gc.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956
  1. /*
  2. * fs/f2fs/gc.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/module.h>
  13. #include <linux/backing-dev.h>
  14. #include <linux/init.h>
  15. #include <linux/f2fs_fs.h>
  16. #include <linux/kthread.h>
  17. #include <linux/delay.h>
  18. #include <linux/freezer.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "gc.h"
  23. #include <trace/events/f2fs.h>
  24. static int gc_thread_func(void *data)
  25. {
  26. struct f2fs_sb_info *sbi = data;
  27. struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
  28. wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
  29. long wait_ms;
  30. wait_ms = gc_th->min_sleep_time;
  31. do {
  32. if (try_to_freeze())
  33. continue;
  34. else
  35. wait_event_interruptible_timeout(*wq,
  36. kthread_should_stop(),
  37. msecs_to_jiffies(wait_ms));
  38. if (kthread_should_stop())
  39. break;
  40. if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
  41. increase_sleep_time(gc_th, &wait_ms);
  42. continue;
  43. }
  44. /*
  45. * [GC triggering condition]
  46. * 0. GC is not conducted currently.
  47. * 1. There are enough dirty segments.
  48. * 2. IO subsystem is idle by checking the # of writeback pages.
  49. * 3. IO subsystem is idle by checking the # of requests in
  50. * bdev's request list.
  51. *
  52. * Note) We have to avoid triggering GCs frequently.
  53. * Because it is possible that some segments can be
  54. * invalidated soon after by user update or deletion.
  55. * So, I'd like to wait some time to collect dirty segments.
  56. */
  57. if (!mutex_trylock(&sbi->gc_mutex))
  58. continue;
  59. if (!is_idle(sbi)) {
  60. increase_sleep_time(gc_th, &wait_ms);
  61. mutex_unlock(&sbi->gc_mutex);
  62. continue;
  63. }
  64. if (has_enough_invalid_blocks(sbi))
  65. decrease_sleep_time(gc_th, &wait_ms);
  66. else
  67. increase_sleep_time(gc_th, &wait_ms);
  68. stat_inc_bggc_count(sbi);
  69. /* if return value is not zero, no victim was selected */
  70. if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC)))
  71. wait_ms = gc_th->no_gc_sleep_time;
  72. trace_f2fs_background_gc(sbi->sb, wait_ms,
  73. prefree_segments(sbi), free_segments(sbi));
  74. /* balancing f2fs's metadata periodically */
  75. f2fs_balance_fs_bg(sbi);
  76. } while (!kthread_should_stop());
  77. return 0;
  78. }
  79. int start_gc_thread(struct f2fs_sb_info *sbi)
  80. {
  81. struct f2fs_gc_kthread *gc_th;
  82. dev_t dev = sbi->sb->s_bdev->bd_dev;
  83. int err = 0;
  84. gc_th = f2fs_kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
  85. if (!gc_th) {
  86. err = -ENOMEM;
  87. goto out;
  88. }
  89. gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
  90. gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
  91. gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
  92. gc_th->gc_idle = 0;
  93. sbi->gc_thread = gc_th;
  94. init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
  95. sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
  96. "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
  97. if (IS_ERR(gc_th->f2fs_gc_task)) {
  98. err = PTR_ERR(gc_th->f2fs_gc_task);
  99. kfree(gc_th);
  100. sbi->gc_thread = NULL;
  101. }
  102. out:
  103. return err;
  104. }
  105. void stop_gc_thread(struct f2fs_sb_info *sbi)
  106. {
  107. struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
  108. if (!gc_th)
  109. return;
  110. kthread_stop(gc_th->f2fs_gc_task);
  111. kfree(gc_th);
  112. sbi->gc_thread = NULL;
  113. }
  114. static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
  115. {
  116. int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
  117. if (gc_th && gc_th->gc_idle) {
  118. if (gc_th->gc_idle == 1)
  119. gc_mode = GC_CB;
  120. else if (gc_th->gc_idle == 2)
  121. gc_mode = GC_GREEDY;
  122. }
  123. return gc_mode;
  124. }
  125. static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
  126. int type, struct victim_sel_policy *p)
  127. {
  128. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  129. if (p->alloc_mode == SSR) {
  130. p->gc_mode = GC_GREEDY;
  131. p->dirty_segmap = dirty_i->dirty_segmap[type];
  132. p->max_search = dirty_i->nr_dirty[type];
  133. p->ofs_unit = 1;
  134. } else {
  135. p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
  136. p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
  137. p->max_search = dirty_i->nr_dirty[DIRTY];
  138. p->ofs_unit = sbi->segs_per_sec;
  139. }
  140. if (p->max_search > sbi->max_victim_search)
  141. p->max_search = sbi->max_victim_search;
  142. p->offset = sbi->last_victim[p->gc_mode];
  143. }
  144. static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
  145. struct victim_sel_policy *p)
  146. {
  147. /* SSR allocates in a segment unit */
  148. if (p->alloc_mode == SSR)
  149. return sbi->blocks_per_seg;
  150. if (p->gc_mode == GC_GREEDY)
  151. return sbi->blocks_per_seg * p->ofs_unit;
  152. else if (p->gc_mode == GC_CB)
  153. return UINT_MAX;
  154. else /* No other gc_mode */
  155. return 0;
  156. }
  157. static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
  158. {
  159. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  160. unsigned int secno;
  161. /*
  162. * If the gc_type is FG_GC, we can select victim segments
  163. * selected by background GC before.
  164. * Those segments guarantee they have small valid blocks.
  165. */
  166. for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
  167. if (sec_usage_check(sbi, secno))
  168. continue;
  169. clear_bit(secno, dirty_i->victim_secmap);
  170. return secno * sbi->segs_per_sec;
  171. }
  172. return NULL_SEGNO;
  173. }
  174. static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
  175. {
  176. struct sit_info *sit_i = SIT_I(sbi);
  177. unsigned int secno = GET_SECNO(sbi, segno);
  178. unsigned int start = secno * sbi->segs_per_sec;
  179. unsigned long long mtime = 0;
  180. unsigned int vblocks;
  181. unsigned char age = 0;
  182. unsigned char u;
  183. unsigned int i;
  184. for (i = 0; i < sbi->segs_per_sec; i++)
  185. mtime += get_seg_entry(sbi, start + i)->mtime;
  186. vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
  187. mtime = div_u64(mtime, sbi->segs_per_sec);
  188. vblocks = div_u64(vblocks, sbi->segs_per_sec);
  189. u = (vblocks * 100) >> sbi->log_blocks_per_seg;
  190. /* Handle if the system time has changed by the user */
  191. if (mtime < sit_i->min_mtime)
  192. sit_i->min_mtime = mtime;
  193. if (mtime > sit_i->max_mtime)
  194. sit_i->max_mtime = mtime;
  195. if (sit_i->max_mtime != sit_i->min_mtime)
  196. age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
  197. sit_i->max_mtime - sit_i->min_mtime);
  198. return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
  199. }
  200. static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
  201. unsigned int segno, struct victim_sel_policy *p)
  202. {
  203. if (p->alloc_mode == SSR)
  204. return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
  205. /* alloc_mode == LFS */
  206. if (p->gc_mode == GC_GREEDY)
  207. return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
  208. else
  209. return get_cb_cost(sbi, segno);
  210. }
  211. static unsigned int count_bits(const unsigned long *addr,
  212. unsigned int offset, unsigned int len)
  213. {
  214. unsigned int end = offset + len, sum = 0;
  215. while (offset < end) {
  216. if (test_bit(offset++, addr))
  217. ++sum;
  218. }
  219. return sum;
  220. }
  221. /*
  222. * This function is called from two paths.
  223. * One is garbage collection and the other is SSR segment selection.
  224. * When it is called during GC, it just gets a victim segment
  225. * and it does not remove it from dirty seglist.
  226. * When it is called from SSR segment selection, it finds a segment
  227. * which has minimum valid blocks and removes it from dirty seglist.
  228. */
  229. static int get_victim_by_default(struct f2fs_sb_info *sbi,
  230. unsigned int *result, int gc_type, int type, char alloc_mode)
  231. {
  232. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  233. struct victim_sel_policy p;
  234. unsigned int secno, max_cost, last_victim;
  235. unsigned int last_segment = MAIN_SEGS(sbi);
  236. unsigned int nsearched = 0;
  237. mutex_lock(&dirty_i->seglist_lock);
  238. p.alloc_mode = alloc_mode;
  239. select_policy(sbi, gc_type, type, &p);
  240. p.min_segno = NULL_SEGNO;
  241. p.min_cost = max_cost = get_max_cost(sbi, &p);
  242. if (p.max_search == 0)
  243. goto out;
  244. last_victim = sbi->last_victim[p.gc_mode];
  245. if (p.alloc_mode == LFS && gc_type == FG_GC) {
  246. p.min_segno = check_bg_victims(sbi);
  247. if (p.min_segno != NULL_SEGNO)
  248. goto got_it;
  249. }
  250. while (1) {
  251. unsigned long cost;
  252. unsigned int segno;
  253. segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
  254. if (segno >= last_segment) {
  255. if (sbi->last_victim[p.gc_mode]) {
  256. last_segment = sbi->last_victim[p.gc_mode];
  257. sbi->last_victim[p.gc_mode] = 0;
  258. p.offset = 0;
  259. continue;
  260. }
  261. break;
  262. }
  263. p.offset = segno + p.ofs_unit;
  264. if (p.ofs_unit > 1) {
  265. p.offset -= segno % p.ofs_unit;
  266. nsearched += count_bits(p.dirty_segmap,
  267. p.offset - p.ofs_unit,
  268. p.ofs_unit);
  269. } else {
  270. nsearched++;
  271. }
  272. secno = GET_SECNO(sbi, segno);
  273. if (sec_usage_check(sbi, secno))
  274. goto next;
  275. if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
  276. goto next;
  277. cost = get_gc_cost(sbi, segno, &p);
  278. if (p.min_cost > cost) {
  279. p.min_segno = segno;
  280. p.min_cost = cost;
  281. }
  282. next:
  283. if (nsearched >= p.max_search) {
  284. if (!sbi->last_victim[p.gc_mode] && segno <= last_victim)
  285. sbi->last_victim[p.gc_mode] = last_victim + 1;
  286. else
  287. sbi->last_victim[p.gc_mode] = segno + 1;
  288. break;
  289. }
  290. }
  291. if (p.min_segno != NULL_SEGNO) {
  292. got_it:
  293. if (p.alloc_mode == LFS) {
  294. secno = GET_SECNO(sbi, p.min_segno);
  295. if (gc_type == FG_GC)
  296. sbi->cur_victim_sec = secno;
  297. else
  298. set_bit(secno, dirty_i->victim_secmap);
  299. }
  300. *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
  301. trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
  302. sbi->cur_victim_sec,
  303. prefree_segments(sbi), free_segments(sbi));
  304. }
  305. out:
  306. mutex_unlock(&dirty_i->seglist_lock);
  307. return (p.min_segno == NULL_SEGNO) ? 0 : 1;
  308. }
  309. static const struct victim_selection default_v_ops = {
  310. .get_victim = get_victim_by_default,
  311. };
  312. static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
  313. {
  314. struct inode_entry *ie;
  315. ie = radix_tree_lookup(&gc_list->iroot, ino);
  316. if (ie)
  317. return ie->inode;
  318. return NULL;
  319. }
  320. static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
  321. {
  322. struct inode_entry *new_ie;
  323. if (inode == find_gc_inode(gc_list, inode->i_ino)) {
  324. iput(inode);
  325. return;
  326. }
  327. new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  328. new_ie->inode = inode;
  329. f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
  330. list_add_tail(&new_ie->list, &gc_list->ilist);
  331. }
  332. static void put_gc_inode(struct gc_inode_list *gc_list)
  333. {
  334. struct inode_entry *ie, *next_ie;
  335. list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
  336. radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
  337. iput(ie->inode);
  338. list_del(&ie->list);
  339. kmem_cache_free(inode_entry_slab, ie);
  340. }
  341. }
  342. static int check_valid_map(struct f2fs_sb_info *sbi,
  343. unsigned int segno, int offset)
  344. {
  345. struct sit_info *sit_i = SIT_I(sbi);
  346. struct seg_entry *sentry;
  347. int ret;
  348. mutex_lock(&sit_i->sentry_lock);
  349. sentry = get_seg_entry(sbi, segno);
  350. ret = f2fs_test_bit(offset, sentry->cur_valid_map);
  351. mutex_unlock(&sit_i->sentry_lock);
  352. return ret;
  353. }
  354. /*
  355. * This function compares node address got in summary with that in NAT.
  356. * On validity, copy that node with cold status, otherwise (invalid node)
  357. * ignore that.
  358. */
  359. static void gc_node_segment(struct f2fs_sb_info *sbi,
  360. struct f2fs_summary *sum, unsigned int segno, int gc_type)
  361. {
  362. bool initial = true;
  363. struct f2fs_summary *entry;
  364. block_t start_addr;
  365. int off;
  366. start_addr = START_BLOCK(sbi, segno);
  367. next_step:
  368. entry = sum;
  369. for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
  370. nid_t nid = le32_to_cpu(entry->nid);
  371. struct page *node_page;
  372. struct node_info ni;
  373. /* stop BG_GC if there is not enough free sections. */
  374. if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
  375. return;
  376. if (check_valid_map(sbi, segno, off) == 0)
  377. continue;
  378. if (initial) {
  379. ra_node_page(sbi, nid);
  380. continue;
  381. }
  382. node_page = get_node_page(sbi, nid);
  383. if (IS_ERR(node_page))
  384. continue;
  385. /* block may become invalid during get_node_page */
  386. if (check_valid_map(sbi, segno, off) == 0) {
  387. f2fs_put_page(node_page, 1);
  388. continue;
  389. }
  390. get_node_info(sbi, nid, &ni);
  391. if (ni.blk_addr != start_addr + off) {
  392. f2fs_put_page(node_page, 1);
  393. continue;
  394. }
  395. move_node_page(node_page, gc_type);
  396. stat_inc_node_blk_count(sbi, 1, gc_type);
  397. }
  398. if (initial) {
  399. initial = false;
  400. goto next_step;
  401. }
  402. }
  403. /*
  404. * Calculate start block index indicating the given node offset.
  405. * Be careful, caller should give this node offset only indicating direct node
  406. * blocks. If any node offsets, which point the other types of node blocks such
  407. * as indirect or double indirect node blocks, are given, it must be a caller's
  408. * bug.
  409. */
  410. block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
  411. {
  412. unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
  413. unsigned int bidx;
  414. if (node_ofs == 0)
  415. return 0;
  416. if (node_ofs <= 2) {
  417. bidx = node_ofs - 1;
  418. } else if (node_ofs <= indirect_blks) {
  419. int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
  420. bidx = node_ofs - 2 - dec;
  421. } else {
  422. int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
  423. bidx = node_ofs - 5 - dec;
  424. }
  425. return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode);
  426. }
  427. static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  428. struct node_info *dni, block_t blkaddr, unsigned int *nofs)
  429. {
  430. struct page *node_page;
  431. nid_t nid;
  432. unsigned int ofs_in_node;
  433. block_t source_blkaddr;
  434. nid = le32_to_cpu(sum->nid);
  435. ofs_in_node = le16_to_cpu(sum->ofs_in_node);
  436. node_page = get_node_page(sbi, nid);
  437. if (IS_ERR(node_page))
  438. return false;
  439. get_node_info(sbi, nid, dni);
  440. if (sum->version != dni->version) {
  441. f2fs_put_page(node_page, 1);
  442. return false;
  443. }
  444. *nofs = ofs_of_node(node_page);
  445. source_blkaddr = datablock_addr(node_page, ofs_in_node);
  446. f2fs_put_page(node_page, 1);
  447. if (source_blkaddr != blkaddr)
  448. return false;
  449. return true;
  450. }
  451. static void move_encrypted_block(struct inode *inode, block_t bidx)
  452. {
  453. struct f2fs_io_info fio = {
  454. .sbi = F2FS_I_SB(inode),
  455. .type = DATA,
  456. .op = REQ_OP_READ,
  457. .op_flags = READ_SYNC,
  458. .encrypted_page = NULL,
  459. };
  460. struct dnode_of_data dn;
  461. struct f2fs_summary sum;
  462. struct node_info ni;
  463. struct page *page;
  464. block_t newaddr;
  465. int err;
  466. /* do not read out */
  467. page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
  468. if (!page)
  469. return;
  470. set_new_dnode(&dn, inode, NULL, NULL, 0);
  471. err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
  472. if (err)
  473. goto out;
  474. if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
  475. ClearPageUptodate(page);
  476. goto put_out;
  477. }
  478. /*
  479. * don't cache encrypted data into meta inode until previous dirty
  480. * data were writebacked to avoid racing between GC and flush.
  481. */
  482. f2fs_wait_on_page_writeback(page, DATA, true);
  483. get_node_info(fio.sbi, dn.nid, &ni);
  484. set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
  485. /* read page */
  486. fio.page = page;
  487. fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
  488. allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
  489. &sum, CURSEG_COLD_DATA);
  490. fio.encrypted_page = pagecache_get_page(META_MAPPING(fio.sbi), newaddr,
  491. FGP_LOCK | FGP_CREAT, GFP_NOFS);
  492. if (!fio.encrypted_page) {
  493. err = -ENOMEM;
  494. goto recover_block;
  495. }
  496. err = f2fs_submit_page_bio(&fio);
  497. if (err)
  498. goto put_page_out;
  499. /* write page */
  500. lock_page(fio.encrypted_page);
  501. if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) {
  502. err = -EIO;
  503. goto put_page_out;
  504. }
  505. if (unlikely(!PageUptodate(fio.encrypted_page))) {
  506. err = -EIO;
  507. goto put_page_out;
  508. }
  509. set_page_dirty(fio.encrypted_page);
  510. f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true);
  511. if (clear_page_dirty_for_io(fio.encrypted_page))
  512. dec_page_count(fio.sbi, F2FS_DIRTY_META);
  513. set_page_writeback(fio.encrypted_page);
  514. /* allocate block address */
  515. f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
  516. fio.op = REQ_OP_WRITE;
  517. fio.op_flags = WRITE_SYNC;
  518. fio.new_blkaddr = newaddr;
  519. f2fs_submit_page_mbio(&fio);
  520. f2fs_update_data_blkaddr(&dn, newaddr);
  521. set_inode_flag(inode, FI_APPEND_WRITE);
  522. if (page->index == 0)
  523. set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
  524. put_page_out:
  525. f2fs_put_page(fio.encrypted_page, 1);
  526. recover_block:
  527. if (err)
  528. __f2fs_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
  529. true, true);
  530. put_out:
  531. f2fs_put_dnode(&dn);
  532. out:
  533. f2fs_put_page(page, 1);
  534. }
  535. static void move_data_page(struct inode *inode, block_t bidx, int gc_type)
  536. {
  537. struct page *page;
  538. page = get_lock_data_page(inode, bidx, true);
  539. if (IS_ERR(page))
  540. return;
  541. if (gc_type == BG_GC) {
  542. if (PageWriteback(page))
  543. goto out;
  544. set_page_dirty(page);
  545. set_cold_data(page);
  546. } else {
  547. struct f2fs_io_info fio = {
  548. .sbi = F2FS_I_SB(inode),
  549. .type = DATA,
  550. .op = REQ_OP_WRITE,
  551. .op_flags = WRITE_SYNC,
  552. .page = page,
  553. .encrypted_page = NULL,
  554. };
  555. bool is_dirty = PageDirty(page);
  556. int err;
  557. retry:
  558. set_page_dirty(page);
  559. f2fs_wait_on_page_writeback(page, DATA, true);
  560. if (clear_page_dirty_for_io(page))
  561. inode_dec_dirty_pages(inode);
  562. set_cold_data(page);
  563. err = do_write_data_page(&fio);
  564. if (err == -ENOMEM && is_dirty) {
  565. congestion_wait(BLK_RW_ASYNC, HZ/50);
  566. goto retry;
  567. }
  568. clear_cold_data(page);
  569. }
  570. out:
  571. f2fs_put_page(page, 1);
  572. }
  573. /*
  574. * This function tries to get parent node of victim data block, and identifies
  575. * data block validity. If the block is valid, copy that with cold status and
  576. * modify parent node.
  577. * If the parent node is not valid or the data block address is different,
  578. * the victim data block is ignored.
  579. */
  580. static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  581. struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
  582. {
  583. struct super_block *sb = sbi->sb;
  584. struct f2fs_summary *entry;
  585. block_t start_addr;
  586. int off;
  587. int phase = 0;
  588. start_addr = START_BLOCK(sbi, segno);
  589. next_step:
  590. entry = sum;
  591. for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
  592. struct page *data_page;
  593. struct inode *inode;
  594. struct node_info dni; /* dnode info for the data */
  595. unsigned int ofs_in_node, nofs;
  596. block_t start_bidx;
  597. /* stop BG_GC if there is not enough free sections. */
  598. if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
  599. return;
  600. if (check_valid_map(sbi, segno, off) == 0)
  601. continue;
  602. if (phase == 0) {
  603. ra_node_page(sbi, le32_to_cpu(entry->nid));
  604. continue;
  605. }
  606. /* Get an inode by ino with checking validity */
  607. if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
  608. continue;
  609. if (phase == 1) {
  610. ra_node_page(sbi, dni.ino);
  611. continue;
  612. }
  613. ofs_in_node = le16_to_cpu(entry->ofs_in_node);
  614. if (phase == 2) {
  615. inode = f2fs_iget(sb, dni.ino);
  616. if (IS_ERR(inode) || is_bad_inode(inode))
  617. continue;
  618. /* if encrypted inode, let's go phase 3 */
  619. if (f2fs_encrypted_inode(inode) &&
  620. S_ISREG(inode->i_mode)) {
  621. add_gc_inode(gc_list, inode);
  622. continue;
  623. }
  624. start_bidx = start_bidx_of_node(nofs, inode);
  625. data_page = get_read_data_page(inode,
  626. start_bidx + ofs_in_node, REQ_RAHEAD,
  627. true);
  628. if (IS_ERR(data_page)) {
  629. iput(inode);
  630. continue;
  631. }
  632. f2fs_put_page(data_page, 0);
  633. add_gc_inode(gc_list, inode);
  634. continue;
  635. }
  636. /* phase 3 */
  637. inode = find_gc_inode(gc_list, dni.ino);
  638. if (inode) {
  639. struct f2fs_inode_info *fi = F2FS_I(inode);
  640. bool locked = false;
  641. if (S_ISREG(inode->i_mode)) {
  642. if (!down_write_trylock(&fi->dio_rwsem[READ]))
  643. continue;
  644. if (!down_write_trylock(
  645. &fi->dio_rwsem[WRITE])) {
  646. up_write(&fi->dio_rwsem[READ]);
  647. continue;
  648. }
  649. locked = true;
  650. }
  651. start_bidx = start_bidx_of_node(nofs, inode)
  652. + ofs_in_node;
  653. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  654. move_encrypted_block(inode, start_bidx);
  655. else
  656. move_data_page(inode, start_bidx, gc_type);
  657. if (locked) {
  658. up_write(&fi->dio_rwsem[WRITE]);
  659. up_write(&fi->dio_rwsem[READ]);
  660. }
  661. stat_inc_data_blk_count(sbi, 1, gc_type);
  662. }
  663. }
  664. if (++phase < 4)
  665. goto next_step;
  666. }
  667. static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
  668. int gc_type)
  669. {
  670. struct sit_info *sit_i = SIT_I(sbi);
  671. int ret;
  672. mutex_lock(&sit_i->sentry_lock);
  673. ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
  674. NO_CHECK_TYPE, LFS);
  675. mutex_unlock(&sit_i->sentry_lock);
  676. return ret;
  677. }
  678. static int do_garbage_collect(struct f2fs_sb_info *sbi,
  679. unsigned int start_segno,
  680. struct gc_inode_list *gc_list, int gc_type)
  681. {
  682. struct page *sum_page;
  683. struct f2fs_summary_block *sum;
  684. struct blk_plug plug;
  685. unsigned int segno = start_segno;
  686. unsigned int end_segno = start_segno + sbi->segs_per_sec;
  687. int seg_freed = 0;
  688. unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
  689. SUM_TYPE_DATA : SUM_TYPE_NODE;
  690. /* readahead multi ssa blocks those have contiguous address */
  691. if (sbi->segs_per_sec > 1)
  692. ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
  693. sbi->segs_per_sec, META_SSA, true);
  694. /* reference all summary page */
  695. while (segno < end_segno) {
  696. sum_page = get_sum_page(sbi, segno++);
  697. unlock_page(sum_page);
  698. }
  699. blk_start_plug(&plug);
  700. for (segno = start_segno; segno < end_segno; segno++) {
  701. if (get_valid_blocks(sbi, segno, 1) == 0)
  702. continue;
  703. /* find segment summary of victim */
  704. sum_page = find_get_page(META_MAPPING(sbi),
  705. GET_SUM_BLOCK(sbi, segno));
  706. f2fs_bug_on(sbi, !PageUptodate(sum_page));
  707. f2fs_put_page(sum_page, 0);
  708. sum = page_address(sum_page);
  709. f2fs_bug_on(sbi, type != GET_SUM_TYPE((&sum->footer)));
  710. /*
  711. * this is to avoid deadlock:
  712. * - lock_page(sum_page) - f2fs_replace_block
  713. * - check_valid_map() - mutex_lock(sentry_lock)
  714. * - mutex_lock(sentry_lock) - change_curseg()
  715. * - lock_page(sum_page)
  716. */
  717. if (type == SUM_TYPE_NODE)
  718. gc_node_segment(sbi, sum->entries, segno, gc_type);
  719. else
  720. gc_data_segment(sbi, sum->entries, gc_list, segno,
  721. gc_type);
  722. stat_inc_seg_count(sbi, type, gc_type);
  723. f2fs_put_page(sum_page, 0);
  724. }
  725. if (gc_type == FG_GC)
  726. f2fs_submit_merged_bio(sbi,
  727. (type == SUM_TYPE_NODE) ? NODE : DATA, WRITE);
  728. blk_finish_plug(&plug);
  729. if (gc_type == FG_GC) {
  730. while (start_segno < end_segno)
  731. if (get_valid_blocks(sbi, start_segno++, 1) == 0)
  732. seg_freed++;
  733. }
  734. stat_inc_call_count(sbi->stat_info);
  735. return seg_freed;
  736. }
  737. int f2fs_gc(struct f2fs_sb_info *sbi, bool sync)
  738. {
  739. unsigned int segno;
  740. int gc_type = sync ? FG_GC : BG_GC;
  741. int sec_freed = 0, seg_freed;
  742. int ret = -EINVAL;
  743. struct cp_control cpc;
  744. struct gc_inode_list gc_list = {
  745. .ilist = LIST_HEAD_INIT(gc_list.ilist),
  746. .iroot = RADIX_TREE_INIT(GFP_NOFS),
  747. };
  748. cpc.reason = __get_cp_reason(sbi);
  749. gc_more:
  750. segno = NULL_SEGNO;
  751. if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
  752. goto stop;
  753. if (unlikely(f2fs_cp_error(sbi))) {
  754. ret = -EIO;
  755. goto stop;
  756. }
  757. if (gc_type == BG_GC && has_not_enough_free_secs(sbi, sec_freed)) {
  758. gc_type = FG_GC;
  759. /*
  760. * If there is no victim and no prefree segment but still not
  761. * enough free sections, we should flush dent/node blocks and do
  762. * garbage collections.
  763. */
  764. if (__get_victim(sbi, &segno, gc_type) ||
  765. prefree_segments(sbi)) {
  766. write_checkpoint(sbi, &cpc);
  767. segno = NULL_SEGNO;
  768. } else if (has_not_enough_free_secs(sbi, 0)) {
  769. write_checkpoint(sbi, &cpc);
  770. }
  771. }
  772. if (segno == NULL_SEGNO && !__get_victim(sbi, &segno, gc_type))
  773. goto stop;
  774. ret = 0;
  775. seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type);
  776. if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec)
  777. sec_freed++;
  778. if (gc_type == FG_GC)
  779. sbi->cur_victim_sec = NULL_SEGNO;
  780. if (!sync) {
  781. if (has_not_enough_free_secs(sbi, sec_freed))
  782. goto gc_more;
  783. if (gc_type == FG_GC)
  784. write_checkpoint(sbi, &cpc);
  785. }
  786. stop:
  787. mutex_unlock(&sbi->gc_mutex);
  788. put_gc_inode(&gc_list);
  789. if (sync)
  790. ret = sec_freed ? 0 : -EAGAIN;
  791. return ret;
  792. }
  793. void build_gc_manager(struct f2fs_sb_info *sbi)
  794. {
  795. DIRTY_I(sbi)->v_ops = &default_v_ops;
  796. }