file.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uuid.h>
  24. #include <linux/file.h>
  25. #include "f2fs.h"
  26. #include "node.h"
  27. #include "segment.h"
  28. #include "xattr.h"
  29. #include "acl.h"
  30. #include "gc.h"
  31. #include "trace.h"
  32. #include <trace/events/f2fs.h>
  33. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  34. struct vm_fault *vmf)
  35. {
  36. struct page *page = vmf->page;
  37. struct inode *inode = file_inode(vma->vm_file);
  38. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  39. struct dnode_of_data dn;
  40. int err;
  41. sb_start_pagefault(inode->i_sb);
  42. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  43. /* block allocation */
  44. f2fs_lock_op(sbi);
  45. set_new_dnode(&dn, inode, NULL, NULL, 0);
  46. err = f2fs_reserve_block(&dn, page->index);
  47. if (err) {
  48. f2fs_unlock_op(sbi);
  49. goto out;
  50. }
  51. f2fs_put_dnode(&dn);
  52. f2fs_unlock_op(sbi);
  53. f2fs_balance_fs(sbi, dn.node_changed);
  54. file_update_time(vma->vm_file);
  55. lock_page(page);
  56. if (unlikely(page->mapping != inode->i_mapping ||
  57. page_offset(page) > i_size_read(inode) ||
  58. !PageUptodate(page))) {
  59. unlock_page(page);
  60. err = -EFAULT;
  61. goto out;
  62. }
  63. /*
  64. * check to see if the page is mapped already (no holes)
  65. */
  66. if (PageMappedToDisk(page))
  67. goto mapped;
  68. /* page is wholly or partially inside EOF */
  69. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  70. i_size_read(inode)) {
  71. unsigned offset;
  72. offset = i_size_read(inode) & ~PAGE_MASK;
  73. zero_user_segment(page, offset, PAGE_SIZE);
  74. }
  75. set_page_dirty(page);
  76. if (!PageUptodate(page))
  77. SetPageUptodate(page);
  78. trace_f2fs_vm_page_mkwrite(page, DATA);
  79. mapped:
  80. /* fill the page */
  81. f2fs_wait_on_page_writeback(page, DATA, false);
  82. /* wait for GCed encrypted page writeback */
  83. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  84. f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
  85. /* if gced page is attached, don't write to cold segment */
  86. clear_cold_data(page);
  87. out:
  88. sb_end_pagefault(inode->i_sb);
  89. f2fs_update_time(sbi, REQ_TIME);
  90. return block_page_mkwrite_return(err);
  91. }
  92. static const struct vm_operations_struct f2fs_file_vm_ops = {
  93. .fault = filemap_fault,
  94. .map_pages = filemap_map_pages,
  95. .page_mkwrite = f2fs_vm_page_mkwrite,
  96. };
  97. static int get_parent_ino(struct inode *inode, nid_t *pino)
  98. {
  99. struct dentry *dentry;
  100. inode = igrab(inode);
  101. dentry = d_find_any_alias(inode);
  102. iput(inode);
  103. if (!dentry)
  104. return 0;
  105. if (update_dent_inode(inode, inode, &dentry->d_name)) {
  106. dput(dentry);
  107. return 0;
  108. }
  109. *pino = parent_ino(dentry);
  110. dput(dentry);
  111. return 1;
  112. }
  113. static inline bool need_do_checkpoint(struct inode *inode)
  114. {
  115. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  116. bool need_cp = false;
  117. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  118. need_cp = true;
  119. else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
  120. need_cp = true;
  121. else if (file_wrong_pino(inode))
  122. need_cp = true;
  123. else if (!space_for_roll_forward(sbi))
  124. need_cp = true;
  125. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  126. need_cp = true;
  127. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  128. need_cp = true;
  129. else if (test_opt(sbi, FASTBOOT))
  130. need_cp = true;
  131. else if (sbi->active_logs == 2)
  132. need_cp = true;
  133. return need_cp;
  134. }
  135. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  136. {
  137. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  138. bool ret = false;
  139. /* But we need to avoid that there are some inode updates */
  140. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  141. ret = true;
  142. f2fs_put_page(i, 0);
  143. return ret;
  144. }
  145. static void try_to_fix_pino(struct inode *inode)
  146. {
  147. struct f2fs_inode_info *fi = F2FS_I(inode);
  148. nid_t pino;
  149. down_write(&fi->i_sem);
  150. fi->xattr_ver = 0;
  151. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  152. get_parent_ino(inode, &pino)) {
  153. f2fs_i_pino_write(inode, pino);
  154. file_got_pino(inode);
  155. }
  156. up_write(&fi->i_sem);
  157. }
  158. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  159. int datasync, bool atomic)
  160. {
  161. struct inode *inode = file->f_mapping->host;
  162. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  163. nid_t ino = inode->i_ino;
  164. int ret = 0;
  165. bool need_cp = false;
  166. struct writeback_control wbc = {
  167. .sync_mode = WB_SYNC_ALL,
  168. .nr_to_write = LONG_MAX,
  169. .for_reclaim = 0,
  170. };
  171. if (unlikely(f2fs_readonly(inode->i_sb)))
  172. return 0;
  173. trace_f2fs_sync_file_enter(inode);
  174. /* if fdatasync is triggered, let's do in-place-update */
  175. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  176. set_inode_flag(inode, FI_NEED_IPU);
  177. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  178. clear_inode_flag(inode, FI_NEED_IPU);
  179. if (ret) {
  180. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  181. return ret;
  182. }
  183. /* if the inode is dirty, let's recover all the time */
  184. if (!datasync && !f2fs_skip_inode_update(inode)) {
  185. f2fs_write_inode(inode, NULL);
  186. goto go_write;
  187. }
  188. /*
  189. * if there is no written data, don't waste time to write recovery info.
  190. */
  191. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  192. !exist_written_data(sbi, ino, APPEND_INO)) {
  193. /* it may call write_inode just prior to fsync */
  194. if (need_inode_page_update(sbi, ino))
  195. goto go_write;
  196. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  197. exist_written_data(sbi, ino, UPDATE_INO))
  198. goto flush_out;
  199. goto out;
  200. }
  201. go_write:
  202. /*
  203. * Both of fdatasync() and fsync() are able to be recovered from
  204. * sudden-power-off.
  205. */
  206. down_read(&F2FS_I(inode)->i_sem);
  207. need_cp = need_do_checkpoint(inode);
  208. up_read(&F2FS_I(inode)->i_sem);
  209. if (need_cp) {
  210. /* all the dirty node pages should be flushed for POR */
  211. ret = f2fs_sync_fs(inode->i_sb, 1);
  212. /*
  213. * We've secured consistency through sync_fs. Following pino
  214. * will be used only for fsynced inodes after checkpoint.
  215. */
  216. try_to_fix_pino(inode);
  217. clear_inode_flag(inode, FI_APPEND_WRITE);
  218. clear_inode_flag(inode, FI_UPDATE_WRITE);
  219. goto out;
  220. }
  221. sync_nodes:
  222. ret = fsync_node_pages(sbi, inode, &wbc, atomic);
  223. if (ret)
  224. goto out;
  225. /* if cp_error was enabled, we should avoid infinite loop */
  226. if (unlikely(f2fs_cp_error(sbi))) {
  227. ret = -EIO;
  228. goto out;
  229. }
  230. if (need_inode_block_update(sbi, ino)) {
  231. f2fs_mark_inode_dirty_sync(inode);
  232. f2fs_write_inode(inode, NULL);
  233. goto sync_nodes;
  234. }
  235. ret = wait_on_node_pages_writeback(sbi, ino);
  236. if (ret)
  237. goto out;
  238. /* once recovery info is written, don't need to tack this */
  239. remove_ino_entry(sbi, ino, APPEND_INO);
  240. clear_inode_flag(inode, FI_APPEND_WRITE);
  241. flush_out:
  242. remove_ino_entry(sbi, ino, UPDATE_INO);
  243. clear_inode_flag(inode, FI_UPDATE_WRITE);
  244. ret = f2fs_issue_flush(sbi);
  245. f2fs_update_time(sbi, REQ_TIME);
  246. out:
  247. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  248. f2fs_trace_ios(NULL, 1);
  249. return ret;
  250. }
  251. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  252. {
  253. return f2fs_do_sync_file(file, start, end, datasync, false);
  254. }
  255. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  256. pgoff_t pgofs, int whence)
  257. {
  258. struct pagevec pvec;
  259. int nr_pages;
  260. if (whence != SEEK_DATA)
  261. return 0;
  262. /* find first dirty page index */
  263. pagevec_init(&pvec, 0);
  264. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  265. PAGECACHE_TAG_DIRTY, 1);
  266. pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
  267. pagevec_release(&pvec);
  268. return pgofs;
  269. }
  270. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  271. int whence)
  272. {
  273. switch (whence) {
  274. case SEEK_DATA:
  275. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  276. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  277. return true;
  278. break;
  279. case SEEK_HOLE:
  280. if (blkaddr == NULL_ADDR)
  281. return true;
  282. break;
  283. }
  284. return false;
  285. }
  286. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  287. {
  288. struct inode *inode = file->f_mapping->host;
  289. loff_t maxbytes = inode->i_sb->s_maxbytes;
  290. struct dnode_of_data dn;
  291. pgoff_t pgofs, end_offset, dirty;
  292. loff_t data_ofs = offset;
  293. loff_t isize;
  294. int err = 0;
  295. inode_lock(inode);
  296. isize = i_size_read(inode);
  297. if (offset >= isize)
  298. goto fail;
  299. /* handle inline data case */
  300. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  301. if (whence == SEEK_HOLE)
  302. data_ofs = isize;
  303. goto found;
  304. }
  305. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  306. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  307. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  308. set_new_dnode(&dn, inode, NULL, NULL, 0);
  309. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  310. if (err && err != -ENOENT) {
  311. goto fail;
  312. } else if (err == -ENOENT) {
  313. /* direct node does not exists */
  314. if (whence == SEEK_DATA) {
  315. pgofs = get_next_page_offset(&dn, pgofs);
  316. continue;
  317. } else {
  318. goto found;
  319. }
  320. }
  321. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  322. /* find data/hole in dnode block */
  323. for (; dn.ofs_in_node < end_offset;
  324. dn.ofs_in_node++, pgofs++,
  325. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  326. block_t blkaddr;
  327. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  328. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  329. f2fs_put_dnode(&dn);
  330. goto found;
  331. }
  332. }
  333. f2fs_put_dnode(&dn);
  334. }
  335. if (whence == SEEK_DATA)
  336. goto fail;
  337. found:
  338. if (whence == SEEK_HOLE && data_ofs > isize)
  339. data_ofs = isize;
  340. inode_unlock(inode);
  341. return vfs_setpos(file, data_ofs, maxbytes);
  342. fail:
  343. inode_unlock(inode);
  344. return -ENXIO;
  345. }
  346. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  347. {
  348. struct inode *inode = file->f_mapping->host;
  349. loff_t maxbytes = inode->i_sb->s_maxbytes;
  350. switch (whence) {
  351. case SEEK_SET:
  352. case SEEK_CUR:
  353. case SEEK_END:
  354. return generic_file_llseek_size(file, offset, whence,
  355. maxbytes, i_size_read(inode));
  356. case SEEK_DATA:
  357. case SEEK_HOLE:
  358. if (offset < 0)
  359. return -ENXIO;
  360. return f2fs_seek_block(file, offset, whence);
  361. }
  362. return -EINVAL;
  363. }
  364. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  365. {
  366. struct inode *inode = file_inode(file);
  367. int err;
  368. if (f2fs_encrypted_inode(inode)) {
  369. err = fscrypt_get_encryption_info(inode);
  370. if (err)
  371. return 0;
  372. if (!f2fs_encrypted_inode(inode))
  373. return -ENOKEY;
  374. }
  375. /* we don't need to use inline_data strictly */
  376. err = f2fs_convert_inline_inode(inode);
  377. if (err)
  378. return err;
  379. file_accessed(file);
  380. vma->vm_ops = &f2fs_file_vm_ops;
  381. return 0;
  382. }
  383. static int f2fs_file_open(struct inode *inode, struct file *filp)
  384. {
  385. int ret = generic_file_open(inode, filp);
  386. struct dentry *dir;
  387. if (!ret && f2fs_encrypted_inode(inode)) {
  388. ret = fscrypt_get_encryption_info(inode);
  389. if (ret)
  390. return -EACCES;
  391. if (!fscrypt_has_encryption_key(inode))
  392. return -ENOKEY;
  393. }
  394. dir = dget_parent(file_dentry(filp));
  395. if (f2fs_encrypted_inode(d_inode(dir)) &&
  396. !fscrypt_has_permitted_context(d_inode(dir), inode)) {
  397. dput(dir);
  398. return -EPERM;
  399. }
  400. dput(dir);
  401. return ret;
  402. }
  403. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  404. {
  405. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  406. struct f2fs_node *raw_node;
  407. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  408. __le32 *addr;
  409. raw_node = F2FS_NODE(dn->node_page);
  410. addr = blkaddr_in_node(raw_node) + ofs;
  411. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  412. block_t blkaddr = le32_to_cpu(*addr);
  413. if (blkaddr == NULL_ADDR)
  414. continue;
  415. dn->data_blkaddr = NULL_ADDR;
  416. set_data_blkaddr(dn);
  417. invalidate_blocks(sbi, blkaddr);
  418. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  419. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  420. nr_free++;
  421. }
  422. if (nr_free) {
  423. pgoff_t fofs;
  424. /*
  425. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  426. * we will invalidate all blkaddr in the whole range.
  427. */
  428. fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
  429. dn->inode) + ofs;
  430. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  431. dec_valid_block_count(sbi, dn->inode, nr_free);
  432. }
  433. dn->ofs_in_node = ofs;
  434. f2fs_update_time(sbi, REQ_TIME);
  435. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  436. dn->ofs_in_node, nr_free);
  437. return nr_free;
  438. }
  439. void truncate_data_blocks(struct dnode_of_data *dn)
  440. {
  441. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  442. }
  443. static int truncate_partial_data_page(struct inode *inode, u64 from,
  444. bool cache_only)
  445. {
  446. unsigned offset = from & (PAGE_SIZE - 1);
  447. pgoff_t index = from >> PAGE_SHIFT;
  448. struct address_space *mapping = inode->i_mapping;
  449. struct page *page;
  450. if (!offset && !cache_only)
  451. return 0;
  452. if (cache_only) {
  453. page = f2fs_grab_cache_page(mapping, index, false);
  454. if (page && PageUptodate(page))
  455. goto truncate_out;
  456. f2fs_put_page(page, 1);
  457. return 0;
  458. }
  459. page = get_lock_data_page(inode, index, true);
  460. if (IS_ERR(page))
  461. return 0;
  462. truncate_out:
  463. f2fs_wait_on_page_writeback(page, DATA, true);
  464. zero_user(page, offset, PAGE_SIZE - offset);
  465. if (!cache_only || !f2fs_encrypted_inode(inode) ||
  466. !S_ISREG(inode->i_mode))
  467. set_page_dirty(page);
  468. f2fs_put_page(page, 1);
  469. return 0;
  470. }
  471. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  472. {
  473. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  474. unsigned int blocksize = inode->i_sb->s_blocksize;
  475. struct dnode_of_data dn;
  476. pgoff_t free_from;
  477. int count = 0, err = 0;
  478. struct page *ipage;
  479. bool truncate_page = false;
  480. trace_f2fs_truncate_blocks_enter(inode, from);
  481. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  482. if (free_from >= sbi->max_file_blocks)
  483. goto free_partial;
  484. if (lock)
  485. f2fs_lock_op(sbi);
  486. ipage = get_node_page(sbi, inode->i_ino);
  487. if (IS_ERR(ipage)) {
  488. err = PTR_ERR(ipage);
  489. goto out;
  490. }
  491. if (f2fs_has_inline_data(inode)) {
  492. if (truncate_inline_inode(ipage, from))
  493. set_page_dirty(ipage);
  494. f2fs_put_page(ipage, 1);
  495. truncate_page = true;
  496. goto out;
  497. }
  498. set_new_dnode(&dn, inode, ipage, NULL, 0);
  499. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  500. if (err) {
  501. if (err == -ENOENT)
  502. goto free_next;
  503. goto out;
  504. }
  505. count = ADDRS_PER_PAGE(dn.node_page, inode);
  506. count -= dn.ofs_in_node;
  507. f2fs_bug_on(sbi, count < 0);
  508. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  509. truncate_data_blocks_range(&dn, count);
  510. free_from += count;
  511. }
  512. f2fs_put_dnode(&dn);
  513. free_next:
  514. err = truncate_inode_blocks(inode, free_from);
  515. out:
  516. if (lock)
  517. f2fs_unlock_op(sbi);
  518. free_partial:
  519. /* lastly zero out the first data page */
  520. if (!err)
  521. err = truncate_partial_data_page(inode, from, truncate_page);
  522. trace_f2fs_truncate_blocks_exit(inode, err);
  523. return err;
  524. }
  525. int f2fs_truncate(struct inode *inode)
  526. {
  527. int err;
  528. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  529. S_ISLNK(inode->i_mode)))
  530. return 0;
  531. trace_f2fs_truncate(inode);
  532. /* we should check inline_data size */
  533. if (!f2fs_may_inline_data(inode)) {
  534. err = f2fs_convert_inline_inode(inode);
  535. if (err)
  536. return err;
  537. }
  538. err = truncate_blocks(inode, i_size_read(inode), true);
  539. if (err)
  540. return err;
  541. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  542. f2fs_mark_inode_dirty_sync(inode);
  543. return 0;
  544. }
  545. int f2fs_getattr(struct vfsmount *mnt,
  546. struct dentry *dentry, struct kstat *stat)
  547. {
  548. struct inode *inode = d_inode(dentry);
  549. generic_fillattr(inode, stat);
  550. stat->blocks <<= 3;
  551. return 0;
  552. }
  553. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  554. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  555. {
  556. unsigned int ia_valid = attr->ia_valid;
  557. if (ia_valid & ATTR_UID)
  558. inode->i_uid = attr->ia_uid;
  559. if (ia_valid & ATTR_GID)
  560. inode->i_gid = attr->ia_gid;
  561. if (ia_valid & ATTR_ATIME)
  562. inode->i_atime = timespec_trunc(attr->ia_atime,
  563. inode->i_sb->s_time_gran);
  564. if (ia_valid & ATTR_MTIME)
  565. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  566. inode->i_sb->s_time_gran);
  567. if (ia_valid & ATTR_CTIME)
  568. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  569. inode->i_sb->s_time_gran);
  570. if (ia_valid & ATTR_MODE) {
  571. umode_t mode = attr->ia_mode;
  572. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  573. mode &= ~S_ISGID;
  574. set_acl_inode(inode, mode);
  575. }
  576. }
  577. #else
  578. #define __setattr_copy setattr_copy
  579. #endif
  580. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  581. {
  582. struct inode *inode = d_inode(dentry);
  583. int err;
  584. err = inode_change_ok(inode, attr);
  585. if (err)
  586. return err;
  587. if (attr->ia_valid & ATTR_SIZE) {
  588. if (f2fs_encrypted_inode(inode) &&
  589. fscrypt_get_encryption_info(inode))
  590. return -EACCES;
  591. if (attr->ia_size <= i_size_read(inode)) {
  592. truncate_setsize(inode, attr->ia_size);
  593. err = f2fs_truncate(inode);
  594. if (err)
  595. return err;
  596. f2fs_balance_fs(F2FS_I_SB(inode), true);
  597. } else {
  598. /*
  599. * do not trim all blocks after i_size if target size is
  600. * larger than i_size.
  601. */
  602. truncate_setsize(inode, attr->ia_size);
  603. /* should convert inline inode here */
  604. if (!f2fs_may_inline_data(inode)) {
  605. err = f2fs_convert_inline_inode(inode);
  606. if (err)
  607. return err;
  608. }
  609. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  610. }
  611. }
  612. __setattr_copy(inode, attr);
  613. if (attr->ia_valid & ATTR_MODE) {
  614. err = posix_acl_chmod(inode, get_inode_mode(inode));
  615. if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
  616. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  617. clear_inode_flag(inode, FI_ACL_MODE);
  618. }
  619. }
  620. f2fs_mark_inode_dirty_sync(inode);
  621. return err;
  622. }
  623. const struct inode_operations f2fs_file_inode_operations = {
  624. .getattr = f2fs_getattr,
  625. .setattr = f2fs_setattr,
  626. .get_acl = f2fs_get_acl,
  627. .set_acl = f2fs_set_acl,
  628. #ifdef CONFIG_F2FS_FS_XATTR
  629. .setxattr = generic_setxattr,
  630. .getxattr = generic_getxattr,
  631. .listxattr = f2fs_listxattr,
  632. .removexattr = generic_removexattr,
  633. #endif
  634. .fiemap = f2fs_fiemap,
  635. };
  636. static int fill_zero(struct inode *inode, pgoff_t index,
  637. loff_t start, loff_t len)
  638. {
  639. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  640. struct page *page;
  641. if (!len)
  642. return 0;
  643. f2fs_balance_fs(sbi, true);
  644. f2fs_lock_op(sbi);
  645. page = get_new_data_page(inode, NULL, index, false);
  646. f2fs_unlock_op(sbi);
  647. if (IS_ERR(page))
  648. return PTR_ERR(page);
  649. f2fs_wait_on_page_writeback(page, DATA, true);
  650. zero_user(page, start, len);
  651. set_page_dirty(page);
  652. f2fs_put_page(page, 1);
  653. return 0;
  654. }
  655. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  656. {
  657. int err;
  658. while (pg_start < pg_end) {
  659. struct dnode_of_data dn;
  660. pgoff_t end_offset, count;
  661. set_new_dnode(&dn, inode, NULL, NULL, 0);
  662. err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  663. if (err) {
  664. if (err == -ENOENT) {
  665. pg_start++;
  666. continue;
  667. }
  668. return err;
  669. }
  670. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  671. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  672. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  673. truncate_data_blocks_range(&dn, count);
  674. f2fs_put_dnode(&dn);
  675. pg_start += count;
  676. }
  677. return 0;
  678. }
  679. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  680. {
  681. pgoff_t pg_start, pg_end;
  682. loff_t off_start, off_end;
  683. int ret;
  684. ret = f2fs_convert_inline_inode(inode);
  685. if (ret)
  686. return ret;
  687. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  688. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  689. off_start = offset & (PAGE_SIZE - 1);
  690. off_end = (offset + len) & (PAGE_SIZE - 1);
  691. if (pg_start == pg_end) {
  692. ret = fill_zero(inode, pg_start, off_start,
  693. off_end - off_start);
  694. if (ret)
  695. return ret;
  696. } else {
  697. if (off_start) {
  698. ret = fill_zero(inode, pg_start++, off_start,
  699. PAGE_SIZE - off_start);
  700. if (ret)
  701. return ret;
  702. }
  703. if (off_end) {
  704. ret = fill_zero(inode, pg_end, 0, off_end);
  705. if (ret)
  706. return ret;
  707. }
  708. if (pg_start < pg_end) {
  709. struct address_space *mapping = inode->i_mapping;
  710. loff_t blk_start, blk_end;
  711. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  712. f2fs_balance_fs(sbi, true);
  713. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  714. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  715. truncate_inode_pages_range(mapping, blk_start,
  716. blk_end - 1);
  717. f2fs_lock_op(sbi);
  718. ret = truncate_hole(inode, pg_start, pg_end);
  719. f2fs_unlock_op(sbi);
  720. }
  721. }
  722. return ret;
  723. }
  724. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  725. int *do_replace, pgoff_t off, pgoff_t len)
  726. {
  727. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  728. struct dnode_of_data dn;
  729. int ret, done, i;
  730. next_dnode:
  731. set_new_dnode(&dn, inode, NULL, NULL, 0);
  732. ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  733. if (ret && ret != -ENOENT) {
  734. return ret;
  735. } else if (ret == -ENOENT) {
  736. if (dn.max_level == 0)
  737. return -ENOENT;
  738. done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
  739. blkaddr += done;
  740. do_replace += done;
  741. goto next;
  742. }
  743. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  744. dn.ofs_in_node, len);
  745. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  746. *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  747. if (!is_checkpointed_data(sbi, *blkaddr)) {
  748. if (test_opt(sbi, LFS)) {
  749. f2fs_put_dnode(&dn);
  750. return -ENOTSUPP;
  751. }
  752. /* do not invalidate this block address */
  753. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  754. *do_replace = 1;
  755. }
  756. }
  757. f2fs_put_dnode(&dn);
  758. next:
  759. len -= done;
  760. off += done;
  761. if (len)
  762. goto next_dnode;
  763. return 0;
  764. }
  765. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  766. int *do_replace, pgoff_t off, int len)
  767. {
  768. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  769. struct dnode_of_data dn;
  770. int ret, i;
  771. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  772. if (*do_replace == 0)
  773. continue;
  774. set_new_dnode(&dn, inode, NULL, NULL, 0);
  775. ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  776. if (ret) {
  777. dec_valid_block_count(sbi, inode, 1);
  778. invalidate_blocks(sbi, *blkaddr);
  779. } else {
  780. f2fs_update_data_blkaddr(&dn, *blkaddr);
  781. }
  782. f2fs_put_dnode(&dn);
  783. }
  784. return 0;
  785. }
  786. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  787. block_t *blkaddr, int *do_replace,
  788. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  789. {
  790. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  791. pgoff_t i = 0;
  792. int ret;
  793. while (i < len) {
  794. if (blkaddr[i] == NULL_ADDR && !full) {
  795. i++;
  796. continue;
  797. }
  798. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  799. struct dnode_of_data dn;
  800. struct node_info ni;
  801. size_t new_size;
  802. pgoff_t ilen;
  803. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  804. ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  805. if (ret)
  806. return ret;
  807. get_node_info(sbi, dn.nid, &ni);
  808. ilen = min((pgoff_t)
  809. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  810. dn.ofs_in_node, len - i);
  811. do {
  812. dn.data_blkaddr = datablock_addr(dn.node_page,
  813. dn.ofs_in_node);
  814. truncate_data_blocks_range(&dn, 1);
  815. if (do_replace[i]) {
  816. f2fs_i_blocks_write(src_inode,
  817. 1, false);
  818. f2fs_i_blocks_write(dst_inode,
  819. 1, true);
  820. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  821. blkaddr[i], ni.version, true, false);
  822. do_replace[i] = 0;
  823. }
  824. dn.ofs_in_node++;
  825. i++;
  826. new_size = (dst + i) << PAGE_SHIFT;
  827. if (dst_inode->i_size < new_size)
  828. f2fs_i_size_write(dst_inode, new_size);
  829. } while ((do_replace[i] || blkaddr[i] == NULL_ADDR) && --ilen);
  830. f2fs_put_dnode(&dn);
  831. } else {
  832. struct page *psrc, *pdst;
  833. psrc = get_lock_data_page(src_inode, src + i, true);
  834. if (IS_ERR(psrc))
  835. return PTR_ERR(psrc);
  836. pdst = get_new_data_page(dst_inode, NULL, dst + i,
  837. true);
  838. if (IS_ERR(pdst)) {
  839. f2fs_put_page(psrc, 1);
  840. return PTR_ERR(pdst);
  841. }
  842. f2fs_copy_page(psrc, pdst);
  843. set_page_dirty(pdst);
  844. f2fs_put_page(pdst, 1);
  845. f2fs_put_page(psrc, 1);
  846. ret = truncate_hole(src_inode, src + i, src + i + 1);
  847. if (ret)
  848. return ret;
  849. i++;
  850. }
  851. }
  852. return 0;
  853. }
  854. static int __exchange_data_block(struct inode *src_inode,
  855. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  856. pgoff_t len, bool full)
  857. {
  858. block_t *src_blkaddr;
  859. int *do_replace;
  860. pgoff_t olen;
  861. int ret;
  862. while (len) {
  863. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
  864. src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
  865. if (!src_blkaddr)
  866. return -ENOMEM;
  867. do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
  868. if (!do_replace) {
  869. kvfree(src_blkaddr);
  870. return -ENOMEM;
  871. }
  872. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  873. do_replace, src, olen);
  874. if (ret)
  875. goto roll_back;
  876. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  877. do_replace, src, dst, olen, full);
  878. if (ret)
  879. goto roll_back;
  880. src += olen;
  881. dst += olen;
  882. len -= olen;
  883. kvfree(src_blkaddr);
  884. kvfree(do_replace);
  885. }
  886. return 0;
  887. roll_back:
  888. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
  889. kvfree(src_blkaddr);
  890. kvfree(do_replace);
  891. return ret;
  892. }
  893. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  894. {
  895. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  896. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  897. int ret;
  898. f2fs_balance_fs(sbi, true);
  899. f2fs_lock_op(sbi);
  900. f2fs_drop_extent_tree(inode);
  901. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  902. f2fs_unlock_op(sbi);
  903. return ret;
  904. }
  905. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  906. {
  907. pgoff_t pg_start, pg_end;
  908. loff_t new_size;
  909. int ret;
  910. if (offset + len >= i_size_read(inode))
  911. return -EINVAL;
  912. /* collapse range should be aligned to block size of f2fs. */
  913. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  914. return -EINVAL;
  915. ret = f2fs_convert_inline_inode(inode);
  916. if (ret)
  917. return ret;
  918. pg_start = offset >> PAGE_SHIFT;
  919. pg_end = (offset + len) >> PAGE_SHIFT;
  920. /* write out all dirty pages from offset */
  921. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  922. if (ret)
  923. return ret;
  924. truncate_pagecache(inode, offset);
  925. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  926. if (ret)
  927. return ret;
  928. /* write out all moved pages, if possible */
  929. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  930. truncate_pagecache(inode, offset);
  931. new_size = i_size_read(inode) - len;
  932. truncate_pagecache(inode, new_size);
  933. ret = truncate_blocks(inode, new_size, true);
  934. if (!ret)
  935. f2fs_i_size_write(inode, new_size);
  936. return ret;
  937. }
  938. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  939. pgoff_t end)
  940. {
  941. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  942. pgoff_t index = start;
  943. unsigned int ofs_in_node = dn->ofs_in_node;
  944. blkcnt_t count = 0;
  945. int ret;
  946. for (; index < end; index++, dn->ofs_in_node++) {
  947. if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
  948. count++;
  949. }
  950. dn->ofs_in_node = ofs_in_node;
  951. ret = reserve_new_blocks(dn, count);
  952. if (ret)
  953. return ret;
  954. dn->ofs_in_node = ofs_in_node;
  955. for (index = start; index < end; index++, dn->ofs_in_node++) {
  956. dn->data_blkaddr =
  957. datablock_addr(dn->node_page, dn->ofs_in_node);
  958. /*
  959. * reserve_new_blocks will not guarantee entire block
  960. * allocation.
  961. */
  962. if (dn->data_blkaddr == NULL_ADDR) {
  963. ret = -ENOSPC;
  964. break;
  965. }
  966. if (dn->data_blkaddr != NEW_ADDR) {
  967. invalidate_blocks(sbi, dn->data_blkaddr);
  968. dn->data_blkaddr = NEW_ADDR;
  969. set_data_blkaddr(dn);
  970. }
  971. }
  972. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  973. return ret;
  974. }
  975. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  976. int mode)
  977. {
  978. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  979. struct address_space *mapping = inode->i_mapping;
  980. pgoff_t index, pg_start, pg_end;
  981. loff_t new_size = i_size_read(inode);
  982. loff_t off_start, off_end;
  983. int ret = 0;
  984. ret = inode_newsize_ok(inode, (len + offset));
  985. if (ret)
  986. return ret;
  987. ret = f2fs_convert_inline_inode(inode);
  988. if (ret)
  989. return ret;
  990. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  991. if (ret)
  992. return ret;
  993. truncate_pagecache_range(inode, offset, offset + len - 1);
  994. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  995. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  996. off_start = offset & (PAGE_SIZE - 1);
  997. off_end = (offset + len) & (PAGE_SIZE - 1);
  998. if (pg_start == pg_end) {
  999. ret = fill_zero(inode, pg_start, off_start,
  1000. off_end - off_start);
  1001. if (ret)
  1002. return ret;
  1003. if (offset + len > new_size)
  1004. new_size = offset + len;
  1005. new_size = max_t(loff_t, new_size, offset + len);
  1006. } else {
  1007. if (off_start) {
  1008. ret = fill_zero(inode, pg_start++, off_start,
  1009. PAGE_SIZE - off_start);
  1010. if (ret)
  1011. return ret;
  1012. new_size = max_t(loff_t, new_size,
  1013. (loff_t)pg_start << PAGE_SHIFT);
  1014. }
  1015. for (index = pg_start; index < pg_end;) {
  1016. struct dnode_of_data dn;
  1017. unsigned int end_offset;
  1018. pgoff_t end;
  1019. f2fs_lock_op(sbi);
  1020. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1021. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  1022. if (ret) {
  1023. f2fs_unlock_op(sbi);
  1024. goto out;
  1025. }
  1026. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1027. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1028. ret = f2fs_do_zero_range(&dn, index, end);
  1029. f2fs_put_dnode(&dn);
  1030. f2fs_unlock_op(sbi);
  1031. if (ret)
  1032. goto out;
  1033. index = end;
  1034. new_size = max_t(loff_t, new_size,
  1035. (loff_t)index << PAGE_SHIFT);
  1036. }
  1037. if (off_end) {
  1038. ret = fill_zero(inode, pg_end, 0, off_end);
  1039. if (ret)
  1040. goto out;
  1041. new_size = max_t(loff_t, new_size, offset + len);
  1042. }
  1043. }
  1044. out:
  1045. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1046. f2fs_i_size_write(inode, new_size);
  1047. return ret;
  1048. }
  1049. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1050. {
  1051. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1052. pgoff_t nr, pg_start, pg_end, delta, idx;
  1053. loff_t new_size;
  1054. int ret = 0;
  1055. new_size = i_size_read(inode) + len;
  1056. if (new_size > inode->i_sb->s_maxbytes)
  1057. return -EFBIG;
  1058. if (offset >= i_size_read(inode))
  1059. return -EINVAL;
  1060. /* insert range should be aligned to block size of f2fs. */
  1061. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1062. return -EINVAL;
  1063. ret = f2fs_convert_inline_inode(inode);
  1064. if (ret)
  1065. return ret;
  1066. f2fs_balance_fs(sbi, true);
  1067. ret = truncate_blocks(inode, i_size_read(inode), true);
  1068. if (ret)
  1069. return ret;
  1070. /* write out all dirty pages from offset */
  1071. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1072. if (ret)
  1073. return ret;
  1074. truncate_pagecache(inode, offset);
  1075. pg_start = offset >> PAGE_SHIFT;
  1076. pg_end = (offset + len) >> PAGE_SHIFT;
  1077. delta = pg_end - pg_start;
  1078. idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1079. while (!ret && idx > pg_start) {
  1080. nr = idx - pg_start;
  1081. if (nr > delta)
  1082. nr = delta;
  1083. idx -= nr;
  1084. f2fs_lock_op(sbi);
  1085. f2fs_drop_extent_tree(inode);
  1086. ret = __exchange_data_block(inode, inode, idx,
  1087. idx + delta, nr, false);
  1088. f2fs_unlock_op(sbi);
  1089. }
  1090. /* write out all moved pages, if possible */
  1091. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1092. truncate_pagecache(inode, offset);
  1093. if (!ret)
  1094. f2fs_i_size_write(inode, new_size);
  1095. return ret;
  1096. }
  1097. static int expand_inode_data(struct inode *inode, loff_t offset,
  1098. loff_t len, int mode)
  1099. {
  1100. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1101. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1102. pgoff_t pg_end;
  1103. loff_t new_size = i_size_read(inode);
  1104. loff_t off_end;
  1105. int ret;
  1106. ret = inode_newsize_ok(inode, (len + offset));
  1107. if (ret)
  1108. return ret;
  1109. ret = f2fs_convert_inline_inode(inode);
  1110. if (ret)
  1111. return ret;
  1112. f2fs_balance_fs(sbi, true);
  1113. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1114. off_end = (offset + len) & (PAGE_SIZE - 1);
  1115. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1116. map.m_len = pg_end - map.m_lblk;
  1117. if (off_end)
  1118. map.m_len++;
  1119. ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1120. if (ret) {
  1121. pgoff_t last_off;
  1122. if (!map.m_len)
  1123. return ret;
  1124. last_off = map.m_lblk + map.m_len - 1;
  1125. /* update new size to the failed position */
  1126. new_size = (last_off == pg_end) ? offset + len:
  1127. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1128. } else {
  1129. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1130. }
  1131. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1132. f2fs_i_size_write(inode, new_size);
  1133. return ret;
  1134. }
  1135. static long f2fs_fallocate(struct file *file, int mode,
  1136. loff_t offset, loff_t len)
  1137. {
  1138. struct inode *inode = file_inode(file);
  1139. long ret = 0;
  1140. /* f2fs only support ->fallocate for regular file */
  1141. if (!S_ISREG(inode->i_mode))
  1142. return -EINVAL;
  1143. if (f2fs_encrypted_inode(inode) &&
  1144. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1145. return -EOPNOTSUPP;
  1146. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1147. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1148. FALLOC_FL_INSERT_RANGE))
  1149. return -EOPNOTSUPP;
  1150. inode_lock(inode);
  1151. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1152. if (offset >= inode->i_size)
  1153. goto out;
  1154. ret = punch_hole(inode, offset, len);
  1155. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1156. ret = f2fs_collapse_range(inode, offset, len);
  1157. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1158. ret = f2fs_zero_range(inode, offset, len, mode);
  1159. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1160. ret = f2fs_insert_range(inode, offset, len);
  1161. } else {
  1162. ret = expand_inode_data(inode, offset, len, mode);
  1163. }
  1164. if (!ret) {
  1165. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1166. f2fs_mark_inode_dirty_sync(inode);
  1167. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1168. }
  1169. out:
  1170. inode_unlock(inode);
  1171. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1172. return ret;
  1173. }
  1174. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1175. {
  1176. /*
  1177. * f2fs_relase_file is called at every close calls. So we should
  1178. * not drop any inmemory pages by close called by other process.
  1179. */
  1180. if (!(filp->f_mode & FMODE_WRITE) ||
  1181. atomic_read(&inode->i_writecount) != 1)
  1182. return 0;
  1183. /* some remained atomic pages should discarded */
  1184. if (f2fs_is_atomic_file(inode))
  1185. drop_inmem_pages(inode);
  1186. if (f2fs_is_volatile_file(inode)) {
  1187. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1188. set_inode_flag(inode, FI_DROP_CACHE);
  1189. filemap_fdatawrite(inode->i_mapping);
  1190. clear_inode_flag(inode, FI_DROP_CACHE);
  1191. }
  1192. return 0;
  1193. }
  1194. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  1195. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  1196. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  1197. {
  1198. if (S_ISDIR(mode))
  1199. return flags;
  1200. else if (S_ISREG(mode))
  1201. return flags & F2FS_REG_FLMASK;
  1202. else
  1203. return flags & F2FS_OTHER_FLMASK;
  1204. }
  1205. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1206. {
  1207. struct inode *inode = file_inode(filp);
  1208. struct f2fs_inode_info *fi = F2FS_I(inode);
  1209. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1210. return put_user(flags, (int __user *)arg);
  1211. }
  1212. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1213. {
  1214. struct inode *inode = file_inode(filp);
  1215. struct f2fs_inode_info *fi = F2FS_I(inode);
  1216. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1217. unsigned int oldflags;
  1218. int ret;
  1219. if (!inode_owner_or_capable(inode))
  1220. return -EACCES;
  1221. if (get_user(flags, (int __user *)arg))
  1222. return -EFAULT;
  1223. ret = mnt_want_write_file(filp);
  1224. if (ret)
  1225. return ret;
  1226. flags = f2fs_mask_flags(inode->i_mode, flags);
  1227. inode_lock(inode);
  1228. oldflags = fi->i_flags;
  1229. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  1230. if (!capable(CAP_LINUX_IMMUTABLE)) {
  1231. inode_unlock(inode);
  1232. ret = -EPERM;
  1233. goto out;
  1234. }
  1235. }
  1236. flags = flags & FS_FL_USER_MODIFIABLE;
  1237. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  1238. fi->i_flags = flags;
  1239. inode_unlock(inode);
  1240. inode->i_ctime = CURRENT_TIME;
  1241. f2fs_set_inode_flags(inode);
  1242. out:
  1243. mnt_drop_write_file(filp);
  1244. return ret;
  1245. }
  1246. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1247. {
  1248. struct inode *inode = file_inode(filp);
  1249. return put_user(inode->i_generation, (int __user *)arg);
  1250. }
  1251. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1252. {
  1253. struct inode *inode = file_inode(filp);
  1254. int ret;
  1255. if (!inode_owner_or_capable(inode))
  1256. return -EACCES;
  1257. ret = mnt_want_write_file(filp);
  1258. if (ret)
  1259. return ret;
  1260. inode_lock(inode);
  1261. if (f2fs_is_atomic_file(inode))
  1262. goto out;
  1263. ret = f2fs_convert_inline_inode(inode);
  1264. if (ret)
  1265. goto out;
  1266. set_inode_flag(inode, FI_ATOMIC_FILE);
  1267. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1268. if (!get_dirty_pages(inode))
  1269. goto out;
  1270. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1271. "Unexpected flush for atomic writes: ino=%lu, npages=%lld",
  1272. inode->i_ino, get_dirty_pages(inode));
  1273. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1274. if (ret)
  1275. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1276. out:
  1277. inode_unlock(inode);
  1278. mnt_drop_write_file(filp);
  1279. return ret;
  1280. }
  1281. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1282. {
  1283. struct inode *inode = file_inode(filp);
  1284. int ret;
  1285. if (!inode_owner_or_capable(inode))
  1286. return -EACCES;
  1287. ret = mnt_want_write_file(filp);
  1288. if (ret)
  1289. return ret;
  1290. inode_lock(inode);
  1291. if (f2fs_is_volatile_file(inode))
  1292. goto err_out;
  1293. if (f2fs_is_atomic_file(inode)) {
  1294. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1295. ret = commit_inmem_pages(inode);
  1296. if (ret) {
  1297. set_inode_flag(inode, FI_ATOMIC_FILE);
  1298. goto err_out;
  1299. }
  1300. }
  1301. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1302. err_out:
  1303. inode_unlock(inode);
  1304. mnt_drop_write_file(filp);
  1305. return ret;
  1306. }
  1307. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1308. {
  1309. struct inode *inode = file_inode(filp);
  1310. int ret;
  1311. if (!inode_owner_or_capable(inode))
  1312. return -EACCES;
  1313. ret = mnt_want_write_file(filp);
  1314. if (ret)
  1315. return ret;
  1316. inode_lock(inode);
  1317. if (f2fs_is_volatile_file(inode))
  1318. goto out;
  1319. ret = f2fs_convert_inline_inode(inode);
  1320. if (ret)
  1321. goto out;
  1322. set_inode_flag(inode, FI_VOLATILE_FILE);
  1323. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1324. out:
  1325. inode_unlock(inode);
  1326. mnt_drop_write_file(filp);
  1327. return ret;
  1328. }
  1329. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1330. {
  1331. struct inode *inode = file_inode(filp);
  1332. int ret;
  1333. if (!inode_owner_or_capable(inode))
  1334. return -EACCES;
  1335. ret = mnt_want_write_file(filp);
  1336. if (ret)
  1337. return ret;
  1338. inode_lock(inode);
  1339. if (!f2fs_is_volatile_file(inode))
  1340. goto out;
  1341. if (!f2fs_is_first_block_written(inode)) {
  1342. ret = truncate_partial_data_page(inode, 0, true);
  1343. goto out;
  1344. }
  1345. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1346. out:
  1347. inode_unlock(inode);
  1348. mnt_drop_write_file(filp);
  1349. return ret;
  1350. }
  1351. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1352. {
  1353. struct inode *inode = file_inode(filp);
  1354. int ret;
  1355. if (!inode_owner_or_capable(inode))
  1356. return -EACCES;
  1357. ret = mnt_want_write_file(filp);
  1358. if (ret)
  1359. return ret;
  1360. inode_lock(inode);
  1361. if (f2fs_is_atomic_file(inode))
  1362. drop_inmem_pages(inode);
  1363. if (f2fs_is_volatile_file(inode)) {
  1364. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1365. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1366. }
  1367. inode_unlock(inode);
  1368. mnt_drop_write_file(filp);
  1369. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1370. return ret;
  1371. }
  1372. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1373. {
  1374. struct inode *inode = file_inode(filp);
  1375. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1376. struct super_block *sb = sbi->sb;
  1377. __u32 in;
  1378. int ret;
  1379. if (!capable(CAP_SYS_ADMIN))
  1380. return -EPERM;
  1381. if (get_user(in, (__u32 __user *)arg))
  1382. return -EFAULT;
  1383. ret = mnt_want_write_file(filp);
  1384. if (ret)
  1385. return ret;
  1386. switch (in) {
  1387. case F2FS_GOING_DOWN_FULLSYNC:
  1388. sb = freeze_bdev(sb->s_bdev);
  1389. if (sb && !IS_ERR(sb)) {
  1390. f2fs_stop_checkpoint(sbi, false);
  1391. thaw_bdev(sb->s_bdev, sb);
  1392. }
  1393. break;
  1394. case F2FS_GOING_DOWN_METASYNC:
  1395. /* do checkpoint only */
  1396. f2fs_sync_fs(sb, 1);
  1397. f2fs_stop_checkpoint(sbi, false);
  1398. break;
  1399. case F2FS_GOING_DOWN_NOSYNC:
  1400. f2fs_stop_checkpoint(sbi, false);
  1401. break;
  1402. case F2FS_GOING_DOWN_METAFLUSH:
  1403. sync_meta_pages(sbi, META, LONG_MAX);
  1404. f2fs_stop_checkpoint(sbi, false);
  1405. break;
  1406. default:
  1407. ret = -EINVAL;
  1408. goto out;
  1409. }
  1410. f2fs_update_time(sbi, REQ_TIME);
  1411. out:
  1412. mnt_drop_write_file(filp);
  1413. return ret;
  1414. }
  1415. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1416. {
  1417. struct inode *inode = file_inode(filp);
  1418. struct super_block *sb = inode->i_sb;
  1419. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1420. struct fstrim_range range;
  1421. int ret;
  1422. if (!capable(CAP_SYS_ADMIN))
  1423. return -EPERM;
  1424. if (!blk_queue_discard(q))
  1425. return -EOPNOTSUPP;
  1426. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1427. sizeof(range)))
  1428. return -EFAULT;
  1429. ret = mnt_want_write_file(filp);
  1430. if (ret)
  1431. return ret;
  1432. range.minlen = max((unsigned int)range.minlen,
  1433. q->limits.discard_granularity);
  1434. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1435. mnt_drop_write_file(filp);
  1436. if (ret < 0)
  1437. return ret;
  1438. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1439. sizeof(range)))
  1440. return -EFAULT;
  1441. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1442. return 0;
  1443. }
  1444. static bool uuid_is_nonzero(__u8 u[16])
  1445. {
  1446. int i;
  1447. for (i = 0; i < 16; i++)
  1448. if (u[i])
  1449. return true;
  1450. return false;
  1451. }
  1452. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1453. {
  1454. struct fscrypt_policy policy;
  1455. struct inode *inode = file_inode(filp);
  1456. int ret;
  1457. if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
  1458. sizeof(policy)))
  1459. return -EFAULT;
  1460. ret = mnt_want_write_file(filp);
  1461. if (ret)
  1462. return ret;
  1463. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1464. ret = fscrypt_process_policy(inode, &policy);
  1465. mnt_drop_write_file(filp);
  1466. return ret;
  1467. }
  1468. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1469. {
  1470. struct fscrypt_policy policy;
  1471. struct inode *inode = file_inode(filp);
  1472. int err;
  1473. err = fscrypt_get_policy(inode, &policy);
  1474. if (err)
  1475. return err;
  1476. if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
  1477. return -EFAULT;
  1478. return 0;
  1479. }
  1480. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1481. {
  1482. struct inode *inode = file_inode(filp);
  1483. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1484. int err;
  1485. if (!f2fs_sb_has_crypto(inode->i_sb))
  1486. return -EOPNOTSUPP;
  1487. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1488. goto got_it;
  1489. err = mnt_want_write_file(filp);
  1490. if (err)
  1491. return err;
  1492. /* update superblock with uuid */
  1493. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1494. err = f2fs_commit_super(sbi, false);
  1495. if (err) {
  1496. /* undo new data */
  1497. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1498. mnt_drop_write_file(filp);
  1499. return err;
  1500. }
  1501. mnt_drop_write_file(filp);
  1502. got_it:
  1503. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1504. 16))
  1505. return -EFAULT;
  1506. return 0;
  1507. }
  1508. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1509. {
  1510. struct inode *inode = file_inode(filp);
  1511. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1512. __u32 sync;
  1513. int ret;
  1514. if (!capable(CAP_SYS_ADMIN))
  1515. return -EPERM;
  1516. if (get_user(sync, (__u32 __user *)arg))
  1517. return -EFAULT;
  1518. if (f2fs_readonly(sbi->sb))
  1519. return -EROFS;
  1520. ret = mnt_want_write_file(filp);
  1521. if (ret)
  1522. return ret;
  1523. if (!sync) {
  1524. if (!mutex_trylock(&sbi->gc_mutex)) {
  1525. ret = -EBUSY;
  1526. goto out;
  1527. }
  1528. } else {
  1529. mutex_lock(&sbi->gc_mutex);
  1530. }
  1531. ret = f2fs_gc(sbi, sync);
  1532. out:
  1533. mnt_drop_write_file(filp);
  1534. return ret;
  1535. }
  1536. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  1537. {
  1538. struct inode *inode = file_inode(filp);
  1539. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1540. int ret;
  1541. if (!capable(CAP_SYS_ADMIN))
  1542. return -EPERM;
  1543. if (f2fs_readonly(sbi->sb))
  1544. return -EROFS;
  1545. ret = mnt_want_write_file(filp);
  1546. if (ret)
  1547. return ret;
  1548. ret = f2fs_sync_fs(sbi->sb, 1);
  1549. mnt_drop_write_file(filp);
  1550. return ret;
  1551. }
  1552. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1553. struct file *filp,
  1554. struct f2fs_defragment *range)
  1555. {
  1556. struct inode *inode = file_inode(filp);
  1557. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1558. struct extent_info ei;
  1559. pgoff_t pg_start, pg_end;
  1560. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1561. unsigned int total = 0, sec_num;
  1562. unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
  1563. block_t blk_end = 0;
  1564. bool fragmented = false;
  1565. int err;
  1566. /* if in-place-update policy is enabled, don't waste time here */
  1567. if (need_inplace_update(inode))
  1568. return -EINVAL;
  1569. pg_start = range->start >> PAGE_SHIFT;
  1570. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1571. f2fs_balance_fs(sbi, true);
  1572. inode_lock(inode);
  1573. /* writeback all dirty pages in the range */
  1574. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1575. range->start + range->len - 1);
  1576. if (err)
  1577. goto out;
  1578. /*
  1579. * lookup mapping info in extent cache, skip defragmenting if physical
  1580. * block addresses are continuous.
  1581. */
  1582. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1583. if (ei.fofs + ei.len >= pg_end)
  1584. goto out;
  1585. }
  1586. map.m_lblk = pg_start;
  1587. /*
  1588. * lookup mapping info in dnode page cache, skip defragmenting if all
  1589. * physical block addresses are continuous even if there are hole(s)
  1590. * in logical blocks.
  1591. */
  1592. while (map.m_lblk < pg_end) {
  1593. map.m_len = pg_end - map.m_lblk;
  1594. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1595. if (err)
  1596. goto out;
  1597. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1598. map.m_lblk++;
  1599. continue;
  1600. }
  1601. if (blk_end && blk_end != map.m_pblk) {
  1602. fragmented = true;
  1603. break;
  1604. }
  1605. blk_end = map.m_pblk + map.m_len;
  1606. map.m_lblk += map.m_len;
  1607. }
  1608. if (!fragmented)
  1609. goto out;
  1610. map.m_lblk = pg_start;
  1611. map.m_len = pg_end - pg_start;
  1612. sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
  1613. /*
  1614. * make sure there are enough free section for LFS allocation, this can
  1615. * avoid defragment running in SSR mode when free section are allocated
  1616. * intensively
  1617. */
  1618. if (has_not_enough_free_secs(sbi, sec_num)) {
  1619. err = -EAGAIN;
  1620. goto out;
  1621. }
  1622. while (map.m_lblk < pg_end) {
  1623. pgoff_t idx;
  1624. int cnt = 0;
  1625. do_map:
  1626. map.m_len = pg_end - map.m_lblk;
  1627. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1628. if (err)
  1629. goto clear_out;
  1630. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1631. map.m_lblk++;
  1632. continue;
  1633. }
  1634. set_inode_flag(inode, FI_DO_DEFRAG);
  1635. idx = map.m_lblk;
  1636. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1637. struct page *page;
  1638. page = get_lock_data_page(inode, idx, true);
  1639. if (IS_ERR(page)) {
  1640. err = PTR_ERR(page);
  1641. goto clear_out;
  1642. }
  1643. set_page_dirty(page);
  1644. f2fs_put_page(page, 1);
  1645. idx++;
  1646. cnt++;
  1647. total++;
  1648. }
  1649. map.m_lblk = idx;
  1650. if (idx < pg_end && cnt < blk_per_seg)
  1651. goto do_map;
  1652. clear_inode_flag(inode, FI_DO_DEFRAG);
  1653. err = filemap_fdatawrite(inode->i_mapping);
  1654. if (err)
  1655. goto out;
  1656. }
  1657. clear_out:
  1658. clear_inode_flag(inode, FI_DO_DEFRAG);
  1659. out:
  1660. inode_unlock(inode);
  1661. if (!err)
  1662. range->len = (u64)total << PAGE_SHIFT;
  1663. return err;
  1664. }
  1665. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1666. {
  1667. struct inode *inode = file_inode(filp);
  1668. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1669. struct f2fs_defragment range;
  1670. int err;
  1671. if (!capable(CAP_SYS_ADMIN))
  1672. return -EPERM;
  1673. if (!S_ISREG(inode->i_mode))
  1674. return -EINVAL;
  1675. err = mnt_want_write_file(filp);
  1676. if (err)
  1677. return err;
  1678. if (f2fs_readonly(sbi->sb)) {
  1679. err = -EROFS;
  1680. goto out;
  1681. }
  1682. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1683. sizeof(range))) {
  1684. err = -EFAULT;
  1685. goto out;
  1686. }
  1687. /* verify alignment of offset & size */
  1688. if (range.start & (F2FS_BLKSIZE - 1) ||
  1689. range.len & (F2FS_BLKSIZE - 1)) {
  1690. err = -EINVAL;
  1691. goto out;
  1692. }
  1693. err = f2fs_defragment_range(sbi, filp, &range);
  1694. f2fs_update_time(sbi, REQ_TIME);
  1695. if (err < 0)
  1696. goto out;
  1697. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1698. sizeof(range)))
  1699. err = -EFAULT;
  1700. out:
  1701. mnt_drop_write_file(filp);
  1702. return err;
  1703. }
  1704. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  1705. struct file *file_out, loff_t pos_out, size_t len)
  1706. {
  1707. struct inode *src = file_inode(file_in);
  1708. struct inode *dst = file_inode(file_out);
  1709. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  1710. size_t olen = len, dst_max_i_size = 0;
  1711. size_t dst_osize;
  1712. int ret;
  1713. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  1714. src->i_sb != dst->i_sb)
  1715. return -EXDEV;
  1716. if (unlikely(f2fs_readonly(src->i_sb)))
  1717. return -EROFS;
  1718. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  1719. return -EINVAL;
  1720. if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
  1721. return -EOPNOTSUPP;
  1722. inode_lock(src);
  1723. if (src != dst) {
  1724. if (!inode_trylock(dst)) {
  1725. ret = -EBUSY;
  1726. goto out;
  1727. }
  1728. }
  1729. ret = -EINVAL;
  1730. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  1731. goto out_unlock;
  1732. if (len == 0)
  1733. olen = len = src->i_size - pos_in;
  1734. if (pos_in + len == src->i_size)
  1735. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  1736. if (len == 0) {
  1737. ret = 0;
  1738. goto out_unlock;
  1739. }
  1740. dst_osize = dst->i_size;
  1741. if (pos_out + olen > dst->i_size)
  1742. dst_max_i_size = pos_out + olen;
  1743. /* verify the end result is block aligned */
  1744. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  1745. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  1746. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  1747. goto out_unlock;
  1748. ret = f2fs_convert_inline_inode(src);
  1749. if (ret)
  1750. goto out_unlock;
  1751. ret = f2fs_convert_inline_inode(dst);
  1752. if (ret)
  1753. goto out_unlock;
  1754. /* write out all dirty pages from offset */
  1755. ret = filemap_write_and_wait_range(src->i_mapping,
  1756. pos_in, pos_in + len);
  1757. if (ret)
  1758. goto out_unlock;
  1759. ret = filemap_write_and_wait_range(dst->i_mapping,
  1760. pos_out, pos_out + len);
  1761. if (ret)
  1762. goto out_unlock;
  1763. f2fs_balance_fs(sbi, true);
  1764. f2fs_lock_op(sbi);
  1765. ret = __exchange_data_block(src, dst, pos_in,
  1766. pos_out, len >> F2FS_BLKSIZE_BITS, false);
  1767. if (!ret) {
  1768. if (dst_max_i_size)
  1769. f2fs_i_size_write(dst, dst_max_i_size);
  1770. else if (dst_osize != dst->i_size)
  1771. f2fs_i_size_write(dst, dst_osize);
  1772. }
  1773. f2fs_unlock_op(sbi);
  1774. out_unlock:
  1775. if (src != dst)
  1776. inode_unlock(dst);
  1777. out:
  1778. inode_unlock(src);
  1779. return ret;
  1780. }
  1781. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  1782. {
  1783. struct f2fs_move_range range;
  1784. struct fd dst;
  1785. int err;
  1786. if (!(filp->f_mode & FMODE_READ) ||
  1787. !(filp->f_mode & FMODE_WRITE))
  1788. return -EBADF;
  1789. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  1790. sizeof(range)))
  1791. return -EFAULT;
  1792. dst = fdget(range.dst_fd);
  1793. if (!dst.file)
  1794. return -EBADF;
  1795. if (!(dst.file->f_mode & FMODE_WRITE)) {
  1796. err = -EBADF;
  1797. goto err_out;
  1798. }
  1799. err = mnt_want_write_file(filp);
  1800. if (err)
  1801. goto err_out;
  1802. err = f2fs_move_file_range(filp, range.pos_in, dst.file,
  1803. range.pos_out, range.len);
  1804. mnt_drop_write_file(filp);
  1805. if (copy_to_user((struct f2fs_move_range __user *)arg,
  1806. &range, sizeof(range)))
  1807. err = -EFAULT;
  1808. err_out:
  1809. fdput(dst);
  1810. return err;
  1811. }
  1812. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  1813. {
  1814. switch (cmd) {
  1815. case F2FS_IOC_GETFLAGS:
  1816. return f2fs_ioc_getflags(filp, arg);
  1817. case F2FS_IOC_SETFLAGS:
  1818. return f2fs_ioc_setflags(filp, arg);
  1819. case F2FS_IOC_GETVERSION:
  1820. return f2fs_ioc_getversion(filp, arg);
  1821. case F2FS_IOC_START_ATOMIC_WRITE:
  1822. return f2fs_ioc_start_atomic_write(filp);
  1823. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1824. return f2fs_ioc_commit_atomic_write(filp);
  1825. case F2FS_IOC_START_VOLATILE_WRITE:
  1826. return f2fs_ioc_start_volatile_write(filp);
  1827. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1828. return f2fs_ioc_release_volatile_write(filp);
  1829. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1830. return f2fs_ioc_abort_volatile_write(filp);
  1831. case F2FS_IOC_SHUTDOWN:
  1832. return f2fs_ioc_shutdown(filp, arg);
  1833. case FITRIM:
  1834. return f2fs_ioc_fitrim(filp, arg);
  1835. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1836. return f2fs_ioc_set_encryption_policy(filp, arg);
  1837. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1838. return f2fs_ioc_get_encryption_policy(filp, arg);
  1839. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1840. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  1841. case F2FS_IOC_GARBAGE_COLLECT:
  1842. return f2fs_ioc_gc(filp, arg);
  1843. case F2FS_IOC_WRITE_CHECKPOINT:
  1844. return f2fs_ioc_write_checkpoint(filp, arg);
  1845. case F2FS_IOC_DEFRAGMENT:
  1846. return f2fs_ioc_defragment(filp, arg);
  1847. case F2FS_IOC_MOVE_RANGE:
  1848. return f2fs_ioc_move_range(filp, arg);
  1849. default:
  1850. return -ENOTTY;
  1851. }
  1852. }
  1853. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  1854. {
  1855. struct file *file = iocb->ki_filp;
  1856. struct inode *inode = file_inode(file);
  1857. struct blk_plug plug;
  1858. ssize_t ret;
  1859. if (f2fs_encrypted_inode(inode) &&
  1860. !fscrypt_has_encryption_key(inode) &&
  1861. fscrypt_get_encryption_info(inode))
  1862. return -EACCES;
  1863. inode_lock(inode);
  1864. ret = generic_write_checks(iocb, from);
  1865. if (ret > 0) {
  1866. ret = f2fs_preallocate_blocks(iocb, from);
  1867. if (!ret) {
  1868. blk_start_plug(&plug);
  1869. ret = __generic_file_write_iter(iocb, from);
  1870. blk_finish_plug(&plug);
  1871. }
  1872. }
  1873. inode_unlock(inode);
  1874. if (ret > 0)
  1875. ret = generic_write_sync(iocb, ret);
  1876. return ret;
  1877. }
  1878. #ifdef CONFIG_COMPAT
  1879. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1880. {
  1881. switch (cmd) {
  1882. case F2FS_IOC32_GETFLAGS:
  1883. cmd = F2FS_IOC_GETFLAGS;
  1884. break;
  1885. case F2FS_IOC32_SETFLAGS:
  1886. cmd = F2FS_IOC_SETFLAGS;
  1887. break;
  1888. case F2FS_IOC32_GETVERSION:
  1889. cmd = F2FS_IOC_GETVERSION;
  1890. break;
  1891. case F2FS_IOC_START_ATOMIC_WRITE:
  1892. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1893. case F2FS_IOC_START_VOLATILE_WRITE:
  1894. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1895. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1896. case F2FS_IOC_SHUTDOWN:
  1897. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1898. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1899. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1900. case F2FS_IOC_GARBAGE_COLLECT:
  1901. case F2FS_IOC_WRITE_CHECKPOINT:
  1902. case F2FS_IOC_DEFRAGMENT:
  1903. break;
  1904. case F2FS_IOC_MOVE_RANGE:
  1905. break;
  1906. default:
  1907. return -ENOIOCTLCMD;
  1908. }
  1909. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  1910. }
  1911. #endif
  1912. const struct file_operations f2fs_file_operations = {
  1913. .llseek = f2fs_llseek,
  1914. .read_iter = generic_file_read_iter,
  1915. .write_iter = f2fs_file_write_iter,
  1916. .open = f2fs_file_open,
  1917. .release = f2fs_release_file,
  1918. .mmap = f2fs_file_mmap,
  1919. .fsync = f2fs_sync_file,
  1920. .fallocate = f2fs_fallocate,
  1921. .unlocked_ioctl = f2fs_ioctl,
  1922. #ifdef CONFIG_COMPAT
  1923. .compat_ioctl = f2fs_compat_ioctl,
  1924. #endif
  1925. .splice_read = generic_file_splice_read,
  1926. .splice_write = iter_file_splice_write,
  1927. };