task_mmu.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767
  1. #include <linux/mm.h>
  2. #include <linux/vmacache.h>
  3. #include <linux/hugetlb.h>
  4. #include <linux/huge_mm.h>
  5. #include <linux/mount.h>
  6. #include <linux/seq_file.h>
  7. #include <linux/highmem.h>
  8. #include <linux/ptrace.h>
  9. #include <linux/slab.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/mempolicy.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/swapops.h>
  15. #include <linux/mmu_notifier.h>
  16. #include <linux/page_idle.h>
  17. #include <linux/shmem_fs.h>
  18. #include <asm/elf.h>
  19. #include <asm/uaccess.h>
  20. #include <asm/tlbflush.h>
  21. #include "internal.h"
  22. void task_mem(struct seq_file *m, struct mm_struct *mm)
  23. {
  24. unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
  25. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  26. anon = get_mm_counter(mm, MM_ANONPAGES);
  27. file = get_mm_counter(mm, MM_FILEPAGES);
  28. shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  29. /*
  30. * Note: to minimize their overhead, mm maintains hiwater_vm and
  31. * hiwater_rss only when about to *lower* total_vm or rss. Any
  32. * collector of these hiwater stats must therefore get total_vm
  33. * and rss too, which will usually be the higher. Barriers? not
  34. * worth the effort, such snapshots can always be inconsistent.
  35. */
  36. hiwater_vm = total_vm = mm->total_vm;
  37. if (hiwater_vm < mm->hiwater_vm)
  38. hiwater_vm = mm->hiwater_vm;
  39. hiwater_rss = total_rss = anon + file + shmem;
  40. if (hiwater_rss < mm->hiwater_rss)
  41. hiwater_rss = mm->hiwater_rss;
  42. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  43. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  44. swap = get_mm_counter(mm, MM_SWAPENTS);
  45. ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
  46. pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
  47. seq_printf(m,
  48. "VmPeak:\t%8lu kB\n"
  49. "VmSize:\t%8lu kB\n"
  50. "VmLck:\t%8lu kB\n"
  51. "VmPin:\t%8lu kB\n"
  52. "VmHWM:\t%8lu kB\n"
  53. "VmRSS:\t%8lu kB\n"
  54. "RssAnon:\t%8lu kB\n"
  55. "RssFile:\t%8lu kB\n"
  56. "RssShmem:\t%8lu kB\n"
  57. "VmData:\t%8lu kB\n"
  58. "VmStk:\t%8lu kB\n"
  59. "VmExe:\t%8lu kB\n"
  60. "VmLib:\t%8lu kB\n"
  61. "VmPTE:\t%8lu kB\n"
  62. "VmPMD:\t%8lu kB\n"
  63. "VmSwap:\t%8lu kB\n",
  64. hiwater_vm << (PAGE_SHIFT-10),
  65. total_vm << (PAGE_SHIFT-10),
  66. mm->locked_vm << (PAGE_SHIFT-10),
  67. mm->pinned_vm << (PAGE_SHIFT-10),
  68. hiwater_rss << (PAGE_SHIFT-10),
  69. total_rss << (PAGE_SHIFT-10),
  70. anon << (PAGE_SHIFT-10),
  71. file << (PAGE_SHIFT-10),
  72. shmem << (PAGE_SHIFT-10),
  73. mm->data_vm << (PAGE_SHIFT-10),
  74. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  75. ptes >> 10,
  76. pmds >> 10,
  77. swap << (PAGE_SHIFT-10));
  78. hugetlb_report_usage(m, mm);
  79. }
  80. unsigned long task_vsize(struct mm_struct *mm)
  81. {
  82. return PAGE_SIZE * mm->total_vm;
  83. }
  84. unsigned long task_statm(struct mm_struct *mm,
  85. unsigned long *shared, unsigned long *text,
  86. unsigned long *data, unsigned long *resident)
  87. {
  88. *shared = get_mm_counter(mm, MM_FILEPAGES) +
  89. get_mm_counter(mm, MM_SHMEMPAGES);
  90. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  91. >> PAGE_SHIFT;
  92. *data = mm->data_vm + mm->stack_vm;
  93. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  94. return mm->total_vm;
  95. }
  96. #ifdef CONFIG_NUMA
  97. /*
  98. * Save get_task_policy() for show_numa_map().
  99. */
  100. static void hold_task_mempolicy(struct proc_maps_private *priv)
  101. {
  102. struct task_struct *task = priv->task;
  103. task_lock(task);
  104. priv->task_mempolicy = get_task_policy(task);
  105. mpol_get(priv->task_mempolicy);
  106. task_unlock(task);
  107. }
  108. static void release_task_mempolicy(struct proc_maps_private *priv)
  109. {
  110. mpol_put(priv->task_mempolicy);
  111. }
  112. #else
  113. static void hold_task_mempolicy(struct proc_maps_private *priv)
  114. {
  115. }
  116. static void release_task_mempolicy(struct proc_maps_private *priv)
  117. {
  118. }
  119. #endif
  120. static void vma_stop(struct proc_maps_private *priv)
  121. {
  122. struct mm_struct *mm = priv->mm;
  123. release_task_mempolicy(priv);
  124. up_read(&mm->mmap_sem);
  125. mmput(mm);
  126. }
  127. static struct vm_area_struct *
  128. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  129. {
  130. if (vma == priv->tail_vma)
  131. return NULL;
  132. return vma->vm_next ?: priv->tail_vma;
  133. }
  134. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  135. {
  136. if (m->count < m->size) /* vma is copied successfully */
  137. m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
  138. }
  139. static void *m_start(struct seq_file *m, loff_t *ppos)
  140. {
  141. struct proc_maps_private *priv = m->private;
  142. unsigned long last_addr = m->version;
  143. struct mm_struct *mm;
  144. struct vm_area_struct *vma;
  145. unsigned int pos = *ppos;
  146. /* See m_cache_vma(). Zero at the start or after lseek. */
  147. if (last_addr == -1UL)
  148. return NULL;
  149. priv->task = get_proc_task(priv->inode);
  150. if (!priv->task)
  151. return ERR_PTR(-ESRCH);
  152. mm = priv->mm;
  153. if (!mm || !atomic_inc_not_zero(&mm->mm_users))
  154. return NULL;
  155. down_read(&mm->mmap_sem);
  156. hold_task_mempolicy(priv);
  157. priv->tail_vma = get_gate_vma(mm);
  158. if (last_addr) {
  159. vma = find_vma(mm, last_addr);
  160. if (vma && (vma = m_next_vma(priv, vma)))
  161. return vma;
  162. }
  163. m->version = 0;
  164. if (pos < mm->map_count) {
  165. for (vma = mm->mmap; pos; pos--) {
  166. m->version = vma->vm_start;
  167. vma = vma->vm_next;
  168. }
  169. return vma;
  170. }
  171. /* we do not bother to update m->version in this case */
  172. if (pos == mm->map_count && priv->tail_vma)
  173. return priv->tail_vma;
  174. vma_stop(priv);
  175. return NULL;
  176. }
  177. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  178. {
  179. struct proc_maps_private *priv = m->private;
  180. struct vm_area_struct *next;
  181. (*pos)++;
  182. next = m_next_vma(priv, v);
  183. if (!next)
  184. vma_stop(priv);
  185. return next;
  186. }
  187. static void m_stop(struct seq_file *m, void *v)
  188. {
  189. struct proc_maps_private *priv = m->private;
  190. if (!IS_ERR_OR_NULL(v))
  191. vma_stop(priv);
  192. if (priv->task) {
  193. put_task_struct(priv->task);
  194. priv->task = NULL;
  195. }
  196. }
  197. static int proc_maps_open(struct inode *inode, struct file *file,
  198. const struct seq_operations *ops, int psize)
  199. {
  200. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  201. if (!priv)
  202. return -ENOMEM;
  203. priv->inode = inode;
  204. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  205. if (IS_ERR(priv->mm)) {
  206. int err = PTR_ERR(priv->mm);
  207. seq_release_private(inode, file);
  208. return err;
  209. }
  210. return 0;
  211. }
  212. static int proc_map_release(struct inode *inode, struct file *file)
  213. {
  214. struct seq_file *seq = file->private_data;
  215. struct proc_maps_private *priv = seq->private;
  216. if (priv->mm)
  217. mmdrop(priv->mm);
  218. return seq_release_private(inode, file);
  219. }
  220. static int do_maps_open(struct inode *inode, struct file *file,
  221. const struct seq_operations *ops)
  222. {
  223. return proc_maps_open(inode, file, ops,
  224. sizeof(struct proc_maps_private));
  225. }
  226. /*
  227. * Indicate if the VMA is a stack for the given task; for
  228. * /proc/PID/maps that is the stack of the main task.
  229. */
  230. static int is_stack(struct proc_maps_private *priv,
  231. struct vm_area_struct *vma, int is_pid)
  232. {
  233. int stack = 0;
  234. if (is_pid) {
  235. stack = vma->vm_start <= vma->vm_mm->start_stack &&
  236. vma->vm_end >= vma->vm_mm->start_stack;
  237. } else {
  238. struct inode *inode = priv->inode;
  239. struct task_struct *task;
  240. rcu_read_lock();
  241. task = pid_task(proc_pid(inode), PIDTYPE_PID);
  242. if (task)
  243. stack = vma_is_stack_for_task(vma, task);
  244. rcu_read_unlock();
  245. }
  246. return stack;
  247. }
  248. static void
  249. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  250. {
  251. struct mm_struct *mm = vma->vm_mm;
  252. struct file *file = vma->vm_file;
  253. struct proc_maps_private *priv = m->private;
  254. vm_flags_t flags = vma->vm_flags;
  255. unsigned long ino = 0;
  256. unsigned long long pgoff = 0;
  257. unsigned long start, end;
  258. dev_t dev = 0;
  259. const char *name = NULL;
  260. if (file) {
  261. struct inode *inode = file_inode(vma->vm_file);
  262. dev = inode->i_sb->s_dev;
  263. ino = inode->i_ino;
  264. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  265. }
  266. /* We don't show the stack guard page in /proc/maps */
  267. start = vma->vm_start;
  268. if (stack_guard_page_start(vma, start))
  269. start += PAGE_SIZE;
  270. end = vma->vm_end;
  271. if (stack_guard_page_end(vma, end))
  272. end -= PAGE_SIZE;
  273. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  274. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  275. start,
  276. end,
  277. flags & VM_READ ? 'r' : '-',
  278. flags & VM_WRITE ? 'w' : '-',
  279. flags & VM_EXEC ? 'x' : '-',
  280. flags & VM_MAYSHARE ? 's' : 'p',
  281. pgoff,
  282. MAJOR(dev), MINOR(dev), ino);
  283. /*
  284. * Print the dentry name for named mappings, and a
  285. * special [heap] marker for the heap:
  286. */
  287. if (file) {
  288. seq_pad(m, ' ');
  289. seq_file_path(m, file, "\n");
  290. goto done;
  291. }
  292. if (vma->vm_ops && vma->vm_ops->name) {
  293. name = vma->vm_ops->name(vma);
  294. if (name)
  295. goto done;
  296. }
  297. name = arch_vma_name(vma);
  298. if (!name) {
  299. if (!mm) {
  300. name = "[vdso]";
  301. goto done;
  302. }
  303. if (vma->vm_start <= mm->brk &&
  304. vma->vm_end >= mm->start_brk) {
  305. name = "[heap]";
  306. goto done;
  307. }
  308. if (is_stack(priv, vma, is_pid))
  309. name = "[stack]";
  310. }
  311. done:
  312. if (name) {
  313. seq_pad(m, ' ');
  314. seq_puts(m, name);
  315. }
  316. seq_putc(m, '\n');
  317. }
  318. static int show_map(struct seq_file *m, void *v, int is_pid)
  319. {
  320. show_map_vma(m, v, is_pid);
  321. m_cache_vma(m, v);
  322. return 0;
  323. }
  324. static int show_pid_map(struct seq_file *m, void *v)
  325. {
  326. return show_map(m, v, 1);
  327. }
  328. static int show_tid_map(struct seq_file *m, void *v)
  329. {
  330. return show_map(m, v, 0);
  331. }
  332. static const struct seq_operations proc_pid_maps_op = {
  333. .start = m_start,
  334. .next = m_next,
  335. .stop = m_stop,
  336. .show = show_pid_map
  337. };
  338. static const struct seq_operations proc_tid_maps_op = {
  339. .start = m_start,
  340. .next = m_next,
  341. .stop = m_stop,
  342. .show = show_tid_map
  343. };
  344. static int pid_maps_open(struct inode *inode, struct file *file)
  345. {
  346. return do_maps_open(inode, file, &proc_pid_maps_op);
  347. }
  348. static int tid_maps_open(struct inode *inode, struct file *file)
  349. {
  350. return do_maps_open(inode, file, &proc_tid_maps_op);
  351. }
  352. const struct file_operations proc_pid_maps_operations = {
  353. .open = pid_maps_open,
  354. .read = seq_read,
  355. .llseek = seq_lseek,
  356. .release = proc_map_release,
  357. };
  358. const struct file_operations proc_tid_maps_operations = {
  359. .open = tid_maps_open,
  360. .read = seq_read,
  361. .llseek = seq_lseek,
  362. .release = proc_map_release,
  363. };
  364. /*
  365. * Proportional Set Size(PSS): my share of RSS.
  366. *
  367. * PSS of a process is the count of pages it has in memory, where each
  368. * page is divided by the number of processes sharing it. So if a
  369. * process has 1000 pages all to itself, and 1000 shared with one other
  370. * process, its PSS will be 1500.
  371. *
  372. * To keep (accumulated) division errors low, we adopt a 64bit
  373. * fixed-point pss counter to minimize division errors. So (pss >>
  374. * PSS_SHIFT) would be the real byte count.
  375. *
  376. * A shift of 12 before division means (assuming 4K page size):
  377. * - 1M 3-user-pages add up to 8KB errors;
  378. * - supports mapcount up to 2^24, or 16M;
  379. * - supports PSS up to 2^52 bytes, or 4PB.
  380. */
  381. #define PSS_SHIFT 12
  382. #ifdef CONFIG_PROC_PAGE_MONITOR
  383. struct mem_size_stats {
  384. unsigned long resident;
  385. unsigned long shared_clean;
  386. unsigned long shared_dirty;
  387. unsigned long private_clean;
  388. unsigned long private_dirty;
  389. unsigned long referenced;
  390. unsigned long anonymous;
  391. unsigned long anonymous_thp;
  392. unsigned long shmem_thp;
  393. unsigned long swap;
  394. unsigned long shared_hugetlb;
  395. unsigned long private_hugetlb;
  396. u64 pss;
  397. u64 swap_pss;
  398. bool check_shmem_swap;
  399. };
  400. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  401. bool compound, bool young, bool dirty)
  402. {
  403. int i, nr = compound ? 1 << compound_order(page) : 1;
  404. unsigned long size = nr * PAGE_SIZE;
  405. if (PageAnon(page))
  406. mss->anonymous += size;
  407. mss->resident += size;
  408. /* Accumulate the size in pages that have been accessed. */
  409. if (young || page_is_young(page) || PageReferenced(page))
  410. mss->referenced += size;
  411. /*
  412. * page_count(page) == 1 guarantees the page is mapped exactly once.
  413. * If any subpage of the compound page mapped with PTE it would elevate
  414. * page_count().
  415. */
  416. if (page_count(page) == 1) {
  417. if (dirty || PageDirty(page))
  418. mss->private_dirty += size;
  419. else
  420. mss->private_clean += size;
  421. mss->pss += (u64)size << PSS_SHIFT;
  422. return;
  423. }
  424. for (i = 0; i < nr; i++, page++) {
  425. int mapcount = page_mapcount(page);
  426. if (mapcount >= 2) {
  427. if (dirty || PageDirty(page))
  428. mss->shared_dirty += PAGE_SIZE;
  429. else
  430. mss->shared_clean += PAGE_SIZE;
  431. mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
  432. } else {
  433. if (dirty || PageDirty(page))
  434. mss->private_dirty += PAGE_SIZE;
  435. else
  436. mss->private_clean += PAGE_SIZE;
  437. mss->pss += PAGE_SIZE << PSS_SHIFT;
  438. }
  439. }
  440. }
  441. #ifdef CONFIG_SHMEM
  442. static int smaps_pte_hole(unsigned long addr, unsigned long end,
  443. struct mm_walk *walk)
  444. {
  445. struct mem_size_stats *mss = walk->private;
  446. mss->swap += shmem_partial_swap_usage(
  447. walk->vma->vm_file->f_mapping, addr, end);
  448. return 0;
  449. }
  450. #endif
  451. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  452. struct mm_walk *walk)
  453. {
  454. struct mem_size_stats *mss = walk->private;
  455. struct vm_area_struct *vma = walk->vma;
  456. struct page *page = NULL;
  457. if (pte_present(*pte)) {
  458. page = vm_normal_page(vma, addr, *pte);
  459. } else if (is_swap_pte(*pte)) {
  460. swp_entry_t swpent = pte_to_swp_entry(*pte);
  461. if (!non_swap_entry(swpent)) {
  462. int mapcount;
  463. mss->swap += PAGE_SIZE;
  464. mapcount = swp_swapcount(swpent);
  465. if (mapcount >= 2) {
  466. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  467. do_div(pss_delta, mapcount);
  468. mss->swap_pss += pss_delta;
  469. } else {
  470. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  471. }
  472. } else if (is_migration_entry(swpent))
  473. page = migration_entry_to_page(swpent);
  474. } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
  475. && pte_none(*pte))) {
  476. page = find_get_entry(vma->vm_file->f_mapping,
  477. linear_page_index(vma, addr));
  478. if (!page)
  479. return;
  480. if (radix_tree_exceptional_entry(page))
  481. mss->swap += PAGE_SIZE;
  482. else
  483. put_page(page);
  484. return;
  485. }
  486. if (!page)
  487. return;
  488. smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
  489. }
  490. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  491. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  492. struct mm_walk *walk)
  493. {
  494. struct mem_size_stats *mss = walk->private;
  495. struct vm_area_struct *vma = walk->vma;
  496. struct page *page;
  497. /* FOLL_DUMP will return -EFAULT on huge zero page */
  498. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  499. if (IS_ERR_OR_NULL(page))
  500. return;
  501. if (PageAnon(page))
  502. mss->anonymous_thp += HPAGE_PMD_SIZE;
  503. else if (PageSwapBacked(page))
  504. mss->shmem_thp += HPAGE_PMD_SIZE;
  505. else
  506. VM_BUG_ON_PAGE(1, page);
  507. smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
  508. }
  509. #else
  510. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  511. struct mm_walk *walk)
  512. {
  513. }
  514. #endif
  515. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  516. struct mm_walk *walk)
  517. {
  518. struct vm_area_struct *vma = walk->vma;
  519. pte_t *pte;
  520. spinlock_t *ptl;
  521. ptl = pmd_trans_huge_lock(pmd, vma);
  522. if (ptl) {
  523. smaps_pmd_entry(pmd, addr, walk);
  524. spin_unlock(ptl);
  525. return 0;
  526. }
  527. if (pmd_trans_unstable(pmd))
  528. return 0;
  529. /*
  530. * The mmap_sem held all the way back in m_start() is what
  531. * keeps khugepaged out of here and from collapsing things
  532. * in here.
  533. */
  534. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  535. for (; addr != end; pte++, addr += PAGE_SIZE)
  536. smaps_pte_entry(pte, addr, walk);
  537. pte_unmap_unlock(pte - 1, ptl);
  538. cond_resched();
  539. return 0;
  540. }
  541. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  542. {
  543. /*
  544. * Don't forget to update Documentation/ on changes.
  545. */
  546. static const char mnemonics[BITS_PER_LONG][2] = {
  547. /*
  548. * In case if we meet a flag we don't know about.
  549. */
  550. [0 ... (BITS_PER_LONG-1)] = "??",
  551. [ilog2(VM_READ)] = "rd",
  552. [ilog2(VM_WRITE)] = "wr",
  553. [ilog2(VM_EXEC)] = "ex",
  554. [ilog2(VM_SHARED)] = "sh",
  555. [ilog2(VM_MAYREAD)] = "mr",
  556. [ilog2(VM_MAYWRITE)] = "mw",
  557. [ilog2(VM_MAYEXEC)] = "me",
  558. [ilog2(VM_MAYSHARE)] = "ms",
  559. [ilog2(VM_GROWSDOWN)] = "gd",
  560. [ilog2(VM_PFNMAP)] = "pf",
  561. [ilog2(VM_DENYWRITE)] = "dw",
  562. #ifdef CONFIG_X86_INTEL_MPX
  563. [ilog2(VM_MPX)] = "mp",
  564. #endif
  565. [ilog2(VM_LOCKED)] = "lo",
  566. [ilog2(VM_IO)] = "io",
  567. [ilog2(VM_SEQ_READ)] = "sr",
  568. [ilog2(VM_RAND_READ)] = "rr",
  569. [ilog2(VM_DONTCOPY)] = "dc",
  570. [ilog2(VM_DONTEXPAND)] = "de",
  571. [ilog2(VM_ACCOUNT)] = "ac",
  572. [ilog2(VM_NORESERVE)] = "nr",
  573. [ilog2(VM_HUGETLB)] = "ht",
  574. [ilog2(VM_ARCH_1)] = "ar",
  575. [ilog2(VM_DONTDUMP)] = "dd",
  576. #ifdef CONFIG_MEM_SOFT_DIRTY
  577. [ilog2(VM_SOFTDIRTY)] = "sd",
  578. #endif
  579. [ilog2(VM_MIXEDMAP)] = "mm",
  580. [ilog2(VM_HUGEPAGE)] = "hg",
  581. [ilog2(VM_NOHUGEPAGE)] = "nh",
  582. [ilog2(VM_MERGEABLE)] = "mg",
  583. [ilog2(VM_UFFD_MISSING)]= "um",
  584. [ilog2(VM_UFFD_WP)] = "uw",
  585. #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
  586. /* These come out via ProtectionKey: */
  587. [ilog2(VM_PKEY_BIT0)] = "",
  588. [ilog2(VM_PKEY_BIT1)] = "",
  589. [ilog2(VM_PKEY_BIT2)] = "",
  590. [ilog2(VM_PKEY_BIT3)] = "",
  591. #endif
  592. };
  593. size_t i;
  594. seq_puts(m, "VmFlags: ");
  595. for (i = 0; i < BITS_PER_LONG; i++) {
  596. if (!mnemonics[i][0])
  597. continue;
  598. if (vma->vm_flags & (1UL << i)) {
  599. seq_printf(m, "%c%c ",
  600. mnemonics[i][0], mnemonics[i][1]);
  601. }
  602. }
  603. seq_putc(m, '\n');
  604. }
  605. #ifdef CONFIG_HUGETLB_PAGE
  606. static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
  607. unsigned long addr, unsigned long end,
  608. struct mm_walk *walk)
  609. {
  610. struct mem_size_stats *mss = walk->private;
  611. struct vm_area_struct *vma = walk->vma;
  612. struct page *page = NULL;
  613. if (pte_present(*pte)) {
  614. page = vm_normal_page(vma, addr, *pte);
  615. } else if (is_swap_pte(*pte)) {
  616. swp_entry_t swpent = pte_to_swp_entry(*pte);
  617. if (is_migration_entry(swpent))
  618. page = migration_entry_to_page(swpent);
  619. }
  620. if (page) {
  621. int mapcount = page_mapcount(page);
  622. if (mapcount >= 2)
  623. mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
  624. else
  625. mss->private_hugetlb += huge_page_size(hstate_vma(vma));
  626. }
  627. return 0;
  628. }
  629. #endif /* HUGETLB_PAGE */
  630. void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
  631. {
  632. }
  633. static int show_smap(struct seq_file *m, void *v, int is_pid)
  634. {
  635. struct vm_area_struct *vma = v;
  636. struct mem_size_stats mss;
  637. struct mm_walk smaps_walk = {
  638. .pmd_entry = smaps_pte_range,
  639. #ifdef CONFIG_HUGETLB_PAGE
  640. .hugetlb_entry = smaps_hugetlb_range,
  641. #endif
  642. .mm = vma->vm_mm,
  643. .private = &mss,
  644. };
  645. memset(&mss, 0, sizeof mss);
  646. #ifdef CONFIG_SHMEM
  647. if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
  648. /*
  649. * For shared or readonly shmem mappings we know that all
  650. * swapped out pages belong to the shmem object, and we can
  651. * obtain the swap value much more efficiently. For private
  652. * writable mappings, we might have COW pages that are
  653. * not affected by the parent swapped out pages of the shmem
  654. * object, so we have to distinguish them during the page walk.
  655. * Unless we know that the shmem object (or the part mapped by
  656. * our VMA) has no swapped out pages at all.
  657. */
  658. unsigned long shmem_swapped = shmem_swap_usage(vma);
  659. if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
  660. !(vma->vm_flags & VM_WRITE)) {
  661. mss.swap = shmem_swapped;
  662. } else {
  663. mss.check_shmem_swap = true;
  664. smaps_walk.pte_hole = smaps_pte_hole;
  665. }
  666. }
  667. #endif
  668. /* mmap_sem is held in m_start */
  669. walk_page_vma(vma, &smaps_walk);
  670. show_map_vma(m, vma, is_pid);
  671. seq_printf(m,
  672. "Size: %8lu kB\n"
  673. "Rss: %8lu kB\n"
  674. "Pss: %8lu kB\n"
  675. "Shared_Clean: %8lu kB\n"
  676. "Shared_Dirty: %8lu kB\n"
  677. "Private_Clean: %8lu kB\n"
  678. "Private_Dirty: %8lu kB\n"
  679. "Referenced: %8lu kB\n"
  680. "Anonymous: %8lu kB\n"
  681. "AnonHugePages: %8lu kB\n"
  682. "ShmemPmdMapped: %8lu kB\n"
  683. "Shared_Hugetlb: %8lu kB\n"
  684. "Private_Hugetlb: %7lu kB\n"
  685. "Swap: %8lu kB\n"
  686. "SwapPss: %8lu kB\n"
  687. "KernelPageSize: %8lu kB\n"
  688. "MMUPageSize: %8lu kB\n"
  689. "Locked: %8lu kB\n",
  690. (vma->vm_end - vma->vm_start) >> 10,
  691. mss.resident >> 10,
  692. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  693. mss.shared_clean >> 10,
  694. mss.shared_dirty >> 10,
  695. mss.private_clean >> 10,
  696. mss.private_dirty >> 10,
  697. mss.referenced >> 10,
  698. mss.anonymous >> 10,
  699. mss.anonymous_thp >> 10,
  700. mss.shmem_thp >> 10,
  701. mss.shared_hugetlb >> 10,
  702. mss.private_hugetlb >> 10,
  703. mss.swap >> 10,
  704. (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
  705. vma_kernel_pagesize(vma) >> 10,
  706. vma_mmu_pagesize(vma) >> 10,
  707. (vma->vm_flags & VM_LOCKED) ?
  708. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  709. arch_show_smap(m, vma);
  710. show_smap_vma_flags(m, vma);
  711. m_cache_vma(m, vma);
  712. return 0;
  713. }
  714. static int show_pid_smap(struct seq_file *m, void *v)
  715. {
  716. return show_smap(m, v, 1);
  717. }
  718. static int show_tid_smap(struct seq_file *m, void *v)
  719. {
  720. return show_smap(m, v, 0);
  721. }
  722. static const struct seq_operations proc_pid_smaps_op = {
  723. .start = m_start,
  724. .next = m_next,
  725. .stop = m_stop,
  726. .show = show_pid_smap
  727. };
  728. static const struct seq_operations proc_tid_smaps_op = {
  729. .start = m_start,
  730. .next = m_next,
  731. .stop = m_stop,
  732. .show = show_tid_smap
  733. };
  734. static int pid_smaps_open(struct inode *inode, struct file *file)
  735. {
  736. return do_maps_open(inode, file, &proc_pid_smaps_op);
  737. }
  738. static int tid_smaps_open(struct inode *inode, struct file *file)
  739. {
  740. return do_maps_open(inode, file, &proc_tid_smaps_op);
  741. }
  742. const struct file_operations proc_pid_smaps_operations = {
  743. .open = pid_smaps_open,
  744. .read = seq_read,
  745. .llseek = seq_lseek,
  746. .release = proc_map_release,
  747. };
  748. const struct file_operations proc_tid_smaps_operations = {
  749. .open = tid_smaps_open,
  750. .read = seq_read,
  751. .llseek = seq_lseek,
  752. .release = proc_map_release,
  753. };
  754. enum clear_refs_types {
  755. CLEAR_REFS_ALL = 1,
  756. CLEAR_REFS_ANON,
  757. CLEAR_REFS_MAPPED,
  758. CLEAR_REFS_SOFT_DIRTY,
  759. CLEAR_REFS_MM_HIWATER_RSS,
  760. CLEAR_REFS_LAST,
  761. };
  762. struct clear_refs_private {
  763. enum clear_refs_types type;
  764. };
  765. #ifdef CONFIG_MEM_SOFT_DIRTY
  766. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  767. unsigned long addr, pte_t *pte)
  768. {
  769. /*
  770. * The soft-dirty tracker uses #PF-s to catch writes
  771. * to pages, so write-protect the pte as well. See the
  772. * Documentation/vm/soft-dirty.txt for full description
  773. * of how soft-dirty works.
  774. */
  775. pte_t ptent = *pte;
  776. if (pte_present(ptent)) {
  777. ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
  778. ptent = pte_wrprotect(ptent);
  779. ptent = pte_clear_soft_dirty(ptent);
  780. ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
  781. } else if (is_swap_pte(ptent)) {
  782. ptent = pte_swp_clear_soft_dirty(ptent);
  783. set_pte_at(vma->vm_mm, addr, pte, ptent);
  784. }
  785. }
  786. #else
  787. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  788. unsigned long addr, pte_t *pte)
  789. {
  790. }
  791. #endif
  792. #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
  793. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  794. unsigned long addr, pmd_t *pmdp)
  795. {
  796. pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
  797. pmd = pmd_wrprotect(pmd);
  798. pmd = pmd_clear_soft_dirty(pmd);
  799. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  800. }
  801. #else
  802. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  803. unsigned long addr, pmd_t *pmdp)
  804. {
  805. }
  806. #endif
  807. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  808. unsigned long end, struct mm_walk *walk)
  809. {
  810. struct clear_refs_private *cp = walk->private;
  811. struct vm_area_struct *vma = walk->vma;
  812. pte_t *pte, ptent;
  813. spinlock_t *ptl;
  814. struct page *page;
  815. ptl = pmd_trans_huge_lock(pmd, vma);
  816. if (ptl) {
  817. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  818. clear_soft_dirty_pmd(vma, addr, pmd);
  819. goto out;
  820. }
  821. page = pmd_page(*pmd);
  822. /* Clear accessed and referenced bits. */
  823. pmdp_test_and_clear_young(vma, addr, pmd);
  824. test_and_clear_page_young(page);
  825. ClearPageReferenced(page);
  826. out:
  827. spin_unlock(ptl);
  828. return 0;
  829. }
  830. if (pmd_trans_unstable(pmd))
  831. return 0;
  832. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  833. for (; addr != end; pte++, addr += PAGE_SIZE) {
  834. ptent = *pte;
  835. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  836. clear_soft_dirty(vma, addr, pte);
  837. continue;
  838. }
  839. if (!pte_present(ptent))
  840. continue;
  841. page = vm_normal_page(vma, addr, ptent);
  842. if (!page)
  843. continue;
  844. /* Clear accessed and referenced bits. */
  845. ptep_test_and_clear_young(vma, addr, pte);
  846. test_and_clear_page_young(page);
  847. ClearPageReferenced(page);
  848. }
  849. pte_unmap_unlock(pte - 1, ptl);
  850. cond_resched();
  851. return 0;
  852. }
  853. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  854. struct mm_walk *walk)
  855. {
  856. struct clear_refs_private *cp = walk->private;
  857. struct vm_area_struct *vma = walk->vma;
  858. if (vma->vm_flags & VM_PFNMAP)
  859. return 1;
  860. /*
  861. * Writing 1 to /proc/pid/clear_refs affects all pages.
  862. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  863. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  864. * Writing 4 to /proc/pid/clear_refs affects all pages.
  865. */
  866. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  867. return 1;
  868. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  869. return 1;
  870. return 0;
  871. }
  872. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  873. size_t count, loff_t *ppos)
  874. {
  875. struct task_struct *task;
  876. char buffer[PROC_NUMBUF];
  877. struct mm_struct *mm;
  878. struct vm_area_struct *vma;
  879. enum clear_refs_types type;
  880. int itype;
  881. int rv;
  882. memset(buffer, 0, sizeof(buffer));
  883. if (count > sizeof(buffer) - 1)
  884. count = sizeof(buffer) - 1;
  885. if (copy_from_user(buffer, buf, count))
  886. return -EFAULT;
  887. rv = kstrtoint(strstrip(buffer), 10, &itype);
  888. if (rv < 0)
  889. return rv;
  890. type = (enum clear_refs_types)itype;
  891. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  892. return -EINVAL;
  893. task = get_proc_task(file_inode(file));
  894. if (!task)
  895. return -ESRCH;
  896. mm = get_task_mm(task);
  897. if (mm) {
  898. struct clear_refs_private cp = {
  899. .type = type,
  900. };
  901. struct mm_walk clear_refs_walk = {
  902. .pmd_entry = clear_refs_pte_range,
  903. .test_walk = clear_refs_test_walk,
  904. .mm = mm,
  905. .private = &cp,
  906. };
  907. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  908. if (down_write_killable(&mm->mmap_sem)) {
  909. count = -EINTR;
  910. goto out_mm;
  911. }
  912. /*
  913. * Writing 5 to /proc/pid/clear_refs resets the peak
  914. * resident set size to this mm's current rss value.
  915. */
  916. reset_mm_hiwater_rss(mm);
  917. up_write(&mm->mmap_sem);
  918. goto out_mm;
  919. }
  920. down_read(&mm->mmap_sem);
  921. if (type == CLEAR_REFS_SOFT_DIRTY) {
  922. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  923. if (!(vma->vm_flags & VM_SOFTDIRTY))
  924. continue;
  925. up_read(&mm->mmap_sem);
  926. if (down_write_killable(&mm->mmap_sem)) {
  927. count = -EINTR;
  928. goto out_mm;
  929. }
  930. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  931. vma->vm_flags &= ~VM_SOFTDIRTY;
  932. vma_set_page_prot(vma);
  933. }
  934. downgrade_write(&mm->mmap_sem);
  935. break;
  936. }
  937. mmu_notifier_invalidate_range_start(mm, 0, -1);
  938. }
  939. walk_page_range(0, ~0UL, &clear_refs_walk);
  940. if (type == CLEAR_REFS_SOFT_DIRTY)
  941. mmu_notifier_invalidate_range_end(mm, 0, -1);
  942. flush_tlb_mm(mm);
  943. up_read(&mm->mmap_sem);
  944. out_mm:
  945. mmput(mm);
  946. }
  947. put_task_struct(task);
  948. return count;
  949. }
  950. const struct file_operations proc_clear_refs_operations = {
  951. .write = clear_refs_write,
  952. .llseek = noop_llseek,
  953. };
  954. typedef struct {
  955. u64 pme;
  956. } pagemap_entry_t;
  957. struct pagemapread {
  958. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  959. pagemap_entry_t *buffer;
  960. bool show_pfn;
  961. };
  962. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  963. #define PAGEMAP_WALK_MASK (PMD_MASK)
  964. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  965. #define PM_PFRAME_BITS 55
  966. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  967. #define PM_SOFT_DIRTY BIT_ULL(55)
  968. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  969. #define PM_FILE BIT_ULL(61)
  970. #define PM_SWAP BIT_ULL(62)
  971. #define PM_PRESENT BIT_ULL(63)
  972. #define PM_END_OF_BUFFER 1
  973. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  974. {
  975. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  976. }
  977. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  978. struct pagemapread *pm)
  979. {
  980. pm->buffer[pm->pos++] = *pme;
  981. if (pm->pos >= pm->len)
  982. return PM_END_OF_BUFFER;
  983. return 0;
  984. }
  985. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  986. struct mm_walk *walk)
  987. {
  988. struct pagemapread *pm = walk->private;
  989. unsigned long addr = start;
  990. int err = 0;
  991. while (addr < end) {
  992. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  993. pagemap_entry_t pme = make_pme(0, 0);
  994. /* End of address space hole, which we mark as non-present. */
  995. unsigned long hole_end;
  996. if (vma)
  997. hole_end = min(end, vma->vm_start);
  998. else
  999. hole_end = end;
  1000. for (; addr < hole_end; addr += PAGE_SIZE) {
  1001. err = add_to_pagemap(addr, &pme, pm);
  1002. if (err)
  1003. goto out;
  1004. }
  1005. if (!vma)
  1006. break;
  1007. /* Addresses in the VMA. */
  1008. if (vma->vm_flags & VM_SOFTDIRTY)
  1009. pme = make_pme(0, PM_SOFT_DIRTY);
  1010. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  1011. err = add_to_pagemap(addr, &pme, pm);
  1012. if (err)
  1013. goto out;
  1014. }
  1015. }
  1016. out:
  1017. return err;
  1018. }
  1019. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  1020. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  1021. {
  1022. u64 frame = 0, flags = 0;
  1023. struct page *page = NULL;
  1024. if (pte_present(pte)) {
  1025. if (pm->show_pfn)
  1026. frame = pte_pfn(pte);
  1027. flags |= PM_PRESENT;
  1028. page = vm_normal_page(vma, addr, pte);
  1029. if (pte_soft_dirty(pte))
  1030. flags |= PM_SOFT_DIRTY;
  1031. } else if (is_swap_pte(pte)) {
  1032. swp_entry_t entry;
  1033. if (pte_swp_soft_dirty(pte))
  1034. flags |= PM_SOFT_DIRTY;
  1035. entry = pte_to_swp_entry(pte);
  1036. frame = swp_type(entry) |
  1037. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  1038. flags |= PM_SWAP;
  1039. if (is_migration_entry(entry))
  1040. page = migration_entry_to_page(entry);
  1041. }
  1042. if (page && !PageAnon(page))
  1043. flags |= PM_FILE;
  1044. if (page && page_mapcount(page) == 1)
  1045. flags |= PM_MMAP_EXCLUSIVE;
  1046. if (vma->vm_flags & VM_SOFTDIRTY)
  1047. flags |= PM_SOFT_DIRTY;
  1048. return make_pme(frame, flags);
  1049. }
  1050. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  1051. struct mm_walk *walk)
  1052. {
  1053. struct vm_area_struct *vma = walk->vma;
  1054. struct pagemapread *pm = walk->private;
  1055. spinlock_t *ptl;
  1056. pte_t *pte, *orig_pte;
  1057. int err = 0;
  1058. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1059. ptl = pmd_trans_huge_lock(pmdp, vma);
  1060. if (ptl) {
  1061. u64 flags = 0, frame = 0;
  1062. pmd_t pmd = *pmdp;
  1063. if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
  1064. flags |= PM_SOFT_DIRTY;
  1065. /*
  1066. * Currently pmd for thp is always present because thp
  1067. * can not be swapped-out, migrated, or HWPOISONed
  1068. * (split in such cases instead.)
  1069. * This if-check is just to prepare for future implementation.
  1070. */
  1071. if (pmd_present(pmd)) {
  1072. struct page *page = pmd_page(pmd);
  1073. if (page_mapcount(page) == 1)
  1074. flags |= PM_MMAP_EXCLUSIVE;
  1075. flags |= PM_PRESENT;
  1076. if (pm->show_pfn)
  1077. frame = pmd_pfn(pmd) +
  1078. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1079. }
  1080. for (; addr != end; addr += PAGE_SIZE) {
  1081. pagemap_entry_t pme = make_pme(frame, flags);
  1082. err = add_to_pagemap(addr, &pme, pm);
  1083. if (err)
  1084. break;
  1085. if (pm->show_pfn && (flags & PM_PRESENT))
  1086. frame++;
  1087. }
  1088. spin_unlock(ptl);
  1089. return err;
  1090. }
  1091. if (pmd_trans_unstable(pmdp))
  1092. return 0;
  1093. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1094. /*
  1095. * We can assume that @vma always points to a valid one and @end never
  1096. * goes beyond vma->vm_end.
  1097. */
  1098. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  1099. for (; addr < end; pte++, addr += PAGE_SIZE) {
  1100. pagemap_entry_t pme;
  1101. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  1102. err = add_to_pagemap(addr, &pme, pm);
  1103. if (err)
  1104. break;
  1105. }
  1106. pte_unmap_unlock(orig_pte, ptl);
  1107. cond_resched();
  1108. return err;
  1109. }
  1110. #ifdef CONFIG_HUGETLB_PAGE
  1111. /* This function walks within one hugetlb entry in the single call */
  1112. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  1113. unsigned long addr, unsigned long end,
  1114. struct mm_walk *walk)
  1115. {
  1116. struct pagemapread *pm = walk->private;
  1117. struct vm_area_struct *vma = walk->vma;
  1118. u64 flags = 0, frame = 0;
  1119. int err = 0;
  1120. pte_t pte;
  1121. if (vma->vm_flags & VM_SOFTDIRTY)
  1122. flags |= PM_SOFT_DIRTY;
  1123. pte = huge_ptep_get(ptep);
  1124. if (pte_present(pte)) {
  1125. struct page *page = pte_page(pte);
  1126. if (!PageAnon(page))
  1127. flags |= PM_FILE;
  1128. if (page_mapcount(page) == 1)
  1129. flags |= PM_MMAP_EXCLUSIVE;
  1130. flags |= PM_PRESENT;
  1131. if (pm->show_pfn)
  1132. frame = pte_pfn(pte) +
  1133. ((addr & ~hmask) >> PAGE_SHIFT);
  1134. }
  1135. for (; addr != end; addr += PAGE_SIZE) {
  1136. pagemap_entry_t pme = make_pme(frame, flags);
  1137. err = add_to_pagemap(addr, &pme, pm);
  1138. if (err)
  1139. return err;
  1140. if (pm->show_pfn && (flags & PM_PRESENT))
  1141. frame++;
  1142. }
  1143. cond_resched();
  1144. return err;
  1145. }
  1146. #endif /* HUGETLB_PAGE */
  1147. /*
  1148. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1149. *
  1150. * For each page in the address space, this file contains one 64-bit entry
  1151. * consisting of the following:
  1152. *
  1153. * Bits 0-54 page frame number (PFN) if present
  1154. * Bits 0-4 swap type if swapped
  1155. * Bits 5-54 swap offset if swapped
  1156. * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
  1157. * Bit 56 page exclusively mapped
  1158. * Bits 57-60 zero
  1159. * Bit 61 page is file-page or shared-anon
  1160. * Bit 62 page swapped
  1161. * Bit 63 page present
  1162. *
  1163. * If the page is not present but in swap, then the PFN contains an
  1164. * encoding of the swap file number and the page's offset into the
  1165. * swap. Unmapped pages return a null PFN. This allows determining
  1166. * precisely which pages are mapped (or in swap) and comparing mapped
  1167. * pages between processes.
  1168. *
  1169. * Efficient users of this interface will use /proc/pid/maps to
  1170. * determine which areas of memory are actually mapped and llseek to
  1171. * skip over unmapped regions.
  1172. */
  1173. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1174. size_t count, loff_t *ppos)
  1175. {
  1176. struct mm_struct *mm = file->private_data;
  1177. struct pagemapread pm;
  1178. struct mm_walk pagemap_walk = {};
  1179. unsigned long src;
  1180. unsigned long svpfn;
  1181. unsigned long start_vaddr;
  1182. unsigned long end_vaddr;
  1183. int ret = 0, copied = 0;
  1184. if (!mm || !atomic_inc_not_zero(&mm->mm_users))
  1185. goto out;
  1186. ret = -EINVAL;
  1187. /* file position must be aligned */
  1188. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1189. goto out_mm;
  1190. ret = 0;
  1191. if (!count)
  1192. goto out_mm;
  1193. /* do not disclose physical addresses: attack vector */
  1194. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1195. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1196. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
  1197. ret = -ENOMEM;
  1198. if (!pm.buffer)
  1199. goto out_mm;
  1200. pagemap_walk.pmd_entry = pagemap_pmd_range;
  1201. pagemap_walk.pte_hole = pagemap_pte_hole;
  1202. #ifdef CONFIG_HUGETLB_PAGE
  1203. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1204. #endif
  1205. pagemap_walk.mm = mm;
  1206. pagemap_walk.private = &pm;
  1207. src = *ppos;
  1208. svpfn = src / PM_ENTRY_BYTES;
  1209. start_vaddr = svpfn << PAGE_SHIFT;
  1210. end_vaddr = mm->task_size;
  1211. /* watch out for wraparound */
  1212. if (svpfn > mm->task_size >> PAGE_SHIFT)
  1213. start_vaddr = end_vaddr;
  1214. /*
  1215. * The odds are that this will stop walking way
  1216. * before end_vaddr, because the length of the
  1217. * user buffer is tracked in "pm", and the walk
  1218. * will stop when we hit the end of the buffer.
  1219. */
  1220. ret = 0;
  1221. while (count && (start_vaddr < end_vaddr)) {
  1222. int len;
  1223. unsigned long end;
  1224. pm.pos = 0;
  1225. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1226. /* overflow ? */
  1227. if (end < start_vaddr || end > end_vaddr)
  1228. end = end_vaddr;
  1229. down_read(&mm->mmap_sem);
  1230. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1231. up_read(&mm->mmap_sem);
  1232. start_vaddr = end;
  1233. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1234. if (copy_to_user(buf, pm.buffer, len)) {
  1235. ret = -EFAULT;
  1236. goto out_free;
  1237. }
  1238. copied += len;
  1239. buf += len;
  1240. count -= len;
  1241. }
  1242. *ppos += copied;
  1243. if (!ret || ret == PM_END_OF_BUFFER)
  1244. ret = copied;
  1245. out_free:
  1246. kfree(pm.buffer);
  1247. out_mm:
  1248. mmput(mm);
  1249. out:
  1250. return ret;
  1251. }
  1252. static int pagemap_open(struct inode *inode, struct file *file)
  1253. {
  1254. struct mm_struct *mm;
  1255. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1256. if (IS_ERR(mm))
  1257. return PTR_ERR(mm);
  1258. file->private_data = mm;
  1259. return 0;
  1260. }
  1261. static int pagemap_release(struct inode *inode, struct file *file)
  1262. {
  1263. struct mm_struct *mm = file->private_data;
  1264. if (mm)
  1265. mmdrop(mm);
  1266. return 0;
  1267. }
  1268. const struct file_operations proc_pagemap_operations = {
  1269. .llseek = mem_lseek, /* borrow this */
  1270. .read = pagemap_read,
  1271. .open = pagemap_open,
  1272. .release = pagemap_release,
  1273. };
  1274. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1275. #ifdef CONFIG_NUMA
  1276. struct numa_maps {
  1277. unsigned long pages;
  1278. unsigned long anon;
  1279. unsigned long active;
  1280. unsigned long writeback;
  1281. unsigned long mapcount_max;
  1282. unsigned long dirty;
  1283. unsigned long swapcache;
  1284. unsigned long node[MAX_NUMNODES];
  1285. };
  1286. struct numa_maps_private {
  1287. struct proc_maps_private proc_maps;
  1288. struct numa_maps md;
  1289. };
  1290. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1291. unsigned long nr_pages)
  1292. {
  1293. int count = page_mapcount(page);
  1294. md->pages += nr_pages;
  1295. if (pte_dirty || PageDirty(page))
  1296. md->dirty += nr_pages;
  1297. if (PageSwapCache(page))
  1298. md->swapcache += nr_pages;
  1299. if (PageActive(page) || PageUnevictable(page))
  1300. md->active += nr_pages;
  1301. if (PageWriteback(page))
  1302. md->writeback += nr_pages;
  1303. if (PageAnon(page))
  1304. md->anon += nr_pages;
  1305. if (count > md->mapcount_max)
  1306. md->mapcount_max = count;
  1307. md->node[page_to_nid(page)] += nr_pages;
  1308. }
  1309. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1310. unsigned long addr)
  1311. {
  1312. struct page *page;
  1313. int nid;
  1314. if (!pte_present(pte))
  1315. return NULL;
  1316. page = vm_normal_page(vma, addr, pte);
  1317. if (!page)
  1318. return NULL;
  1319. if (PageReserved(page))
  1320. return NULL;
  1321. nid = page_to_nid(page);
  1322. if (!node_isset(nid, node_states[N_MEMORY]))
  1323. return NULL;
  1324. return page;
  1325. }
  1326. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1327. static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
  1328. struct vm_area_struct *vma,
  1329. unsigned long addr)
  1330. {
  1331. struct page *page;
  1332. int nid;
  1333. if (!pmd_present(pmd))
  1334. return NULL;
  1335. page = vm_normal_page_pmd(vma, addr, pmd);
  1336. if (!page)
  1337. return NULL;
  1338. if (PageReserved(page))
  1339. return NULL;
  1340. nid = page_to_nid(page);
  1341. if (!node_isset(nid, node_states[N_MEMORY]))
  1342. return NULL;
  1343. return page;
  1344. }
  1345. #endif
  1346. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1347. unsigned long end, struct mm_walk *walk)
  1348. {
  1349. struct numa_maps *md = walk->private;
  1350. struct vm_area_struct *vma = walk->vma;
  1351. spinlock_t *ptl;
  1352. pte_t *orig_pte;
  1353. pte_t *pte;
  1354. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1355. ptl = pmd_trans_huge_lock(pmd, vma);
  1356. if (ptl) {
  1357. struct page *page;
  1358. page = can_gather_numa_stats_pmd(*pmd, vma, addr);
  1359. if (page)
  1360. gather_stats(page, md, pmd_dirty(*pmd),
  1361. HPAGE_PMD_SIZE/PAGE_SIZE);
  1362. spin_unlock(ptl);
  1363. return 0;
  1364. }
  1365. if (pmd_trans_unstable(pmd))
  1366. return 0;
  1367. #endif
  1368. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1369. do {
  1370. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1371. if (!page)
  1372. continue;
  1373. gather_stats(page, md, pte_dirty(*pte), 1);
  1374. } while (pte++, addr += PAGE_SIZE, addr != end);
  1375. pte_unmap_unlock(orig_pte, ptl);
  1376. return 0;
  1377. }
  1378. #ifdef CONFIG_HUGETLB_PAGE
  1379. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1380. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1381. {
  1382. pte_t huge_pte = huge_ptep_get(pte);
  1383. struct numa_maps *md;
  1384. struct page *page;
  1385. if (!pte_present(huge_pte))
  1386. return 0;
  1387. page = pte_page(huge_pte);
  1388. if (!page)
  1389. return 0;
  1390. md = walk->private;
  1391. gather_stats(page, md, pte_dirty(huge_pte), 1);
  1392. return 0;
  1393. }
  1394. #else
  1395. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1396. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1397. {
  1398. return 0;
  1399. }
  1400. #endif
  1401. /*
  1402. * Display pages allocated per node and memory policy via /proc.
  1403. */
  1404. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1405. {
  1406. struct numa_maps_private *numa_priv = m->private;
  1407. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1408. struct vm_area_struct *vma = v;
  1409. struct numa_maps *md = &numa_priv->md;
  1410. struct file *file = vma->vm_file;
  1411. struct mm_struct *mm = vma->vm_mm;
  1412. struct mm_walk walk = {
  1413. .hugetlb_entry = gather_hugetlb_stats,
  1414. .pmd_entry = gather_pte_stats,
  1415. .private = md,
  1416. .mm = mm,
  1417. };
  1418. struct mempolicy *pol;
  1419. char buffer[64];
  1420. int nid;
  1421. if (!mm)
  1422. return 0;
  1423. /* Ensure we start with an empty set of numa_maps statistics. */
  1424. memset(md, 0, sizeof(*md));
  1425. pol = __get_vma_policy(vma, vma->vm_start);
  1426. if (pol) {
  1427. mpol_to_str(buffer, sizeof(buffer), pol);
  1428. mpol_cond_put(pol);
  1429. } else {
  1430. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1431. }
  1432. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1433. if (file) {
  1434. seq_puts(m, " file=");
  1435. seq_file_path(m, file, "\n\t= ");
  1436. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1437. seq_puts(m, " heap");
  1438. } else if (is_stack(proc_priv, vma, is_pid)) {
  1439. seq_puts(m, " stack");
  1440. }
  1441. if (is_vm_hugetlb_page(vma))
  1442. seq_puts(m, " huge");
  1443. /* mmap_sem is held by m_start */
  1444. walk_page_vma(vma, &walk);
  1445. if (!md->pages)
  1446. goto out;
  1447. if (md->anon)
  1448. seq_printf(m, " anon=%lu", md->anon);
  1449. if (md->dirty)
  1450. seq_printf(m, " dirty=%lu", md->dirty);
  1451. if (md->pages != md->anon && md->pages != md->dirty)
  1452. seq_printf(m, " mapped=%lu", md->pages);
  1453. if (md->mapcount_max > 1)
  1454. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1455. if (md->swapcache)
  1456. seq_printf(m, " swapcache=%lu", md->swapcache);
  1457. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1458. seq_printf(m, " active=%lu", md->active);
  1459. if (md->writeback)
  1460. seq_printf(m, " writeback=%lu", md->writeback);
  1461. for_each_node_state(nid, N_MEMORY)
  1462. if (md->node[nid])
  1463. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1464. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1465. out:
  1466. seq_putc(m, '\n');
  1467. m_cache_vma(m, vma);
  1468. return 0;
  1469. }
  1470. static int show_pid_numa_map(struct seq_file *m, void *v)
  1471. {
  1472. return show_numa_map(m, v, 1);
  1473. }
  1474. static int show_tid_numa_map(struct seq_file *m, void *v)
  1475. {
  1476. return show_numa_map(m, v, 0);
  1477. }
  1478. static const struct seq_operations proc_pid_numa_maps_op = {
  1479. .start = m_start,
  1480. .next = m_next,
  1481. .stop = m_stop,
  1482. .show = show_pid_numa_map,
  1483. };
  1484. static const struct seq_operations proc_tid_numa_maps_op = {
  1485. .start = m_start,
  1486. .next = m_next,
  1487. .stop = m_stop,
  1488. .show = show_tid_numa_map,
  1489. };
  1490. static int numa_maps_open(struct inode *inode, struct file *file,
  1491. const struct seq_operations *ops)
  1492. {
  1493. return proc_maps_open(inode, file, ops,
  1494. sizeof(struct numa_maps_private));
  1495. }
  1496. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1497. {
  1498. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1499. }
  1500. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1501. {
  1502. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1503. }
  1504. const struct file_operations proc_pid_numa_maps_operations = {
  1505. .open = pid_numa_maps_open,
  1506. .read = seq_read,
  1507. .llseek = seq_lseek,
  1508. .release = proc_map_release,
  1509. };
  1510. const struct file_operations proc_tid_numa_maps_operations = {
  1511. .open = tid_numa_maps_open,
  1512. .read = seq_read,
  1513. .llseek = seq_lseek,
  1514. .release = proc_map_release,
  1515. };
  1516. #endif /* CONFIG_NUMA */