls are changed, or the surplus pages go out of use.
  1962. */
  1963. min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
  1964. min_count = max(count, min_count);
  1965. try_to_free_low(h, min_count, nodes_allowed);
  1966. while (min_count < persistent_huge_pages(h)) {
  1967. if (!free_pool_huge_page(h, nodes_allowed, 0))
  1968. break;
  1969. cond_resched_lock(&hugetlb_lock);
  1970. }
  1971. while (count < persistent_huge_pages(h)) {
  1972. if (!adjust_pool_surplus(h, nodes_allowed, 1))
  1973. break;
  1974. }
  1975. out:
  1976. ret = persistent_huge_pages(h);
  1977. spin_unlock(&hugetlb_lock);
  1978. return ret;
  1979. }
  1980. #define HSTATE_ATTR_RO(_name) \
  1981. static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
  1982. #define HSTATE_ATTR(_name) \
  1983. static struct kobj_attribute _name##_attr = \
  1984. __ATTR(_name, 0644, _name##_show, _name##_store)
  1985. static struct kobject *hugepages_kobj;
  1986. static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1987. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
  1988. static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
  1989. {
  1990. int i;
  1991. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1992. if (hstate_kobjs[i] == kobj) {
  1993. if (nidp)
  1994. *nidp = NUMA_NO_NODE;
  1995. return &hstates[i];
  1996. }
  1997. return kobj_to_node_hstate(kobj, nidp);
  1998. }
  1999. static ssize_t nr_hugepages_show_common(struct kobject *kobj,
  2000. struct kobj_attribute *attr, char *buf)
  2001. {
  2002. struct hstate *h;
  2003. unsigned long nr_huge_pages;
  2004. int nid;
  2005. h = kobj_to_hstate(kobj, &nid);
  2006. if (nid == NUMA_NO_NODE)
  2007. nr_huge_pages = h->nr_huge_pages;
  2008. else
  2009. nr_huge_pages = h->nr_huge_pages_node[nid];
  2010. return sprintf(buf, "%lu\n", nr_huge_pages);
  2011. }
  2012. static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
  2013. struct hstate *h, int nid,
  2014. unsigned long count, size_t len)
  2015. {
  2016. int err;
  2017. NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
  2018. if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
  2019. err = -EINVAL;
  2020. goto out;
  2021. }
  2022. if (nid == NUMA_NO_NODE) {
  2023. /*
  2024. * global hstate attribute
  2025. */
  2026. if (!(obey_mempolicy &&
  2027. init_nodemask_of_mempolicy(nodes_allowed))) {
  2028. NODEMASK_FREE(nodes_allowed);
  2029. nodes_allowed = &node_states[N_MEMORY];
  2030. }
  2031. } else if (nodes_allowed) {
  2032. /*
  2033. * per node hstate attribute: adjust count to global,
  2034. * but restrict alloc/free to the specified node.
  2035. */
  2036. count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
  2037. init_nodemask_of_node(nodes_allowed, nid);
  2038. } else
  2039. nodes_allowed = &node_states[N_MEMORY];
  2040. h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
  2041. if (nodes_allowed != &node_states[N_MEMORY])
  2042. NODEMASK_FREE(nodes_allowed);
  2043. return len;
  2044. out:
  2045. NODEMASK_FREE(nodes_allowed);
  2046. return err;
  2047. }
  2048. static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
  2049. struct kobject *kobj, const char *buf,
  2050. size_t len)
  2051. {
  2052. struct hstate *h;
  2053. unsigned long count;
  2054. int nid;
  2055. int err;
  2056. err = kstrtoul(buf, 10, &count);
  2057. if (err)
  2058. return err;
  2059. h = kobj_to_hstate(kobj, &nid);
  2060. return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
  2061. }
  2062. static ssize_t nr_hugepages_show(struct kobject *kobj,
  2063. struct kobj_attribute *attr, char *buf)
  2064. {
  2065. return nr_hugepages_show_common(kobj, attr, buf);
  2066. }
  2067. static ssize_t nr_hugepages_store(struct kobject *kobj,
  2068. struct kobj_attribute *attr, const char *buf, size_t len)
  2069. {
  2070. return nr_hugepages_store_common(false, kobj, buf, len);
  2071. }
  2072. HSTATE_ATTR(nr_hugepages);
  2073. #ifdef CONFIG_NUMA
  2074. /*
  2075. * hstate attribute for optionally mempolicy-based constraint on persistent
  2076. * huge page alloc/free.
  2077. */
  2078. static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
  2079. struct kobj_attribute *attr, char *buf)
  2080. {
  2081. return nr_hugepages_show_common(kobj, attr, buf);
  2082. }
  2083. static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
  2084. struct kobj_attribute *attr, const char *buf, size_t len)
  2085. {
  2086. return nr_hugepages_store_common(true, kobj, buf, len);
  2087. }
  2088. HSTATE_ATTR(nr_hugepages_mempolicy);
  2089. #endif
  2090. static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
  2091. struct kobj_attribute *attr, char *buf)
  2092. {
  2093. struct hstate *h = kobj_to_hstate(kobj, NULL);
  2094. return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
  2095. }
  2096. static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
  2097. struct kobj_attribute *attr, const char *buf, size_t count)
  2098. {
  2099. int err;
  2100. unsigned long input;
  2101. struct hstate *h = kobj_to_hstate(kobj, NULL);
  2102. if (hstate_is_gigantic(h))
  2103. return -EINVAL;
  2104. err = kstrtoul(buf, 10, &input);
  2105. if (err)
  2106. return err;
  2107. spin_lock(&hugetlb_lock);
  2108. h->nr_overcommit_huge_pages = input;
  2109. spin_unlock(&hugetlb_lock);
  2110. return count;
  2111. }
  2112. HSTATE_ATTR(nr_overcommit_hugepages);
  2113. static ssize_t free_hugepages_show(struct kobject *kobj,
  2114. struct kobj_attribute *attr, char *buf)
  2115. {
  2116. struct hstate *h;
  2117. unsigned long free_huge_pages;
  2118. int nid;
  2119. h = kobj_to_hstate(kobj, &nid);
  2120. if (nid == NUMA_NO_NODE)
  2121. free_huge_pages = h->free_huge_pages;
  2122. else
  2123. free_huge_pages = h->free_huge_pages_node[nid];
  2124. return sprintf(buf, "%lu\n", free_huge_pages);
  2125. }
  2126. HSTATE_ATTR_RO(free_hugepages);
  2127. static ssize_t resv_hugepages_show(struct kobject *kobj,
  2128. struct kobj_attribute *attr, char *buf)
  2129. {
  2130. struct hstate *h = kobj_to_hstate(kobj, NULL);
  2131. return sprintf(buf, "%lu\n", h->resv_huge_pages);
  2132. }
  2133. HSTATE_ATTR_RO(resv_hugepages);
  2134. static ssize_t surplus_hugepages_show(struct kobject *kobj,
  2135. struct kobj_attribute *attr, char *buf)
  2136. {
  2137. struct hstate *h;
  2138. unsigned long surplus_huge_pages;
  2139. int nid;
  2140. h = kobj_to_hstate(kobj, &nid);
  2141. if (nid == NUMA_NO_NODE)
  2142. surplus_huge_pages = h->surplus_huge_pages;
  2143. else
  2144. surplus_huge_pages = h->surplus_huge_pages_node[nid];
  2145. return sprintf(buf, "%lu\n", surplus_huge_pages);
  2146. }
  2147. HSTATE_ATTR_RO(surplus_hugepages);
  2148. static struct attribute *hstate_attrs[] = {
  2149. &nr_hugepages_attr.attr,
  2150. &nr_overcommit_hugepages_attr.attr,
  2151. &free_hugepages_attr.attr,
  2152. &resv_hugepages_attr.attr,
  2153. &surplus_hugepages_attr.attr,
  2154. #ifdef CONFIG_NUMA
  2155. &nr_hugepages_mempolicy_attr.attr,
  2156. #endif
  2157. NULL,
  2158. };
  2159. static struct attribute_group hstate_attr_group = {
  2160. .attrs = hstate_attrs,
  2161. };
  2162. static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
  2163. struct kobject **hstate_kobjs,
  2164. struct attribute_group *hstate_attr_group)
  2165. {
  2166. int retval;
  2167. int hi = hstate_index(h);
  2168. hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
  2169. if (!hstate_kobjs[hi])
  2170. return -ENOMEM;
  2171. retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
  2172. if (retval)
  2173. kobject_put(hstate_kobjs[hi]);
  2174. return retval;
  2175. }
  2176. static void __init hugetlb_sysfs_init(void)
  2177. {
  2178. struct hstate *h;
  2179. int err;
  2180. hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
  2181. if (!hugepages_kobj)
  2182. return;
  2183. for_each_hstate(h) {
  2184. err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
  2185. hstate_kobjs, &hstate_attr_group);
  2186. if (err)
  2187. pr_err("Hugetlb: Unable to add hstate %s", h->name);
  2188. }
  2189. }
  2190. #ifdef CONFIG_NUMA
  2191. /*
  2192. * node_hstate/s - associate per node hstate attributes, via their kobjects,
  2193. * with node devices in node_devices[] using a parallel array. The array
  2194. * index of a node device or _hstate == node id.
  2195. * This is here to avoid any static dependency of the node device driver, in
  2196. * the base kernel, on the hugetlb module.
  2197. */
  2198. struct node_hstate {
  2199. struct kobject *hugepages_kobj;
  2200. struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  2201. };
  2202. static struct node_hstate node_hstates[MAX_NUMNODES];
  2203. /*
  2204. * A subset of global hstate attributes for node devices
  2205. */
  2206. static struct attribute *per_node_hstate_attrs[] = {
  2207. &nr_hugepages_attr.attr,
  2208. &free_hugepages_attr.attr,
  2209. &surplus_hugepages_attr.attr,
  2210. NULL,
  2211. };
  2212. static struct attribute_group per_node_hstate_attr_group = {
  2213. .attrs = per_node_hstate_attrs,
  2214. };
  2215. /*
  2216. * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
  2217. * Returns node id via non-NULL nidp.
  2218. */
  2219. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  2220. {
  2221. int nid;
  2222. for (nid = 0; nid < nr_node_ids; nid++) {
  2223. struct node_hstate *nhs = &node_hstates[nid];
  2224. int i;
  2225. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  2226. if (nhs->hstate_kobjs[i] == kobj) {
  2227. if (nidp)
  2228. *nidp = nid;
  2229. return &hstates[i];
  2230. }
  2231. }
  2232. BUG();
  2233. return NULL;
  2234. }
  2235. /*
  2236. * Unregister hstate attributes from a single node device.
  2237. * No-op if no hstate attributes attached.
  2238. */
  2239. static void hugetlb_unregister_node(struct node *node)
  2240. {
  2241. struct hstate *h;
  2242. struct node_hstate *nhs = &node_hstates[node->dev.id];
  2243. if (!nhs->hugepages_kobj)
  2244. return; /* no hstate attributes */
  2245. for_each_hstate(h) {
  2246. int idx = hstate_index(h);
  2247. if (nhs->hstate_kobjs[idx]) {
  2248. kobject_put(nhs->hstate_kobjs[idx]);
  2249. nhs->hstate_kobjs[idx] = NULL;
  2250. }
  2251. }
  2252. kobject_put(nhs->hugepages_kobj);
  2253. nhs->hugepages_kobj = NULL;
  2254. }
  2255. /*
  2256. * Register hstate attributes for a single node device.
  2257. * No-op if attributes already registered.
  2258. */
  2259. static void hugetlb_register_node(struct node *node)
  2260. {
  2261. struct hstate *h;
  2262. struct node_hstate *nhs = &node_hstates[node->dev.id];
  2263. int err;
  2264. if (nhs->hugepages_kobj)
  2265. return; /* already allocated */
  2266. nhs->hugepages_kobj = kobject_create_and_add("hugepages",
  2267. &node->dev.kobj);
  2268. if (!nhs->hugepages_kobj)
  2269. return;
  2270. for_each_hstate(h) {
  2271. err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
  2272. nhs->hstate_kobjs,
  2273. &per_node_hstate_attr_group);
  2274. if (err) {
  2275. pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
  2276. h->name, node->dev.id);
  2277. hugetlb_unregister_node(node);
  2278. break;
  2279. }
  2280. }
  2281. }
  2282. /*
  2283. * hugetlb init time: register hstate attributes for all registered node
  2284. * devices of nodes that have memory. All on-line nodes should have
  2285. * registered their associated device by this time.
  2286. */
  2287. static void __init hugetlb_register_all_nodes(void)
  2288. {
  2289. int nid;
  2290. for_each_node_state(nid, N_MEMORY) {
  2291. struct node *node = node_devices[nid];
  2292. if (node->dev.id == nid)
  2293. hugetlb_register_node(node);
  2294. }
  2295. /*
  2296. * Let the node device driver know we're here so it can
  2297. * [un]register hstate attributes on node hotplug.
  2298. */
  2299. register_hugetlbfs_with_node(hugetlb_register_node,
  2300. hugetlb_unregister_node);
  2301. }
  2302. #else /* !CONFIG_NUMA */
  2303. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  2304. {
  2305. BUG();
  2306. if (nidp)
  2307. *nidp = -1;
  2308. return NULL;
  2309. }
  2310. static void hugetlb_register_all_nodes(void) { }
  2311. #endif
  2312. static int __init hugetlb_init(void)
  2313. {
  2314. int i;
  2315. if (!hugepages_supported())
  2316. return 0;
  2317. if (!size_to_hstate(default_hstate_size)) {
  2318. default_hstate_size = HPAGE_SIZE;
  2319. if (!size_to_hstate(default_hstate_size))
  2320. hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
  2321. }
  2322. default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
  2323. if (default_hstate_max_huge_pages) {
  2324. if (!default_hstate.max_huge_pages)
  2325. default_hstate.max_huge_pages = default_hstate_max_huge_pages;
  2326. }
  2327. hugetlb_init_hstates();
  2328. gather_bootmem_prealloc();
  2329. report_hugepages();
  2330. hugetlb_sysfs_init();
  2331. hugetlb_register_all_nodes();
  2332. hugetlb_cgroup_file_init();
  2333. #ifdef CONFIG_SMP
  2334. num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
  2335. #else
  2336. num_fault_mutexes = 1;
  2337. #endif
  2338. hugetlb_fault_mutex_table =
  2339. kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
  2340. BUG_ON(!hugetlb_fault_mutex_table);
  2341. for (i = 0; i < num_fault_mutexes; i++)
  2342. mutex_init(&hugetlb_fault_mutex_table[i]);
  2343. return 0;
  2344. }
  2345. subsys_initcall(hugetlb_init);
  2346. /* Should be called on processing a hugepagesz=... option */
  2347. void __init hugetlb_bad_size(void)
  2348. {
  2349. parsed_valid_hugepagesz = false;
  2350. }
  2351. void __init hugetlb_add_hstate(unsigned int order)
  2352. {
  2353. struct hstate *h;
  2354. unsigned long i;
  2355. if (size_to_hstate(PAGE_SIZE << order)) {
  2356. pr_warn("hugepagesz= specified twice, ignoring\n");
  2357. return;
  2358. }
  2359. BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
  2360. BUG_ON(order == 0);
  2361. h = &hstates[hugetlb_max_hstate++];
  2362. h->order = order;
  2363. h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
  2364. h->nr_huge_pages = 0;
  2365. h->free_huge_pages = 0;
  2366. for (i = 0; i < MAX_NUMNODES; ++i)
  2367. INIT_LIST_HEAD(&h->hugepage_freelists[i]);
  2368. INIT_LIST_HEAD(&h->hugepage_activelist);
  2369. h->next_nid_to_alloc = first_memory_node;
  2370. h->next_nid_to_free = first_memory_node;
  2371. snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
  2372. huge_page_size(h)/1024);
  2373. parsed_hstate = h;
  2374. }
  2375. static int __init hugetlb_nrpages_setup(char *s)
  2376. {
  2377. unsigned long *mhp;
  2378. static unsigned long *last_mhp;
  2379. if (!parsed_valid_hugepagesz) {
  2380. pr_warn("hugepages = %s preceded by "
  2381. "an unsupported hugepagesz, ignoring\n", s);
  2382. parsed_valid_hugepagesz = true;
  2383. return 1;
  2384. }
  2385. /*
  2386. * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
  2387. * so this hugepages= parameter goes to the "default hstate".
  2388. */
  2389. else if (!hugetlb_max_hstate)
  2390. mhp = &default_hstate_max_huge_pages;
  2391. else
  2392. mhp = &parsed_hstate->max_huge_pages;
  2393. if (mhp == last_mhp) {
  2394. pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
  2395. return 1;
  2396. }
  2397. if (sscanf(s, "%lu", mhp) <= 0)
  2398. *mhp = 0;
  2399. /*
  2400. * Global state is always initialized later in hugetlb_init.
  2401. * But we need to allocate >= MAX_ORDER hstates here early to still
  2402. * use the bootmem allocator.
  2403. */
  2404. if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
  2405. hugetlb_hstate_alloc_pages(parsed_hstate);
  2406. last_mhp = mhp;
  2407. return 1;
  2408. }
  2409. __setup("hugepages=", hugetlb_nrpages_setup);
  2410. static int __init hugetlb_default_setup(char *s)
  2411. {
  2412. default_hstate_size = memparse(s, &s);
  2413. return 1;
  2414. }
  2415. __setup("default_hugepagesz=", hugetlb_default_setup);
  2416. static unsigned int cpuset_mems_nr(unsigned int *array)
  2417. {
  2418. int node;
  2419. unsigned int nr = 0;
  2420. for_each_node_mask(node, cpuset_current_mems_allowed)
  2421. nr += array[node];
  2422. return nr;
  2423. }
  2424. #ifdef CONFIG_SYSCTL
  2425. static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
  2426. struct ctl_table *table, int write,
  2427. void __user *buffer, size_t *length, loff_t *ppos)
  2428. {
  2429. struct hstate *h = &default_hstate;
  2430. unsigned long tmp = h->max_huge_pages;
  2431. int ret;
  2432. if (!hugepages_supported())
  2433. return -EOPNOTSUPP;
  2434. table->data = &tmp;
  2435. table->maxlen = sizeof(unsigned long);
  2436. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  2437. if (ret)
  2438. goto out;
  2439. if (write)
  2440. ret = __nr_hugepages_store_common(obey_mempolicy, h,
  2441. NUMA_NO_NODE, tmp, *length);
  2442. out:
  2443. return ret;
  2444. }
  2445. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  2446. void __user *buffer, size_t *length, loff_t *ppos)
  2447. {
  2448. return hugetlb_sysctl_handler_common(false, table, write,
  2449. buffer, length, ppos);
  2450. }
  2451. #ifdef CONFIG_NUMA
  2452. int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
  2453. void __user *buffer, size_t *length, loff_t *ppos)
  2454. {
  2455. return hugetlb_sysctl_handler_common(true, table, write,
  2456. buffer, length, ppos);
  2457. }
  2458. #endif /* CONFIG_NUMA */
  2459. int hugetlb_overcommit_handler(struct ctl_table *table, int write,
  2460. void __user *buffer,
  2461. size_t *length, loff_t *ppos)
  2462. {
  2463. struct hstate *h = &default_hstate;
  2464. unsigned long tmp;
  2465. int ret;
  2466. if (!hugepages_supported())
  2467. return -EOPNOTSUPP;
  2468. tmp = h->nr_overcommit_huge_pages;
  2469. if (write && hstate_is_gigantic(h))
  2470. return -EINVAL;
  2471. table->data = &tmp;
  2472. table->maxlen = sizeof(unsigned long);
  2473. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  2474. if (ret)
  2475. goto out;
  2476. if (write) {
  2477. spin_lock(&hugetlb_lock);
  2478. h->nr_overcommit_huge_pages = tmp;
  2479. spin_unlock(&hugetlb_lock);
  2480. }
  2481. out:
  2482. return ret;
  2483. }
  2484. #endif /* CONFIG_SYSCTL */
  2485. void hugetlb_report_meminfo(struct seq_file *m)
  2486. {
  2487. struct hstate *h = &default_hstate;
  2488. if (!hugepages_supported())
  2489. return;
  2490. seq_printf(m,
  2491. "HugePages_Total: %5lu\n"
  2492. "HugePages_Free: %5lu\n"
  2493. "HugePages_Rsvd: %5lu\n"
  2494. "HugePages_Surp: %5lu\n"
  2495. "Hugepagesize: %8lu kB\n",
  2496. h->nr_huge_pages,
  2497. h->free_huge_pages,
  2498. h->resv_huge_pages,
  2499. h->surplus_huge_pages,
  2500. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  2501. }
  2502. int hugetlb_report_node_meminfo(int nid, char *buf)
  2503. {
  2504. struct hstate *h = &default_hstate;
  2505. if (!hugepages_supported())
  2506. return 0;
  2507. return sprintf(buf,
  2508. "Node %d HugePages_Total: %5u\n"
  2509. "Node %d HugePages_Free: %5u\n"
  2510. "Node %d HugePages_Surp: %5u\n",
  2511. nid, h->nr_huge_pages_node[nid],
  2512. nid, h->free_huge_pages_node[nid],
  2513. nid, h->surplus_huge_pages_node[nid]);
  2514. }
  2515. void hugetlb_show_meminfo(void)
  2516. {
  2517. struct hstate *h;
  2518. int nid;
  2519. if (!hugepages_supported())
  2520. return;
  2521. for_each_node_state(nid, N_MEMORY)
  2522. for_each_hstate(h)
  2523. pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
  2524. nid,
  2525. h->nr_huge_pages_node[nid],
  2526. h->free_huge_pages_node[nid],
  2527. h->surplus_huge_pages_node[nid],
  2528. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  2529. }
  2530. void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
  2531. {
  2532. seq_printf(m, "HugetlbPages:\t%8lu kB\n",
  2533. atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
  2534. }
  2535. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  2536. unsigned long hugetlb_total_pages(void)
  2537. {
  2538. struct hstate *h;
  2539. unsigned long nr_total_pages = 0;
  2540. for_each_hstate(h)
  2541. nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
  2542. return nr_total_pages;
  2543. }
  2544. static int hugetlb_acct_memory(struct hstate *h, long delta)
  2545. {
  2546. int ret = -ENOMEM;
  2547. spin_lock(&hugetlb_lock);
  2548. /*
  2549. * When cpuset is configured, it breaks the strict hugetlb page
  2550. * reservation as the accounting is done on a global variable. Such
  2551. * reservation is completely rubbish in the presence of cpuset because
  2552. * the reservation is not checked against page availability for the
  2553. * current cpuset. Application can still potentially OOM'ed by kernel
  2554. * with lack of free htlb page in cpuset that the task is in.
  2555. * Attempt to enforce strict accounting with cpuset is almost
  2556. * impossible (or too ugly) because cpuset is too fluid that
  2557. * task or memory node can be dynamically moved between cpusets.
  2558. *
  2559. * The change of semantics for shared hugetlb mapping with cpuset is
  2560. * undesirable. However, in order to preserve some of the semantics,
  2561. * we fall back to check against current free page availability as
  2562. * a best attempt and hopefully to minimize the impact of changing
  2563. * semantics that cpuset has.
  2564. */
  2565. if (delta > 0) {
  2566. if (gather_surplus_pages(h, delta) < 0)
  2567. goto out;
  2568. if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
  2569. return_unused_surplus_pages(h, delta);
  2570. goto out;
  2571. }
  2572. }
  2573. ret = 0;
  2574. if (delta < 0)
  2575. return_unused_surplus_pages(h, (unsigned long) -delta);
  2576. out:
  2577. spin_unlock(&hugetlb_lock);
  2578. return ret;
  2579. }
  2580. static void hugetlb_vm_op_open(struct vm_area_struct *vma)
  2581. {
  2582. struct resv_map *resv = vma_resv_map(vma);
  2583. /*
  2584. * This new VMA should share its siblings reservation map if present.
  2585. * The VMA will only ever have a valid reservation map pointer where
  2586. * it is being copied for another still existing VMA. As that VMA
  2587. * has a reference to the reservation map it cannot disappear until
  2588. * after this open call completes. It is therefore safe to take a
  2589. * new reference here without additional locking.
  2590. */
  2591. if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  2592. kref_get(&resv->refs);
  2593. }
  2594. static void hugetlb_vm_op_close(struct vm_area_struct *vma)
  2595. {
  2596. struct hstate *h = hstate_vma(vma);
  2597. struct resv_map *resv = vma_resv_map(vma);
  2598. struct hugepage_subpool *spool = subpool_vma(vma);
  2599. unsigned long reserve, start, end;
  2600. long gbl_reserve;
  2601. if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  2602. return;
  2603. start = vma_hugecache_offset(h, vma, vma->vm_start);
  2604. end = vma_hugecache_offset(h, vma, vma->vm_end);
  2605. reserve = (end - start) - region_count(resv, start, end);
  2606. kref_put(&resv->refs, resv_map_release);
  2607. if (reserve) {
  2608. /*
  2609. * Decrement reserve counts. The global reserve count may be
  2610. * adjusted if the subpool has a minimum size.
  2611. */
  2612. gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
  2613. hugetlb_acct_memory(h, -gbl_reserve);
  2614. }
  2615. }
  2616. /*
  2617. * We cannot handle pagefaults against hugetlb pages at all. They cause
  2618. * handle_mm_fault() to try to instantiate regular-sized pages in the
  2619. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  2620. * this far.
  2621. */
  2622. static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  2623. {
  2624. BUG();
  2625. return 0;
  2626. }
  2627. const struct vm_operations_struct hugetlb_vm_ops = {
  2628. .fault = hugetlb_vm_op_fault,
  2629. .open = hugetlb_vm_op_open,
  2630. .close = hugetlb_vm_op_close,
  2631. };
  2632. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  2633. int writable)
  2634. {
  2635. pte_t entry;
  2636. if (writable) {
  2637. entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
  2638. vma->vm_page_prot)));
  2639. } else {
  2640. entry = huge_pte_wrprotect(mk_huge_pte(page,
  2641. vma->vm_page_prot));
  2642. }
  2643. entry = pte_mkyoung(entry);
  2644. entry = pte_mkhuge(entry);
  2645. entry = arch_make_huge_pte(entry, vma, page, writable);
  2646. return entry;
  2647. }
  2648. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  2649. unsigned long address, pte_t *ptep)
  2650. {
  2651. pte_t entry;
  2652. entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
  2653. if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
  2654. update_mmu_cache(vma, address, ptep);
  2655. }
  2656. static int is_hugetlb_entry_migration(pte_t pte)
  2657. {
  2658. swp_entry_t swp;
  2659. if (huge_pte_none(pte) || pte_present(pte))
  2660. return 0;
  2661. swp = pte_to_swp_entry(pte);
  2662. if (non_swap_entry(swp) && is_migration_entry(swp))
  2663. return 1;
  2664. else
  2665. return 0;
  2666. }
  2667. static int is_hugetlb_entry_hwpoisoned(pte_t pte)
  2668. {
  2669. swp_entry_t swp;
  2670. if (huge_pte_none(pte) || pte_present(pte))
  2671. return 0;
  2672. swp = pte_to_swp_entry(pte);
  2673. if (non_swap_entry(swp) && is_hwpoison_entry(swp))
  2674. return 1;
  2675. else
  2676. return 0;
  2677. }
  2678. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  2679. struct vm_area_struct *vma)
  2680. {
  2681. pte_t *src_pte, *dst_pte, entry;
  2682. struct page *ptepage;
  2683. unsigned long addr;
  2684. int cow;
  2685. struct hstate *h = hstate_vma(vma);
  2686. unsigned long sz = huge_page_size(h);
  2687. unsigned long mmun_start; /* For mmu_notifiers */
  2688. unsigned long mmun_end; /* For mmu_notifiers */
  2689. int ret = 0;
  2690. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  2691. mmun_start = vma->vm_start;
  2692. mmun_end = vma->vm_end;
  2693. if (cow)
  2694. mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
  2695. for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
  2696. spinlock_t *src_ptl, *dst_ptl;
  2697. src_pte = huge_pte_offset(src, addr);
  2698. if (!src_pte)
  2699. continue;
  2700. dst_pte = huge_pte_alloc(dst, addr, sz);
  2701. if (!dst_pte) {
  2702. ret = -ENOMEM;
  2703. break;
  2704. }
  2705. /* If the pagetables are shared don't copy or take references */
  2706. if (dst_pte == src_pte)
  2707. continue;
  2708. dst_ptl = huge_pte_lock(h, dst, dst_pte);
  2709. src_ptl = huge_pte_lockptr(h, src, src_pte);
  2710. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  2711. entry = huge_ptep_get(src_pte);
  2712. if (huge_pte_none(entry)) { /* skip none entry */
  2713. ;
  2714. } else if (unlikely(is_hugetlb_entry_migration(entry) ||
  2715. is_hugetlb_entry_hwpoisoned(entry))) {
  2716. swp_entry_t swp_entry = pte_to_swp_entry(entry);
  2717. if (is_write_migration_entry(swp_entry) && cow) {
  2718. /*
  2719. * COW mappings require pages in both
  2720. * parent and child to be set to read.
  2721. */
  2722. make_migration_entry_read(&swp_entry);
  2723. entry = swp_entry_to_pte(swp_entry);
  2724. set_huge_pte_at(src, addr, src_pte, entry);
  2725. }
  2726. set_huge_pte_at(dst, addr, dst_pte, entry);
  2727. } else {
  2728. if (cow) {
  2729. huge_ptep_set_wrprotect(src, addr, src_pte);
  2730. mmu_notifier_invalidate_range(src, mmun_start,
  2731. mmun_end);
  2732. }
  2733. entry = huge_ptep_get(src_pte);
  2734. ptepage = pte_page(entry);
  2735. get_page(ptepage);
  2736. page_dup_rmap(ptepage, true);
  2737. set_huge_pte_at(dst, addr, dst_pte, entry);
  2738. hugetlb_count_add(pages_per_huge_page(h), dst);
  2739. }
  2740. spin_unlock(src_ptl);
  2741. spin_unlock(dst_ptl);
  2742. }
  2743. if (cow)
  2744. mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
  2745. return ret;
  2746. }
  2747. void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
  2748. unsigned long start, unsigned long end,
  2749. struct page *ref_page)
  2750. {
  2751. struct mm_struct *mm = vma->vm_mm;
  2752. unsigned long address;
  2753. pte_t *ptep;
  2754. pte_t pte;
  2755. spinlock_t *ptl;
  2756. struct page *page;
  2757. struct hstate *h = hstate_vma(vma);
  2758. unsigned long sz = huge_page_size(h);
  2759. const unsigned long mmun_start = start; /* For mmu_notifiers */
  2760. const unsigned long mmun_end = end; /* For mmu_notifiers */
  2761. WARN_ON(!is_vm_hugetlb_page(vma));
  2762. BUG_ON(start & ~huge_page_mask(h));
  2763. BUG_ON(end & ~huge_page_mask(h));
  2764. tlb_start_vma(tlb, vma);
  2765. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2766. address = start;
  2767. for (; address < end; address += sz) {
  2768. ptep = huge_pte_offset(mm, address);
  2769. if (!ptep)
  2770. continue;
  2771. ptl = huge_pte_lock(h, mm, ptep);
  2772. if (huge_pmd_unshare(mm, &address, ptep)) {
  2773. spin_unlock(ptl);
  2774. continue;
  2775. }
  2776. pte = huge_ptep_get(ptep);
  2777. if (huge_pte_none(pte)) {
  2778. spin_unlock(ptl);
  2779. continue;
  2780. }
  2781. /*
  2782. * Migrating hugepage or HWPoisoned hugepage is already
  2783. * unmapped and its refcount is dropped, so just clear pte here.
  2784. */
  2785. if (unlikely(!pte_present(pte))) {
  2786. huge_pte_clear(mm, address, ptep);
  2787. spin_unlock(ptl);
  2788. continue;
  2789. }
  2790. page = pte_page(pte);
  2791. /*
  2792. * If a reference page is supplied, it is because a specific
  2793. * page is being unmapped, not a range. Ensure the page we
  2794. * are about to unmap is the actual page of interest.
  2795. */
  2796. if (ref_page) {
  2797. if (page != ref_page) {
  2798. spin_unlock(ptl);
  2799. continue;
  2800. }
  2801. /*
  2802. * Mark the VMA as having unmapped its page so that
  2803. * future faults in this VMA will fail rather than
  2804. * looking like data was lost
  2805. */
  2806. set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
  2807. }
  2808. pte = huge_ptep_get_and_clear(mm, address, ptep);
  2809. tlb_remove_tlb_entry(tlb, ptep, address);
  2810. if (huge_pte_dirty(pte))
  2811. set_page_dirty(page);
  2812. hugetlb_count_sub(pages_per_huge_page(h), mm);
  2813. page_remove_rmap(page, true);
  2814. spin_unlock(ptl);
  2815. tlb_remove_page_size(tlb, page, huge_page_size(h));
  2816. /*
  2817. * Bail out after unmapping reference page if supplied
  2818. */
  2819. if (ref_page)
  2820. break;
  2821. }
  2822. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2823. tlb_end_vma(tlb, vma);
  2824. }
  2825. void __unmap_hugepage_range_final(struct mmu_gather *tlb,
  2826. struct vm_area_struct *vma, unsigned long start,
  2827. unsigned long end, struct page *ref_page)
  2828. {
  2829. __unmap_hugepage_range(tlb, vma, start, end, ref_page);
  2830. /*
  2831. * Clear this flag so that x86's huge_pmd_share page_table_shareable
  2832. * test will fail on a vma being torn down, and not grab a page table
  2833. * on its way out. We're lucky that the flag has such an appropriate
  2834. * name, and can in fact be safely cleared here. We could clear it
  2835. * before the __unmap_hugepage_range above, but all that's necessary
  2836. * is to clear it before releasing the i_mmap_rwsem. This works
  2837. * because in the context this is called, the VMA is about to be
  2838. * destroyed and the i_mmap_rwsem is held.
  2839. */
  2840. vma->vm_flags &= ~VM_MAYSHARE;
  2841. }
  2842. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  2843. unsigned long end, struct page *ref_page)
  2844. {
  2845. struct mm_struct *mm;
  2846. struct mmu_gather tlb;
  2847. mm = vma->vm_mm;
  2848. tlb_gather_mmu(&tlb, mm, start, end);
  2849. __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
  2850. tlb_finish_mmu(&tlb, start, end);
  2851. }
  2852. /*
  2853. * This is called when the original mapper is failing to COW a MAP_PRIVATE
  2854. * mappping it owns the reserve page for. The intention is to unmap the page
  2855. * from other VMAs and let the children be SIGKILLed if they are faulting the
  2856. * same region.
  2857. */
  2858. static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
  2859. struct page *page, unsigned long address)
  2860. {
  2861. struct hstate *h = hstate_vma(vma);
  2862. struct vm_area_struct *iter_vma;
  2863. struct address_space *mapping;
  2864. pgoff_t pgoff;
  2865. /*
  2866. * vm_pgoff is in PAGE_SIZE units, hence the different calculation
  2867. * from page cache lookup which is in HPAGE_SIZE units.
  2868. */
  2869. address = address & huge_page_mask(h);
  2870. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
  2871. vma->vm_pgoff;
  2872. mapping = vma->vm_file->f_mapping;
  2873. /*
  2874. * Take the mapping lock for the duration of the table walk. As
  2875. * this mapping should be shared between all the VMAs,
  2876. * __unmap_hugepage_range() is called as the lock is already held
  2877. */
  2878. i_mmap_lock_write(mapping);
  2879. vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
  2880. /* Do not unmap the current VMA */
  2881. if (iter_vma == vma)
  2882. continue;
  2883. /*
  2884. * Shared VMAs have their own reserves and do not affect
  2885. * MAP_PRIVATE accounting but it is possible that a shared
  2886. * VMA is using the same page so check and skip such VMAs.
  2887. */
  2888. if (iter_vma->vm_flags & VM_MAYSHARE)
  2889. continue;
  2890. /*
  2891. * Unmap the page from other VMAs without their own reserves.
  2892. * They get marked to be SIGKILLed if they fault in these
  2893. * areas. This is because a future no-page fault on this VMA
  2894. * could insert a zeroed page instead of the data existing
  2895. * from the time of fork. This would look like data corruption
  2896. */
  2897. if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
  2898. unmap_hugepage_range(iter_vma, address,
  2899. address + huge_page_size(h), page);
  2900. }
  2901. i_mmap_unlock_write(mapping);
  2902. }
  2903. /*
  2904. * Hugetlb_cow() should be called with page lock of the original hugepage held.
  2905. * Called with hugetlb_instantiation_mutex held and pte_page locked so we
  2906. * cannot race with other handlers or page migration.
  2907. * Keep the pte_same checks anyway to make transition from the mutex easier.
  2908. */
  2909. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  2910. unsigned long address, pte_t *ptep, pte_t pte,
  2911. struct page *pagecache_page, spinlock_t *ptl)
  2912. {
  2913. struct hstate *h = hstate_vma(vma);
  2914. struct page *old_page, *new_page;
  2915. int ret = 0, outside_reserve = 0;
  2916. unsigned long mmun_start; /* For mmu_notifiers */
  2917. unsigned long mmun_end; /* For mmu_notifiers */
  2918. old_page = pte_page(pte);
  2919. retry_avoidcopy:
  2920. /* If no-one else is actually using this page, avoid the copy
  2921. * and just make the page writable */
  2922. if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
  2923. page_move_anon_rmap(old_page, vma);
  2924. set_huge_ptep_writable(vma, address, ptep);
  2925. return 0;
  2926. }
  2927. /*
  2928. * If the process that created a MAP_PRIVATE mapping is about to
  2929. * perform a COW due to a shared page count, attempt to satisfy
  2930. * the allocation without using the existing reserves. The pagecache
  2931. * page is used to determine if the reserve at this address was
  2932. * consumed or not. If reserves were used, a partial faulted mapping
  2933. * at the time of fork() could consume its reserves on COW instead
  2934. * of the full address range.
  2935. */
  2936. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
  2937. old_page != pagecache_page)
  2938. outside_reserve = 1;
  2939. get_page(old_page);
  2940. /*
  2941. * Drop page table lock as buddy allocator may be called. It will
  2942. * be acquired again before returning to the caller, as expected.
  2943. */
  2944. spin_unlock(ptl);
  2945. new_page = alloc_huge_page(vma, address, outside_reserve);
  2946. if (IS_ERR(new_page)) {
  2947. /*
  2948. * If a process owning a MAP_PRIVATE mapping fails to COW,
  2949. * it is due to references held by a child and an insufficient
  2950. * huge page pool. To guarantee the original mappers
  2951. * reliability, unmap the page from child processes. The child
  2952. * may get SIGKILLed if it later faults.
  2953. */
  2954. if (outside_reserve) {
  2955. put_page(old_page);
  2956. BUG_ON(huge_pte_none(pte));
  2957. unmap_ref_private(mm, vma, old_page, address);
  2958. BUG_ON(huge_pte_none(pte));
  2959. spin_lock(ptl);
  2960. ptep = huge_pte_offset(mm, address & huge_page_mask(h));
  2961. if (likely(ptep &&
  2962. pte_same(huge_ptep_get(ptep), pte)))
  2963. goto retry_avoidcopy;
  2964. /*
  2965. * race occurs while re-acquiring page table
  2966. * lock, and our job is done.
  2967. */
  2968. return 0;
  2969. }
  2970. ret = (PTR_ERR(new_page) == -ENOMEM) ?
  2971. VM_FAULT_OOM : VM_FAULT_SIGBUS;
  2972. goto out_release_old;
  2973. }
  2974. /*
  2975. * When the original hugepage is shared one, it does not have
  2976. * anon_vma prepared.
  2977. */
  2978. if (unlikely(anon_vma_prepare(vma))) {
  2979. ret = VM_FAULT_OOM;
  2980. goto out_release_all;
  2981. }
  2982. copy_user_huge_page(new_page, old_page, address, vma,
  2983. pages_per_huge_page(h));
  2984. __SetPageUptodate(new_page);
  2985. set_page_huge_active(new_page);
  2986. mmun_start = address & huge_page_mask(h);
  2987. mmun_end = mmun_start + huge_page_size(h);
  2988. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2989. /*
  2990. * Retake the page table lock to check for racing updates
  2991. * before the page tables are altered
  2992. */
  2993. spin_lock(ptl);
  2994. ptep = huge_pte_offset(mm, address & huge_page_mask(h));
  2995. if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
  2996. ClearPagePrivate(new_page);
  2997. /* Break COW */
  2998. huge_ptep_clear_flush(vma, address, ptep);
  2999. mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
  3000. set_huge_pte_at(mm, address, ptep,
  3001. make_huge_pte(vma, new_page, 1));
  3002. page_remove_rmap(old_page, true);
  3003. hugepage_add_new_anon_rmap(new_page, vma, address);
  3004. /* Make the old page be freed below */
  3005. new_page = old_page;
  3006. }
  3007. spin_unlock(ptl);
  3008. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  3009. out_release_all:
  3010. put_page(new_page);
  3011. out_release_old:
  3012. put_page(old_page);
  3013. spin_lock(ptl); /* Caller expects lock to be held */
  3014. return ret;
  3015. }
  3016. /* Return the pagecache page at a given address within a VMA */
  3017. static struct page *hugetlbfs_pagecache_page(struct hstate *h,
  3018. struct vm_area_struct *vma, unsigned long address)
  3019. {
  3020. struct address_space *mapping;
  3021. pgoff_t idx;
  3022. mapping = vma->vm_file->f_mapping;
  3023. idx = vma_hugecache_offset(h, vma, address);
  3024. return find_lock_page(mapping, idx);
  3025. }
  3026. /*
  3027. * Return whether there is a pagecache page to back given address within VMA.
  3028. * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
  3029. */
  3030. static bool hugetlbfs_pagecache_present(struct hstate *h,
  3031. struct vm_area_struct *vma, unsigned long address)
  3032. {
  3033. struct address_space *mapping;
  3034. pgoff_t idx;
  3035. struct page *page;
  3036. mapping = vma->vm_file->f_mapping;
  3037. idx = vma_hugecache_offset(h, vma, address);
  3038. page = find_get_page(mapping, idx);
  3039. if (page)
  3040. put_page(page);
  3041. return page != NULL;
  3042. }
  3043. int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
  3044. pgoff_t idx)
  3045. {
  3046. struct inode *inode = mapping->host;
  3047. struct hstate *h = hstate_inode(inode);
  3048. int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  3049. if (err)
  3050. return err;
  3051. ClearPagePrivate(page);
  3052. spin_lock(&inode->i_lock);
  3053. inode->i_blocks += blocks_per_huge_page(h);
  3054. spin_unlock(&inode->i_lock);
  3055. return 0;
  3056. }
  3057. static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3058. struct address_space *mapping, pgoff_t idx,
  3059. unsigned long address, pte_t *ptep, unsigned int flags)
  3060. {
  3061. struct hstate *h = hstate_vma(vma);
  3062. int ret = VM_FAULT_SIGBUS;
  3063. int anon_rmap = 0;
  3064. unsigned long size;
  3065. struct page *page;
  3066. pte_t new_pte;
  3067. spinlock_t *ptl;
  3068. /*
  3069. * Currently, we are forced to kill the process in the event the
  3070. * original mapper has unmapped pages from the child due to a failed
  3071. * COW. Warn that such a situation has occurred as it may not be obvious
  3072. */
  3073. if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
  3074. pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
  3075. current->pid);
  3076. return ret;
  3077. }
  3078. /*
  3079. * Use page lock to guard against racing truncation
  3080. * before we get page_table_lock.
  3081. */
  3082. retry:
  3083. page = find_lock_page(mapping, idx);
  3084. if (!page) {
  3085. size = i_size_read(mapping->host) >> huge_page_shift(h);
  3086. if (idx >= size)
  3087. goto out;
  3088. page = alloc_huge_page(vma, address, 0);
  3089. if (IS_ERR(page)) {
  3090. ret = PTR_ERR(page);
  3091. if (ret == -ENOMEM)
  3092. ret = VM_FAULT_OOM;
  3093. else
  3094. ret = VM_FAULT_SIGBUS;
  3095. goto out;
  3096. }
  3097. clear_huge_page(page, address, pages_per_huge_page(h));
  3098. __SetPageUptodate(page);
  3099. set_page_huge_active(page);
  3100. if (vma->vm_flags & VM_MAYSHARE) {
  3101. int err = huge_add_to_page_cache(page, mapping, idx);
  3102. if (err) {
  3103. put_page(page);
  3104. if (err == -EEXIST)
  3105. goto retry;
  3106. goto out;
  3107. }
  3108. } else {
  3109. lock_page(page);
  3110. if (unlikely(anon_vma_prepare(vma))) {
  3111. ret = VM_FAULT_OOM;
  3112. goto backout_unlocked;
  3113. }
  3114. anon_rmap = 1;
  3115. }
  3116. } else {
  3117. /*
  3118. * If memory error occurs between mmap() and fault, some process
  3119. * don't have hwpoisoned swap entry for errored virtual address.
  3120. * So we need to block hugepage fault by PG_hwpoison bit check.
  3121. */
  3122. if (unlikely(PageHWPoison(page))) {
  3123. ret = VM_FAULT_HWPOISON |
  3124. VM_FAULT_SET_HINDEX(hstate_index(h));
  3125. goto backout_unlocked;
  3126. }
  3127. }
  3128. /*
  3129. * If we are going to COW a private mapping later, we examine the
  3130. * pending reservations for this page now. This will ensure that
  3131. * any allocations necessary to record that reservation occur outside
  3132. * the spinlock.
  3133. */
  3134. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  3135. if (vma_needs_reservation(h, vma, address) < 0) {
  3136. ret = VM_FAULT_OOM;
  3137. goto backout_unlocked;
  3138. }
  3139. /* Just decrements count, does not deallocate */
  3140. vma_end_reservation(h, vma, address);
  3141. }
  3142. ptl = huge_pte_lockptr(h, mm, ptep);
  3143. spin_lock(ptl);
  3144. size = i_size_read(mapping->host) >> huge_page_shift(h);
  3145. if (idx >= size)
  3146. goto backout;
  3147. ret = 0;
  3148. if (!huge_pte_none(huge_ptep_get(ptep)))
  3149. goto backout;
  3150. if (anon_rmap) {
  3151. ClearPagePrivate(page);
  3152. hugepage_add_new_anon_rmap(page, vma, address);
  3153. } else
  3154. page_dup_rmap(page, true);
  3155. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  3156. && (vma->vm_flags & VM_SHARED)));
  3157. set_huge_pte_at(mm, address, ptep, new_pte);
  3158. hugetlb_count_add(pages_per_huge_page(h), mm);
  3159. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  3160. /* Optimization, do the COW without a second fault */
  3161. ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
  3162. }
  3163. spin_unlock(ptl);
  3164. unlock_page(page);
  3165. out:
  3166. return ret;
  3167. backout:
  3168. spin_unlock(ptl);
  3169. backout_unlocked:
  3170. unlock_page(page);
  3171. put_page(page);
  3172. goto out;
  3173. }
  3174. #ifdef CONFIG_SMP
  3175. u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
  3176. struct vm_area_struct *vma,
  3177. struct address_space *mapping,
  3178. pgoff_t idx, unsigned long address)
  3179. {
  3180. unsigned long key[2];
  3181. u32 hash;
  3182. if (vma->vm_flags & VM_SHARED) {
  3183. key[0] = (unsigned long) mapping;
  3184. key[1] = idx;
  3185. } else {
  3186. key[0] = (unsigned long) mm;
  3187. key[1] = address >> huge_page_shift(h);
  3188. }
  3189. hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
  3190. return hash & (num_fault_mutexes - 1);
  3191. }
  3192. #else
  3193. /*
  3194. * For uniprocesor systems we always use a single mutex, so just
  3195. * return 0 and avoid the hashing overhead.
  3196. */
  3197. u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
  3198. struct vm_area_struct *vma,
  3199. struct address_space *mapping,
  3200. pgoff_t idx, unsigned long address)
  3201. {
  3202. return 0;
  3203. }
  3204. #endif
  3205. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3206. unsigned long address, unsigned int flags)
  3207. {
  3208. pte_t *ptep, entry;
  3209. spinlock_t *ptl;
  3210. int ret;
  3211. u32 hash;
  3212. pgoff_t idx;
  3213. struct page *page = NULL;
  3214. struct page *pagecache_page = NULL;
  3215. struct hstate *h = hstate_vma(vma);
  3216. struct address_space *mapping;
  3217. int need_wait_lock = 0;
  3218. address &= huge_page_mask(h);
  3219. ptep = huge_pte_offset(mm, address);
  3220. if (ptep) {
  3221. entry = huge_ptep_get(ptep);
  3222. if (unlikely(is_hugetlb_entry_migration(entry))) {
  3223. migration_entry_wait_huge(vma, mm, ptep);
  3224. return 0;
  3225. } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
  3226. return VM_FAULT_HWPOISON_LARGE |
  3227. VM_FAULT_SET_HINDEX(hstate_index(h));
  3228. } else {
  3229. ptep = huge_pte_alloc(mm, address, huge_page_size(h));
  3230. if (!ptep)
  3231. return VM_FAULT_OOM;
  3232. }
  3233. mapping = vma->vm_file->f_mapping;
  3234. idx = vma_hugecache_offset(h, vma, address);
  3235. /*
  3236. * Serialize hugepage allocation and instantiation, so that we don't
  3237. * get spurious allocation failures if two CPUs race to instantiate
  3238. * the same page in the page cache.
  3239. */
  3240. hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
  3241. mutex_lock(&hugetlb_fault_mutex_table[hash]);
  3242. entry = huge_ptep_get(ptep);
  3243. if (huge_pte_none(entry)) {
  3244. ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
  3245. goto out_mutex;
  3246. }
  3247. ret = 0;
  3248. /*
  3249. * entry could be a migration/hwpoison entry at this point, so this
  3250. * check prevents the kernel from going below assuming that we have
  3251. * a active hugepage in pagecache. This goto expects the 2nd page fault,
  3252. * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
  3253. * handle it.
  3254. */
  3255. if (!pte_present(entry))
  3256. goto out_mutex;
  3257. /*
  3258. * If we are going to COW the mapping later, we examine the pending
  3259. * reservations for this page now. This will ensure that any
  3260. * allocations necessary to record that reservation occur outside the
  3261. * spinlock. For private mappings, we also lookup the pagecache
  3262. * page now as it is used to determine if a reservation has been
  3263. * consumed.
  3264. */
  3265. if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
  3266. if (vma_needs_reservation(h, vma, address) < 0) {
  3267. ret = VM_FAULT_OOM;
  3268. goto out_mutex;
  3269. }
  3270. /* Just decrements count, does not deallocate */
  3271. vma_end_reservation(h, vma, address);
  3272. if (!(vma->vm_flags & VM_MAYSHARE))
  3273. pagecache_page = hugetlbfs_pagecache_page(h,
  3274. vma, address);
  3275. }
  3276. ptl = huge_pte_lock(h, mm, ptep);
  3277. /* Check for a racing update before calling hugetlb_cow */
  3278. if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
  3279. goto out_ptl;
  3280. /*
  3281. * hugetlb_cow() requires page locks of pte_page(entry) and
  3282. * pagecache_page, so here we need take the former one
  3283. * when page != pagecache_page or !pagecache_page.
  3284. */
  3285. page = pte_page(entry);
  3286. if (page != pagecache_page)
  3287. if (!trylock_page(page)) {
  3288. need_wait_lock = 1;
  3289. goto out_ptl;
  3290. }
  3291. get_page(page);
  3292. if (flags & FAULT_FLAG_WRITE) {
  3293. if (!huge_pte_write(entry)) {
  3294. ret = hugetlb_cow(mm, vma, address, ptep, entry,
  3295. pagecache_page, ptl);
  3296. goto out_put_page;
  3297. }
  3298. entry = huge_pte_mkdirty(entry);
  3299. }
  3300. entry = pte_mkyoung(entry);
  3301. if (huge_ptep_set_access_flags(vma, address, ptep, entry,
  3302. flags & FAULT_FLAG_WRITE))
  3303. update_mmu_cache(vma, address, ptep);
  3304. out_put_page:
  3305. if (page != pagecache_page)
  3306. unlock_page(page);
  3307. put_page(page);
  3308. out_ptl:
  3309. spin_unlock(ptl);
  3310. if (pagecache_page) {
  3311. unlock_page(pagecache_page);
  3312. put_page(pagecache_page);
  3313. }
  3314. out_mutex:
  3315. mutex_unlock(&hugetlb_fault_mutex_table[hash]);
  3316. /*
  3317. * Generally it's safe to hold refcount during waiting page lock. But
  3318. * here we just wait to defer the next page fault to avoid busy loop and
  3319. * the page is not used after unlocked before returning from the current
  3320. * page fault. So we are safe from accessing freed page, even if we wait
  3321. * here without taking refcount.
  3322. */
  3323. if (need_wait_lock)
  3324. wait_on_page_locked(page);
  3325. return ret;
  3326. }
  3327. long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3328. struct page **pages, struct vm_area_struct **vmas,
  3329. unsigned long *position, unsigned long *nr_pages,
  3330. long i, unsigned int flags)
  3331. {
  3332. unsigned long pfn_offset;
  3333. unsigned long vaddr = *position;
  3334. unsigned long remainder = *nr_pages;
  3335. struct hstate *h = hstate_vma(vma);
  3336. while (vaddr < vma->vm_end && remainder) {
  3337. pte_t *pte;
  3338. spinlock_t *ptl = NULL;
  3339. int absent;
  3340. struct page *page;
  3341. /*
  3342. * If we have a pending SIGKILL, don't keep faulting pages and
  3343. * potentially allocating memory.
  3344. */
  3345. if (unlikely(fatal_signal_pending(current))) {
  3346. remainder = 0;
  3347. break;
  3348. }
  3349. /*
  3350. * Some archs (sparc64, sh*) have multiple pte_ts to
  3351. * each hugepage. We have to make sure we get the
  3352. * first, for the page indexing below to work.
  3353. *
  3354. * Note that page table lock is not held when pte is null.
  3355. */
  3356. pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
  3357. if (pte)
  3358. ptl = huge_pte_lock(h, mm, pte);
  3359. absent = !pte || huge_pte_none(huge_ptep_get(pte));
  3360. /*
  3361. * When coredumping, it suits get_dump_page if we just return
  3362. * an error where there's an empty slot with no huge pagecache
  3363. * to back it. This way, we avoid allocating a hugepage, and
  3364. * the sparse dumpfile avoids allocating disk blocks, but its
  3365. * huge holes still show up with zeroes where they need to be.
  3366. */
  3367. if (absent && (flags & FOLL_DUMP) &&
  3368. !hugetlbfs_pagecache_present(h, vma, vaddr)) {
  3369. if (pte)
  3370. spin_unlock(ptl);
  3371. remainder = 0;
  3372. break;
  3373. }
  3374. /*
  3375. * We need call hugetlb_fault for both hugepages under migration
  3376. * (in which case hugetlb_fault waits for the migration,) and
  3377. * hwpoisoned hugepages (in which case we need to prevent the
  3378. * caller from accessing to them.) In order to do this, we use
  3379. * here is_swap_pte instead of is_hugetlb_entry_migration and
  3380. * is_hugetlb_entry_hwpoisoned. This is because it simply covers
  3381. * both cases, and because we can't follow correct pages
  3382. * directly from any kind of swap entries.
  3383. */
  3384. if (absent || is_swap_pte(huge_ptep_get(pte)) ||
  3385. ((flags & FOLL_WRITE) &&
  3386. !huge_pte_write(huge_ptep_get(pte)))) {
  3387. int ret;
  3388. if (pte)
  3389. spin_unlock(ptl);
  3390. ret = hugetlb_fault(mm, vma, vaddr,
  3391. (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
  3392. if (!(ret & VM_FAULT_ERROR))
  3393. continue;
  3394. remainder = 0;
  3395. break;
  3396. }
  3397. pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
  3398. page = pte_page(huge_ptep_get(pte));
  3399. same_page:
  3400. if (pages) {
  3401. pages[i] = mem_map_offset(page, pfn_offset);
  3402. get_page(pages[i]);
  3403. }
  3404. if (vmas)
  3405. vmas[i] = vma;
  3406. vaddr += PAGE_SIZE;
  3407. ++pfn_offset;
  3408. --remainder;
  3409. ++i;
  3410. if (vaddr < vma->vm_end && remainder &&
  3411. pfn_offset < pages_per_huge_page(h)) {
  3412. /*
  3413. * We use pfn_offset to avoid touching the pageframes
  3414. * of this compound page.
  3415. */
  3416. goto same_page;
  3417. }
  3418. spin_unlock(ptl);
  3419. }
  3420. *nr_pages = remainder;
  3421. *position = vaddr;
  3422. return i ? i : -EFAULT;
  3423. }
  3424. #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
  3425. /*
  3426. * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
  3427. * implement this.
  3428. */
  3429. #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
  3430. #endif
  3431. unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
  3432. unsigned long address, unsigned long end, pgprot_t newprot)
  3433. {
  3434. struct mm_struct *mm = vma->vm_mm;
  3435. unsigned long start = address;
  3436. pte_t *ptep;
  3437. pte_t pte;
  3438. struct hstate *h = hstate_vma(vma);
  3439. unsigned long pages = 0;
  3440. BUG_ON(address >= end);
  3441. flush_cache_range(vma, address, end);
  3442. mmu_notifier_invalidate_range_start(mm, start, end);
  3443. i_mmap_lock_write(vma->vm_file->f_mapping);
  3444. for (; address < end; address += huge_page_size(h)) {
  3445. spinlock_t *ptl;
  3446. ptep = huge_pte_offset(mm, address);
  3447. if (!ptep)
  3448. continue;
  3449. ptl = huge_pte_lock(h, mm, ptep);
  3450. if (huge_pmd_unshare(mm, &address, ptep)) {
  3451. pages++;
  3452. spin_unlock(ptl);
  3453. continue;
  3454. }
  3455. pte = huge_ptep_get(ptep);
  3456. if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
  3457. spin_unlock(ptl);
  3458. continue;
  3459. }
  3460. if (unlikely(is_hugetlb_entry_migration(pte))) {
  3461. swp_entry_t entry = pte_to_swp_entry(pte);
  3462. if (is_write_migration_entry(entry)) {
  3463. pte_t newpte;
  3464. make_migration_entry_read(&entry);
  3465. newpte = swp_entry_to_pte(entry);
  3466. set_huge_pte_at(mm, address, ptep, newpte);
  3467. pages++;
  3468. }
  3469. spin_unlock(ptl);
  3470. continue;
  3471. }
  3472. if (!huge_pte_none(pte)) {
  3473. pte = huge_ptep_get_and_clear(mm, address, ptep);
  3474. pte = pte_mkhuge(huge_pte_modify(pte, newprot));
  3475. pte = arch_make_huge_pte(pte, vma, NULL, 0);
  3476. set_huge_pte_at(mm, address, ptep, pte);
  3477. pages++;
  3478. }
  3479. spin_unlock(ptl);
  3480. }
  3481. /*
  3482. * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
  3483. * may have cleared our pud entry and done put_page on the page table:
  3484. * once we release i_mmap_rwsem, another task can do the final put_page
  3485. * and that page table be reused and filled with junk.
  3486. */
  3487. flush_hugetlb_tlb_range(vma, start, end);
  3488. mmu_notifier_invalidate_range(mm, start, end);
  3489. i_mmap_unlock_write(vma->vm_file->f_mapping);
  3490. mmu_notifier_invalidate_range_end(mm, start, end);
  3491. return pages << h->order;
  3492. }
  3493. int hugetlb_reserve_pages(struct inode *inode,
  3494. long from, long to,
  3495. struct vm_area_struct *vma,
  3496. vm_flags_t vm_flags)
  3497. {
  3498. long ret, chg;
  3499. struct hstate *h = hstate_inode(inode);
  3500. struct hugepage_subpool *spool = subpool_inode(inode);
  3501. struct resv_map *resv_map;
  3502. long gbl_reserve;
  3503. /*
  3504. * Only apply hugepage reservation if asked. At fault time, an
  3505. * attempt will be made for VM_NORESERVE to allocate a page
  3506. * without using reserves
  3507. */
  3508. if (vm_flags & VM_NORESERVE)
  3509. return 0;
  3510. /*
  3511. * Shared mappings base their reservation on the number of pages that
  3512. * are already allocated on behalf of the file. Private mappings need
  3513. * to reserve the full area even if read-only as mprotect() may be
  3514. * called to make the mapping read-write. Assume !vma is a shm mapping
  3515. */
  3516. if (!vma || vma->vm_flags & VM_MAYSHARE) {
  3517. resv_map = inode_resv_map(inode);
  3518. chg = region_chg(resv_map, from, to);
  3519. } else {
  3520. resv_map = resv_map_alloc();
  3521. if (!resv_map)
  3522. return -ENOMEM;
  3523. chg = to - from;
  3524. set_vma_resv_map(vma, resv_map);
  3525. set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
  3526. }
  3527. if (chg < 0) {
  3528. ret = chg;
  3529. goto out_err;
  3530. }
  3531. /*
  3532. * There must be enough pages in the subpool for the mapping. If
  3533. * the subpool has a minimum size, there may be some global
  3534. * reservations already in place (gbl_reserve).
  3535. */
  3536. gbl_reserve = hugepage_subpool_get_pages(spool, chg);
  3537. if (gbl_reserve < 0) {
  3538. ret = -ENOSPC;
  3539. goto out_err;
  3540. }
  3541. /*
  3542. * Check enough hugepages are available for the reservation.
  3543. * Hand the pages back to the subpool if there are not
  3544. */
  3545. ret = hugetlb_acct_memory(h, gbl_reserve);
  3546. if (ret < 0) {
  3547. /* put back original number of pages, chg */
  3548. (void)hugepage_subpool_put_pages(spool, chg);
  3549. goto out_err;
  3550. }
  3551. /*
  3552. * Account for the reservations made. Shared mappings record regions
  3553. * that have reservations as they are shared by multiple VMAs.
  3554. * When the last VMA disappears, the region map says how much
  3555. * the reservation was and the page cache tells how much of
  3556. * the reservation was consumed. Private mappings are per-VMA and
  3557. * only the consumed reservations are tracked. When the VMA
  3558. * disappears, the original reservation is the VMA size and the
  3559. * consumed reservations are stored in the map. Hence, nothing
  3560. * else has to be done for private mappings here
  3561. */
  3562. if (!vma || vma->vm_flags & VM_MAYSHARE) {
  3563. long add = region_add(resv_map, from, to);
  3564. if (unlikely(chg > add)) {
  3565. /*
  3566. * pages in this range were added to the reserve
  3567. * map between region_chg and region_add. This
  3568. * indicates a race with alloc_huge_page. Adjust
  3569. * the subpool and reserve counts modified above
  3570. * based on the difference.
  3571. */
  3572. long rsv_adjust;
  3573. rsv_adjust = hugepage_subpool_put_pages(spool,
  3574. chg - add);
  3575. hugetlb_acct_memory(h, -rsv_adjust);
  3576. }
  3577. }
  3578. return 0;
  3579. out_err:
  3580. if (!vma || vma->vm_flags & VM_MAYSHARE)
  3581. region_abort(resv_map, from, to);
  3582. if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  3583. kref_put(&resv_map->refs, resv_map_release);
  3584. return ret;
  3585. }
  3586. long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
  3587. long freed)
  3588. {
  3589. struct hstate *h = hstate_inode(inode);
  3590. struct resv_map *resv_map = inode_resv_map(inode);
  3591. long chg = 0;
  3592. struct hugepage_subpool *spool = subpool_inode(inode);
  3593. long gbl_reserve;
  3594. if (resv_map) {
  3595. chg = region_del(resv_map, start, end);
  3596. /*
  3597. * region_del() can fail in the rare case where a region
  3598. * must be split and another region descriptor can not be
  3599. * allocated. If end == LONG_MAX, it will not fail.
  3600. */
  3601. if (chg < 0)
  3602. return chg;
  3603. }
  3604. spin_lock(&inode->i_lock);
  3605. inode->i_blocks -= (blocks_per_huge_page(h) * freed);
  3606. spin_unlock(&inode->i_lock);
  3607. /*
  3608. * If the subpool has a minimum size, the number of global
  3609. * reservations to be released may be adjusted.
  3610. */
  3611. gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
  3612. hugetlb_acct_memory(h, -gbl_reserve);
  3613. return 0;
  3614. }
  3615. #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
  3616. static unsigned long page_table_shareable(struct vm_area_struct *svma,
  3617. struct vm_area_struct *vma,
  3618. unsigned long addr, pgoff_t idx)
  3619. {
  3620. unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
  3621. svma->vm_start;
  3622. unsigned long sbase = saddr & PUD_MASK;
  3623. unsigned long s_end = sbase + PUD_SIZE;
  3624. /* Allow segments to share if only one is marked locked */
  3625. unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
  3626. unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
  3627. /*
  3628. * match the virtual addresses, permission and the alignment of the
  3629. * page table page.
  3630. */
  3631. if (pmd_index(addr) != pmd_index(saddr) ||
  3632. vm_flags != svm_flags ||
  3633. sbase < svma->vm_start || svma->vm_end < s_end)
  3634. return 0;
  3635. return saddr;
  3636. }
  3637. static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
  3638. {
  3639. unsigned long base = addr & PUD_MASK;
  3640. unsigned long end = base + PUD_SIZE;
  3641. /*
  3642. * check on proper vm_flags and page table alignment
  3643. */
  3644. if (vma->vm_flags & VM_MAYSHARE &&
  3645. vma->vm_start <= base && end <= vma->vm_end)
  3646. return true;
  3647. return false;
  3648. }
  3649. /*
  3650. * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
  3651. * and returns the corresponding pte. While this is not necessary for the
  3652. * !shared pmd case because we can allocate the pmd later as well, it makes the
  3653. * code much cleaner. pmd allocation is essential for the shared case because
  3654. * pud has to be populated inside the same i_mmap_rwsem section - otherwise
  3655. * racing tasks could either miss the sharing (see huge_pte_offset) or select a
  3656. * bad pmd for sharing.
  3657. */
  3658. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  3659. {
  3660. struct vm_area_struct *vma = find_vma(mm, addr);
  3661. struct address_space *mapping = vma->vm_file->f_mapping;
  3662. pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  3663. vma->vm_pgoff;
  3664. struct vm_area_struct *svma;
  3665. unsigned long saddr;
  3666. pte_t *spte = NULL;
  3667. pte_t *pte;
  3668. spinlock_t *ptl;
  3669. if (!vma_shareable(vma, addr))
  3670. return (pte_t *)pmd_alloc(mm, pud, addr);
  3671. i_mmap_lock_write(mapping);
  3672. vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
  3673. if (svma == vma)
  3674. continue;
  3675. saddr = page_table_shareable(svma, vma, addr, idx);
  3676. if (saddr) {
  3677. spte = huge_pte_offset(svma->vm_mm, saddr);
  3678. if (spte) {
  3679. get_page(virt_to_page(spte));
  3680. break;
  3681. }
  3682. }
  3683. }
  3684. if (!spte)
  3685. goto out;
  3686. ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
  3687. spin_lock(ptl);
  3688. if (pud_none(*pud)) {
  3689. pud_populate(mm, pud,
  3690. (pmd_t *)((unsigned long)spte & PAGE_MASK));
  3691. mm_inc_nr_pmds(mm);
  3692. } else {
  3693. put_page(virt_to_page(spte));
  3694. }
  3695. spin_unlock(ptl);
  3696. out:
  3697. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  3698. i_mmap_unlock_write(mapping);
  3699. return pte;
  3700. }
  3701. /*
  3702. * unmap huge page backed by shared pte.
  3703. *
  3704. * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
  3705. * indicated by page_count > 1, unmap is achieved by clearing pud and
  3706. * decrementing the ref count. If count == 1, the pte page is not shared.
  3707. *
  3708. * called with page table lock held.
  3709. *
  3710. * returns: 1 successfully unmapped a shared pte page
  3711. * 0 the underlying pte page is not shared, or it is the last user
  3712. */
  3713. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  3714. {
  3715. pgd_t *pgd = pgd_offset(mm, *addr);
  3716. pud_t *pud = pud_offset(pgd, *addr);
  3717. BUG_ON(page_count(virt_to_page(ptep)) == 0);
  3718. if (page_count(virt_to_page(ptep)) == 1)
  3719. return 0;
  3720. pud_clear(pud);
  3721. put_page(virt_to_page(ptep));
  3722. mm_dec_nr_pmds(mm);
  3723. *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
  3724. return 1;
  3725. }
  3726. #define want_pmd_share() (1)
  3727. #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  3728. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  3729. {
  3730. return NULL;
  3731. }
  3732. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  3733. {
  3734. return 0;
  3735. }
  3736. #define want_pmd_share() (0)
  3737. #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  3738. #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
  3739. pte_t *huge_pte_alloc(struct mm_struct *mm,
  3740. unsigned long addr, unsigned long sz)
  3741. {
  3742. pgd_t *pgd;
  3743. pud_t *pud;
  3744. pte_t *pte = NULL;
  3745. pgd = pgd_offset(mm, addr);
  3746. pud = pud_alloc(mm, pgd, addr);
  3747. if (pud) {
  3748. if (sz == PUD_SIZE) {
  3749. pte = (pte_t *)pud;
  3750. } else {
  3751. BUG_ON(sz != PMD_SIZE);
  3752. if (want_pmd_share() && pud_none(*pud))
  3753. pte = huge_pmd_share(mm, addr, pud);
  3754. else
  3755. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  3756. }
  3757. }
  3758. BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
  3759. return pte;
  3760. }
  3761. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  3762. {
  3763. pgd_t *pgd;
  3764. pud_t *pud;
  3765. pmd_t *pmd = NULL;
  3766. pgd = pgd_offset(mm, addr);
  3767. if (pgd_present(*pgd)) {
  3768. pud = pud_offset(pgd, addr);
  3769. if (pud_present(*pud)) {
  3770. if (pud_huge(*pud))
  3771. return (pte_t *)pud;
  3772. pmd = pmd_offset(pud, addr);
  3773. }
  3774. }
  3775. return (pte_t *) pmd;
  3776. }
  3777. #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
  3778. /*
  3779. * These functions are overwritable if your architecture needs its own
  3780. * behavior.
  3781. */
  3782. struct page * __weak
  3783. follow_huge_addr(struct mm_struct *mm, unsigned long address,
  3784. int write)
  3785. {
  3786. return ERR_PTR(-EINVAL);
  3787. }
  3788. struct page * __weak
  3789. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  3790. pmd_t *pmd, int flags)
  3791. {
  3792. struct page *page = NULL;
  3793. spinlock_t *ptl;
  3794. retry:
  3795. ptl = pmd_lockptr(mm, pmd);
  3796. spin_lock(ptl);
  3797. /*
  3798. * make sure that the address range covered by this pmd is not
  3799. * unmapped from other threads.
  3800. */
  3801. if (!pmd_huge(*pmd))
  3802. goto out;
  3803. if (pmd_present(*pmd)) {
  3804. page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
  3805. if (flags & FOLL_GET)
  3806. get_page(page);
  3807. } else {
  3808. if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
  3809. spin_unlock(ptl);
  3810. __migration_entry_wait(mm, (pte_t *)pmd, ptl);
  3811. goto retry;
  3812. }
  3813. /*
  3814. * hwpoisoned entry is treated as no_page_table in
  3815. * follow_page_mask().
  3816. */
  3817. }
  3818. out:
  3819. spin_unlock(ptl);
  3820. return page;
  3821. }
  3822. struct page * __weak
  3823. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  3824. pud_t *pud, int flags)
  3825. {
  3826. if (flags & FOLL_GET)
  3827. return NULL;
  3828. return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
  3829. }
  3830. #ifdef CONFIG_MEMORY_FAILURE
  3831. /*
  3832. * This function is called from memory failure code.
  3833. */
  3834. int dequeue_hwpoisoned_huge_page(struct page *hpage)
  3835. {
  3836. struct hstate *h = page_hstate(hpage);
  3837. int nid = page_to_nid(hpage);
  3838. int ret = -EBUSY;
  3839. spin_lock(&hugetlb_lock);
  3840. /*
  3841. * Just checking !page_huge_active is not enough, because that could be
  3842. * an isolated/hwpoisoned hugepage (which have >0 refcount).
  3843. */
  3844. if (!page_huge_active(hpage) && !page_count(hpage)) {
  3845. /*
  3846. * Hwpoisoned hugepage isn't linked to activelist or freelist,
  3847. * but dangling hpage->lru can trigger list-debug warnings
  3848. * (this happens when we call unpoison_memory() on it),
  3849. * so let it point to itself with list_del_init().
  3850. */
  3851. list_del_init(&hpage->lru);
  3852. set_page_refcounted(hpage);
  3853. h->free_huge_pages--;
  3854. h->free_huge_pages_node[nid]--;
  3855. ret = 0;
  3856. }
  3857. spin_unlock(&hugetlb_lock);
  3858. return ret;
  3859. }
  3860. #endif
  3861. bool isolate_huge_page(struct page *page, struct list_head *list)
  3862. {
  3863. bool ret = true;
  3864. VM_BUG_ON_PAGE(!PageHead(page), page);
  3865. spin_lock(&hugetlb_lock);
  3866. if (!page_huge_active(page) || !get_page_unless_zero(page)) {
  3867. ret = false;
  3868. goto unlock;
  3869. }
  3870. clear_page_huge_active(page);
  3871. list_move_tail(&page->lru, list);
  3872. unlock:
  3873. spin_unlock(&hugetlb_lock);
  3874. return ret;
  3875. }
  3876. void putback_active_hugepage(struct page *page)
  3877. {
  3878. VM_BUG_ON_PAGE(!PageHead(page), page);
  3879. spin_lock(&hugetlb_lock);
  3880. set_page_huge_active(page);
  3881. list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
  3882. spin_unlock(&hugetlb_lock);
  3883. put_page(page);
  3884. }