recovery.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. /*
  2. * fs/f2fs/recovery.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "segment.h"
  16. /*
  17. * Roll forward recovery scenarios.
  18. *
  19. * [Term] F: fsync_mark, D: dentry_mark
  20. *
  21. * 1. inode(x) | CP | inode(x) | dnode(F)
  22. * -> Update the latest inode(x).
  23. *
  24. * 2. inode(x) | CP | inode(F) | dnode(F)
  25. * -> No problem.
  26. *
  27. * 3. inode(x) | CP | dnode(F) | inode(x)
  28. * -> Recover to the latest dnode(F), and drop the last inode(x)
  29. *
  30. * 4. inode(x) | CP | dnode(F) | inode(F)
  31. * -> No problem.
  32. *
  33. * 5. CP | inode(x) | dnode(F)
  34. * -> The inode(DF) was missing. Should drop this dnode(F).
  35. *
  36. * 6. CP | inode(DF) | dnode(F)
  37. * -> No problem.
  38. *
  39. * 7. CP | dnode(F) | inode(DF)
  40. * -> If f2fs_iget fails, then goto next to find inode(DF).
  41. *
  42. * 8. CP | dnode(F) | inode(x)
  43. * -> If f2fs_iget fails, then goto next to find inode(DF).
  44. * But it will fail due to no inode(DF).
  45. */
  46. static struct kmem_cache *fsync_entry_slab;
  47. bool space_for_roll_forward(struct f2fs_sb_info *sbi)
  48. {
  49. s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count);
  50. if (sbi->last_valid_block_count + nalloc > sbi->user_block_count)
  51. return false;
  52. return true;
  53. }
  54. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  55. nid_t ino)
  56. {
  57. struct fsync_inode_entry *entry;
  58. list_for_each_entry(entry, head, list)
  59. if (entry->inode->i_ino == ino)
  60. return entry;
  61. return NULL;
  62. }
  63. static struct fsync_inode_entry *add_fsync_inode(struct list_head *head,
  64. struct inode *inode)
  65. {
  66. struct fsync_inode_entry *entry;
  67. entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
  68. if (!entry)
  69. return NULL;
  70. entry->inode = inode;
  71. list_add_tail(&entry->list, head);
  72. return entry;
  73. }
  74. static void del_fsync_inode(struct fsync_inode_entry *entry)
  75. {
  76. iput(entry->inode);
  77. list_del(&entry->list);
  78. kmem_cache_free(fsync_entry_slab, entry);
  79. }
  80. static int recover_dentry(struct inode *inode, struct page *ipage,
  81. struct list_head *dir_list)
  82. {
  83. struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
  84. nid_t pino = le32_to_cpu(raw_inode->i_pino);
  85. struct f2fs_dir_entry *de;
  86. struct qstr name;
  87. struct page *page;
  88. struct inode *dir, *einode;
  89. struct fsync_inode_entry *entry;
  90. int err = 0;
  91. entry = get_fsync_inode(dir_list, pino);
  92. if (!entry) {
  93. dir = f2fs_iget(inode->i_sb, pino);
  94. if (IS_ERR(dir)) {
  95. err = PTR_ERR(dir);
  96. goto out;
  97. }
  98. entry = add_fsync_inode(dir_list, dir);
  99. if (!entry) {
  100. err = -ENOMEM;
  101. iput(dir);
  102. goto out;
  103. }
  104. }
  105. dir = entry->inode;
  106. if (file_enc_name(inode))
  107. return 0;
  108. name.len = le32_to_cpu(raw_inode->i_namelen);
  109. name.name = raw_inode->i_name;
  110. if (unlikely(name.len > F2FS_NAME_LEN)) {
  111. WARN_ON(1);
  112. err = -ENAMETOOLONG;
  113. goto out;
  114. }
  115. retry:
  116. de = f2fs_find_entry(dir, &name, &page);
  117. if (de && inode->i_ino == le32_to_cpu(de->ino))
  118. goto out_unmap_put;
  119. if (de) {
  120. einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
  121. if (IS_ERR(einode)) {
  122. WARN_ON(1);
  123. err = PTR_ERR(einode);
  124. if (err == -ENOENT)
  125. err = -EEXIST;
  126. goto out_unmap_put;
  127. }
  128. err = acquire_orphan_inode(F2FS_I_SB(inode));
  129. if (err) {
  130. iput(einode);
  131. goto out_unmap_put;
  132. }
  133. f2fs_delete_entry(de, page, dir, einode);
  134. iput(einode);
  135. goto retry;
  136. } else if (IS_ERR(page)) {
  137. err = PTR_ERR(page);
  138. } else {
  139. err = __f2fs_add_link(dir, &name, inode,
  140. inode->i_ino, inode->i_mode);
  141. }
  142. goto out;
  143. out_unmap_put:
  144. f2fs_dentry_kunmap(dir, page);
  145. f2fs_put_page(page, 0);
  146. out:
  147. f2fs_msg(inode->i_sb, KERN_NOTICE,
  148. "%s: ino = %x, name = %s, dir = %lx, err = %d",
  149. __func__, ino_of_node(ipage), raw_inode->i_name,
  150. IS_ERR(dir) ? 0 : dir->i_ino, err);
  151. return err;
  152. }
  153. static void recover_inode(struct inode *inode, struct page *page)
  154. {
  155. struct f2fs_inode *raw = F2FS_INODE(page);
  156. char *name;
  157. inode->i_mode = le16_to_cpu(raw->i_mode);
  158. f2fs_i_size_write(inode, le64_to_cpu(raw->i_size));
  159. inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime);
  160. inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
  161. inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
  162. inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
  163. inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
  164. inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
  165. if (file_enc_name(inode))
  166. name = "<encrypted>";
  167. else
  168. name = F2FS_INODE(page)->i_name;
  169. f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
  170. ino_of_node(page), name);
  171. }
  172. static bool is_same_inode(struct inode *inode, struct page *ipage)
  173. {
  174. struct f2fs_inode *ri = F2FS_INODE(ipage);
  175. struct timespec disk;
  176. if (!IS_INODE(ipage))
  177. return true;
  178. disk.tv_sec = le64_to_cpu(ri->i_ctime);
  179. disk.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  180. if (timespec_compare(&inode->i_ctime, &disk) > 0)
  181. return false;
  182. disk.tv_sec = le64_to_cpu(ri->i_atime);
  183. disk.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  184. if (timespec_compare(&inode->i_atime, &disk) > 0)
  185. return false;
  186. disk.tv_sec = le64_to_cpu(ri->i_mtime);
  187. disk.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  188. if (timespec_compare(&inode->i_mtime, &disk) > 0)
  189. return false;
  190. return true;
  191. }
  192. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
  193. {
  194. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  195. struct curseg_info *curseg;
  196. struct inode *inode;
  197. struct page *page = NULL;
  198. block_t blkaddr;
  199. int err = 0;
  200. /* get node pages in the current segment */
  201. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  202. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  203. while (1) {
  204. struct fsync_inode_entry *entry;
  205. if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
  206. return 0;
  207. page = get_tmp_page(sbi, blkaddr);
  208. if (cp_ver != cpver_of_node(page))
  209. break;
  210. if (!is_fsync_dnode(page))
  211. goto next;
  212. entry = get_fsync_inode(head, ino_of_node(page));
  213. if (entry) {
  214. if (!is_same_inode(entry->inode, page))
  215. goto next;
  216. } else {
  217. if (IS_INODE(page) && is_dent_dnode(page)) {
  218. err = recover_inode_page(sbi, page);
  219. if (err)
  220. break;
  221. }
  222. /*
  223. * CP | dnode(F) | inode(DF)
  224. * For this case, we should not give up now.
  225. */
  226. inode = f2fs_iget(sbi->sb, ino_of_node(page));
  227. if (IS_ERR(inode)) {
  228. err = PTR_ERR(inode);
  229. if (err == -ENOENT) {
  230. err = 0;
  231. goto next;
  232. }
  233. break;
  234. }
  235. /* add this fsync inode to the list */
  236. entry = add_fsync_inode(head, inode);
  237. if (!entry) {
  238. err = -ENOMEM;
  239. iput(inode);
  240. break;
  241. }
  242. }
  243. entry->blkaddr = blkaddr;
  244. if (IS_INODE(page) && is_dent_dnode(page))
  245. entry->last_dentry = blkaddr;
  246. next:
  247. /* check next segment */
  248. blkaddr = next_blkaddr_of_node(page);
  249. f2fs_put_page(page, 1);
  250. ra_meta_pages_cond(sbi, blkaddr);
  251. }
  252. f2fs_put_page(page, 1);
  253. return err;
  254. }
  255. static void destroy_fsync_dnodes(struct list_head *head)
  256. {
  257. struct fsync_inode_entry *entry, *tmp;
  258. list_for_each_entry_safe(entry, tmp, head, list)
  259. del_fsync_inode(entry);
  260. }
  261. static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  262. block_t blkaddr, struct dnode_of_data *dn)
  263. {
  264. struct seg_entry *sentry;
  265. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  266. unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  267. struct f2fs_summary_block *sum_node;
  268. struct f2fs_summary sum;
  269. struct page *sum_page, *node_page;
  270. struct dnode_of_data tdn = *dn;
  271. nid_t ino, nid;
  272. struct inode *inode;
  273. unsigned int offset;
  274. block_t bidx;
  275. int i;
  276. sentry = get_seg_entry(sbi, segno);
  277. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  278. return 0;
  279. /* Get the previous summary */
  280. for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
  281. struct curseg_info *curseg = CURSEG_I(sbi, i);
  282. if (curseg->segno == segno) {
  283. sum = curseg->sum_blk->entries[blkoff];
  284. goto got_it;
  285. }
  286. }
  287. sum_page = get_sum_page(sbi, segno);
  288. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  289. sum = sum_node->entries[blkoff];
  290. f2fs_put_page(sum_page, 1);
  291. got_it:
  292. /* Use the locked dnode page and inode */
  293. nid = le32_to_cpu(sum.nid);
  294. if (dn->inode->i_ino == nid) {
  295. tdn.nid = nid;
  296. if (!dn->inode_page_locked)
  297. lock_page(dn->inode_page);
  298. tdn.node_page = dn->inode_page;
  299. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  300. goto truncate_out;
  301. } else if (dn->nid == nid) {
  302. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  303. goto truncate_out;
  304. }
  305. /* Get the node page */
  306. node_page = get_node_page(sbi, nid);
  307. if (IS_ERR(node_page))
  308. return PTR_ERR(node_page);
  309. offset = ofs_of_node(node_page);
  310. ino = ino_of_node(node_page);
  311. f2fs_put_page(node_page, 1);
  312. if (ino != dn->inode->i_ino) {
  313. /* Deallocate previous index in the node page */
  314. inode = f2fs_iget(sbi->sb, ino);
  315. if (IS_ERR(inode))
  316. return PTR_ERR(inode);
  317. } else {
  318. inode = dn->inode;
  319. }
  320. bidx = start_bidx_of_node(offset, inode) + le16_to_cpu(sum.ofs_in_node);
  321. /*
  322. * if inode page is locked, unlock temporarily, but its reference
  323. * count keeps alive.
  324. */
  325. if (ino == dn->inode->i_ino && dn->inode_page_locked)
  326. unlock_page(dn->inode_page);
  327. set_new_dnode(&tdn, inode, NULL, NULL, 0);
  328. if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
  329. goto out;
  330. if (tdn.data_blkaddr == blkaddr)
  331. truncate_data_blocks_range(&tdn, 1);
  332. f2fs_put_dnode(&tdn);
  333. out:
  334. if (ino != dn->inode->i_ino)
  335. iput(inode);
  336. else if (dn->inode_page_locked)
  337. lock_page(dn->inode_page);
  338. return 0;
  339. truncate_out:
  340. if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr)
  341. truncate_data_blocks_range(&tdn, 1);
  342. if (dn->inode->i_ino == nid && !dn->inode_page_locked)
  343. unlock_page(dn->inode_page);
  344. return 0;
  345. }
  346. static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  347. struct page *page, block_t blkaddr)
  348. {
  349. struct dnode_of_data dn;
  350. struct node_info ni;
  351. unsigned int start, end;
  352. int err = 0, recovered = 0;
  353. /* step 1: recover xattr */
  354. if (IS_INODE(page)) {
  355. recover_inline_xattr(inode, page);
  356. } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
  357. /*
  358. * Deprecated; xattr blocks should be found from cold log.
  359. * But, we should remain this for backward compatibility.
  360. */
  361. recover_xattr_data(inode, page, blkaddr);
  362. goto out;
  363. }
  364. /* step 2: recover inline data */
  365. if (recover_inline_data(inode, page))
  366. goto out;
  367. /* step 3: recover data indices */
  368. start = start_bidx_of_node(ofs_of_node(page), inode);
  369. end = start + ADDRS_PER_PAGE(page, inode);
  370. set_new_dnode(&dn, inode, NULL, NULL, 0);
  371. err = get_dnode_of_data(&dn, start, ALLOC_NODE);
  372. if (err)
  373. goto out;
  374. f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
  375. get_node_info(sbi, dn.nid, &ni);
  376. f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
  377. f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
  378. for (; start < end; start++, dn.ofs_in_node++) {
  379. block_t src, dest;
  380. src = datablock_addr(dn.node_page, dn.ofs_in_node);
  381. dest = datablock_addr(page, dn.ofs_in_node);
  382. /* skip recovering if dest is the same as src */
  383. if (src == dest)
  384. continue;
  385. /* dest is invalid, just invalidate src block */
  386. if (dest == NULL_ADDR) {
  387. truncate_data_blocks_range(&dn, 1);
  388. continue;
  389. }
  390. if ((start + 1) << PAGE_SHIFT > i_size_read(inode))
  391. f2fs_i_size_write(inode, (start + 1) << PAGE_SHIFT);
  392. /*
  393. * dest is reserved block, invalidate src block
  394. * and then reserve one new block in dnode page.
  395. */
  396. if (dest == NEW_ADDR) {
  397. truncate_data_blocks_range(&dn, 1);
  398. reserve_new_block(&dn);
  399. continue;
  400. }
  401. /* dest is valid block, try to recover from src to dest */
  402. if (is_valid_blkaddr(sbi, dest, META_POR)) {
  403. if (src == NULL_ADDR) {
  404. err = reserve_new_block(&dn);
  405. #ifdef CONFIG_F2FS_FAULT_INJECTION
  406. while (err)
  407. err = reserve_new_block(&dn);
  408. #endif
  409. /* We should not get -ENOSPC */
  410. f2fs_bug_on(sbi, err);
  411. if (err)
  412. goto err;
  413. }
  414. /* Check the previous node page having this index */
  415. err = check_index_in_prev_nodes(sbi, dest, &dn);
  416. if (err)
  417. goto err;
  418. /* write dummy data page */
  419. f2fs_replace_block(sbi, &dn, src, dest,
  420. ni.version, false, false);
  421. recovered++;
  422. }
  423. }
  424. copy_node_footer(dn.node_page, page);
  425. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  426. ofs_of_node(page), false);
  427. set_page_dirty(dn.node_page);
  428. err:
  429. f2fs_put_dnode(&dn);
  430. out:
  431. f2fs_msg(sbi->sb, KERN_NOTICE,
  432. "recover_data: ino = %lx, recovered = %d blocks, err = %d",
  433. inode->i_ino, recovered, err);
  434. return err;
  435. }
  436. static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list,
  437. struct list_head *dir_list)
  438. {
  439. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  440. struct curseg_info *curseg;
  441. struct page *page = NULL;
  442. int err = 0;
  443. block_t blkaddr;
  444. /* get node pages in the current segment */
  445. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  446. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  447. while (1) {
  448. struct fsync_inode_entry *entry;
  449. if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
  450. break;
  451. ra_meta_pages_cond(sbi, blkaddr);
  452. page = get_tmp_page(sbi, blkaddr);
  453. if (cp_ver != cpver_of_node(page)) {
  454. f2fs_put_page(page, 1);
  455. break;
  456. }
  457. entry = get_fsync_inode(inode_list, ino_of_node(page));
  458. if (!entry)
  459. goto next;
  460. /*
  461. * inode(x) | CP | inode(x) | dnode(F)
  462. * In this case, we can lose the latest inode(x).
  463. * So, call recover_inode for the inode update.
  464. */
  465. if (IS_INODE(page))
  466. recover_inode(entry->inode, page);
  467. if (entry->last_dentry == blkaddr) {
  468. err = recover_dentry(entry->inode, page, dir_list);
  469. if (err) {
  470. f2fs_put_page(page, 1);
  471. break;
  472. }
  473. }
  474. err = do_recover_data(sbi, entry->inode, page, blkaddr);
  475. if (err) {
  476. f2fs_put_page(page, 1);
  477. break;
  478. }
  479. if (entry->blkaddr == blkaddr)
  480. del_fsync_inode(entry);
  481. next:
  482. /* check next segment */
  483. blkaddr = next_blkaddr_of_node(page);
  484. f2fs_put_page(page, 1);
  485. }
  486. if (!err)
  487. allocate_new_segments(sbi);
  488. return err;
  489. }
  490. int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only)
  491. {
  492. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  493. struct list_head inode_list;
  494. struct list_head dir_list;
  495. block_t blkaddr;
  496. int err;
  497. int ret = 0;
  498. bool need_writecp = false;
  499. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  500. sizeof(struct fsync_inode_entry));
  501. if (!fsync_entry_slab)
  502. return -ENOMEM;
  503. INIT_LIST_HEAD(&inode_list);
  504. INIT_LIST_HEAD(&dir_list);
  505. /* prevent checkpoint */
  506. mutex_lock(&sbi->cp_mutex);
  507. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  508. /* step #1: find fsynced inode numbers */
  509. err = find_fsync_dnodes(sbi, &inode_list);
  510. if (err || list_empty(&inode_list))
  511. goto out;
  512. if (check_only) {
  513. ret = 1;
  514. goto out;
  515. }
  516. need_writecp = true;
  517. /* step #2: recover data */
  518. err = recover_data(sbi, &inode_list, &dir_list);
  519. if (!err)
  520. f2fs_bug_on(sbi, !list_empty(&inode_list));
  521. out:
  522. destroy_fsync_dnodes(&inode_list);
  523. /* truncate meta pages to be used by the recovery */
  524. truncate_inode_pages_range(META_MAPPING(sbi),
  525. (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1);
  526. if (err) {
  527. truncate_inode_pages_final(NODE_MAPPING(sbi));
  528. truncate_inode_pages_final(META_MAPPING(sbi));
  529. }
  530. clear_sbi_flag(sbi, SBI_POR_DOING);
  531. if (err) {
  532. bool invalidate = false;
  533. if (test_opt(sbi, LFS)) {
  534. update_meta_page(sbi, NULL, blkaddr);
  535. invalidate = true;
  536. } else if (discard_next_dnode(sbi, blkaddr)) {
  537. invalidate = true;
  538. }
  539. /* Flush all the NAT/SIT pages */
  540. while (get_pages(sbi, F2FS_DIRTY_META))
  541. sync_meta_pages(sbi, META, LONG_MAX);
  542. /* invalidate temporary meta page */
  543. if (invalidate)
  544. invalidate_mapping_pages(META_MAPPING(sbi),
  545. blkaddr, blkaddr);
  546. set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
  547. mutex_unlock(&sbi->cp_mutex);
  548. } else if (need_writecp) {
  549. struct cp_control cpc = {
  550. .reason = CP_RECOVERY,
  551. };
  552. mutex_unlock(&sbi->cp_mutex);
  553. err = write_checkpoint(sbi, &cpc);
  554. } else {
  555. mutex_unlock(&sbi->cp_mutex);
  556. }
  557. destroy_fsync_dnodes(&dir_list);
  558. kmem_cache_destroy(fsync_entry_slab);
  559. return ret ? ret: err;
  560. }