namespace.c 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/init.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include <linux/proc_ns.h>
  23. #include <linux/magic.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/task_work.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. static unsigned int m_hash_mask __read_mostly;
  29. static unsigned int m_hash_shift __read_mostly;
  30. static unsigned int mp_hash_mask __read_mostly;
  31. static unsigned int mp_hash_shift __read_mostly;
  32. static __initdata unsigned long mhash_entries;
  33. static int __init set_mhash_entries(char *str)
  34. {
  35. if (!str)
  36. return 0;
  37. mhash_entries = simple_strtoul(str, &str, 0);
  38. return 1;
  39. }
  40. __setup("mhash_entries=", set_mhash_entries);
  41. static __initdata unsigned long mphash_entries;
  42. static int __init set_mphash_entries(char *str)
  43. {
  44. if (!str)
  45. return 0;
  46. mphash_entries = simple_strtoul(str, &str, 0);
  47. return 1;
  48. }
  49. __setup("mphash_entries=", set_mphash_entries);
  50. static u64 event;
  51. static DEFINE_IDA(mnt_id_ida);
  52. static DEFINE_IDA(mnt_group_ida);
  53. static DEFINE_SPINLOCK(mnt_id_lock);
  54. static int mnt_id_start = 0;
  55. static int mnt_group_start = 1;
  56. static struct hlist_head *mount_hashtable __read_mostly;
  57. static struct hlist_head *mountpoint_hashtable __read_mostly;
  58. static struct kmem_cache *mnt_cache __read_mostly;
  59. static DECLARE_RWSEM(namespace_sem);
  60. /* /sys/fs */
  61. struct kobject *fs_kobj;
  62. EXPORT_SYMBOL_GPL(fs_kobj);
  63. /*
  64. * vfsmount lock may be taken for read to prevent changes to the
  65. * vfsmount hash, ie. during mountpoint lookups or walking back
  66. * up the tree.
  67. *
  68. * It should be taken for write in all cases where the vfsmount
  69. * tree or hash is modified or when a vfsmount structure is modified.
  70. */
  71. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  72. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  73. {
  74. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  75. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  76. tmp = tmp + (tmp >> m_hash_shift);
  77. return &mount_hashtable[tmp & m_hash_mask];
  78. }
  79. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  80. {
  81. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  82. tmp = tmp + (tmp >> mp_hash_shift);
  83. return &mountpoint_hashtable[tmp & mp_hash_mask];
  84. }
  85. /*
  86. * allocation is serialized by namespace_sem, but we need the spinlock to
  87. * serialize with freeing.
  88. */
  89. static int mnt_alloc_id(struct mount *mnt)
  90. {
  91. int res;
  92. retry:
  93. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  94. spin_lock(&mnt_id_lock);
  95. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  96. if (!res)
  97. mnt_id_start = mnt->mnt_id + 1;
  98. spin_unlock(&mnt_id_lock);
  99. if (res == -EAGAIN)
  100. goto retry;
  101. return res;
  102. }
  103. static void mnt_free_id(struct mount *mnt)
  104. {
  105. int id = mnt->mnt_id;
  106. spin_lock(&mnt_id_lock);
  107. ida_remove(&mnt_id_ida, id);
  108. if (mnt_id_start > id)
  109. mnt_id_start = id;
  110. spin_unlock(&mnt_id_lock);
  111. }
  112. /*
  113. * Allocate a new peer group ID
  114. *
  115. * mnt_group_ida is protected by namespace_sem
  116. */
  117. static int mnt_alloc_group_id(struct mount *mnt)
  118. {
  119. int res;
  120. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  121. return -ENOMEM;
  122. res = ida_get_new_above(&mnt_group_ida,
  123. mnt_group_start,
  124. &mnt->mnt_group_id);
  125. if (!res)
  126. mnt_group_start = mnt->mnt_group_id + 1;
  127. return res;
  128. }
  129. /*
  130. * Release a peer group ID
  131. */
  132. void mnt_release_group_id(struct mount *mnt)
  133. {
  134. int id = mnt->mnt_group_id;
  135. ida_remove(&mnt_group_ida, id);
  136. if (mnt_group_start > id)
  137. mnt_group_start = id;
  138. mnt->mnt_group_id = 0;
  139. }
  140. /*
  141. * vfsmount lock must be held for read
  142. */
  143. static inline void mnt_add_count(struct mount *mnt, int n)
  144. {
  145. #ifdef CONFIG_SMP
  146. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  147. #else
  148. preempt_disable();
  149. mnt->mnt_count += n;
  150. preempt_enable();
  151. #endif
  152. }
  153. /*
  154. * vfsmount lock must be held for write
  155. */
  156. unsigned int mnt_get_count(struct mount *mnt)
  157. {
  158. #ifdef CONFIG_SMP
  159. unsigned int count = 0;
  160. int cpu;
  161. for_each_possible_cpu(cpu) {
  162. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  163. }
  164. return count;
  165. #else
  166. return mnt->mnt_count;
  167. #endif
  168. }
  169. static void drop_mountpoint(struct fs_pin *p)
  170. {
  171. struct mount *m = container_of(p, struct mount, mnt_umount);
  172. dput(m->mnt_ex_mountpoint);
  173. pin_remove(p);
  174. mntput(&m->mnt);
  175. }
  176. static struct mount *alloc_vfsmnt(const char *name)
  177. {
  178. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  179. if (mnt) {
  180. int err;
  181. err = mnt_alloc_id(mnt);
  182. if (err)
  183. goto out_free_cache;
  184. if (name) {
  185. mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
  186. if (!mnt->mnt_devname)
  187. goto out_free_id;
  188. }
  189. #ifdef CONFIG_SMP
  190. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  191. if (!mnt->mnt_pcp)
  192. goto out_free_devname;
  193. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  194. #else
  195. mnt->mnt_count = 1;
  196. mnt->mnt_writers = 0;
  197. #endif
  198. INIT_HLIST_NODE(&mnt->mnt_hash);
  199. INIT_LIST_HEAD(&mnt->mnt_child);
  200. INIT_LIST_HEAD(&mnt->mnt_mounts);
  201. INIT_LIST_HEAD(&mnt->mnt_list);
  202. INIT_LIST_HEAD(&mnt->mnt_expire);
  203. INIT_LIST_HEAD(&mnt->mnt_share);
  204. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  205. INIT_LIST_HEAD(&mnt->mnt_slave);
  206. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  207. #ifdef CONFIG_FSNOTIFY
  208. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  209. #endif
  210. init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
  211. }
  212. return mnt;
  213. #ifdef CONFIG_SMP
  214. out_free_devname:
  215. kfree_const(mnt->mnt_devname);
  216. #endif
  217. out_free_id:
  218. mnt_free_id(mnt);
  219. out_free_cache:
  220. kmem_cache_free(mnt_cache, mnt);
  221. return NULL;
  222. }
  223. /*
  224. * Most r/o checks on a fs are for operations that take
  225. * discrete amounts of time, like a write() or unlink().
  226. * We must keep track of when those operations start
  227. * (for permission checks) and when they end, so that
  228. * we can determine when writes are able to occur to
  229. * a filesystem.
  230. */
  231. /*
  232. * __mnt_is_readonly: check whether a mount is read-only
  233. * @mnt: the mount to check for its write status
  234. *
  235. * This shouldn't be used directly ouside of the VFS.
  236. * It does not guarantee that the filesystem will stay
  237. * r/w, just that it is right *now*. This can not and
  238. * should not be used in place of IS_RDONLY(inode).
  239. * mnt_want/drop_write() will _keep_ the filesystem
  240. * r/w.
  241. */
  242. int __mnt_is_readonly(struct vfsmount *mnt)
  243. {
  244. if (mnt->mnt_flags & MNT_READONLY)
  245. return 1;
  246. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  247. return 1;
  248. return 0;
  249. }
  250. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  251. static inline void mnt_inc_writers(struct mount *mnt)
  252. {
  253. #ifdef CONFIG_SMP
  254. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  255. #else
  256. mnt->mnt_writers++;
  257. #endif
  258. }
  259. static inline void mnt_dec_writers(struct mount *mnt)
  260. {
  261. #ifdef CONFIG_SMP
  262. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  263. #else
  264. mnt->mnt_writers--;
  265. #endif
  266. }
  267. static unsigned int mnt_get_writers(struct mount *mnt)
  268. {
  269. #ifdef CONFIG_SMP
  270. unsigned int count = 0;
  271. int cpu;
  272. for_each_possible_cpu(cpu) {
  273. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  274. }
  275. return count;
  276. #else
  277. return mnt->mnt_writers;
  278. #endif
  279. }
  280. static int mnt_is_readonly(struct vfsmount *mnt)
  281. {
  282. if (mnt->mnt_sb->s_readonly_remount)
  283. return 1;
  284. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  285. smp_rmb();
  286. return __mnt_is_readonly(mnt);
  287. }
  288. /*
  289. * Most r/o & frozen checks on a fs are for operations that take discrete
  290. * amounts of time, like a write() or unlink(). We must keep track of when
  291. * those operations start (for permission checks) and when they end, so that we
  292. * can determine when writes are able to occur to a filesystem.
  293. */
  294. /**
  295. * __mnt_want_write - get write access to a mount without freeze protection
  296. * @m: the mount on which to take a write
  297. *
  298. * This tells the low-level filesystem that a write is about to be performed to
  299. * it, and makes sure that writes are allowed (mnt it read-write) before
  300. * returning success. This operation does not protect against filesystem being
  301. * frozen. When the write operation is finished, __mnt_drop_write() must be
  302. * called. This is effectively a refcount.
  303. */
  304. int __mnt_want_write(struct vfsmount *m)
  305. {
  306. struct mount *mnt = real_mount(m);
  307. int ret = 0;
  308. preempt_disable();
  309. mnt_inc_writers(mnt);
  310. /*
  311. * The store to mnt_inc_writers must be visible before we pass
  312. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  313. * incremented count after it has set MNT_WRITE_HOLD.
  314. */
  315. smp_mb();
  316. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  317. cpu_relax();
  318. /*
  319. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  320. * be set to match its requirements. So we must not load that until
  321. * MNT_WRITE_HOLD is cleared.
  322. */
  323. smp_rmb();
  324. if (mnt_is_readonly(m)) {
  325. mnt_dec_writers(mnt);
  326. ret = -EROFS;
  327. }
  328. preempt_enable();
  329. return ret;
  330. }
  331. /**
  332. * mnt_want_write - get write access to a mount
  333. * @m: the mount on which to take a write
  334. *
  335. * This tells the low-level filesystem that a write is about to be performed to
  336. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  337. * is not frozen) before returning success. When the write operation is
  338. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  339. */
  340. int mnt_want_write(struct vfsmount *m)
  341. {
  342. int ret;
  343. sb_start_write(m->mnt_sb);
  344. ret = __mnt_want_write(m);
  345. if (ret)
  346. sb_end_write(m->mnt_sb);
  347. return ret;
  348. }
  349. EXPORT_SYMBOL_GPL(mnt_want_write);
  350. /**
  351. * mnt_clone_write - get write access to a mount
  352. * @mnt: the mount on which to take a write
  353. *
  354. * This is effectively like mnt_want_write, except
  355. * it must only be used to take an extra write reference
  356. * on a mountpoint that we already know has a write reference
  357. * on it. This allows some optimisation.
  358. *
  359. * After finished, mnt_drop_write must be called as usual to
  360. * drop the reference.
  361. */
  362. int mnt_clone_write(struct vfsmount *mnt)
  363. {
  364. /* superblock may be r/o */
  365. if (__mnt_is_readonly(mnt))
  366. return -EROFS;
  367. preempt_disable();
  368. mnt_inc_writers(real_mount(mnt));
  369. preempt_enable();
  370. return 0;
  371. }
  372. EXPORT_SYMBOL_GPL(mnt_clone_write);
  373. /**
  374. * __mnt_want_write_file - get write access to a file's mount
  375. * @file: the file who's mount on which to take a write
  376. *
  377. * This is like __mnt_want_write, but it takes a file and can
  378. * do some optimisations if the file is open for write already
  379. */
  380. int __mnt_want_write_file(struct file *file)
  381. {
  382. if (!(file->f_mode & FMODE_WRITER))
  383. return __mnt_want_write(file->f_path.mnt);
  384. else
  385. return mnt_clone_write(file->f_path.mnt);
  386. }
  387. /**
  388. * mnt_want_write_file - get write access to a file's mount
  389. * @file: the file who's mount on which to take a write
  390. *
  391. * This is like mnt_want_write, but it takes a file and can
  392. * do some optimisations if the file is open for write already
  393. */
  394. int mnt_want_write_file(struct file *file)
  395. {
  396. int ret;
  397. sb_start_write(file->f_path.mnt->mnt_sb);
  398. ret = __mnt_want_write_file(file);
  399. if (ret)
  400. sb_end_write(file->f_path.mnt->mnt_sb);
  401. return ret;
  402. }
  403. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  404. /**
  405. * __mnt_drop_write - give up write access to a mount
  406. * @mnt: the mount on which to give up write access
  407. *
  408. * Tells the low-level filesystem that we are done
  409. * performing writes to it. Must be matched with
  410. * __mnt_want_write() call above.
  411. */
  412. void __mnt_drop_write(struct vfsmount *mnt)
  413. {
  414. preempt_disable();
  415. mnt_dec_writers(real_mount(mnt));
  416. preempt_enable();
  417. }
  418. /**
  419. * mnt_drop_write - give up write access to a mount
  420. * @mnt: the mount on which to give up write access
  421. *
  422. * Tells the low-level filesystem that we are done performing writes to it and
  423. * also allows filesystem to be frozen again. Must be matched with
  424. * mnt_want_write() call above.
  425. */
  426. void mnt_drop_write(struct vfsmount *mnt)
  427. {
  428. __mnt_drop_write(mnt);
  429. sb_end_write(mnt->mnt_sb);
  430. }
  431. EXPORT_SYMBOL_GPL(mnt_drop_write);
  432. void __mnt_drop_write_file(struct file *file)
  433. {
  434. __mnt_drop_write(file->f_path.mnt);
  435. }
  436. void mnt_drop_write_file(struct file *file)
  437. {
  438. mnt_drop_write(file->f_path.mnt);
  439. }
  440. EXPORT_SYMBOL(mnt_drop_write_file);
  441. static int mnt_make_readonly(struct mount *mnt)
  442. {
  443. int ret = 0;
  444. lock_mount_hash();
  445. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  446. /*
  447. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  448. * should be visible before we do.
  449. */
  450. smp_mb();
  451. /*
  452. * With writers on hold, if this value is zero, then there are
  453. * definitely no active writers (although held writers may subsequently
  454. * increment the count, they'll have to wait, and decrement it after
  455. * seeing MNT_READONLY).
  456. *
  457. * It is OK to have counter incremented on one CPU and decremented on
  458. * another: the sum will add up correctly. The danger would be when we
  459. * sum up each counter, if we read a counter before it is incremented,
  460. * but then read another CPU's count which it has been subsequently
  461. * decremented from -- we would see more decrements than we should.
  462. * MNT_WRITE_HOLD protects against this scenario, because
  463. * mnt_want_write first increments count, then smp_mb, then spins on
  464. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  465. * we're counting up here.
  466. */
  467. if (mnt_get_writers(mnt) > 0)
  468. ret = -EBUSY;
  469. else
  470. mnt->mnt.mnt_flags |= MNT_READONLY;
  471. /*
  472. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  473. * that become unheld will see MNT_READONLY.
  474. */
  475. smp_wmb();
  476. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  477. unlock_mount_hash();
  478. return ret;
  479. }
  480. static void __mnt_unmake_readonly(struct mount *mnt)
  481. {
  482. lock_mount_hash();
  483. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  484. unlock_mount_hash();
  485. }
  486. int sb_prepare_remount_readonly(struct super_block *sb)
  487. {
  488. struct mount *mnt;
  489. int err = 0;
  490. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  491. if (atomic_long_read(&sb->s_remove_count))
  492. return -EBUSY;
  493. lock_mount_hash();
  494. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  495. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  496. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  497. smp_mb();
  498. if (mnt_get_writers(mnt) > 0) {
  499. err = -EBUSY;
  500. break;
  501. }
  502. }
  503. }
  504. if (!err && atomic_long_read(&sb->s_remove_count))
  505. err = -EBUSY;
  506. if (!err) {
  507. sb->s_readonly_remount = 1;
  508. smp_wmb();
  509. }
  510. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  511. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  512. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  513. }
  514. unlock_mount_hash();
  515. return err;
  516. }
  517. static void free_vfsmnt(struct mount *mnt)
  518. {
  519. kfree_const(mnt->mnt_devname);
  520. #ifdef CONFIG_SMP
  521. free_percpu(mnt->mnt_pcp);
  522. #endif
  523. kmem_cache_free(mnt_cache, mnt);
  524. }
  525. static void delayed_free_vfsmnt(struct rcu_head *head)
  526. {
  527. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  528. }
  529. /* call under rcu_read_lock */
  530. int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  531. {
  532. struct mount *mnt;
  533. if (read_seqretry(&mount_lock, seq))
  534. return 1;
  535. if (bastard == NULL)
  536. return 0;
  537. mnt = real_mount(bastard);
  538. mnt_add_count(mnt, 1);
  539. if (likely(!read_seqretry(&mount_lock, seq)))
  540. return 0;
  541. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  542. mnt_add_count(mnt, -1);
  543. return 1;
  544. }
  545. return -1;
  546. }
  547. /* call under rcu_read_lock */
  548. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  549. {
  550. int res = __legitimize_mnt(bastard, seq);
  551. if (likely(!res))
  552. return true;
  553. if (unlikely(res < 0)) {
  554. rcu_read_unlock();
  555. mntput(bastard);
  556. rcu_read_lock();
  557. }
  558. return false;
  559. }
  560. /*
  561. * find the first mount at @dentry on vfsmount @mnt.
  562. * call under rcu_read_lock()
  563. */
  564. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  565. {
  566. struct hlist_head *head = m_hash(mnt, dentry);
  567. struct mount *p;
  568. hlist_for_each_entry_rcu(p, head, mnt_hash)
  569. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  570. return p;
  571. return NULL;
  572. }
  573. /*
  574. * find the last mount at @dentry on vfsmount @mnt.
  575. * mount_lock must be held.
  576. */
  577. struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
  578. {
  579. struct mount *p, *res = NULL;
  580. p = __lookup_mnt(mnt, dentry);
  581. if (!p)
  582. goto out;
  583. if (!(p->mnt.mnt_flags & MNT_UMOUNT))
  584. res = p;
  585. hlist_for_each_entry_continue(p, mnt_hash) {
  586. if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
  587. break;
  588. if (!(p->mnt.mnt_flags & MNT_UMOUNT))
  589. res = p;
  590. }
  591. out:
  592. return res;
  593. }
  594. /*
  595. * lookup_mnt - Return the first child mount mounted at path
  596. *
  597. * "First" means first mounted chronologically. If you create the
  598. * following mounts:
  599. *
  600. * mount /dev/sda1 /mnt
  601. * mount /dev/sda2 /mnt
  602. * mount /dev/sda3 /mnt
  603. *
  604. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  605. * return successively the root dentry and vfsmount of /dev/sda1, then
  606. * /dev/sda2, then /dev/sda3, then NULL.
  607. *
  608. * lookup_mnt takes a reference to the found vfsmount.
  609. */
  610. struct vfsmount *lookup_mnt(struct path *path)
  611. {
  612. struct mount *child_mnt;
  613. struct vfsmount *m;
  614. unsigned seq;
  615. rcu_read_lock();
  616. do {
  617. seq = read_seqbegin(&mount_lock);
  618. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  619. m = child_mnt ? &child_mnt->mnt : NULL;
  620. } while (!legitimize_mnt(m, seq));
  621. rcu_read_unlock();
  622. return m;
  623. }
  624. /*
  625. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  626. * current mount namespace.
  627. *
  628. * The common case is dentries are not mountpoints at all and that
  629. * test is handled inline. For the slow case when we are actually
  630. * dealing with a mountpoint of some kind, walk through all of the
  631. * mounts in the current mount namespace and test to see if the dentry
  632. * is a mountpoint.
  633. *
  634. * The mount_hashtable is not usable in the context because we
  635. * need to identify all mounts that may be in the current mount
  636. * namespace not just a mount that happens to have some specified
  637. * parent mount.
  638. */
  639. bool __is_local_mountpoint(struct dentry *dentry)
  640. {
  641. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  642. struct mount *mnt;
  643. bool is_covered = false;
  644. if (!d_mountpoint(dentry))
  645. goto out;
  646. down_read(&namespace_sem);
  647. list_for_each_entry(mnt, &ns->list, mnt_list) {
  648. is_covered = (mnt->mnt_mountpoint == dentry);
  649. if (is_covered)
  650. break;
  651. }
  652. up_read(&namespace_sem);
  653. out:
  654. return is_covered;
  655. }
  656. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  657. {
  658. struct hlist_head *chain = mp_hash(dentry);
  659. struct mountpoint *mp;
  660. hlist_for_each_entry(mp, chain, m_hash) {
  661. if (mp->m_dentry == dentry) {
  662. /* might be worth a WARN_ON() */
  663. if (d_unlinked(dentry))
  664. return ERR_PTR(-ENOENT);
  665. mp->m_count++;
  666. return mp;
  667. }
  668. }
  669. return NULL;
  670. }
  671. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  672. {
  673. struct hlist_head *chain = mp_hash(dentry);
  674. struct mountpoint *mp;
  675. int ret;
  676. mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  677. if (!mp)
  678. return ERR_PTR(-ENOMEM);
  679. ret = d_set_mounted(dentry);
  680. if (ret) {
  681. kfree(mp);
  682. return ERR_PTR(ret);
  683. }
  684. mp->m_dentry = dentry;
  685. mp->m_count = 1;
  686. hlist_add_head(&mp->m_hash, chain);
  687. INIT_HLIST_HEAD(&mp->m_list);
  688. return mp;
  689. }
  690. static void put_mountpoint(struct mountpoint *mp)
  691. {
  692. if (!--mp->m_count) {
  693. struct dentry *dentry = mp->m_dentry;
  694. BUG_ON(!hlist_empty(&mp->m_list));
  695. spin_lock(&dentry->d_lock);
  696. dentry->d_flags &= ~DCACHE_MOUNTED;
  697. spin_unlock(&dentry->d_lock);
  698. hlist_del(&mp->m_hash);
  699. kfree(mp);
  700. }
  701. }
  702. static inline int check_mnt(struct mount *mnt)
  703. {
  704. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  705. }
  706. /*
  707. * vfsmount lock must be held for write
  708. */
  709. static void touch_mnt_namespace(struct mnt_namespace *ns)
  710. {
  711. if (ns) {
  712. ns->event = ++event;
  713. wake_up_interruptible(&ns->poll);
  714. }
  715. }
  716. /*
  717. * vfsmount lock must be held for write
  718. */
  719. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  720. {
  721. if (ns && ns->event != event) {
  722. ns->event = event;
  723. wake_up_interruptible(&ns->poll);
  724. }
  725. }
  726. /*
  727. * vfsmount lock must be held for write
  728. */
  729. static void unhash_mnt(struct mount *mnt)
  730. {
  731. mnt->mnt_parent = mnt;
  732. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  733. list_del_init(&mnt->mnt_child);
  734. hlist_del_init_rcu(&mnt->mnt_hash);
  735. hlist_del_init(&mnt->mnt_mp_list);
  736. put_mountpoint(mnt->mnt_mp);
  737. mnt->mnt_mp = NULL;
  738. }
  739. /*
  740. * vfsmount lock must be held for write
  741. */
  742. static void detach_mnt(struct mount *mnt, struct path *old_path)
  743. {
  744. old_path->dentry = mnt->mnt_mountpoint;
  745. old_path->mnt = &mnt->mnt_parent->mnt;
  746. unhash_mnt(mnt);
  747. }
  748. /*
  749. * vfsmount lock must be held for write
  750. */
  751. static void umount_mnt(struct mount *mnt)
  752. {
  753. /* old mountpoint will be dropped when we can do that */
  754. mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
  755. unhash_mnt(mnt);
  756. }
  757. /*
  758. * vfsmount lock must be held for write
  759. */
  760. void mnt_set_mountpoint(struct mount *mnt,
  761. struct mountpoint *mp,
  762. struct mount *child_mnt)
  763. {
  764. mp->m_count++;
  765. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  766. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  767. child_mnt->mnt_parent = mnt;
  768. child_mnt->mnt_mp = mp;
  769. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  770. }
  771. /*
  772. * vfsmount lock must be held for write
  773. */
  774. static void attach_mnt(struct mount *mnt,
  775. struct mount *parent,
  776. struct mountpoint *mp)
  777. {
  778. mnt_set_mountpoint(parent, mp, mnt);
  779. hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
  780. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  781. }
  782. static void attach_shadowed(struct mount *mnt,
  783. struct mount *parent,
  784. struct mount *shadows)
  785. {
  786. if (shadows) {
  787. hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
  788. list_add(&mnt->mnt_child, &shadows->mnt_child);
  789. } else {
  790. hlist_add_head_rcu(&mnt->mnt_hash,
  791. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  792. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  793. }
  794. }
  795. /*
  796. * vfsmount lock must be held for write
  797. */
  798. static void commit_tree(struct mount *mnt, struct mount *shadows)
  799. {
  800. struct mount *parent = mnt->mnt_parent;
  801. struct mount *m;
  802. LIST_HEAD(head);
  803. struct mnt_namespace *n = parent->mnt_ns;
  804. BUG_ON(parent == mnt);
  805. list_add_tail(&head, &mnt->mnt_list);
  806. list_for_each_entry(m, &head, mnt_list)
  807. m->mnt_ns = n;
  808. list_splice(&head, n->list.prev);
  809. attach_shadowed(mnt, parent, shadows);
  810. touch_mnt_namespace(n);
  811. }
  812. static struct mount *next_mnt(struct mount *p, struct mount *root)
  813. {
  814. struct list_head *next = p->mnt_mounts.next;
  815. if (next == &p->mnt_mounts) {
  816. while (1) {
  817. if (p == root)
  818. return NULL;
  819. next = p->mnt_child.next;
  820. if (next != &p->mnt_parent->mnt_mounts)
  821. break;
  822. p = p->mnt_parent;
  823. }
  824. }
  825. return list_entry(next, struct mount, mnt_child);
  826. }
  827. static struct mount *skip_mnt_tree(struct mount *p)
  828. {
  829. struct list_head *prev = p->mnt_mounts.prev;
  830. while (prev != &p->mnt_mounts) {
  831. p = list_entry(prev, struct mount, mnt_child);
  832. prev = p->mnt_mounts.prev;
  833. }
  834. return p;
  835. }
  836. struct vfsmount *
  837. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  838. {
  839. struct mount *mnt;
  840. struct dentry *root;
  841. if (!type)
  842. return ERR_PTR(-ENODEV);
  843. mnt = alloc_vfsmnt(name);
  844. if (!mnt)
  845. return ERR_PTR(-ENOMEM);
  846. if (flags & MS_KERNMOUNT)
  847. mnt->mnt.mnt_flags = MNT_INTERNAL;
  848. root = mount_fs(type, flags, name, data);
  849. if (IS_ERR(root)) {
  850. mnt_free_id(mnt);
  851. free_vfsmnt(mnt);
  852. return ERR_CAST(root);
  853. }
  854. mnt->mnt.mnt_root = root;
  855. mnt->mnt.mnt_sb = root->d_sb;
  856. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  857. mnt->mnt_parent = mnt;
  858. lock_mount_hash();
  859. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  860. unlock_mount_hash();
  861. return &mnt->mnt;
  862. }
  863. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  864. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  865. int flag)
  866. {
  867. struct super_block *sb = old->mnt.mnt_sb;
  868. struct mount *mnt;
  869. int err;
  870. mnt = alloc_vfsmnt(old->mnt_devname);
  871. if (!mnt)
  872. return ERR_PTR(-ENOMEM);
  873. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  874. mnt->mnt_group_id = 0; /* not a peer of original */
  875. else
  876. mnt->mnt_group_id = old->mnt_group_id;
  877. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  878. err = mnt_alloc_group_id(mnt);
  879. if (err)
  880. goto out_free;
  881. }
  882. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  883. /* Don't allow unprivileged users to change mount flags */
  884. if (flag & CL_UNPRIVILEGED) {
  885. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  886. if (mnt->mnt.mnt_flags & MNT_READONLY)
  887. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  888. if (mnt->mnt.mnt_flags & MNT_NODEV)
  889. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  890. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  891. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  892. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  893. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  894. }
  895. /* Don't allow unprivileged users to reveal what is under a mount */
  896. if ((flag & CL_UNPRIVILEGED) &&
  897. (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
  898. mnt->mnt.mnt_flags |= MNT_LOCKED;
  899. atomic_inc(&sb->s_active);
  900. mnt->mnt.mnt_sb = sb;
  901. mnt->mnt.mnt_root = dget(root);
  902. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  903. mnt->mnt_parent = mnt;
  904. lock_mount_hash();
  905. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  906. unlock_mount_hash();
  907. if ((flag & CL_SLAVE) ||
  908. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  909. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  910. mnt->mnt_master = old;
  911. CLEAR_MNT_SHARED(mnt);
  912. } else if (!(flag & CL_PRIVATE)) {
  913. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  914. list_add(&mnt->mnt_share, &old->mnt_share);
  915. if (IS_MNT_SLAVE(old))
  916. list_add(&mnt->mnt_slave, &old->mnt_slave);
  917. mnt->mnt_master = old->mnt_master;
  918. }
  919. if (flag & CL_MAKE_SHARED)
  920. set_mnt_shared(mnt);
  921. /* stick the duplicate mount on the same expiry list
  922. * as the original if that was on one */
  923. if (flag & CL_EXPIRE) {
  924. if (!list_empty(&old->mnt_expire))
  925. list_add(&mnt->mnt_expire, &old->mnt_expire);
  926. }
  927. return mnt;
  928. out_free:
  929. mnt_free_id(mnt);
  930. free_vfsmnt(mnt);
  931. return ERR_PTR(err);
  932. }
  933. static void cleanup_mnt(struct mount *mnt)
  934. {
  935. /*
  936. * This probably indicates that somebody messed
  937. * up a mnt_want/drop_write() pair. If this
  938. * happens, the filesystem was probably unable
  939. * to make r/w->r/o transitions.
  940. */
  941. /*
  942. * The locking used to deal with mnt_count decrement provides barriers,
  943. * so mnt_get_writers() below is safe.
  944. */
  945. WARN_ON(mnt_get_writers(mnt));
  946. if (unlikely(mnt->mnt_pins.first))
  947. mnt_pin_kill(mnt);
  948. fsnotify_vfsmount_delete(&mnt->mnt);
  949. dput(mnt->mnt.mnt_root);
  950. deactivate_super(mnt->mnt.mnt_sb);
  951. mnt_free_id(mnt);
  952. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  953. }
  954. static void __cleanup_mnt(struct rcu_head *head)
  955. {
  956. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  957. }
  958. static LLIST_HEAD(delayed_mntput_list);
  959. static void delayed_mntput(struct work_struct *unused)
  960. {
  961. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  962. struct llist_node *next;
  963. for (; node; node = next) {
  964. next = llist_next(node);
  965. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  966. }
  967. }
  968. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  969. static void mntput_no_expire(struct mount *mnt)
  970. {
  971. rcu_read_lock();
  972. mnt_add_count(mnt, -1);
  973. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  974. rcu_read_unlock();
  975. return;
  976. }
  977. lock_mount_hash();
  978. if (mnt_get_count(mnt)) {
  979. rcu_read_unlock();
  980. unlock_mount_hash();
  981. return;
  982. }
  983. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  984. rcu_read_unlock();
  985. unlock_mount_hash();
  986. return;
  987. }
  988. mnt->mnt.mnt_flags |= MNT_DOOMED;
  989. rcu_read_unlock();
  990. list_del(&mnt->mnt_instance);
  991. if (unlikely(!list_empty(&mnt->mnt_mounts))) {
  992. struct mount *p, *tmp;
  993. list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
  994. umount_mnt(p);
  995. }
  996. }
  997. unlock_mount_hash();
  998. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  999. struct task_struct *task = current;
  1000. if (likely(!(task->flags & PF_KTHREAD))) {
  1001. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  1002. if (!task_work_add(task, &mnt->mnt_rcu, true))
  1003. return;
  1004. }
  1005. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  1006. schedule_delayed_work(&delayed_mntput_work, 1);
  1007. return;
  1008. }
  1009. cleanup_mnt(mnt);
  1010. }
  1011. void mntput(struct vfsmount *mnt)
  1012. {
  1013. if (mnt) {
  1014. struct mount *m = real_mount(mnt);
  1015. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  1016. if (unlikely(m->mnt_expiry_mark))
  1017. m->mnt_expiry_mark = 0;
  1018. mntput_no_expire(m);
  1019. }
  1020. }
  1021. EXPORT_SYMBOL(mntput);
  1022. struct vfsmount *mntget(struct vfsmount *mnt)
  1023. {
  1024. if (mnt)
  1025. mnt_add_count(real_mount(mnt), 1);
  1026. return mnt;
  1027. }
  1028. EXPORT_SYMBOL(mntget);
  1029. struct vfsmount *mnt_clone_internal(struct path *path)
  1030. {
  1031. struct mount *p;
  1032. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  1033. if (IS_ERR(p))
  1034. return ERR_CAST(p);
  1035. p->mnt.mnt_flags |= MNT_INTERNAL;
  1036. return &p->mnt;
  1037. }
  1038. static inline void mangle(struct seq_file *m, const char *s)
  1039. {
  1040. seq_escape(m, s, " \t\n\\");
  1041. }
  1042. /*
  1043. * Simple .show_options callback for filesystems which don't want to
  1044. * implement more complex mount option showing.
  1045. *
  1046. * See also save_mount_options().
  1047. */
  1048. int generic_show_options(struct seq_file *m, struct dentry *root)
  1049. {
  1050. const char *options;
  1051. rcu_read_lock();
  1052. options = rcu_dereference(root->d_sb->s_options);
  1053. if (options != NULL && options[0]) {
  1054. seq_putc(m, ',');
  1055. mangle(m, options);
  1056. }
  1057. rcu_read_unlock();
  1058. return 0;
  1059. }
  1060. EXPORT_SYMBOL(generic_show_options);
  1061. /*
  1062. * If filesystem uses generic_show_options(), this function should be
  1063. * called from the fill_super() callback.
  1064. *
  1065. * The .remount_fs callback usually needs to be handled in a special
  1066. * way, to make sure, that previous options are not overwritten if the
  1067. * remount fails.
  1068. *
  1069. * Also note, that if the filesystem's .remount_fs function doesn't
  1070. * reset all options to their default value, but changes only newly
  1071. * given options, then the displayed options will not reflect reality
  1072. * any more.
  1073. */
  1074. void save_mount_options(struct super_block *sb, char *options)
  1075. {
  1076. BUG_ON(sb->s_options);
  1077. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  1078. }
  1079. EXPORT_SYMBOL(save_mount_options);
  1080. void replace_mount_options(struct super_block *sb, char *options)
  1081. {
  1082. char *old = sb->s_options;
  1083. rcu_assign_pointer(sb->s_options, options);
  1084. if (old) {
  1085. synchronize_rcu();
  1086. kfree(old);
  1087. }
  1088. }
  1089. EXPORT_SYMBOL(replace_mount_options);
  1090. #ifdef CONFIG_PROC_FS
  1091. /* iterator; we want it to have access to namespace_sem, thus here... */
  1092. static void *m_start(struct seq_file *m, loff_t *pos)
  1093. {
  1094. struct proc_mounts *p = m->private;
  1095. down_read(&namespace_sem);
  1096. if (p->cached_event == p->ns->event) {
  1097. void *v = p->cached_mount;
  1098. if (*pos == p->cached_index)
  1099. return v;
  1100. if (*pos == p->cached_index + 1) {
  1101. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1102. return p->cached_mount = v;
  1103. }
  1104. }
  1105. p->cached_event = p->ns->event;
  1106. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1107. p->cached_index = *pos;
  1108. return p->cached_mount;
  1109. }
  1110. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1111. {
  1112. struct proc_mounts *p = m->private;
  1113. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1114. p->cached_index = *pos;
  1115. return p->cached_mount;
  1116. }
  1117. static void m_stop(struct seq_file *m, void *v)
  1118. {
  1119. up_read(&namespace_sem);
  1120. }
  1121. static int m_show(struct seq_file *m, void *v)
  1122. {
  1123. struct proc_mounts *p = m->private;
  1124. struct mount *r = list_entry(v, struct mount, mnt_list);
  1125. return p->show(m, &r->mnt);
  1126. }
  1127. const struct seq_operations mounts_op = {
  1128. .start = m_start,
  1129. .next = m_next,
  1130. .stop = m_stop,
  1131. .show = m_show,
  1132. };
  1133. #endif /* CONFIG_PROC_FS */
  1134. /**
  1135. * may_umount_tree - check if a mount tree is busy
  1136. * @mnt: root of mount tree
  1137. *
  1138. * This is called to check if a tree of mounts has any
  1139. * open files, pwds, chroots or sub mounts that are
  1140. * busy.
  1141. */
  1142. int may_umount_tree(struct vfsmount *m)
  1143. {
  1144. struct mount *mnt = real_mount(m);
  1145. int actual_refs = 0;
  1146. int minimum_refs = 0;
  1147. struct mount *p;
  1148. BUG_ON(!m);
  1149. /* write lock needed for mnt_get_count */
  1150. lock_mount_hash();
  1151. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1152. actual_refs += mnt_get_count(p);
  1153. minimum_refs += 2;
  1154. }
  1155. unlock_mount_hash();
  1156. if (actual_refs > minimum_refs)
  1157. return 0;
  1158. return 1;
  1159. }
  1160. EXPORT_SYMBOL(may_umount_tree);
  1161. /**
  1162. * may_umount - check if a mount point is busy
  1163. * @mnt: root of mount
  1164. *
  1165. * This is called to check if a mount point has any
  1166. * open files, pwds, chroots or sub mounts. If the
  1167. * mount has sub mounts this will return busy
  1168. * regardless of whether the sub mounts are busy.
  1169. *
  1170. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1171. * give false negatives. The main reason why it's here is that we need
  1172. * a non-destructive way to look for easily umountable filesystems.
  1173. */
  1174. int may_umount(struct vfsmount *mnt)
  1175. {
  1176. int ret = 1;
  1177. down_read(&namespace_sem);
  1178. lock_mount_hash();
  1179. if (propagate_mount_busy(real_mount(mnt), 2))
  1180. ret = 0;
  1181. unlock_mount_hash();
  1182. up_read(&namespace_sem);
  1183. return ret;
  1184. }
  1185. EXPORT_SYMBOL(may_umount);
  1186. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1187. static void namespace_unlock(void)
  1188. {
  1189. struct hlist_head head;
  1190. hlist_move_list(&unmounted, &head);
  1191. up_write(&namespace_sem);
  1192. if (likely(hlist_empty(&head)))
  1193. return;
  1194. synchronize_rcu();
  1195. group_pin_kill(&head);
  1196. }
  1197. static inline void namespace_lock(void)
  1198. {
  1199. down_write(&namespace_sem);
  1200. }
  1201. enum umount_tree_flags {
  1202. UMOUNT_SYNC = 1,
  1203. UMOUNT_PROPAGATE = 2,
  1204. UMOUNT_CONNECTED = 4,
  1205. };
  1206. static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
  1207. {
  1208. /* Leaving mounts connected is only valid for lazy umounts */
  1209. if (how & UMOUNT_SYNC)
  1210. return true;
  1211. /* A mount without a parent has nothing to be connected to */
  1212. if (!mnt_has_parent(mnt))
  1213. return true;
  1214. /* Because the reference counting rules change when mounts are
  1215. * unmounted and connected, umounted mounts may not be
  1216. * connected to mounted mounts.
  1217. */
  1218. if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
  1219. return true;
  1220. /* Has it been requested that the mount remain connected? */
  1221. if (how & UMOUNT_CONNECTED)
  1222. return false;
  1223. /* Is the mount locked such that it needs to remain connected? */
  1224. if (IS_MNT_LOCKED(mnt))
  1225. return false;
  1226. /* By default disconnect the mount */
  1227. return true;
  1228. }
  1229. /*
  1230. * mount_lock must be held
  1231. * namespace_sem must be held for write
  1232. */
  1233. static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
  1234. {
  1235. LIST_HEAD(tmp_list);
  1236. struct mount *p;
  1237. if (how & UMOUNT_PROPAGATE)
  1238. propagate_mount_unlock(mnt);
  1239. /* Gather the mounts to umount */
  1240. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1241. p->mnt.mnt_flags |= MNT_UMOUNT;
  1242. list_move(&p->mnt_list, &tmp_list);
  1243. }
  1244. /* Hide the mounts from mnt_mounts */
  1245. list_for_each_entry(p, &tmp_list, mnt_list) {
  1246. list_del_init(&p->mnt_child);
  1247. }
  1248. /* Add propogated mounts to the tmp_list */
  1249. if (how & UMOUNT_PROPAGATE)
  1250. propagate_umount(&tmp_list);
  1251. while (!list_empty(&tmp_list)) {
  1252. bool disconnect;
  1253. p = list_first_entry(&tmp_list, struct mount, mnt_list);
  1254. list_del_init(&p->mnt_expire);
  1255. list_del_init(&p->mnt_list);
  1256. __touch_mnt_namespace(p->mnt_ns);
  1257. p->mnt_ns = NULL;
  1258. if (how & UMOUNT_SYNC)
  1259. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1260. disconnect = disconnect_mount(p, how);
  1261. pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
  1262. disconnect ? &unmounted : NULL);
  1263. if (mnt_has_parent(p)) {
  1264. mnt_add_count(p->mnt_parent, -1);
  1265. if (!disconnect) {
  1266. /* Don't forget about p */
  1267. list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
  1268. } else {
  1269. umount_mnt(p);
  1270. }
  1271. }
  1272. change_mnt_propagation(p, MS_PRIVATE);
  1273. }
  1274. }
  1275. static void shrink_submounts(struct mount *mnt);
  1276. static int do_umount(struct mount *mnt, int flags)
  1277. {
  1278. struct super_block *sb = mnt->mnt.mnt_sb;
  1279. int retval;
  1280. retval = security_sb_umount(&mnt->mnt, flags);
  1281. if (retval)
  1282. return retval;
  1283. /*
  1284. * Allow userspace to request a mountpoint be expired rather than
  1285. * unmounting unconditionally. Unmount only happens if:
  1286. * (1) the mark is already set (the mark is cleared by mntput())
  1287. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1288. */
  1289. if (flags & MNT_EXPIRE) {
  1290. if (&mnt->mnt == current->fs->root.mnt ||
  1291. flags & (MNT_FORCE | MNT_DETACH))
  1292. return -EINVAL;
  1293. /*
  1294. * probably don't strictly need the lock here if we examined
  1295. * all race cases, but it's a slowpath.
  1296. */
  1297. lock_mount_hash();
  1298. if (mnt_get_count(mnt) != 2) {
  1299. unlock_mount_hash();
  1300. return -EBUSY;
  1301. }
  1302. unlock_mount_hash();
  1303. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1304. return -EAGAIN;
  1305. }
  1306. /*
  1307. * If we may have to abort operations to get out of this
  1308. * mount, and they will themselves hold resources we must
  1309. * allow the fs to do things. In the Unix tradition of
  1310. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1311. * might fail to complete on the first run through as other tasks
  1312. * must return, and the like. Thats for the mount program to worry
  1313. * about for the moment.
  1314. */
  1315. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1316. sb->s_op->umount_begin(sb);
  1317. }
  1318. /*
  1319. * No sense to grab the lock for this test, but test itself looks
  1320. * somewhat bogus. Suggestions for better replacement?
  1321. * Ho-hum... In principle, we might treat that as umount + switch
  1322. * to rootfs. GC would eventually take care of the old vfsmount.
  1323. * Actually it makes sense, especially if rootfs would contain a
  1324. * /reboot - static binary that would close all descriptors and
  1325. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1326. */
  1327. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1328. /*
  1329. * Special case for "unmounting" root ...
  1330. * we just try to remount it readonly.
  1331. */
  1332. if (!capable(CAP_SYS_ADMIN))
  1333. return -EPERM;
  1334. down_write(&sb->s_umount);
  1335. if (!(sb->s_flags & MS_RDONLY))
  1336. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1337. up_write(&sb->s_umount);
  1338. return retval;
  1339. }
  1340. namespace_lock();
  1341. lock_mount_hash();
  1342. event++;
  1343. if (flags & MNT_DETACH) {
  1344. if (!list_empty(&mnt->mnt_list))
  1345. umount_tree(mnt, UMOUNT_PROPAGATE);
  1346. retval = 0;
  1347. } else {
  1348. shrink_submounts(mnt);
  1349. retval = -EBUSY;
  1350. if (!propagate_mount_busy(mnt, 2)) {
  1351. if (!list_empty(&mnt->mnt_list))
  1352. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  1353. retval = 0;
  1354. }
  1355. }
  1356. unlock_mount_hash();
  1357. namespace_unlock();
  1358. return retval;
  1359. }
  1360. /*
  1361. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1362. *
  1363. * During unlink, rmdir, and d_drop it is possible to loose the path
  1364. * to an existing mountpoint, and wind up leaking the mount.
  1365. * detach_mounts allows lazily unmounting those mounts instead of
  1366. * leaking them.
  1367. *
  1368. * The caller may hold dentry->d_inode->i_mutex.
  1369. */
  1370. void __detach_mounts(struct dentry *dentry)
  1371. {
  1372. struct mountpoint *mp;
  1373. struct mount *mnt;
  1374. namespace_lock();
  1375. mp = lookup_mountpoint(dentry);
  1376. if (IS_ERR_OR_NULL(mp))
  1377. goto out_unlock;
  1378. lock_mount_hash();
  1379. event++;
  1380. while (!hlist_empty(&mp->m_list)) {
  1381. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1382. if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
  1383. hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
  1384. umount_mnt(mnt);
  1385. }
  1386. else umount_tree(mnt, UMOUNT_CONNECTED);
  1387. }
  1388. unlock_mount_hash();
  1389. put_mountpoint(mp);
  1390. out_unlock:
  1391. namespace_unlock();
  1392. }
  1393. /*
  1394. * Is the caller allowed to modify his namespace?
  1395. */
  1396. static inline bool may_mount(void)
  1397. {
  1398. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1399. }
  1400. static inline bool may_mandlock(void)
  1401. {
  1402. #ifndef CONFIG_MANDATORY_FILE_LOCKING
  1403. return false;
  1404. #endif
  1405. return capable(CAP_SYS_ADMIN);
  1406. }
  1407. /*
  1408. * Now umount can handle mount points as well as block devices.
  1409. * This is important for filesystems which use unnamed block devices.
  1410. *
  1411. * We now support a flag for forced unmount like the other 'big iron'
  1412. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1413. */
  1414. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1415. {
  1416. struct path path;
  1417. struct mount *mnt;
  1418. int retval;
  1419. int lookup_flags = 0;
  1420. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1421. return -EINVAL;
  1422. if (!may_mount())
  1423. return -EPERM;
  1424. if (!(flags & UMOUNT_NOFOLLOW))
  1425. lookup_flags |= LOOKUP_FOLLOW;
  1426. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1427. if (retval)
  1428. goto out;
  1429. mnt = real_mount(path.mnt);
  1430. retval = -EINVAL;
  1431. if (path.dentry != path.mnt->mnt_root)
  1432. goto dput_and_out;
  1433. if (!check_mnt(mnt))
  1434. goto dput_and_out;
  1435. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1436. goto dput_and_out;
  1437. retval = -EPERM;
  1438. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1439. goto dput_and_out;
  1440. retval = do_umount(mnt, flags);
  1441. dput_and_out:
  1442. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1443. dput(path.dentry);
  1444. mntput_no_expire(mnt);
  1445. out:
  1446. return retval;
  1447. }
  1448. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1449. /*
  1450. * The 2.0 compatible umount. No flags.
  1451. */
  1452. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1453. {
  1454. return sys_umount(name, 0);
  1455. }
  1456. #endif
  1457. static bool is_mnt_ns_file(struct dentry *dentry)
  1458. {
  1459. /* Is this a proxy for a mount namespace? */
  1460. return dentry->d_op == &ns_dentry_operations &&
  1461. dentry->d_fsdata == &mntns_operations;
  1462. }
  1463. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1464. {
  1465. return container_of(ns, struct mnt_namespace, ns);
  1466. }
  1467. static bool mnt_ns_loop(struct dentry *dentry)
  1468. {
  1469. /* Could bind mounting the mount namespace inode cause a
  1470. * mount namespace loop?
  1471. */
  1472. struct mnt_namespace *mnt_ns;
  1473. if (!is_mnt_ns_file(dentry))
  1474. return false;
  1475. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1476. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1477. }
  1478. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1479. int flag)
  1480. {
  1481. struct mount *res, *p, *q, *r, *parent;
  1482. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1483. return ERR_PTR(-EINVAL);
  1484. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1485. return ERR_PTR(-EINVAL);
  1486. res = q = clone_mnt(mnt, dentry, flag);
  1487. if (IS_ERR(q))
  1488. return q;
  1489. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1490. p = mnt;
  1491. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1492. struct mount *s;
  1493. if (!is_subdir(r->mnt_mountpoint, dentry))
  1494. continue;
  1495. for (s = r; s; s = next_mnt(s, r)) {
  1496. struct mount *t = NULL;
  1497. if (!(flag & CL_COPY_UNBINDABLE) &&
  1498. IS_MNT_UNBINDABLE(s)) {
  1499. s = skip_mnt_tree(s);
  1500. continue;
  1501. }
  1502. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1503. is_mnt_ns_file(s->mnt.mnt_root)) {
  1504. s = skip_mnt_tree(s);
  1505. continue;
  1506. }
  1507. while (p != s->mnt_parent) {
  1508. p = p->mnt_parent;
  1509. q = q->mnt_parent;
  1510. }
  1511. p = s;
  1512. parent = q;
  1513. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1514. if (IS_ERR(q))
  1515. goto out;
  1516. lock_mount_hash();
  1517. list_add_tail(&q->mnt_list, &res->mnt_list);
  1518. mnt_set_mountpoint(parent, p->mnt_mp, q);
  1519. if (!list_empty(&parent->mnt_mounts)) {
  1520. t = list_last_entry(&parent->mnt_mounts,
  1521. struct mount, mnt_child);
  1522. if (t->mnt_mp != p->mnt_mp)
  1523. t = NULL;
  1524. }
  1525. attach_shadowed(q, parent, t);
  1526. unlock_mount_hash();
  1527. }
  1528. }
  1529. return res;
  1530. out:
  1531. if (res) {
  1532. lock_mount_hash();
  1533. umount_tree(res, UMOUNT_SYNC);
  1534. unlock_mount_hash();
  1535. }
  1536. return q;
  1537. }
  1538. /* Caller should check returned pointer for errors */
  1539. struct vfsmount *collect_mounts(struct path *path)
  1540. {
  1541. struct mount *tree;
  1542. namespace_lock();
  1543. if (!check_mnt(real_mount(path->mnt)))
  1544. tree = ERR_PTR(-EINVAL);
  1545. else
  1546. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1547. CL_COPY_ALL | CL_PRIVATE);
  1548. namespace_unlock();
  1549. if (IS_ERR(tree))
  1550. return ERR_CAST(tree);
  1551. return &tree->mnt;
  1552. }
  1553. void drop_collected_mounts(struct vfsmount *mnt)
  1554. {
  1555. namespace_lock();
  1556. lock_mount_hash();
  1557. umount_tree(real_mount(mnt), UMOUNT_SYNC);
  1558. unlock_mount_hash();
  1559. namespace_unlock();
  1560. }
  1561. /**
  1562. * clone_private_mount - create a private clone of a path
  1563. *
  1564. * This creates a new vfsmount, which will be the clone of @path. The new will
  1565. * not be attached anywhere in the namespace and will be private (i.e. changes
  1566. * to the originating mount won't be propagated into this).
  1567. *
  1568. * Release with mntput().
  1569. */
  1570. struct vfsmount *clone_private_mount(struct path *path)
  1571. {
  1572. struct mount *old_mnt = real_mount(path->mnt);
  1573. struct mount *new_mnt;
  1574. if (IS_MNT_UNBINDABLE(old_mnt))
  1575. return ERR_PTR(-EINVAL);
  1576. down_read(&namespace_sem);
  1577. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1578. up_read(&namespace_sem);
  1579. if (IS_ERR(new_mnt))
  1580. return ERR_CAST(new_mnt);
  1581. return &new_mnt->mnt;
  1582. }
  1583. EXPORT_SYMBOL_GPL(clone_private_mount);
  1584. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1585. struct vfsmount *root)
  1586. {
  1587. struct mount *mnt;
  1588. int res = f(root, arg);
  1589. if (res)
  1590. return res;
  1591. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1592. res = f(&mnt->mnt, arg);
  1593. if (res)
  1594. return res;
  1595. }
  1596. return 0;
  1597. }
  1598. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1599. {
  1600. struct mount *p;
  1601. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1602. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1603. mnt_release_group_id(p);
  1604. }
  1605. }
  1606. static int invent_group_ids(struct mount *mnt, bool recurse)
  1607. {
  1608. struct mount *p;
  1609. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1610. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1611. int err = mnt_alloc_group_id(p);
  1612. if (err) {
  1613. cleanup_group_ids(mnt, p);
  1614. return err;
  1615. }
  1616. }
  1617. }
  1618. return 0;
  1619. }
  1620. /*
  1621. * @source_mnt : mount tree to be attached
  1622. * @nd : place the mount tree @source_mnt is attached
  1623. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1624. * store the parent mount and mountpoint dentry.
  1625. * (done when source_mnt is moved)
  1626. *
  1627. * NOTE: in the table below explains the semantics when a source mount
  1628. * of a given type is attached to a destination mount of a given type.
  1629. * ---------------------------------------------------------------------------
  1630. * | BIND MOUNT OPERATION |
  1631. * |**************************************************************************
  1632. * | source-->| shared | private | slave | unbindable |
  1633. * | dest | | | | |
  1634. * | | | | | | |
  1635. * | v | | | | |
  1636. * |**************************************************************************
  1637. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1638. * | | | | | |
  1639. * |non-shared| shared (+) | private | slave (*) | invalid |
  1640. * ***************************************************************************
  1641. * A bind operation clones the source mount and mounts the clone on the
  1642. * destination mount.
  1643. *
  1644. * (++) the cloned mount is propagated to all the mounts in the propagation
  1645. * tree of the destination mount and the cloned mount is added to
  1646. * the peer group of the source mount.
  1647. * (+) the cloned mount is created under the destination mount and is marked
  1648. * as shared. The cloned mount is added to the peer group of the source
  1649. * mount.
  1650. * (+++) the mount is propagated to all the mounts in the propagation tree
  1651. * of the destination mount and the cloned mount is made slave
  1652. * of the same master as that of the source mount. The cloned mount
  1653. * is marked as 'shared and slave'.
  1654. * (*) the cloned mount is made a slave of the same master as that of the
  1655. * source mount.
  1656. *
  1657. * ---------------------------------------------------------------------------
  1658. * | MOVE MOUNT OPERATION |
  1659. * |**************************************************************************
  1660. * | source-->| shared | private | slave | unbindable |
  1661. * | dest | | | | |
  1662. * | | | | | | |
  1663. * | v | | | | |
  1664. * |**************************************************************************
  1665. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1666. * | | | | | |
  1667. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1668. * ***************************************************************************
  1669. *
  1670. * (+) the mount is moved to the destination. And is then propagated to
  1671. * all the mounts in the propagation tree of the destination mount.
  1672. * (+*) the mount is moved to the destination.
  1673. * (+++) the mount is moved to the destination and is then propagated to
  1674. * all the mounts belonging to the destination mount's propagation tree.
  1675. * the mount is marked as 'shared and slave'.
  1676. * (*) the mount continues to be a slave at the new location.
  1677. *
  1678. * if the source mount is a tree, the operations explained above is
  1679. * applied to each mount in the tree.
  1680. * Must be called without spinlocks held, since this function can sleep
  1681. * in allocations.
  1682. */
  1683. static int attach_recursive_mnt(struct mount *source_mnt,
  1684. struct mount *dest_mnt,
  1685. struct mountpoint *dest_mp,
  1686. struct path *parent_path)
  1687. {
  1688. HLIST_HEAD(tree_list);
  1689. struct mount *child, *p;
  1690. struct hlist_node *n;
  1691. int err;
  1692. if (IS_MNT_SHARED(dest_mnt)) {
  1693. err = invent_group_ids(source_mnt, true);
  1694. if (err)
  1695. goto out;
  1696. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1697. lock_mount_hash();
  1698. if (err)
  1699. goto out_cleanup_ids;
  1700. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1701. set_mnt_shared(p);
  1702. } else {
  1703. lock_mount_hash();
  1704. }
  1705. if (parent_path) {
  1706. detach_mnt(source_mnt, parent_path);
  1707. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1708. touch_mnt_namespace(source_mnt->mnt_ns);
  1709. } else {
  1710. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1711. commit_tree(source_mnt, NULL);
  1712. }
  1713. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1714. struct mount *q;
  1715. hlist_del_init(&child->mnt_hash);
  1716. q = __lookup_mnt_last(&child->mnt_parent->mnt,
  1717. child->mnt_mountpoint);
  1718. commit_tree(child, q);
  1719. }
  1720. unlock_mount_hash();
  1721. return 0;
  1722. out_cleanup_ids:
  1723. while (!hlist_empty(&tree_list)) {
  1724. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1725. umount_tree(child, UMOUNT_SYNC);
  1726. }
  1727. unlock_mount_hash();
  1728. cleanup_group_ids(source_mnt, NULL);
  1729. out:
  1730. return err;
  1731. }
  1732. static struct mountpoint *lock_mount(struct path *path)
  1733. {
  1734. struct vfsmount *mnt;
  1735. struct dentry *dentry = path->dentry;
  1736. retry:
  1737. inode_lock(dentry->d_inode);
  1738. if (unlikely(cant_mount(dentry))) {
  1739. inode_unlock(dentry->d_inode);
  1740. return ERR_PTR(-ENOENT);
  1741. }
  1742. namespace_lock();
  1743. mnt = lookup_mnt(path);
  1744. if (likely(!mnt)) {
  1745. struct mountpoint *mp = lookup_mountpoint(dentry);
  1746. if (!mp)
  1747. mp = new_mountpoint(dentry);
  1748. if (IS_ERR(mp)) {
  1749. namespace_unlock();
  1750. inode_unlock(dentry->d_inode);
  1751. return mp;
  1752. }
  1753. return mp;
  1754. }
  1755. namespace_unlock();
  1756. inode_unlock(path->dentry->d_inode);
  1757. path_put(path);
  1758. path->mnt = mnt;
  1759. dentry = path->dentry = dget(mnt->mnt_root);
  1760. goto retry;
  1761. }
  1762. static void unlock_mount(struct mountpoint *where)
  1763. {
  1764. struct dentry *dentry = where->m_dentry;
  1765. put_mountpoint(where);
  1766. namespace_unlock();
  1767. inode_unlock(dentry->d_inode);
  1768. }
  1769. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1770. {
  1771. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1772. return -EINVAL;
  1773. if (d_is_dir(mp->m_dentry) !=
  1774. d_is_dir(mnt->mnt.mnt_root))
  1775. return -ENOTDIR;
  1776. return attach_recursive_mnt(mnt, p, mp, NULL);
  1777. }
  1778. /*
  1779. * Sanity check the flags to change_mnt_propagation.
  1780. */
  1781. static int flags_to_propagation_type(int flags)
  1782. {
  1783. int type = flags & ~(MS_REC | MS_SILENT);
  1784. /* Fail if any non-propagation flags are set */
  1785. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1786. return 0;
  1787. /* Only one propagation flag should be set */
  1788. if (!is_power_of_2(type))
  1789. return 0;
  1790. return type;
  1791. }
  1792. /*
  1793. * recursively change the type of the mountpoint.
  1794. */
  1795. static int do_change_type(struct path *path, int flag)
  1796. {
  1797. struct mount *m;
  1798. struct mount *mnt = real_mount(path->mnt);
  1799. int recurse = flag & MS_REC;
  1800. int type;
  1801. int err = 0;
  1802. if (path->dentry != path->mnt->mnt_root)
  1803. return -EINVAL;
  1804. type = flags_to_propagation_type(flag);
  1805. if (!type)
  1806. return -EINVAL;
  1807. namespace_lock();
  1808. if (type == MS_SHARED) {
  1809. err = invent_group_ids(mnt, recurse);
  1810. if (err)
  1811. goto out_unlock;
  1812. }
  1813. lock_mount_hash();
  1814. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1815. change_mnt_propagation(m, type);
  1816. unlock_mount_hash();
  1817. out_unlock:
  1818. namespace_unlock();
  1819. return err;
  1820. }
  1821. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1822. {
  1823. struct mount *child;
  1824. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1825. if (!is_subdir(child->mnt_mountpoint, dentry))
  1826. continue;
  1827. if (child->mnt.mnt_flags & MNT_LOCKED)
  1828. return true;
  1829. }
  1830. return false;
  1831. }
  1832. /*
  1833. * do loopback mount.
  1834. */
  1835. static int do_loopback(struct path *path, const char *old_name,
  1836. int recurse)
  1837. {
  1838. struct path old_path;
  1839. struct mount *mnt = NULL, *old, *parent;
  1840. struct mountpoint *mp;
  1841. int err;
  1842. if (!old_name || !*old_name)
  1843. return -EINVAL;
  1844. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1845. if (err)
  1846. return err;
  1847. err = -EINVAL;
  1848. if (mnt_ns_loop(old_path.dentry))
  1849. goto out;
  1850. mp = lock_mount(path);
  1851. err = PTR_ERR(mp);
  1852. if (IS_ERR(mp))
  1853. goto out;
  1854. old = real_mount(old_path.mnt);
  1855. parent = real_mount(path->mnt);
  1856. err = -EINVAL;
  1857. if (IS_MNT_UNBINDABLE(old))
  1858. goto out2;
  1859. if (!check_mnt(parent))
  1860. goto out2;
  1861. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1862. goto out2;
  1863. if (!recurse && has_locked_children(old, old_path.dentry))
  1864. goto out2;
  1865. if (recurse)
  1866. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1867. else
  1868. mnt = clone_mnt(old, old_path.dentry, 0);
  1869. if (IS_ERR(mnt)) {
  1870. err = PTR_ERR(mnt);
  1871. goto out2;
  1872. }
  1873. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1874. err = graft_tree(mnt, parent, mp);
  1875. if (err) {
  1876. lock_mount_hash();
  1877. umount_tree(mnt, UMOUNT_SYNC);
  1878. unlock_mount_hash();
  1879. }
  1880. out2:
  1881. unlock_mount(mp);
  1882. out:
  1883. path_put(&old_path);
  1884. return err;
  1885. }
  1886. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1887. {
  1888. int error = 0;
  1889. int readonly_request = 0;
  1890. if (ms_flags & MS_RDONLY)
  1891. readonly_request = 1;
  1892. if (readonly_request == __mnt_is_readonly(mnt))
  1893. return 0;
  1894. if (readonly_request)
  1895. error = mnt_make_readonly(real_mount(mnt));
  1896. else
  1897. __mnt_unmake_readonly(real_mount(mnt));
  1898. return error;
  1899. }
  1900. /*
  1901. * change filesystem flags. dir should be a physical root of filesystem.
  1902. * If you've mounted a non-root directory somewhere and want to do remount
  1903. * on it - tough luck.
  1904. */
  1905. static int do_remount(struct path *path, int flags, int mnt_flags,
  1906. void *data)
  1907. {
  1908. int err;
  1909. struct super_block *sb = path->mnt->mnt_sb;
  1910. struct mount *mnt = real_mount(path->mnt);
  1911. if (!check_mnt(mnt))
  1912. return -EINVAL;
  1913. if (path->dentry != path->mnt->mnt_root)
  1914. return -EINVAL;
  1915. /* Don't allow changing of locked mnt flags.
  1916. *
  1917. * No locks need to be held here while testing the various
  1918. * MNT_LOCK flags because those flags can never be cleared
  1919. * once they are set.
  1920. */
  1921. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  1922. !(mnt_flags & MNT_READONLY)) {
  1923. return -EPERM;
  1924. }
  1925. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  1926. !(mnt_flags & MNT_NODEV)) {
  1927. return -EPERM;
  1928. }
  1929. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  1930. !(mnt_flags & MNT_NOSUID)) {
  1931. return -EPERM;
  1932. }
  1933. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  1934. !(mnt_flags & MNT_NOEXEC)) {
  1935. return -EPERM;
  1936. }
  1937. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  1938. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  1939. return -EPERM;
  1940. }
  1941. err = security_sb_remount(sb, data);
  1942. if (err)
  1943. return err;
  1944. down_write(&sb->s_umount);
  1945. if (flags & MS_BIND)
  1946. err = change_mount_flags(path->mnt, flags);
  1947. else if (!capable(CAP_SYS_ADMIN))
  1948. err = -EPERM;
  1949. else
  1950. err = do_remount_sb(sb, flags, data, 0);
  1951. if (!err) {
  1952. lock_mount_hash();
  1953. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  1954. mnt->mnt.mnt_flags = mnt_flags;
  1955. touch_mnt_namespace(mnt->mnt_ns);
  1956. unlock_mount_hash();
  1957. }
  1958. up_write(&sb->s_umount);
  1959. return err;
  1960. }
  1961. static inline int tree_contains_unbindable(struct mount *mnt)
  1962. {
  1963. struct mount *p;
  1964. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1965. if (IS_MNT_UNBINDABLE(p))
  1966. return 1;
  1967. }
  1968. return 0;
  1969. }
  1970. static int do_move_mount(struct path *path, const char *old_name)
  1971. {
  1972. struct path old_path, parent_path;
  1973. struct mount *p;
  1974. struct mount *old;
  1975. struct mountpoint *mp;
  1976. int err;
  1977. if (!old_name || !*old_name)
  1978. return -EINVAL;
  1979. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1980. if (err)
  1981. return err;
  1982. mp = lock_mount(path);
  1983. err = PTR_ERR(mp);
  1984. if (IS_ERR(mp))
  1985. goto out;
  1986. old = real_mount(old_path.mnt);
  1987. p = real_mount(path->mnt);
  1988. err = -EINVAL;
  1989. if (!check_mnt(p) || !check_mnt(old))
  1990. goto out1;
  1991. if (old->mnt.mnt_flags & MNT_LOCKED)
  1992. goto out1;
  1993. err = -EINVAL;
  1994. if (old_path.dentry != old_path.mnt->mnt_root)
  1995. goto out1;
  1996. if (!mnt_has_parent(old))
  1997. goto out1;
  1998. if (d_is_dir(path->dentry) !=
  1999. d_is_dir(old_path.dentry))
  2000. goto out1;
  2001. /*
  2002. * Don't move a mount residing in a shared parent.
  2003. */
  2004. if (IS_MNT_SHARED(old->mnt_parent))
  2005. goto out1;
  2006. /*
  2007. * Don't move a mount tree containing unbindable mounts to a destination
  2008. * mount which is shared.
  2009. */
  2010. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  2011. goto out1;
  2012. err = -ELOOP;
  2013. for (; mnt_has_parent(p); p = p->mnt_parent)
  2014. if (p == old)
  2015. goto out1;
  2016. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  2017. if (err)
  2018. goto out1;
  2019. /* if the mount is moved, it should no longer be expire
  2020. * automatically */
  2021. list_del_init(&old->mnt_expire);
  2022. out1:
  2023. unlock_mount(mp);
  2024. out:
  2025. if (!err)
  2026. path_put(&parent_path);
  2027. path_put(&old_path);
  2028. return err;
  2029. }
  2030. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  2031. {
  2032. int err;
  2033. const char *subtype = strchr(fstype, '.');
  2034. if (subtype) {
  2035. subtype++;
  2036. err = -EINVAL;
  2037. if (!subtype[0])
  2038. goto err;
  2039. } else
  2040. subtype = "";
  2041. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  2042. err = -ENOMEM;
  2043. if (!mnt->mnt_sb->s_subtype)
  2044. goto err;
  2045. return mnt;
  2046. err:
  2047. mntput(mnt);
  2048. return ERR_PTR(err);
  2049. }
  2050. /*
  2051. * add a mount into a namespace's mount tree
  2052. */
  2053. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  2054. {
  2055. struct mountpoint *mp;
  2056. struct mount *parent;
  2057. int err;
  2058. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  2059. mp = lock_mount(path);
  2060. if (IS_ERR(mp))
  2061. return PTR_ERR(mp);
  2062. parent = real_mount(path->mnt);
  2063. err = -EINVAL;
  2064. if (unlikely(!check_mnt(parent))) {
  2065. /* that's acceptable only for automounts done in private ns */
  2066. if (!(mnt_flags & MNT_SHRINKABLE))
  2067. goto unlock;
  2068. /* ... and for those we'd better have mountpoint still alive */
  2069. if (!parent->mnt_ns)
  2070. goto unlock;
  2071. }
  2072. /* Refuse the same filesystem on the same mount point */
  2073. err = -EBUSY;
  2074. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2075. path->mnt->mnt_root == path->dentry)
  2076. goto unlock;
  2077. err = -EINVAL;
  2078. if (d_is_symlink(newmnt->mnt.mnt_root))
  2079. goto unlock;
  2080. newmnt->mnt.mnt_flags = mnt_flags;
  2081. err = graft_tree(newmnt, parent, mp);
  2082. unlock:
  2083. unlock_mount(mp);
  2084. return err;
  2085. }
  2086. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
  2087. /*
  2088. * create a new mount for userspace and request it to be added into the
  2089. * namespace's tree
  2090. */
  2091. static int do_new_mount(struct path *path, const char *fstype, int flags,
  2092. int mnt_flags, const char *name, void *data)
  2093. {
  2094. struct file_system_type *type;
  2095. struct vfsmount *mnt;
  2096. int err;
  2097. if (!fstype)
  2098. return -EINVAL;
  2099. type = get_fs_type(fstype);
  2100. if (!type)
  2101. return -ENODEV;
  2102. mnt = vfs_kern_mount(type, flags, name, data);
  2103. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2104. !mnt->mnt_sb->s_subtype)
  2105. mnt = fs_set_subtype(mnt, fstype);
  2106. put_filesystem(type);
  2107. if (IS_ERR(mnt))
  2108. return PTR_ERR(mnt);
  2109. if (mount_too_revealing(mnt, &mnt_flags)) {
  2110. mntput(mnt);
  2111. return -EPERM;
  2112. }
  2113. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2114. if (err)
  2115. mntput(mnt);
  2116. return err;
  2117. }
  2118. int finish_automount(struct vfsmount *m, struct path *path)
  2119. {
  2120. struct mount *mnt = real_mount(m);
  2121. int err;
  2122. /* The new mount record should have at least 2 refs to prevent it being
  2123. * expired before we get a chance to add it
  2124. */
  2125. BUG_ON(mnt_get_count(mnt) < 2);
  2126. if (m->mnt_sb == path->mnt->mnt_sb &&
  2127. m->mnt_root == path->dentry) {
  2128. err = -ELOOP;
  2129. goto fail;
  2130. }
  2131. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2132. if (!err)
  2133. return 0;
  2134. fail:
  2135. /* remove m from any expiration list it may be on */
  2136. if (!list_empty(&mnt->mnt_expire)) {
  2137. namespace_lock();
  2138. list_del_init(&mnt->mnt_expire);
  2139. namespace_unlock();
  2140. }
  2141. mntput(m);
  2142. mntput(m);
  2143. return err;
  2144. }
  2145. /**
  2146. * mnt_set_expiry - Put a mount on an expiration list
  2147. * @mnt: The mount to list.
  2148. * @expiry_list: The list to add the mount to.
  2149. */
  2150. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2151. {
  2152. namespace_lock();
  2153. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2154. namespace_unlock();
  2155. }
  2156. EXPORT_SYMBOL(mnt_set_expiry);
  2157. /*
  2158. * process a list of expirable mountpoints with the intent of discarding any
  2159. * mountpoints that aren't in use and haven't been touched since last we came
  2160. * here
  2161. */
  2162. void mark_mounts_for_expiry(struct list_head *mounts)
  2163. {
  2164. struct mount *mnt, *next;
  2165. LIST_HEAD(graveyard);
  2166. if (list_empty(mounts))
  2167. return;
  2168. namespace_lock();
  2169. lock_mount_hash();
  2170. /* extract from the expiration list every vfsmount that matches the
  2171. * following criteria:
  2172. * - only referenced by its parent vfsmount
  2173. * - still marked for expiry (marked on the last call here; marks are
  2174. * cleared by mntput())
  2175. */
  2176. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2177. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2178. propagate_mount_busy(mnt, 1))
  2179. continue;
  2180. list_move(&mnt->mnt_expire, &graveyard);
  2181. }
  2182. while (!list_empty(&graveyard)) {
  2183. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2184. touch_mnt_namespace(mnt->mnt_ns);
  2185. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2186. }
  2187. unlock_mount_hash();
  2188. namespace_unlock();
  2189. }
  2190. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2191. /*
  2192. * Ripoff of 'select_parent()'
  2193. *
  2194. * search the list of submounts for a given mountpoint, and move any
  2195. * shrinkable submounts to the 'graveyard' list.
  2196. */
  2197. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2198. {
  2199. struct mount *this_parent = parent;
  2200. struct list_head *next;
  2201. int found = 0;
  2202. repeat:
  2203. next = this_parent->mnt_mounts.next;
  2204. resume:
  2205. while (next != &this_parent->mnt_mounts) {
  2206. struct list_head *tmp = next;
  2207. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2208. next = tmp->next;
  2209. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2210. continue;
  2211. /*
  2212. * Descend a level if the d_mounts list is non-empty.
  2213. */
  2214. if (!list_empty(&mnt->mnt_mounts)) {
  2215. this_parent = mnt;
  2216. goto repeat;
  2217. }
  2218. if (!propagate_mount_busy(mnt, 1)) {
  2219. list_move_tail(&mnt->mnt_expire, graveyard);
  2220. found++;
  2221. }
  2222. }
  2223. /*
  2224. * All done at this level ... ascend and resume the search
  2225. */
  2226. if (this_parent != parent) {
  2227. next = this_parent->mnt_child.next;
  2228. this_parent = this_parent->mnt_parent;
  2229. goto resume;
  2230. }
  2231. return found;
  2232. }
  2233. /*
  2234. * process a list of expirable mountpoints with the intent of discarding any
  2235. * submounts of a specific parent mountpoint
  2236. *
  2237. * mount_lock must be held for write
  2238. */
  2239. static void shrink_submounts(struct mount *mnt)
  2240. {
  2241. LIST_HEAD(graveyard);
  2242. struct mount *m;
  2243. /* extract submounts of 'mountpoint' from the expiration list */
  2244. while (select_submounts(mnt, &graveyard)) {
  2245. while (!list_empty(&graveyard)) {
  2246. m = list_first_entry(&graveyard, struct mount,
  2247. mnt_expire);
  2248. touch_mnt_namespace(m->mnt_ns);
  2249. umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2250. }
  2251. }
  2252. }
  2253. /*
  2254. * Some copy_from_user() implementations do not return the exact number of
  2255. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2256. * Note that this function differs from copy_from_user() in that it will oops
  2257. * on bad values of `to', rather than returning a short copy.
  2258. */
  2259. static long exact_copy_from_user(void *to, const void __user * from,
  2260. unsigned long n)
  2261. {
  2262. char *t = to;
  2263. const char __user *f = from;
  2264. char c;
  2265. if (!access_ok(VERIFY_READ, from, n))
  2266. return n;
  2267. while (n) {
  2268. if (__get_user(c, f)) {
  2269. memset(t, 0, n);
  2270. break;
  2271. }
  2272. *t++ = c;
  2273. f++;
  2274. n--;
  2275. }
  2276. return n;
  2277. }
  2278. void *copy_mount_options(const void __user * data)
  2279. {
  2280. int i;
  2281. unsigned long size;
  2282. char *copy;
  2283. if (!data)
  2284. return NULL;
  2285. copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2286. if (!copy)
  2287. return ERR_PTR(-ENOMEM);
  2288. /* We only care that *some* data at the address the user
  2289. * gave us is valid. Just in case, we'll zero
  2290. * the remainder of the page.
  2291. */
  2292. /* copy_from_user cannot cross TASK_SIZE ! */
  2293. size = TASK_SIZE - (unsigned long)data;
  2294. if (size > PAGE_SIZE)
  2295. size = PAGE_SIZE;
  2296. i = size - exact_copy_from_user(copy, data, size);
  2297. if (!i) {
  2298. kfree(copy);
  2299. return ERR_PTR(-EFAULT);
  2300. }
  2301. if (i != PAGE_SIZE)
  2302. memset(copy + i, 0, PAGE_SIZE - i);
  2303. return copy;
  2304. }
  2305. char *copy_mount_string(const void __user *data)
  2306. {
  2307. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2308. }
  2309. /*
  2310. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2311. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2312. *
  2313. * data is a (void *) that can point to any structure up to
  2314. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2315. * information (or be NULL).
  2316. *
  2317. * Pre-0.97 versions of mount() didn't have a flags word.
  2318. * When the flags word was introduced its top half was required
  2319. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2320. * Therefore, if this magic number is present, it carries no information
  2321. * and must be discarded.
  2322. */
  2323. long do_mount(const char *dev_name, const char __user *dir_name,
  2324. const char *type_page, unsigned long flags, void *data_page)
  2325. {
  2326. struct path path;
  2327. int retval = 0;
  2328. int mnt_flags = 0;
  2329. /* Discard magic */
  2330. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2331. flags &= ~MS_MGC_MSK;
  2332. /* Basic sanity checks */
  2333. if (data_page)
  2334. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2335. /* ... and get the mountpoint */
  2336. retval = user_path(dir_name, &path);
  2337. if (retval)
  2338. return retval;
  2339. retval = security_sb_mount(dev_name, &path,
  2340. type_page, flags, data_page);
  2341. if (!retval && !may_mount())
  2342. retval = -EPERM;
  2343. if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
  2344. retval = -EPERM;
  2345. if (retval)
  2346. goto dput_out;
  2347. /* Default to relatime unless overriden */
  2348. if (!(flags & MS_NOATIME))
  2349. mnt_flags |= MNT_RELATIME;
  2350. /* Separate the per-mountpoint flags */
  2351. if (flags & MS_NOSUID)
  2352. mnt_flags |= MNT_NOSUID;
  2353. if (flags & MS_NODEV)
  2354. mnt_flags |= MNT_NODEV;
  2355. if (flags & MS_NOEXEC)
  2356. mnt_flags |= MNT_NOEXEC;
  2357. if (flags & MS_NOATIME)
  2358. mnt_flags |= MNT_NOATIME;
  2359. if (flags & MS_NODIRATIME)
  2360. mnt_flags |= MNT_NODIRATIME;
  2361. if (flags & MS_STRICTATIME)
  2362. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2363. if (flags & MS_RDONLY)
  2364. mnt_flags |= MNT_READONLY;
  2365. /* The default atime for remount is preservation */
  2366. if ((flags & MS_REMOUNT) &&
  2367. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2368. MS_STRICTATIME)) == 0)) {
  2369. mnt_flags &= ~MNT_ATIME_MASK;
  2370. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2371. }
  2372. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2373. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2374. MS_STRICTATIME);
  2375. if (flags & MS_REMOUNT)
  2376. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2377. data_page);
  2378. else if (flags & MS_BIND)
  2379. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2380. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2381. retval = do_change_type(&path, flags);
  2382. else if (flags & MS_MOVE)
  2383. retval = do_move_mount(&path, dev_name);
  2384. else
  2385. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2386. dev_name, data_page);
  2387. dput_out:
  2388. path_put(&path);
  2389. return retval;
  2390. }
  2391. static void free_mnt_ns(struct mnt_namespace *ns)
  2392. {
  2393. ns_free_inum(&ns->ns);
  2394. put_user_ns(ns->user_ns);
  2395. kfree(ns);
  2396. }
  2397. /*
  2398. * Assign a sequence number so we can detect when we attempt to bind
  2399. * mount a reference to an older mount namespace into the current
  2400. * mount namespace, preventing reference counting loops. A 64bit
  2401. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2402. * is effectively never, so we can ignore the possibility.
  2403. */
  2404. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2405. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2406. {
  2407. struct mnt_namespace *new_ns;
  2408. int ret;
  2409. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2410. if (!new_ns)
  2411. return ERR_PTR(-ENOMEM);
  2412. ret = ns_alloc_inum(&new_ns->ns);
  2413. if (ret) {
  2414. kfree(new_ns);
  2415. return ERR_PTR(ret);
  2416. }
  2417. new_ns->ns.ops = &mntns_operations;
  2418. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2419. atomic_set(&new_ns->count, 1);
  2420. new_ns->root = NULL;
  2421. INIT_LIST_HEAD(&new_ns->list);
  2422. init_waitqueue_head(&new_ns->poll);
  2423. new_ns->event = 0;
  2424. new_ns->user_ns = get_user_ns(user_ns);
  2425. return new_ns;
  2426. }
  2427. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2428. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2429. {
  2430. struct mnt_namespace *new_ns;
  2431. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2432. struct mount *p, *q;
  2433. struct mount *old;
  2434. struct mount *new;
  2435. int copy_flags;
  2436. BUG_ON(!ns);
  2437. if (likely(!(flags & CLONE_NEWNS))) {
  2438. get_mnt_ns(ns);
  2439. return ns;
  2440. }
  2441. old = ns->root;
  2442. new_ns = alloc_mnt_ns(user_ns);
  2443. if (IS_ERR(new_ns))
  2444. return new_ns;
  2445. namespace_lock();
  2446. /* First pass: copy the tree topology */
  2447. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2448. if (user_ns != ns->user_ns)
  2449. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2450. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2451. if (IS_ERR(new)) {
  2452. namespace_unlock();
  2453. free_mnt_ns(new_ns);
  2454. return ERR_CAST(new);
  2455. }
  2456. new_ns->root = new;
  2457. list_add_tail(&new_ns->list, &new->mnt_list);
  2458. /*
  2459. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2460. * as belonging to new namespace. We have already acquired a private
  2461. * fs_struct, so tsk->fs->lock is not needed.
  2462. */
  2463. p = old;
  2464. q = new;
  2465. while (p) {
  2466. q->mnt_ns = new_ns;
  2467. if (new_fs) {
  2468. if (&p->mnt == new_fs->root.mnt) {
  2469. new_fs->root.mnt = mntget(&q->mnt);
  2470. rootmnt = &p->mnt;
  2471. }
  2472. if (&p->mnt == new_fs->pwd.mnt) {
  2473. new_fs->pwd.mnt = mntget(&q->mnt);
  2474. pwdmnt = &p->mnt;
  2475. }
  2476. }
  2477. p = next_mnt(p, old);
  2478. q = next_mnt(q, new);
  2479. if (!q)
  2480. break;
  2481. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2482. p = next_mnt(p, old);
  2483. }
  2484. namespace_unlock();
  2485. if (rootmnt)
  2486. mntput(rootmnt);
  2487. if (pwdmnt)
  2488. mntput(pwdmnt);
  2489. return new_ns;
  2490. }
  2491. /**
  2492. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2493. * @mnt: pointer to the new root filesystem mountpoint
  2494. */
  2495. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2496. {
  2497. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2498. if (!IS_ERR(new_ns)) {
  2499. struct mount *mnt = real_mount(m);
  2500. mnt->mnt_ns = new_ns;
  2501. new_ns->root = mnt;
  2502. list_add(&mnt->mnt_list, &new_ns->list);
  2503. } else {
  2504. mntput(m);
  2505. }
  2506. return new_ns;
  2507. }
  2508. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2509. {
  2510. struct mnt_namespace *ns;
  2511. struct super_block *s;
  2512. struct path path;
  2513. int err;
  2514. ns = create_mnt_ns(mnt);
  2515. if (IS_ERR(ns))
  2516. return ERR_CAST(ns);
  2517. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2518. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2519. put_mnt_ns(ns);
  2520. if (err)
  2521. return ERR_PTR(err);
  2522. /* trade a vfsmount reference for active sb one */
  2523. s = path.mnt->mnt_sb;
  2524. atomic_inc(&s->s_active);
  2525. mntput(path.mnt);
  2526. /* lock the sucker */
  2527. down_write(&s->s_umount);
  2528. /* ... and return the root of (sub)tree on it */
  2529. return path.dentry;
  2530. }
  2531. EXPORT_SYMBOL(mount_subtree);
  2532. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2533. char __user *, type, unsigned long, flags, void __user *, data)
  2534. {
  2535. int ret;
  2536. char *kernel_type;
  2537. char *kernel_dev;
  2538. void *options;
  2539. kernel_type = copy_mount_string(type);
  2540. ret = PTR_ERR(kernel_type);
  2541. if (IS_ERR(kernel_type))
  2542. goto out_type;
  2543. kernel_dev = copy_mount_string(dev_name);
  2544. ret = PTR_ERR(kernel_dev);
  2545. if (IS_ERR(kernel_dev))
  2546. goto out_dev;
  2547. options = copy_mount_options(data);
  2548. ret = PTR_ERR(options);
  2549. if (IS_ERR(options))
  2550. goto out_data;
  2551. ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
  2552. kfree(options);
  2553. out_data:
  2554. kfree(kernel_dev);
  2555. out_dev:
  2556. kfree(kernel_type);
  2557. out_type:
  2558. return ret;
  2559. }
  2560. /*
  2561. * Return true if path is reachable from root
  2562. *
  2563. * namespace_sem or mount_lock is held
  2564. */
  2565. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2566. const struct path *root)
  2567. {
  2568. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2569. dentry = mnt->mnt_mountpoint;
  2570. mnt = mnt->mnt_parent;
  2571. }
  2572. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2573. }
  2574. bool path_is_under(struct path *path1, struct path *path2)
  2575. {
  2576. bool res;
  2577. read_seqlock_excl(&mount_lock);
  2578. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2579. read_sequnlock_excl(&mount_lock);
  2580. return res;
  2581. }
  2582. EXPORT_SYMBOL(path_is_under);
  2583. /*
  2584. * pivot_root Semantics:
  2585. * Moves the root file system of the current process to the directory put_old,
  2586. * makes new_root as the new root file system of the current process, and sets
  2587. * root/cwd of all processes which had them on the current root to new_root.
  2588. *
  2589. * Restrictions:
  2590. * The new_root and put_old must be directories, and must not be on the
  2591. * same file system as the current process root. The put_old must be
  2592. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2593. * pointed to by put_old must yield the same directory as new_root. No other
  2594. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2595. *
  2596. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2597. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2598. * in this situation.
  2599. *
  2600. * Notes:
  2601. * - we don't move root/cwd if they are not at the root (reason: if something
  2602. * cared enough to change them, it's probably wrong to force them elsewhere)
  2603. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2604. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2605. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2606. * first.
  2607. */
  2608. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2609. const char __user *, put_old)
  2610. {
  2611. struct path new, old, parent_path, root_parent, root;
  2612. struct mount *new_mnt, *root_mnt, *old_mnt;
  2613. struct mountpoint *old_mp, *root_mp;
  2614. int error;
  2615. if (!may_mount())
  2616. return -EPERM;
  2617. error = user_path_dir(new_root, &new);
  2618. if (error)
  2619. goto out0;
  2620. error = user_path_dir(put_old, &old);
  2621. if (error)
  2622. goto out1;
  2623. error = security_sb_pivotroot(&old, &new);
  2624. if (error)
  2625. goto out2;
  2626. get_fs_root(current->fs, &root);
  2627. old_mp = lock_mount(&old);
  2628. error = PTR_ERR(old_mp);
  2629. if (IS_ERR(old_mp))
  2630. goto out3;
  2631. error = -EINVAL;
  2632. new_mnt = real_mount(new.mnt);
  2633. root_mnt = real_mount(root.mnt);
  2634. old_mnt = real_mount(old.mnt);
  2635. if (IS_MNT_SHARED(old_mnt) ||
  2636. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2637. IS_MNT_SHARED(root_mnt->mnt_parent))
  2638. goto out4;
  2639. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2640. goto out4;
  2641. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2642. goto out4;
  2643. error = -ENOENT;
  2644. if (d_unlinked(new.dentry))
  2645. goto out4;
  2646. error = -EBUSY;
  2647. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2648. goto out4; /* loop, on the same file system */
  2649. error = -EINVAL;
  2650. if (root.mnt->mnt_root != root.dentry)
  2651. goto out4; /* not a mountpoint */
  2652. if (!mnt_has_parent(root_mnt))
  2653. goto out4; /* not attached */
  2654. root_mp = root_mnt->mnt_mp;
  2655. if (new.mnt->mnt_root != new.dentry)
  2656. goto out4; /* not a mountpoint */
  2657. if (!mnt_has_parent(new_mnt))
  2658. goto out4; /* not attached */
  2659. /* make sure we can reach put_old from new_root */
  2660. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2661. goto out4;
  2662. /* make certain new is below the root */
  2663. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2664. goto out4;
  2665. root_mp->m_count++; /* pin it so it won't go away */
  2666. lock_mount_hash();
  2667. detach_mnt(new_mnt, &parent_path);
  2668. detach_mnt(root_mnt, &root_parent);
  2669. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2670. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2671. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2672. }
  2673. /* mount old root on put_old */
  2674. attach_mnt(root_mnt, old_mnt, old_mp);
  2675. /* mount new_root on / */
  2676. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2677. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2678. /* A moved mount should not expire automatically */
  2679. list_del_init(&new_mnt->mnt_expire);
  2680. unlock_mount_hash();
  2681. chroot_fs_refs(&root, &new);
  2682. put_mountpoint(root_mp);
  2683. error = 0;
  2684. out4:
  2685. unlock_mount(old_mp);
  2686. if (!error) {
  2687. path_put(&root_parent);
  2688. path_put(&parent_path);
  2689. }
  2690. out3:
  2691. path_put(&root);
  2692. out2:
  2693. path_put(&old);
  2694. out1:
  2695. path_put(&new);
  2696. out0:
  2697. return error;
  2698. }
  2699. static void __init init_mount_tree(void)
  2700. {
  2701. struct vfsmount *mnt;
  2702. struct mnt_namespace *ns;
  2703. struct path root;
  2704. struct file_system_type *type;
  2705. type = get_fs_type("rootfs");
  2706. if (!type)
  2707. panic("Can't find rootfs type");
  2708. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2709. put_filesystem(type);
  2710. if (IS_ERR(mnt))
  2711. panic("Can't create rootfs");
  2712. ns = create_mnt_ns(mnt);
  2713. if (IS_ERR(ns))
  2714. panic("Can't allocate initial namespace");
  2715. init_task.nsproxy->mnt_ns = ns;
  2716. get_mnt_ns(ns);
  2717. root.mnt = mnt;
  2718. root.dentry = mnt->mnt_root;
  2719. mnt->mnt_flags |= MNT_LOCKED;
  2720. set_fs_pwd(current->fs, &root);
  2721. set_fs_root(current->fs, &root);
  2722. }
  2723. void __init mnt_init(void)
  2724. {
  2725. unsigned u;
  2726. int err;
  2727. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2728. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2729. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2730. sizeof(struct hlist_head),
  2731. mhash_entries, 19,
  2732. 0,
  2733. &m_hash_shift, &m_hash_mask, 0, 0);
  2734. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2735. sizeof(struct hlist_head),
  2736. mphash_entries, 19,
  2737. 0,
  2738. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2739. if (!mount_hashtable || !mountpoint_hashtable)
  2740. panic("Failed to allocate mount hash table\n");
  2741. for (u = 0; u <= m_hash_mask; u++)
  2742. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2743. for (u = 0; u <= mp_hash_mask; u++)
  2744. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2745. kernfs_init();
  2746. err = sysfs_init();
  2747. if (err)
  2748. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2749. __func__, err);
  2750. fs_kobj = kobject_create_and_add("fs", NULL);
  2751. if (!fs_kobj)
  2752. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2753. init_rootfs();
  2754. init_mount_tree();
  2755. }
  2756. void put_mnt_ns(struct mnt_namespace *ns)
  2757. {
  2758. if (!atomic_dec_and_test(&ns->count))
  2759. return;
  2760. drop_collected_mounts(&ns->root->mnt);
  2761. free_mnt_ns(ns);
  2762. }
  2763. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2764. {
  2765. struct vfsmount *mnt;
  2766. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2767. if (!IS_ERR(mnt)) {
  2768. /*
  2769. * it is a longterm mount, don't release mnt until
  2770. * we unmount before file sys is unregistered
  2771. */
  2772. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2773. }
  2774. return mnt;
  2775. }
  2776. EXPORT_SYMBOL_GPL(kern_mount_data);
  2777. void kern_unmount(struct vfsmount *mnt)
  2778. {
  2779. /* release long term mount so mount point can be released */
  2780. if (!IS_ERR_OR_NULL(mnt)) {
  2781. real_mount(mnt)->mnt_ns = NULL;
  2782. synchronize_rcu(); /* yecchhh... */
  2783. mntput(mnt);
  2784. }
  2785. }
  2786. EXPORT_SYMBOL(kern_unmount);
  2787. bool our_mnt(struct vfsmount *mnt)
  2788. {
  2789. return check_mnt(real_mount(mnt));
  2790. }
  2791. bool current_chrooted(void)
  2792. {
  2793. /* Does the current process have a non-standard root */
  2794. struct path ns_root;
  2795. struct path fs_root;
  2796. bool chrooted;
  2797. /* Find the namespace root */
  2798. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2799. ns_root.dentry = ns_root.mnt->mnt_root;
  2800. path_get(&ns_root);
  2801. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2802. ;
  2803. get_fs_root(current->fs, &fs_root);
  2804. chrooted = !path_equal(&fs_root, &ns_root);
  2805. path_put(&fs_root);
  2806. path_put(&ns_root);
  2807. return chrooted;
  2808. }
  2809. static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
  2810. int *new_mnt_flags)
  2811. {
  2812. int new_flags = *new_mnt_flags;
  2813. struct mount *mnt;
  2814. bool visible = false;
  2815. down_read(&namespace_sem);
  2816. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2817. struct mount *child;
  2818. int mnt_flags;
  2819. if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
  2820. continue;
  2821. /* This mount is not fully visible if it's root directory
  2822. * is not the root directory of the filesystem.
  2823. */
  2824. if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
  2825. continue;
  2826. /* A local view of the mount flags */
  2827. mnt_flags = mnt->mnt.mnt_flags;
  2828. /* Don't miss readonly hidden in the superblock flags */
  2829. if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
  2830. mnt_flags |= MNT_LOCK_READONLY;
  2831. /* Verify the mount flags are equal to or more permissive
  2832. * than the proposed new mount.
  2833. */
  2834. if ((mnt_flags & MNT_LOCK_READONLY) &&
  2835. !(new_flags & MNT_READONLY))
  2836. continue;
  2837. if ((mnt_flags & MNT_LOCK_ATIME) &&
  2838. ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
  2839. continue;
  2840. /* This mount is not fully visible if there are any
  2841. * locked child mounts that cover anything except for
  2842. * empty directories.
  2843. */
  2844. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2845. struct inode *inode = child->mnt_mountpoint->d_inode;
  2846. /* Only worry about locked mounts */
  2847. if (!(child->mnt.mnt_flags & MNT_LOCKED))
  2848. continue;
  2849. /* Is the directory permanetly empty? */
  2850. if (!is_empty_dir_inode(inode))
  2851. goto next;
  2852. }
  2853. /* Preserve the locked attributes */
  2854. *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
  2855. MNT_LOCK_ATIME);
  2856. visible = true;
  2857. goto found;
  2858. next: ;
  2859. }
  2860. found:
  2861. up_read(&namespace_sem);
  2862. return visible;
  2863. }
  2864. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
  2865. {
  2866. const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
  2867. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2868. unsigned long s_iflags;
  2869. if (ns->user_ns == &init_user_ns)
  2870. return false;
  2871. /* Can this filesystem be too revealing? */
  2872. s_iflags = mnt->mnt_sb->s_iflags;
  2873. if (!(s_iflags & SB_I_USERNS_VISIBLE))
  2874. return false;
  2875. if ((s_iflags & required_iflags) != required_iflags) {
  2876. WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
  2877. required_iflags);
  2878. return true;
  2879. }
  2880. return !mnt_already_visible(ns, mnt, new_mnt_flags);
  2881. }
  2882. bool mnt_may_suid(struct vfsmount *mnt)
  2883. {
  2884. /*
  2885. * Foreign mounts (accessed via fchdir or through /proc
  2886. * symlinks) are always treated as if they are nosuid. This
  2887. * prevents namespaces from trusting potentially unsafe
  2888. * suid/sgid bits, file caps, or security labels that originate
  2889. * in other namespaces.
  2890. */
  2891. return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
  2892. current_in_userns(mnt->mnt_sb->s_user_ns);
  2893. }
  2894. static struct ns_common *mntns_get(struct task_struct *task)
  2895. {
  2896. struct ns_common *ns = NULL;
  2897. struct nsproxy *nsproxy;
  2898. task_lock(task);
  2899. nsproxy = task->nsproxy;
  2900. if (nsproxy) {
  2901. ns = &nsproxy->mnt_ns->ns;
  2902. get_mnt_ns(to_mnt_ns(ns));
  2903. }
  2904. task_unlock(task);
  2905. return ns;
  2906. }
  2907. static void mntns_put(struct ns_common *ns)
  2908. {
  2909. put_mnt_ns(to_mnt_ns(ns));
  2910. }
  2911. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  2912. {
  2913. struct fs_struct *fs = current->fs;
  2914. struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
  2915. struct path root;
  2916. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2917. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  2918. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  2919. return -EPERM;
  2920. if (fs->users != 1)
  2921. return -EINVAL;
  2922. get_mnt_ns(mnt_ns);
  2923. put_mnt_ns(nsproxy->mnt_ns);
  2924. nsproxy->mnt_ns = mnt_ns;
  2925. /* Find the root */
  2926. root.mnt = &mnt_ns->root->mnt;
  2927. root.dentry = mnt_ns->root->mnt.mnt_root;
  2928. path_get(&root);
  2929. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2930. ;
  2931. /* Update the pwd and root */
  2932. set_fs_pwd(fs, &root);
  2933. set_fs_root(fs, &root);
  2934. path_put(&root);
  2935. return 0;
  2936. }
  2937. const struct proc_ns_operations mntns_operations = {
  2938. .name = "mnt",
  2939. .type = CLONE_NEWNS,
  2940. .get = mntns_get,
  2941. .put = mntns_put,
  2942. .install = mntns_install,
  2943. };