dir.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897
  1. /*
  2. * fs/f2fs/dir.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "acl.h"
  16. #include "xattr.h"
  17. static unsigned long dir_blocks(struct inode *inode)
  18. {
  19. return ((unsigned long long) (i_size_read(inode) + PAGE_SIZE - 1))
  20. >> PAGE_SHIFT;
  21. }
  22. static unsigned int dir_buckets(unsigned int level, int dir_level)
  23. {
  24. if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
  25. return 1 << (level + dir_level);
  26. else
  27. return MAX_DIR_BUCKETS;
  28. }
  29. static unsigned int bucket_blocks(unsigned int level)
  30. {
  31. if (level < MAX_DIR_HASH_DEPTH / 2)
  32. return 2;
  33. else
  34. return 4;
  35. }
  36. unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
  37. [F2FS_FT_UNKNOWN] = DT_UNKNOWN,
  38. [F2FS_FT_REG_FILE] = DT_REG,
  39. [F2FS_FT_DIR] = DT_DIR,
  40. [F2FS_FT_CHRDEV] = DT_CHR,
  41. [F2FS_FT_BLKDEV] = DT_BLK,
  42. [F2FS_FT_FIFO] = DT_FIFO,
  43. [F2FS_FT_SOCK] = DT_SOCK,
  44. [F2FS_FT_SYMLINK] = DT_LNK,
  45. };
  46. static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
  47. [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
  48. [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
  49. [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
  50. [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
  51. [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
  52. [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
  53. [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
  54. };
  55. void set_de_type(struct f2fs_dir_entry *de, umode_t mode)
  56. {
  57. de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
  58. }
  59. unsigned char get_de_type(struct f2fs_dir_entry *de)
  60. {
  61. if (de->file_type < F2FS_FT_MAX)
  62. return f2fs_filetype_table[de->file_type];
  63. return DT_UNKNOWN;
  64. }
  65. static unsigned long dir_block_index(unsigned int level,
  66. int dir_level, unsigned int idx)
  67. {
  68. unsigned long i;
  69. unsigned long bidx = 0;
  70. for (i = 0; i < level; i++)
  71. bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
  72. bidx += idx * bucket_blocks(level);
  73. return bidx;
  74. }
  75. static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
  76. struct fscrypt_name *fname,
  77. f2fs_hash_t namehash,
  78. int *max_slots,
  79. struct page **res_page)
  80. {
  81. struct f2fs_dentry_block *dentry_blk;
  82. struct f2fs_dir_entry *de;
  83. struct f2fs_dentry_ptr d;
  84. dentry_blk = (struct f2fs_dentry_block *)kmap(dentry_page);
  85. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 1);
  86. de = find_target_dentry(fname, namehash, max_slots, &d);
  87. if (de)
  88. *res_page = dentry_page;
  89. else
  90. kunmap(dentry_page);
  91. return de;
  92. }
  93. struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
  94. f2fs_hash_t namehash, int *max_slots,
  95. struct f2fs_dentry_ptr *d)
  96. {
  97. struct f2fs_dir_entry *de;
  98. unsigned long bit_pos = 0;
  99. int max_len = 0;
  100. struct fscrypt_str de_name = FSTR_INIT(NULL, 0);
  101. struct fscrypt_str *name = &fname->disk_name;
  102. if (max_slots)
  103. *max_slots = 0;
  104. while (bit_pos < d->max) {
  105. if (!test_bit_le(bit_pos, d->bitmap)) {
  106. bit_pos++;
  107. max_len++;
  108. continue;
  109. }
  110. de = &d->dentry[bit_pos];
  111. if (unlikely(!de->name_len)) {
  112. bit_pos++;
  113. continue;
  114. }
  115. /* encrypted case */
  116. de_name.name = d->filename[bit_pos];
  117. de_name.len = le16_to_cpu(de->name_len);
  118. /* show encrypted name */
  119. if (fname->hash) {
  120. if (de->hash_code == fname->hash)
  121. goto found;
  122. } else if (de_name.len == name->len &&
  123. de->hash_code == namehash &&
  124. !memcmp(de_name.name, name->name, name->len))
  125. goto found;
  126. if (max_slots && max_len > *max_slots)
  127. *max_slots = max_len;
  128. max_len = 0;
  129. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  130. }
  131. de = NULL;
  132. found:
  133. if (max_slots && max_len > *max_slots)
  134. *max_slots = max_len;
  135. return de;
  136. }
  137. static struct f2fs_dir_entry *find_in_level(struct inode *dir,
  138. unsigned int level,
  139. struct fscrypt_name *fname,
  140. struct page **res_page)
  141. {
  142. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  143. int s = GET_DENTRY_SLOTS(name.len);
  144. unsigned int nbucket, nblock;
  145. unsigned int bidx, end_block;
  146. struct page *dentry_page;
  147. struct f2fs_dir_entry *de = NULL;
  148. bool room = false;
  149. int max_slots;
  150. f2fs_hash_t namehash;
  151. namehash = f2fs_dentry_hash(&name);
  152. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  153. nblock = bucket_blocks(level);
  154. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  155. le32_to_cpu(namehash) % nbucket);
  156. end_block = bidx + nblock;
  157. for (; bidx < end_block; bidx++) {
  158. /* no need to allocate new dentry pages to all the indices */
  159. dentry_page = find_data_page(dir, bidx);
  160. if (IS_ERR(dentry_page)) {
  161. if (PTR_ERR(dentry_page) == -ENOENT) {
  162. room = true;
  163. continue;
  164. } else {
  165. *res_page = dentry_page;
  166. break;
  167. }
  168. }
  169. de = find_in_block(dentry_page, fname, namehash, &max_slots,
  170. res_page);
  171. if (de)
  172. break;
  173. if (max_slots >= s)
  174. room = true;
  175. f2fs_put_page(dentry_page, 0);
  176. }
  177. if (!de && room && F2FS_I(dir)->chash != namehash) {
  178. F2FS_I(dir)->chash = namehash;
  179. F2FS_I(dir)->clevel = level;
  180. }
  181. return de;
  182. }
  183. /*
  184. * Find an entry in the specified directory with the wanted name.
  185. * It returns the page where the entry was found (as a parameter - res_page),
  186. * and the entry itself. Page is returned mapped and unlocked.
  187. * Entry is guaranteed to be valid.
  188. */
  189. struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
  190. const struct qstr *child, struct page **res_page)
  191. {
  192. unsigned long npages = dir_blocks(dir);
  193. struct f2fs_dir_entry *de = NULL;
  194. unsigned int max_depth;
  195. unsigned int level;
  196. struct fscrypt_name fname;
  197. int err;
  198. err = fscrypt_setup_filename(dir, child, 1, &fname);
  199. if (err) {
  200. *res_page = ERR_PTR(err);
  201. return NULL;
  202. }
  203. if (f2fs_has_inline_dentry(dir)) {
  204. *res_page = NULL;
  205. de = find_in_inline_dir(dir, &fname, res_page);
  206. goto out;
  207. }
  208. if (npages == 0) {
  209. *res_page = NULL;
  210. goto out;
  211. }
  212. max_depth = F2FS_I(dir)->i_current_depth;
  213. if (unlikely(max_depth > MAX_DIR_HASH_DEPTH)) {
  214. f2fs_msg(F2FS_I_SB(dir)->sb, KERN_WARNING,
  215. "Corrupted max_depth of %lu: %u",
  216. dir->i_ino, max_depth);
  217. max_depth = MAX_DIR_HASH_DEPTH;
  218. f2fs_i_depth_write(dir, max_depth);
  219. }
  220. for (level = 0; level < max_depth; level++) {
  221. *res_page = NULL;
  222. de = find_in_level(dir, level, &fname, res_page);
  223. if (de || IS_ERR(*res_page))
  224. break;
  225. }
  226. out:
  227. fscrypt_free_filename(&fname);
  228. return de;
  229. }
  230. struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
  231. {
  232. struct qstr dotdot = QSTR_INIT("..", 2);
  233. return f2fs_find_entry(dir, &dotdot, p);
  234. }
  235. ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
  236. struct page **page)
  237. {
  238. ino_t res = 0;
  239. struct f2fs_dir_entry *de;
  240. de = f2fs_find_entry(dir, qstr, page);
  241. if (de) {
  242. res = le32_to_cpu(de->ino);
  243. f2fs_dentry_kunmap(dir, *page);
  244. f2fs_put_page(*page, 0);
  245. }
  246. return res;
  247. }
  248. void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
  249. struct page *page, struct inode *inode)
  250. {
  251. enum page_type type = f2fs_has_inline_dentry(dir) ? NODE : DATA;
  252. lock_page(page);
  253. f2fs_wait_on_page_writeback(page, type, true);
  254. de->ino = cpu_to_le32(inode->i_ino);
  255. set_de_type(de, inode->i_mode);
  256. f2fs_dentry_kunmap(dir, page);
  257. set_page_dirty(page);
  258. dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  259. f2fs_mark_inode_dirty_sync(dir);
  260. f2fs_put_page(page, 1);
  261. }
  262. static void init_dent_inode(const struct qstr *name, struct page *ipage)
  263. {
  264. struct f2fs_inode *ri;
  265. f2fs_wait_on_page_writeback(ipage, NODE, true);
  266. /* copy name info. to this inode page */
  267. ri = F2FS_INODE(ipage);
  268. ri->i_namelen = cpu_to_le32(name->len);
  269. memcpy(ri->i_name, name->name, name->len);
  270. set_page_dirty(ipage);
  271. }
  272. int update_dent_inode(struct inode *inode, struct inode *to,
  273. const struct qstr *name)
  274. {
  275. struct page *page;
  276. if (file_enc_name(to))
  277. return 0;
  278. page = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  279. if (IS_ERR(page))
  280. return PTR_ERR(page);
  281. init_dent_inode(name, page);
  282. f2fs_put_page(page, 1);
  283. return 0;
  284. }
  285. void do_make_empty_dir(struct inode *inode, struct inode *parent,
  286. struct f2fs_dentry_ptr *d)
  287. {
  288. struct qstr dot = QSTR_INIT(".", 1);
  289. struct qstr dotdot = QSTR_INIT("..", 2);
  290. /* update dirent of "." */
  291. f2fs_update_dentry(inode->i_ino, inode->i_mode, d, &dot, 0, 0);
  292. /* update dirent of ".." */
  293. f2fs_update_dentry(parent->i_ino, parent->i_mode, d, &dotdot, 0, 1);
  294. }
  295. static int make_empty_dir(struct inode *inode,
  296. struct inode *parent, struct page *page)
  297. {
  298. struct page *dentry_page;
  299. struct f2fs_dentry_block *dentry_blk;
  300. struct f2fs_dentry_ptr d;
  301. if (f2fs_has_inline_dentry(inode))
  302. return make_empty_inline_dir(inode, parent, page);
  303. dentry_page = get_new_data_page(inode, page, 0, true);
  304. if (IS_ERR(dentry_page))
  305. return PTR_ERR(dentry_page);
  306. dentry_blk = kmap_atomic(dentry_page);
  307. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 1);
  308. do_make_empty_dir(inode, parent, &d);
  309. kunmap_atomic(dentry_blk);
  310. set_page_dirty(dentry_page);
  311. f2fs_put_page(dentry_page, 1);
  312. return 0;
  313. }
  314. struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
  315. const struct qstr *name, struct page *dpage)
  316. {
  317. struct page *page;
  318. int err;
  319. if (is_inode_flag_set(inode, FI_NEW_INODE)) {
  320. page = new_inode_page(inode);
  321. if (IS_ERR(page))
  322. return page;
  323. if (S_ISDIR(inode->i_mode)) {
  324. /* in order to handle error case */
  325. get_page(page);
  326. err = make_empty_dir(inode, dir, page);
  327. if (err) {
  328. lock_page(page);
  329. goto put_error;
  330. }
  331. put_page(page);
  332. }
  333. err = f2fs_init_acl(inode, dir, page, dpage);
  334. if (err)
  335. goto put_error;
  336. err = f2fs_init_security(inode, dir, name, page);
  337. if (err)
  338. goto put_error;
  339. if (f2fs_encrypted_inode(dir) && f2fs_may_encrypt(inode)) {
  340. err = fscrypt_inherit_context(dir, inode, page, false);
  341. if (err)
  342. goto put_error;
  343. }
  344. } else {
  345. page = get_node_page(F2FS_I_SB(dir), inode->i_ino);
  346. if (IS_ERR(page))
  347. return page;
  348. set_cold_node(inode, page);
  349. }
  350. if (name)
  351. init_dent_inode(name, page);
  352. /*
  353. * This file should be checkpointed during fsync.
  354. * We lost i_pino from now on.
  355. */
  356. if (is_inode_flag_set(inode, FI_INC_LINK)) {
  357. file_lost_pino(inode);
  358. /*
  359. * If link the tmpfile to alias through linkat path,
  360. * we should remove this inode from orphan list.
  361. */
  362. if (inode->i_nlink == 0)
  363. remove_orphan_inode(F2FS_I_SB(dir), inode->i_ino);
  364. f2fs_i_links_write(inode, true);
  365. }
  366. return page;
  367. put_error:
  368. clear_nlink(inode);
  369. update_inode(inode, page);
  370. f2fs_put_page(page, 1);
  371. return ERR_PTR(err);
  372. }
  373. void update_parent_metadata(struct inode *dir, struct inode *inode,
  374. unsigned int current_depth)
  375. {
  376. if (inode && is_inode_flag_set(inode, FI_NEW_INODE)) {
  377. if (S_ISDIR(inode->i_mode))
  378. f2fs_i_links_write(dir, true);
  379. clear_inode_flag(inode, FI_NEW_INODE);
  380. }
  381. dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  382. f2fs_mark_inode_dirty_sync(dir);
  383. if (F2FS_I(dir)->i_current_depth != current_depth)
  384. f2fs_i_depth_write(dir, current_depth);
  385. if (inode && is_inode_flag_set(inode, FI_INC_LINK))
  386. clear_inode_flag(inode, FI_INC_LINK);
  387. }
  388. int room_for_filename(const void *bitmap, int slots, int max_slots)
  389. {
  390. int bit_start = 0;
  391. int zero_start, zero_end;
  392. next:
  393. zero_start = find_next_zero_bit_le(bitmap, max_slots, bit_start);
  394. if (zero_start >= max_slots)
  395. return max_slots;
  396. zero_end = find_next_bit_le(bitmap, max_slots, zero_start);
  397. if (zero_end - zero_start >= slots)
  398. return zero_start;
  399. bit_start = zero_end + 1;
  400. if (zero_end + 1 >= max_slots)
  401. return max_slots;
  402. goto next;
  403. }
  404. void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
  405. const struct qstr *name, f2fs_hash_t name_hash,
  406. unsigned int bit_pos)
  407. {
  408. struct f2fs_dir_entry *de;
  409. int slots = GET_DENTRY_SLOTS(name->len);
  410. int i;
  411. de = &d->dentry[bit_pos];
  412. de->hash_code = name_hash;
  413. de->name_len = cpu_to_le16(name->len);
  414. memcpy(d->filename[bit_pos], name->name, name->len);
  415. de->ino = cpu_to_le32(ino);
  416. set_de_type(de, mode);
  417. for (i = 0; i < slots; i++) {
  418. test_and_set_bit_le(bit_pos + i, (void *)d->bitmap);
  419. /* avoid wrong garbage data for readdir */
  420. if (i)
  421. (de + i)->name_len = 0;
  422. }
  423. }
  424. int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
  425. struct inode *inode, nid_t ino, umode_t mode)
  426. {
  427. unsigned int bit_pos;
  428. unsigned int level;
  429. unsigned int current_depth;
  430. unsigned long bidx, block;
  431. f2fs_hash_t dentry_hash;
  432. unsigned int nbucket, nblock;
  433. struct page *dentry_page = NULL;
  434. struct f2fs_dentry_block *dentry_blk = NULL;
  435. struct f2fs_dentry_ptr d;
  436. struct page *page = NULL;
  437. int slots, err = 0;
  438. level = 0;
  439. slots = GET_DENTRY_SLOTS(new_name->len);
  440. dentry_hash = f2fs_dentry_hash(new_name);
  441. current_depth = F2FS_I(dir)->i_current_depth;
  442. if (F2FS_I(dir)->chash == dentry_hash) {
  443. level = F2FS_I(dir)->clevel;
  444. F2FS_I(dir)->chash = 0;
  445. }
  446. start:
  447. #ifdef CONFIG_F2FS_FAULT_INJECTION
  448. if (time_to_inject(FAULT_DIR_DEPTH))
  449. return -ENOSPC;
  450. #endif
  451. if (unlikely(current_depth == MAX_DIR_HASH_DEPTH))
  452. return -ENOSPC;
  453. /* Increase the depth, if required */
  454. if (level == current_depth)
  455. ++current_depth;
  456. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  457. nblock = bucket_blocks(level);
  458. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  459. (le32_to_cpu(dentry_hash) % nbucket));
  460. for (block = bidx; block <= (bidx + nblock - 1); block++) {
  461. dentry_page = get_new_data_page(dir, NULL, block, true);
  462. if (IS_ERR(dentry_page))
  463. return PTR_ERR(dentry_page);
  464. dentry_blk = kmap(dentry_page);
  465. bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
  466. slots, NR_DENTRY_IN_BLOCK);
  467. if (bit_pos < NR_DENTRY_IN_BLOCK)
  468. goto add_dentry;
  469. kunmap(dentry_page);
  470. f2fs_put_page(dentry_page, 1);
  471. }
  472. /* Move to next level to find the empty slot for new dentry */
  473. ++level;
  474. goto start;
  475. add_dentry:
  476. f2fs_wait_on_page_writeback(dentry_page, DATA, true);
  477. if (inode) {
  478. down_write(&F2FS_I(inode)->i_sem);
  479. page = init_inode_metadata(inode, dir, new_name, NULL);
  480. if (IS_ERR(page)) {
  481. err = PTR_ERR(page);
  482. goto fail;
  483. }
  484. if (f2fs_encrypted_inode(dir))
  485. file_set_enc_name(inode);
  486. }
  487. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 1);
  488. f2fs_update_dentry(ino, mode, &d, new_name, dentry_hash, bit_pos);
  489. set_page_dirty(dentry_page);
  490. if (inode) {
  491. f2fs_i_pino_write(inode, dir->i_ino);
  492. f2fs_put_page(page, 1);
  493. }
  494. update_parent_metadata(dir, inode, current_depth);
  495. fail:
  496. if (inode)
  497. up_write(&F2FS_I(inode)->i_sem);
  498. kunmap(dentry_page);
  499. f2fs_put_page(dentry_page, 1);
  500. return err;
  501. }
  502. /*
  503. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  504. * f2fs_unlock_op().
  505. */
  506. int __f2fs_add_link(struct inode *dir, const struct qstr *name,
  507. struct inode *inode, nid_t ino, umode_t mode)
  508. {
  509. struct fscrypt_name fname;
  510. struct qstr new_name;
  511. int err;
  512. err = fscrypt_setup_filename(dir, name, 0, &fname);
  513. if (err)
  514. return err;
  515. new_name.name = fname_name(&fname);
  516. new_name.len = fname_len(&fname);
  517. err = -EAGAIN;
  518. if (f2fs_has_inline_dentry(dir))
  519. err = f2fs_add_inline_entry(dir, &new_name, inode, ino, mode);
  520. if (err == -EAGAIN)
  521. err = f2fs_add_regular_entry(dir, &new_name, inode, ino, mode);
  522. fscrypt_free_filename(&fname);
  523. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  524. return err;
  525. }
  526. int f2fs_do_tmpfile(struct inode *inode, struct inode *dir)
  527. {
  528. struct page *page;
  529. int err = 0;
  530. down_write(&F2FS_I(inode)->i_sem);
  531. page = init_inode_metadata(inode, dir, NULL, NULL);
  532. if (IS_ERR(page)) {
  533. err = PTR_ERR(page);
  534. goto fail;
  535. }
  536. f2fs_put_page(page, 1);
  537. clear_inode_flag(inode, FI_NEW_INODE);
  538. fail:
  539. up_write(&F2FS_I(inode)->i_sem);
  540. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  541. return err;
  542. }
  543. void f2fs_drop_nlink(struct inode *dir, struct inode *inode)
  544. {
  545. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  546. down_write(&F2FS_I(inode)->i_sem);
  547. if (S_ISDIR(inode->i_mode))
  548. f2fs_i_links_write(dir, false);
  549. inode->i_ctime = CURRENT_TIME;
  550. f2fs_i_links_write(inode, false);
  551. if (S_ISDIR(inode->i_mode)) {
  552. f2fs_i_links_write(inode, false);
  553. f2fs_i_size_write(inode, 0);
  554. }
  555. up_write(&F2FS_I(inode)->i_sem);
  556. if (inode->i_nlink == 0)
  557. add_orphan_inode(inode);
  558. else
  559. release_orphan_inode(sbi);
  560. }
  561. /*
  562. * It only removes the dentry from the dentry page, corresponding name
  563. * entry in name page does not need to be touched during deletion.
  564. */
  565. void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
  566. struct inode *dir, struct inode *inode)
  567. {
  568. struct f2fs_dentry_block *dentry_blk;
  569. unsigned int bit_pos;
  570. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  571. int i;
  572. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  573. if (f2fs_has_inline_dentry(dir))
  574. return f2fs_delete_inline_entry(dentry, page, dir, inode);
  575. lock_page(page);
  576. f2fs_wait_on_page_writeback(page, DATA, true);
  577. dentry_blk = page_address(page);
  578. bit_pos = dentry - dentry_blk->dentry;
  579. for (i = 0; i < slots; i++)
  580. clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  581. /* Let's check and deallocate this dentry page */
  582. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  583. NR_DENTRY_IN_BLOCK,
  584. 0);
  585. kunmap(page); /* kunmap - pair of f2fs_find_entry */
  586. set_page_dirty(page);
  587. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  588. f2fs_mark_inode_dirty_sync(dir);
  589. if (inode)
  590. f2fs_drop_nlink(dir, inode);
  591. if (bit_pos == NR_DENTRY_IN_BLOCK &&
  592. !truncate_hole(dir, page->index, page->index + 1)) {
  593. clear_page_dirty_for_io(page);
  594. ClearPagePrivate(page);
  595. ClearPageUptodate(page);
  596. inode_dec_dirty_pages(dir);
  597. }
  598. f2fs_put_page(page, 1);
  599. }
  600. bool f2fs_empty_dir(struct inode *dir)
  601. {
  602. unsigned long bidx;
  603. struct page *dentry_page;
  604. unsigned int bit_pos;
  605. struct f2fs_dentry_block *dentry_blk;
  606. unsigned long nblock = dir_blocks(dir);
  607. if (f2fs_has_inline_dentry(dir))
  608. return f2fs_empty_inline_dir(dir);
  609. for (bidx = 0; bidx < nblock; bidx++) {
  610. dentry_page = get_lock_data_page(dir, bidx, false);
  611. if (IS_ERR(dentry_page)) {
  612. if (PTR_ERR(dentry_page) == -ENOENT)
  613. continue;
  614. else
  615. return false;
  616. }
  617. dentry_blk = kmap_atomic(dentry_page);
  618. if (bidx == 0)
  619. bit_pos = 2;
  620. else
  621. bit_pos = 0;
  622. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  623. NR_DENTRY_IN_BLOCK,
  624. bit_pos);
  625. kunmap_atomic(dentry_blk);
  626. f2fs_put_page(dentry_page, 1);
  627. if (bit_pos < NR_DENTRY_IN_BLOCK)
  628. return false;
  629. }
  630. return true;
  631. }
  632. bool f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
  633. unsigned int start_pos, struct fscrypt_str *fstr)
  634. {
  635. unsigned char d_type = DT_UNKNOWN;
  636. unsigned int bit_pos;
  637. struct f2fs_dir_entry *de = NULL;
  638. struct fscrypt_str de_name = FSTR_INIT(NULL, 0);
  639. bit_pos = ((unsigned long)ctx->pos % d->max);
  640. while (bit_pos < d->max) {
  641. bit_pos = find_next_bit_le(d->bitmap, d->max, bit_pos);
  642. if (bit_pos >= d->max)
  643. break;
  644. de = &d->dentry[bit_pos];
  645. if (de->name_len == 0) {
  646. bit_pos++;
  647. ctx->pos = start_pos + bit_pos;
  648. continue;
  649. }
  650. d_type = get_de_type(de);
  651. de_name.name = d->filename[bit_pos];
  652. de_name.len = le16_to_cpu(de->name_len);
  653. if (f2fs_encrypted_inode(d->inode)) {
  654. int save_len = fstr->len;
  655. int ret;
  656. de_name.name = f2fs_kmalloc(de_name.len, GFP_NOFS);
  657. if (!de_name.name)
  658. return false;
  659. memcpy(de_name.name, d->filename[bit_pos], de_name.len);
  660. ret = fscrypt_fname_disk_to_usr(d->inode,
  661. (u32)de->hash_code, 0,
  662. &de_name, fstr);
  663. kfree(de_name.name);
  664. if (ret < 0)
  665. return true;
  666. de_name = *fstr;
  667. fstr->len = save_len;
  668. }
  669. if (!dir_emit(ctx, de_name.name, de_name.len,
  670. le32_to_cpu(de->ino), d_type))
  671. return true;
  672. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  673. ctx->pos = start_pos + bit_pos;
  674. }
  675. return false;
  676. }
  677. static int f2fs_readdir(struct file *file, struct dir_context *ctx)
  678. {
  679. struct inode *inode = file_inode(file);
  680. unsigned long npages = dir_blocks(inode);
  681. struct f2fs_dentry_block *dentry_blk = NULL;
  682. struct page *dentry_page = NULL;
  683. struct file_ra_state *ra = &file->f_ra;
  684. unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
  685. struct f2fs_dentry_ptr d;
  686. struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
  687. int err = 0;
  688. if (f2fs_encrypted_inode(inode)) {
  689. err = fscrypt_get_encryption_info(inode);
  690. if (err && err != -ENOKEY)
  691. return err;
  692. err = fscrypt_fname_alloc_buffer(inode, F2FS_NAME_LEN, &fstr);
  693. if (err < 0)
  694. return err;
  695. }
  696. if (f2fs_has_inline_dentry(inode)) {
  697. err = f2fs_read_inline_dir(file, ctx, &fstr);
  698. goto out;
  699. }
  700. /* readahead for multi pages of dir */
  701. if (npages - n > 1 && !ra_has_index(ra, n))
  702. page_cache_sync_readahead(inode->i_mapping, ra, file, n,
  703. min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));
  704. for (; n < npages; n++) {
  705. dentry_page = get_lock_data_page(inode, n, false);
  706. if (IS_ERR(dentry_page)) {
  707. err = PTR_ERR(dentry_page);
  708. if (err == -ENOENT)
  709. continue;
  710. else
  711. goto out;
  712. }
  713. dentry_blk = kmap(dentry_page);
  714. make_dentry_ptr(inode, &d, (void *)dentry_blk, 1);
  715. if (f2fs_fill_dentries(ctx, &d, n * NR_DENTRY_IN_BLOCK, &fstr)) {
  716. kunmap(dentry_page);
  717. f2fs_put_page(dentry_page, 1);
  718. break;
  719. }
  720. ctx->pos = (n + 1) * NR_DENTRY_IN_BLOCK;
  721. kunmap(dentry_page);
  722. f2fs_put_page(dentry_page, 1);
  723. }
  724. err = 0;
  725. out:
  726. fscrypt_fname_free_buffer(&fstr);
  727. return err;
  728. }
  729. static int f2fs_dir_open(struct inode *inode, struct file *filp)
  730. {
  731. if (f2fs_encrypted_inode(inode))
  732. return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
  733. return 0;
  734. }
  735. const struct file_operations f2fs_dir_operations = {
  736. .llseek = generic_file_llseek,
  737. .read = generic_read_dir,
  738. .iterate_shared = f2fs_readdir,
  739. .fsync = f2fs_sync_file,
  740. .open = f2fs_dir_open,
  741. .unlocked_ioctl = f2fs_ioctl,
  742. #ifdef CONFIG_COMPAT
  743. .compat_ioctl = f2fs_compat_ioctl,
  744. #endif
  745. };