data.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/writeback.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include <linux/uio.h>
  22. #include <linux/mm.h>
  23. #include <linux/memcontrol.h>
  24. #include <linux/cleancache.h>
  25. #include "f2fs.h"
  26. #include "node.h"
  27. #include "segment.h"
  28. #include "trace.h"
  29. #include <trace/events/f2fs.h>
  30. static void f2fs_read_end_io(struct bio *bio)
  31. {
  32. struct bio_vec *bvec;
  33. int i;
  34. if (f2fs_bio_encrypted(bio)) {
  35. if (bio->bi_error) {
  36. fscrypt_release_ctx(bio->bi_private);
  37. } else {
  38. fscrypt_decrypt_bio_pages(bio->bi_private, bio);
  39. return;
  40. }
  41. }
  42. bio_for_each_segment_all(bvec, bio, i) {
  43. struct page *page = bvec->bv_page;
  44. if (!bio->bi_error) {
  45. if (!PageUptodate(page))
  46. SetPageUptodate(page);
  47. } else {
  48. ClearPageUptodate(page);
  49. SetPageError(page);
  50. }
  51. unlock_page(page);
  52. }
  53. bio_put(bio);
  54. }
  55. static void f2fs_write_end_io(struct bio *bio)
  56. {
  57. struct f2fs_sb_info *sbi = bio->bi_private;
  58. struct bio_vec *bvec;
  59. int i;
  60. bio_for_each_segment_all(bvec, bio, i) {
  61. struct page *page = bvec->bv_page;
  62. fscrypt_pullback_bio_page(&page, true);
  63. if (unlikely(bio->bi_error)) {
  64. set_bit(AS_EIO, &page->mapping->flags);
  65. f2fs_stop_checkpoint(sbi, true);
  66. }
  67. end_page_writeback(page);
  68. }
  69. if (atomic_dec_and_test(&sbi->nr_wb_bios) &&
  70. wq_has_sleeper(&sbi->cp_wait))
  71. wake_up(&sbi->cp_wait);
  72. bio_put(bio);
  73. }
  74. /*
  75. * Low-level block read/write IO operations.
  76. */
  77. static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
  78. int npages, bool is_read)
  79. {
  80. struct bio *bio;
  81. bio = f2fs_bio_alloc(npages);
  82. bio->bi_bdev = sbi->sb->s_bdev;
  83. bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
  84. bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
  85. bio->bi_private = is_read ? NULL : sbi;
  86. return bio;
  87. }
  88. static inline void __submit_bio(struct f2fs_sb_info *sbi,
  89. struct bio *bio, enum page_type type)
  90. {
  91. if (!is_read_io(bio_op(bio))) {
  92. atomic_inc(&sbi->nr_wb_bios);
  93. if (f2fs_sb_mounted_hmsmr(sbi->sb) &&
  94. current->plug && (type == DATA || type == NODE))
  95. blk_finish_plug(current->plug);
  96. }
  97. submit_bio(bio);
  98. }
  99. static void __submit_merged_bio(struct f2fs_bio_info *io)
  100. {
  101. struct f2fs_io_info *fio = &io->fio;
  102. if (!io->bio)
  103. return;
  104. if (is_read_io(fio->op))
  105. trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
  106. else
  107. trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
  108. bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
  109. __submit_bio(io->sbi, io->bio, fio->type);
  110. io->bio = NULL;
  111. }
  112. static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
  113. struct page *page, nid_t ino)
  114. {
  115. struct bio_vec *bvec;
  116. struct page *target;
  117. int i;
  118. if (!io->bio)
  119. return false;
  120. if (!inode && !page && !ino)
  121. return true;
  122. bio_for_each_segment_all(bvec, io->bio, i) {
  123. if (bvec->bv_page->mapping)
  124. target = bvec->bv_page;
  125. else
  126. target = fscrypt_control_page(bvec->bv_page);
  127. if (inode && inode == target->mapping->host)
  128. return true;
  129. if (page && page == target)
  130. return true;
  131. if (ino && ino == ino_of_node(target))
  132. return true;
  133. }
  134. return false;
  135. }
  136. static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
  137. struct page *page, nid_t ino,
  138. enum page_type type)
  139. {
  140. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  141. struct f2fs_bio_info *io = &sbi->write_io[btype];
  142. bool ret;
  143. down_read(&io->io_rwsem);
  144. ret = __has_merged_page(io, inode, page, ino);
  145. up_read(&io->io_rwsem);
  146. return ret;
  147. }
  148. static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
  149. struct inode *inode, struct page *page,
  150. nid_t ino, enum page_type type, int rw)
  151. {
  152. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  153. struct f2fs_bio_info *io;
  154. io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
  155. down_write(&io->io_rwsem);
  156. if (!__has_merged_page(io, inode, page, ino))
  157. goto out;
  158. /* change META to META_FLUSH in the checkpoint procedure */
  159. if (type >= META_FLUSH) {
  160. io->fio.type = META_FLUSH;
  161. io->fio.op = REQ_OP_WRITE;
  162. if (test_opt(sbi, NOBARRIER))
  163. io->fio.op_flags = WRITE_FLUSH | REQ_META | REQ_PRIO;
  164. else
  165. io->fio.op_flags = WRITE_FLUSH_FUA | REQ_META |
  166. REQ_PRIO;
  167. }
  168. __submit_merged_bio(io);
  169. out:
  170. up_write(&io->io_rwsem);
  171. }
  172. void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
  173. int rw)
  174. {
  175. __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
  176. }
  177. void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
  178. struct inode *inode, struct page *page,
  179. nid_t ino, enum page_type type, int rw)
  180. {
  181. if (has_merged_page(sbi, inode, page, ino, type))
  182. __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
  183. }
  184. void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
  185. {
  186. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  187. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  188. f2fs_submit_merged_bio(sbi, META, WRITE);
  189. }
  190. /*
  191. * Fill the locked page with data located in the block address.
  192. * Return unlocked page.
  193. */
  194. int f2fs_submit_page_bio(struct f2fs_io_info *fio)
  195. {
  196. struct bio *bio;
  197. struct page *page = fio->encrypted_page ?
  198. fio->encrypted_page : fio->page;
  199. trace_f2fs_submit_page_bio(page, fio);
  200. f2fs_trace_ios(fio, 0);
  201. /* Allocate a new bio */
  202. bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
  203. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
  204. bio_put(bio);
  205. return -EFAULT;
  206. }
  207. bio_set_op_attrs(bio, fio->op, fio->op_flags);
  208. __submit_bio(fio->sbi, bio, fio->type);
  209. return 0;
  210. }
  211. void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
  212. {
  213. struct f2fs_sb_info *sbi = fio->sbi;
  214. enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
  215. struct f2fs_bio_info *io;
  216. bool is_read = is_read_io(fio->op);
  217. struct page *bio_page;
  218. io = is_read ? &sbi->read_io : &sbi->write_io[btype];
  219. if (fio->old_blkaddr != NEW_ADDR)
  220. verify_block_addr(sbi, fio->old_blkaddr);
  221. verify_block_addr(sbi, fio->new_blkaddr);
  222. down_write(&io->io_rwsem);
  223. if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
  224. (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags)))
  225. __submit_merged_bio(io);
  226. alloc_new:
  227. if (io->bio == NULL) {
  228. int bio_blocks = MAX_BIO_BLOCKS(sbi);
  229. io->bio = __bio_alloc(sbi, fio->new_blkaddr,
  230. bio_blocks, is_read);
  231. io->fio = *fio;
  232. }
  233. bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
  234. if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
  235. PAGE_SIZE) {
  236. __submit_merged_bio(io);
  237. goto alloc_new;
  238. }
  239. io->last_block_in_bio = fio->new_blkaddr;
  240. f2fs_trace_ios(fio, 0);
  241. up_write(&io->io_rwsem);
  242. trace_f2fs_submit_page_mbio(fio->page, fio);
  243. }
  244. static void __set_data_blkaddr(struct dnode_of_data *dn)
  245. {
  246. struct f2fs_node *rn = F2FS_NODE(dn->node_page);
  247. __le32 *addr_array;
  248. /* Get physical address of data block */
  249. addr_array = blkaddr_in_node(rn);
  250. addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
  251. }
  252. /*
  253. * Lock ordering for the change of data block address:
  254. * ->data_page
  255. * ->node_page
  256. * update block addresses in the node page
  257. */
  258. void set_data_blkaddr(struct dnode_of_data *dn)
  259. {
  260. f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
  261. __set_data_blkaddr(dn);
  262. if (set_page_dirty(dn->node_page))
  263. dn->node_changed = true;
  264. }
  265. void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
  266. {
  267. dn->data_blkaddr = blkaddr;
  268. set_data_blkaddr(dn);
  269. f2fs_update_extent_cache(dn);
  270. }
  271. /* dn->ofs_in_node will be returned with up-to-date last block pointer */
  272. int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
  273. {
  274. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  275. if (!count)
  276. return 0;
  277. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  278. return -EPERM;
  279. if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
  280. return -ENOSPC;
  281. trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
  282. dn->ofs_in_node, count);
  283. f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
  284. for (; count > 0; dn->ofs_in_node++) {
  285. block_t blkaddr =
  286. datablock_addr(dn->node_page, dn->ofs_in_node);
  287. if (blkaddr == NULL_ADDR) {
  288. dn->data_blkaddr = NEW_ADDR;
  289. __set_data_blkaddr(dn);
  290. count--;
  291. }
  292. }
  293. if (set_page_dirty(dn->node_page))
  294. dn->node_changed = true;
  295. return 0;
  296. }
  297. /* Should keep dn->ofs_in_node unchanged */
  298. int reserve_new_block(struct dnode_of_data *dn)
  299. {
  300. unsigned int ofs_in_node = dn->ofs_in_node;
  301. int ret;
  302. ret = reserve_new_blocks(dn, 1);
  303. dn->ofs_in_node = ofs_in_node;
  304. return ret;
  305. }
  306. int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
  307. {
  308. bool need_put = dn->inode_page ? false : true;
  309. int err;
  310. err = get_dnode_of_data(dn, index, ALLOC_NODE);
  311. if (err)
  312. return err;
  313. if (dn->data_blkaddr == NULL_ADDR)
  314. err = reserve_new_block(dn);
  315. if (err || need_put)
  316. f2fs_put_dnode(dn);
  317. return err;
  318. }
  319. int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
  320. {
  321. struct extent_info ei;
  322. struct inode *inode = dn->inode;
  323. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  324. dn->data_blkaddr = ei.blk + index - ei.fofs;
  325. return 0;
  326. }
  327. return f2fs_reserve_block(dn, index);
  328. }
  329. struct page *get_read_data_page(struct inode *inode, pgoff_t index,
  330. int op_flags, bool for_write)
  331. {
  332. struct address_space *mapping = inode->i_mapping;
  333. struct dnode_of_data dn;
  334. struct page *page;
  335. struct extent_info ei;
  336. int err;
  337. struct f2fs_io_info fio = {
  338. .sbi = F2FS_I_SB(inode),
  339. .type = DATA,
  340. .op = REQ_OP_READ,
  341. .op_flags = op_flags,
  342. .encrypted_page = NULL,
  343. };
  344. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  345. return read_mapping_page(mapping, index, NULL);
  346. page = f2fs_grab_cache_page(mapping, index, for_write);
  347. if (!page)
  348. return ERR_PTR(-ENOMEM);
  349. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  350. dn.data_blkaddr = ei.blk + index - ei.fofs;
  351. goto got_it;
  352. }
  353. set_new_dnode(&dn, inode, NULL, NULL, 0);
  354. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  355. if (err)
  356. goto put_err;
  357. f2fs_put_dnode(&dn);
  358. if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
  359. err = -ENOENT;
  360. goto put_err;
  361. }
  362. got_it:
  363. if (PageUptodate(page)) {
  364. unlock_page(page);
  365. return page;
  366. }
  367. /*
  368. * A new dentry page is allocated but not able to be written, since its
  369. * new inode page couldn't be allocated due to -ENOSPC.
  370. * In such the case, its blkaddr can be remained as NEW_ADDR.
  371. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
  372. */
  373. if (dn.data_blkaddr == NEW_ADDR) {
  374. zero_user_segment(page, 0, PAGE_SIZE);
  375. if (!PageUptodate(page))
  376. SetPageUptodate(page);
  377. unlock_page(page);
  378. return page;
  379. }
  380. fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
  381. fio.page = page;
  382. err = f2fs_submit_page_bio(&fio);
  383. if (err)
  384. goto put_err;
  385. return page;
  386. put_err:
  387. f2fs_put_page(page, 1);
  388. return ERR_PTR(err);
  389. }
  390. struct page *find_data_page(struct inode *inode, pgoff_t index)
  391. {
  392. struct address_space *mapping = inode->i_mapping;
  393. struct page *page;
  394. page = find_get_page(mapping, index);
  395. if (page && PageUptodate(page))
  396. return page;
  397. f2fs_put_page(page, 0);
  398. page = get_read_data_page(inode, index, READ_SYNC, false);
  399. if (IS_ERR(page))
  400. return page;
  401. if (PageUptodate(page))
  402. return page;
  403. wait_on_page_locked(page);
  404. if (unlikely(!PageUptodate(page))) {
  405. f2fs_put_page(page, 0);
  406. return ERR_PTR(-EIO);
  407. }
  408. return page;
  409. }
  410. /*
  411. * If it tries to access a hole, return an error.
  412. * Because, the callers, functions in dir.c and GC, should be able to know
  413. * whether this page exists or not.
  414. */
  415. struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
  416. bool for_write)
  417. {
  418. struct address_space *mapping = inode->i_mapping;
  419. struct page *page;
  420. repeat:
  421. page = get_read_data_page(inode, index, READ_SYNC, for_write);
  422. if (IS_ERR(page))
  423. return page;
  424. /* wait for read completion */
  425. lock_page(page);
  426. if (unlikely(page->mapping != mapping)) {
  427. f2fs_put_page(page, 1);
  428. goto repeat;
  429. }
  430. if (unlikely(!PageUptodate(page))) {
  431. f2fs_put_page(page, 1);
  432. return ERR_PTR(-EIO);
  433. }
  434. return page;
  435. }
  436. /*
  437. * Caller ensures that this data page is never allocated.
  438. * A new zero-filled data page is allocated in the page cache.
  439. *
  440. * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
  441. * f2fs_unlock_op().
  442. * Note that, ipage is set only by make_empty_dir, and if any error occur,
  443. * ipage should be released by this function.
  444. */
  445. struct page *get_new_data_page(struct inode *inode,
  446. struct page *ipage, pgoff_t index, bool new_i_size)
  447. {
  448. struct address_space *mapping = inode->i_mapping;
  449. struct page *page;
  450. struct dnode_of_data dn;
  451. int err;
  452. page = f2fs_grab_cache_page(mapping, index, true);
  453. if (!page) {
  454. /*
  455. * before exiting, we should make sure ipage will be released
  456. * if any error occur.
  457. */
  458. f2fs_put_page(ipage, 1);
  459. return ERR_PTR(-ENOMEM);
  460. }
  461. set_new_dnode(&dn, inode, ipage, NULL, 0);
  462. err = f2fs_reserve_block(&dn, index);
  463. if (err) {
  464. f2fs_put_page(page, 1);
  465. return ERR_PTR(err);
  466. }
  467. if (!ipage)
  468. f2fs_put_dnode(&dn);
  469. if (PageUptodate(page))
  470. goto got_it;
  471. if (dn.data_blkaddr == NEW_ADDR) {
  472. zero_user_segment(page, 0, PAGE_SIZE);
  473. if (!PageUptodate(page))
  474. SetPageUptodate(page);
  475. } else {
  476. f2fs_put_page(page, 1);
  477. /* if ipage exists, blkaddr should be NEW_ADDR */
  478. f2fs_bug_on(F2FS_I_SB(inode), ipage);
  479. page = get_lock_data_page(inode, index, true);
  480. if (IS_ERR(page))
  481. return page;
  482. }
  483. got_it:
  484. if (new_i_size && i_size_read(inode) <
  485. ((loff_t)(index + 1) << PAGE_SHIFT))
  486. f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
  487. return page;
  488. }
  489. static int __allocate_data_block(struct dnode_of_data *dn)
  490. {
  491. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  492. struct f2fs_summary sum;
  493. struct node_info ni;
  494. int seg = CURSEG_WARM_DATA;
  495. pgoff_t fofs;
  496. blkcnt_t count = 1;
  497. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  498. return -EPERM;
  499. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  500. if (dn->data_blkaddr == NEW_ADDR)
  501. goto alloc;
  502. if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
  503. return -ENOSPC;
  504. alloc:
  505. get_node_info(sbi, dn->nid, &ni);
  506. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  507. if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
  508. seg = CURSEG_DIRECT_IO;
  509. allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
  510. &sum, seg);
  511. set_data_blkaddr(dn);
  512. /* update i_size */
  513. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
  514. dn->ofs_in_node;
  515. if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
  516. f2fs_i_size_write(dn->inode,
  517. ((loff_t)(fofs + 1) << PAGE_SHIFT));
  518. return 0;
  519. }
  520. ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
  521. {
  522. struct inode *inode = file_inode(iocb->ki_filp);
  523. struct f2fs_map_blocks map;
  524. ssize_t ret = 0;
  525. map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
  526. map.m_len = F2FS_BYTES_TO_BLK(iov_iter_count(from));
  527. map.m_next_pgofs = NULL;
  528. if (f2fs_encrypted_inode(inode))
  529. return 0;
  530. if (iocb->ki_flags & IOCB_DIRECT) {
  531. ret = f2fs_convert_inline_inode(inode);
  532. if (ret)
  533. return ret;
  534. return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
  535. }
  536. if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
  537. ret = f2fs_convert_inline_inode(inode);
  538. if (ret)
  539. return ret;
  540. }
  541. if (!f2fs_has_inline_data(inode))
  542. return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  543. return ret;
  544. }
  545. /*
  546. * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
  547. * f2fs_map_blocks structure.
  548. * If original data blocks are allocated, then give them to blockdev.
  549. * Otherwise,
  550. * a. preallocate requested block addresses
  551. * b. do not use extent cache for better performance
  552. * c. give the block addresses to blockdev
  553. */
  554. int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
  555. int create, int flag)
  556. {
  557. unsigned int maxblocks = map->m_len;
  558. struct dnode_of_data dn;
  559. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  560. int mode = create ? ALLOC_NODE : LOOKUP_NODE;
  561. pgoff_t pgofs, end_offset, end;
  562. int err = 0, ofs = 1;
  563. unsigned int ofs_in_node, last_ofs_in_node;
  564. blkcnt_t prealloc;
  565. struct extent_info ei;
  566. bool allocated = false;
  567. block_t blkaddr;
  568. map->m_len = 0;
  569. map->m_flags = 0;
  570. /* it only supports block size == page size */
  571. pgofs = (pgoff_t)map->m_lblk;
  572. end = pgofs + maxblocks;
  573. if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
  574. map->m_pblk = ei.blk + pgofs - ei.fofs;
  575. map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
  576. map->m_flags = F2FS_MAP_MAPPED;
  577. goto out;
  578. }
  579. next_dnode:
  580. if (create)
  581. f2fs_lock_op(sbi);
  582. /* When reading holes, we need its node page */
  583. set_new_dnode(&dn, inode, NULL, NULL, 0);
  584. err = get_dnode_of_data(&dn, pgofs, mode);
  585. if (err) {
  586. if (flag == F2FS_GET_BLOCK_BMAP)
  587. map->m_pblk = 0;
  588. if (err == -ENOENT) {
  589. err = 0;
  590. if (map->m_next_pgofs)
  591. *map->m_next_pgofs =
  592. get_next_page_offset(&dn, pgofs);
  593. }
  594. goto unlock_out;
  595. }
  596. prealloc = 0;
  597. ofs_in_node = dn.ofs_in_node;
  598. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  599. next_block:
  600. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  601. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
  602. if (create) {
  603. if (unlikely(f2fs_cp_error(sbi))) {
  604. err = -EIO;
  605. goto sync_out;
  606. }
  607. if (flag == F2FS_GET_BLOCK_PRE_AIO) {
  608. if (blkaddr == NULL_ADDR) {
  609. prealloc++;
  610. last_ofs_in_node = dn.ofs_in_node;
  611. }
  612. } else {
  613. err = __allocate_data_block(&dn);
  614. if (!err) {
  615. set_inode_flag(inode, FI_APPEND_WRITE);
  616. allocated = true;
  617. }
  618. }
  619. if (err)
  620. goto sync_out;
  621. map->m_flags = F2FS_MAP_NEW;
  622. blkaddr = dn.data_blkaddr;
  623. } else {
  624. if (flag == F2FS_GET_BLOCK_BMAP) {
  625. map->m_pblk = 0;
  626. goto sync_out;
  627. }
  628. if (flag == F2FS_GET_BLOCK_FIEMAP &&
  629. blkaddr == NULL_ADDR) {
  630. if (map->m_next_pgofs)
  631. *map->m_next_pgofs = pgofs + 1;
  632. }
  633. if (flag != F2FS_GET_BLOCK_FIEMAP ||
  634. blkaddr != NEW_ADDR)
  635. goto sync_out;
  636. }
  637. }
  638. if (flag == F2FS_GET_BLOCK_PRE_AIO)
  639. goto skip;
  640. if (map->m_len == 0) {
  641. /* preallocated unwritten block should be mapped for fiemap. */
  642. if (blkaddr == NEW_ADDR)
  643. map->m_flags |= F2FS_MAP_UNWRITTEN;
  644. map->m_flags |= F2FS_MAP_MAPPED;
  645. map->m_pblk = blkaddr;
  646. map->m_len = 1;
  647. } else if ((map->m_pblk != NEW_ADDR &&
  648. blkaddr == (map->m_pblk + ofs)) ||
  649. (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
  650. flag == F2FS_GET_BLOCK_PRE_DIO) {
  651. ofs++;
  652. map->m_len++;
  653. } else {
  654. goto sync_out;
  655. }
  656. skip:
  657. dn.ofs_in_node++;
  658. pgofs++;
  659. /* preallocate blocks in batch for one dnode page */
  660. if (flag == F2FS_GET_BLOCK_PRE_AIO &&
  661. (pgofs == end || dn.ofs_in_node == end_offset)) {
  662. dn.ofs_in_node = ofs_in_node;
  663. err = reserve_new_blocks(&dn, prealloc);
  664. if (err)
  665. goto sync_out;
  666. map->m_len += dn.ofs_in_node - ofs_in_node;
  667. if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
  668. err = -ENOSPC;
  669. goto sync_out;
  670. }
  671. dn.ofs_in_node = end_offset;
  672. }
  673. if (pgofs >= end)
  674. goto sync_out;
  675. else if (dn.ofs_in_node < end_offset)
  676. goto next_block;
  677. f2fs_put_dnode(&dn);
  678. if (create) {
  679. f2fs_unlock_op(sbi);
  680. f2fs_balance_fs(sbi, allocated);
  681. }
  682. allocated = false;
  683. goto next_dnode;
  684. sync_out:
  685. f2fs_put_dnode(&dn);
  686. unlock_out:
  687. if (create) {
  688. f2fs_unlock_op(sbi);
  689. f2fs_balance_fs(sbi, allocated);
  690. }
  691. out:
  692. trace_f2fs_map_blocks(inode, map, err);
  693. return err;
  694. }
  695. static int __get_data_block(struct inode *inode, sector_t iblock,
  696. struct buffer_head *bh, int create, int flag,
  697. pgoff_t *next_pgofs)
  698. {
  699. struct f2fs_map_blocks map;
  700. int ret;
  701. map.m_lblk = iblock;
  702. map.m_len = bh->b_size >> inode->i_blkbits;
  703. map.m_next_pgofs = next_pgofs;
  704. ret = f2fs_map_blocks(inode, &map, create, flag);
  705. if (!ret) {
  706. map_bh(bh, inode->i_sb, map.m_pblk);
  707. bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
  708. bh->b_size = map.m_len << inode->i_blkbits;
  709. }
  710. return ret;
  711. }
  712. static int get_data_block(struct inode *inode, sector_t iblock,
  713. struct buffer_head *bh_result, int create, int flag,
  714. pgoff_t *next_pgofs)
  715. {
  716. return __get_data_block(inode, iblock, bh_result, create,
  717. flag, next_pgofs);
  718. }
  719. static int get_data_block_dio(struct inode *inode, sector_t iblock,
  720. struct buffer_head *bh_result, int create)
  721. {
  722. return __get_data_block(inode, iblock, bh_result, create,
  723. F2FS_GET_BLOCK_DIO, NULL);
  724. }
  725. static int get_data_block_bmap(struct inode *inode, sector_t iblock,
  726. struct buffer_head *bh_result, int create)
  727. {
  728. /* Block number less than F2FS MAX BLOCKS */
  729. if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
  730. return -EFBIG;
  731. return __get_data_block(inode, iblock, bh_result, create,
  732. F2FS_GET_BLOCK_BMAP, NULL);
  733. }
  734. static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
  735. {
  736. return (offset >> inode->i_blkbits);
  737. }
  738. static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
  739. {
  740. return (blk << inode->i_blkbits);
  741. }
  742. int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  743. u64 start, u64 len)
  744. {
  745. struct buffer_head map_bh;
  746. sector_t start_blk, last_blk;
  747. pgoff_t next_pgofs;
  748. loff_t isize;
  749. u64 logical = 0, phys = 0, size = 0;
  750. u32 flags = 0;
  751. int ret = 0;
  752. ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
  753. if (ret)
  754. return ret;
  755. if (f2fs_has_inline_data(inode)) {
  756. ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
  757. if (ret != -EAGAIN)
  758. return ret;
  759. }
  760. inode_lock(inode);
  761. isize = i_size_read(inode);
  762. if (start >= isize)
  763. goto out;
  764. if (start + len > isize)
  765. len = isize - start;
  766. if (logical_to_blk(inode, len) == 0)
  767. len = blk_to_logical(inode, 1);
  768. start_blk = logical_to_blk(inode, start);
  769. last_blk = logical_to_blk(inode, start + len - 1);
  770. next:
  771. memset(&map_bh, 0, sizeof(struct buffer_head));
  772. map_bh.b_size = len;
  773. ret = get_data_block(inode, start_blk, &map_bh, 0,
  774. F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
  775. if (ret)
  776. goto out;
  777. /* HOLE */
  778. if (!buffer_mapped(&map_bh)) {
  779. start_blk = next_pgofs;
  780. /* Go through holes util pass the EOF */
  781. if (blk_to_logical(inode, start_blk) < isize)
  782. goto prep_next;
  783. /* Found a hole beyond isize means no more extents.
  784. * Note that the premise is that filesystems don't
  785. * punch holes beyond isize and keep size unchanged.
  786. */
  787. flags |= FIEMAP_EXTENT_LAST;
  788. }
  789. if (size) {
  790. if (f2fs_encrypted_inode(inode))
  791. flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
  792. ret = fiemap_fill_next_extent(fieinfo, logical,
  793. phys, size, flags);
  794. }
  795. if (start_blk > last_blk || ret)
  796. goto out;
  797. logical = blk_to_logical(inode, start_blk);
  798. phys = blk_to_logical(inode, map_bh.b_blocknr);
  799. size = map_bh.b_size;
  800. flags = 0;
  801. if (buffer_unwritten(&map_bh))
  802. flags = FIEMAP_EXTENT_UNWRITTEN;
  803. start_blk += logical_to_blk(inode, size);
  804. prep_next:
  805. cond_resched();
  806. if (fatal_signal_pending(current))
  807. ret = -EINTR;
  808. else
  809. goto next;
  810. out:
  811. if (ret == 1)
  812. ret = 0;
  813. inode_unlock(inode);
  814. return ret;
  815. }
  816. struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
  817. unsigned nr_pages)
  818. {
  819. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  820. struct fscrypt_ctx *ctx = NULL;
  821. struct block_device *bdev = sbi->sb->s_bdev;
  822. struct bio *bio;
  823. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
  824. ctx = fscrypt_get_ctx(inode, GFP_NOFS);
  825. if (IS_ERR(ctx))
  826. return ERR_CAST(ctx);
  827. /* wait the page to be moved by cleaning */
  828. f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
  829. }
  830. bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
  831. if (!bio) {
  832. if (ctx)
  833. fscrypt_release_ctx(ctx);
  834. return ERR_PTR(-ENOMEM);
  835. }
  836. bio->bi_bdev = bdev;
  837. bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blkaddr);
  838. bio->bi_end_io = f2fs_read_end_io;
  839. bio->bi_private = ctx;
  840. return bio;
  841. }
  842. /*
  843. * This function was originally taken from fs/mpage.c, and customized for f2fs.
  844. * Major change was from block_size == page_size in f2fs by default.
  845. */
  846. static int f2fs_mpage_readpages(struct address_space *mapping,
  847. struct list_head *pages, struct page *page,
  848. unsigned nr_pages)
  849. {
  850. struct bio *bio = NULL;
  851. unsigned page_idx;
  852. sector_t last_block_in_bio = 0;
  853. struct inode *inode = mapping->host;
  854. const unsigned blkbits = inode->i_blkbits;
  855. const unsigned blocksize = 1 << blkbits;
  856. sector_t block_in_file;
  857. sector_t last_block;
  858. sector_t last_block_in_file;
  859. sector_t block_nr;
  860. struct f2fs_map_blocks map;
  861. map.m_pblk = 0;
  862. map.m_lblk = 0;
  863. map.m_len = 0;
  864. map.m_flags = 0;
  865. map.m_next_pgofs = NULL;
  866. for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
  867. prefetchw(&page->flags);
  868. if (pages) {
  869. page = list_entry(pages->prev, struct page, lru);
  870. list_del(&page->lru);
  871. if (add_to_page_cache_lru(page, mapping,
  872. page->index,
  873. readahead_gfp_mask(mapping)))
  874. goto next_page;
  875. }
  876. block_in_file = (sector_t)page->index;
  877. last_block = block_in_file + nr_pages;
  878. last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
  879. blkbits;
  880. if (last_block > last_block_in_file)
  881. last_block = last_block_in_file;
  882. /*
  883. * Map blocks using the previous result first.
  884. */
  885. if ((map.m_flags & F2FS_MAP_MAPPED) &&
  886. block_in_file > map.m_lblk &&
  887. block_in_file < (map.m_lblk + map.m_len))
  888. goto got_it;
  889. /*
  890. * Then do more f2fs_map_blocks() calls until we are
  891. * done with this page.
  892. */
  893. map.m_flags = 0;
  894. if (block_in_file < last_block) {
  895. map.m_lblk = block_in_file;
  896. map.m_len = last_block - block_in_file;
  897. if (f2fs_map_blocks(inode, &map, 0,
  898. F2FS_GET_BLOCK_READ))
  899. goto set_error_page;
  900. }
  901. got_it:
  902. if ((map.m_flags & F2FS_MAP_MAPPED)) {
  903. block_nr = map.m_pblk + block_in_file - map.m_lblk;
  904. SetPageMappedToDisk(page);
  905. if (!PageUptodate(page) && !cleancache_get_page(page)) {
  906. SetPageUptodate(page);
  907. goto confused;
  908. }
  909. } else {
  910. zero_user_segment(page, 0, PAGE_SIZE);
  911. if (!PageUptodate(page))
  912. SetPageUptodate(page);
  913. unlock_page(page);
  914. goto next_page;
  915. }
  916. /*
  917. * This page will go to BIO. Do we need to send this
  918. * BIO off first?
  919. */
  920. if (bio && (last_block_in_bio != block_nr - 1)) {
  921. submit_and_realloc:
  922. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  923. bio = NULL;
  924. }
  925. if (bio == NULL) {
  926. bio = f2fs_grab_bio(inode, block_nr, nr_pages);
  927. if (IS_ERR(bio)) {
  928. bio = NULL;
  929. goto set_error_page;
  930. }
  931. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  932. }
  933. if (bio_add_page(bio, page, blocksize, 0) < blocksize)
  934. goto submit_and_realloc;
  935. last_block_in_bio = block_nr;
  936. goto next_page;
  937. set_error_page:
  938. SetPageError(page);
  939. zero_user_segment(page, 0, PAGE_SIZE);
  940. unlock_page(page);
  941. goto next_page;
  942. confused:
  943. if (bio) {
  944. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  945. bio = NULL;
  946. }
  947. unlock_page(page);
  948. next_page:
  949. if (pages)
  950. put_page(page);
  951. }
  952. BUG_ON(pages && !list_empty(pages));
  953. if (bio)
  954. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  955. return 0;
  956. }
  957. static int f2fs_read_data_page(struct file *file, struct page *page)
  958. {
  959. struct inode *inode = page->mapping->host;
  960. int ret = -EAGAIN;
  961. trace_f2fs_readpage(page, DATA);
  962. /* If the file has inline data, try to read it directly */
  963. if (f2fs_has_inline_data(inode))
  964. ret = f2fs_read_inline_data(inode, page);
  965. if (ret == -EAGAIN)
  966. ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
  967. return ret;
  968. }
  969. static int f2fs_read_data_pages(struct file *file,
  970. struct address_space *mapping,
  971. struct list_head *pages, unsigned nr_pages)
  972. {
  973. struct inode *inode = file->f_mapping->host;
  974. struct page *page = list_entry(pages->prev, struct page, lru);
  975. trace_f2fs_readpages(inode, page, nr_pages);
  976. /* If the file has inline data, skip readpages */
  977. if (f2fs_has_inline_data(inode))
  978. return 0;
  979. return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
  980. }
  981. int do_write_data_page(struct f2fs_io_info *fio)
  982. {
  983. struct page *page = fio->page;
  984. struct inode *inode = page->mapping->host;
  985. struct dnode_of_data dn;
  986. int err = 0;
  987. set_new_dnode(&dn, inode, NULL, NULL, 0);
  988. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  989. if (err)
  990. return err;
  991. fio->old_blkaddr = dn.data_blkaddr;
  992. /* This page is already truncated */
  993. if (fio->old_blkaddr == NULL_ADDR) {
  994. ClearPageUptodate(page);
  995. goto out_writepage;
  996. }
  997. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
  998. gfp_t gfp_flags = GFP_NOFS;
  999. /* wait for GCed encrypted page writeback */
  1000. f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
  1001. fio->old_blkaddr);
  1002. retry_encrypt:
  1003. fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
  1004. gfp_flags);
  1005. if (IS_ERR(fio->encrypted_page)) {
  1006. err = PTR_ERR(fio->encrypted_page);
  1007. if (err == -ENOMEM) {
  1008. /* flush pending ios and wait for a while */
  1009. f2fs_flush_merged_bios(F2FS_I_SB(inode));
  1010. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1011. gfp_flags |= __GFP_NOFAIL;
  1012. err = 0;
  1013. goto retry_encrypt;
  1014. }
  1015. goto out_writepage;
  1016. }
  1017. }
  1018. set_page_writeback(page);
  1019. /*
  1020. * If current allocation needs SSR,
  1021. * it had better in-place writes for updated data.
  1022. */
  1023. if (unlikely(fio->old_blkaddr != NEW_ADDR &&
  1024. !is_cold_data(page) &&
  1025. !IS_ATOMIC_WRITTEN_PAGE(page) &&
  1026. need_inplace_update(inode))) {
  1027. rewrite_data_page(fio);
  1028. set_inode_flag(inode, FI_UPDATE_WRITE);
  1029. trace_f2fs_do_write_data_page(page, IPU);
  1030. } else {
  1031. write_data_page(&dn, fio);
  1032. trace_f2fs_do_write_data_page(page, OPU);
  1033. set_inode_flag(inode, FI_APPEND_WRITE);
  1034. if (page->index == 0)
  1035. set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
  1036. }
  1037. out_writepage:
  1038. f2fs_put_dnode(&dn);
  1039. return err;
  1040. }
  1041. static int f2fs_write_data_page(struct page *page,
  1042. struct writeback_control *wbc)
  1043. {
  1044. struct inode *inode = page->mapping->host;
  1045. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1046. loff_t i_size = i_size_read(inode);
  1047. const pgoff_t end_index = ((unsigned long long) i_size)
  1048. >> PAGE_SHIFT;
  1049. loff_t psize = (page->index + 1) << PAGE_SHIFT;
  1050. unsigned offset = 0;
  1051. bool need_balance_fs = false;
  1052. int err = 0;
  1053. struct f2fs_io_info fio = {
  1054. .sbi = sbi,
  1055. .type = DATA,
  1056. .op = REQ_OP_WRITE,
  1057. .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0,
  1058. .page = page,
  1059. .encrypted_page = NULL,
  1060. };
  1061. trace_f2fs_writepage(page, DATA);
  1062. if (page->index < end_index)
  1063. goto write;
  1064. /*
  1065. * If the offset is out-of-range of file size,
  1066. * this page does not have to be written to disk.
  1067. */
  1068. offset = i_size & (PAGE_SIZE - 1);
  1069. if ((page->index >= end_index + 1) || !offset)
  1070. goto out;
  1071. zero_user_segment(page, offset, PAGE_SIZE);
  1072. write:
  1073. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1074. goto redirty_out;
  1075. if (f2fs_is_drop_cache(inode))
  1076. goto out;
  1077. /* we should not write 0'th page having journal header */
  1078. if (f2fs_is_volatile_file(inode) && (!page->index ||
  1079. (!wbc->for_reclaim &&
  1080. available_free_memory(sbi, BASE_CHECK))))
  1081. goto redirty_out;
  1082. /* we should bypass data pages to proceed the kworkder jobs */
  1083. if (unlikely(f2fs_cp_error(sbi))) {
  1084. mapping_set_error(page->mapping, -EIO);
  1085. goto out;
  1086. }
  1087. /* Dentry blocks are controlled by checkpoint */
  1088. if (S_ISDIR(inode->i_mode)) {
  1089. err = do_write_data_page(&fio);
  1090. goto done;
  1091. }
  1092. if (!wbc->for_reclaim)
  1093. need_balance_fs = true;
  1094. else if (has_not_enough_free_secs(sbi, 0))
  1095. goto redirty_out;
  1096. err = -EAGAIN;
  1097. f2fs_lock_op(sbi);
  1098. if (f2fs_has_inline_data(inode))
  1099. err = f2fs_write_inline_data(inode, page);
  1100. if (err == -EAGAIN)
  1101. err = do_write_data_page(&fio);
  1102. if (F2FS_I(inode)->last_disk_size < psize)
  1103. F2FS_I(inode)->last_disk_size = psize;
  1104. f2fs_unlock_op(sbi);
  1105. done:
  1106. if (err && err != -ENOENT)
  1107. goto redirty_out;
  1108. clear_cold_data(page);
  1109. out:
  1110. inode_dec_dirty_pages(inode);
  1111. if (err)
  1112. ClearPageUptodate(page);
  1113. if (wbc->for_reclaim) {
  1114. f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
  1115. remove_dirty_inode(inode);
  1116. }
  1117. unlock_page(page);
  1118. f2fs_balance_fs(sbi, need_balance_fs);
  1119. if (unlikely(f2fs_cp_error(sbi)))
  1120. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  1121. return 0;
  1122. redirty_out:
  1123. redirty_page_for_writepage(wbc, page);
  1124. unlock_page(page);
  1125. return err;
  1126. }
  1127. /*
  1128. * This function was copied from write_cche_pages from mm/page-writeback.c.
  1129. * The major change is making write step of cold data page separately from
  1130. * warm/hot data page.
  1131. */
  1132. static int f2fs_write_cache_pages(struct address_space *mapping,
  1133. struct writeback_control *wbc)
  1134. {
  1135. int ret = 0;
  1136. int done = 0;
  1137. struct pagevec pvec;
  1138. int nr_pages;
  1139. pgoff_t uninitialized_var(writeback_index);
  1140. pgoff_t index;
  1141. pgoff_t end; /* Inclusive */
  1142. pgoff_t done_index;
  1143. int cycled;
  1144. int range_whole = 0;
  1145. int tag;
  1146. pagevec_init(&pvec, 0);
  1147. if (wbc->range_cyclic) {
  1148. writeback_index = mapping->writeback_index; /* prev offset */
  1149. index = writeback_index;
  1150. if (index == 0)
  1151. cycled = 1;
  1152. else
  1153. cycled = 0;
  1154. end = -1;
  1155. } else {
  1156. index = wbc->range_start >> PAGE_SHIFT;
  1157. end = wbc->range_end >> PAGE_SHIFT;
  1158. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1159. range_whole = 1;
  1160. cycled = 1; /* ignore range_cyclic tests */
  1161. }
  1162. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1163. tag = PAGECACHE_TAG_TOWRITE;
  1164. else
  1165. tag = PAGECACHE_TAG_DIRTY;
  1166. retry:
  1167. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1168. tag_pages_for_writeback(mapping, index, end);
  1169. done_index = index;
  1170. while (!done && (index <= end)) {
  1171. int i;
  1172. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1173. min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
  1174. if (nr_pages == 0)
  1175. break;
  1176. for (i = 0; i < nr_pages; i++) {
  1177. struct page *page = pvec.pages[i];
  1178. if (page->index > end) {
  1179. done = 1;
  1180. break;
  1181. }
  1182. done_index = page->index;
  1183. lock_page(page);
  1184. if (unlikely(page->mapping != mapping)) {
  1185. continue_unlock:
  1186. unlock_page(page);
  1187. continue;
  1188. }
  1189. if (!PageDirty(page)) {
  1190. /* someone wrote it for us */
  1191. goto continue_unlock;
  1192. }
  1193. if (PageWriteback(page)) {
  1194. if (wbc->sync_mode != WB_SYNC_NONE)
  1195. f2fs_wait_on_page_writeback(page,
  1196. DATA, true);
  1197. else
  1198. goto continue_unlock;
  1199. }
  1200. BUG_ON(PageWriteback(page));
  1201. if (!clear_page_dirty_for_io(page))
  1202. goto continue_unlock;
  1203. ret = mapping->a_ops->writepage(page, wbc);
  1204. if (unlikely(ret)) {
  1205. done_index = page->index + 1;
  1206. done = 1;
  1207. break;
  1208. }
  1209. if (--wbc->nr_to_write <= 0 &&
  1210. wbc->sync_mode == WB_SYNC_NONE) {
  1211. done = 1;
  1212. break;
  1213. }
  1214. }
  1215. pagevec_release(&pvec);
  1216. cond_resched();
  1217. }
  1218. if (!cycled && !done) {
  1219. cycled = 1;
  1220. index = 0;
  1221. end = writeback_index - 1;
  1222. goto retry;
  1223. }
  1224. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1225. mapping->writeback_index = done_index;
  1226. return ret;
  1227. }
  1228. static int f2fs_write_data_pages(struct address_space *mapping,
  1229. struct writeback_control *wbc)
  1230. {
  1231. struct inode *inode = mapping->host;
  1232. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1233. struct blk_plug plug;
  1234. int ret;
  1235. /* deal with chardevs and other special file */
  1236. if (!mapping->a_ops->writepage)
  1237. return 0;
  1238. /* skip writing if there is no dirty page in this inode */
  1239. if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
  1240. return 0;
  1241. if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
  1242. get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
  1243. available_free_memory(sbi, DIRTY_DENTS))
  1244. goto skip_write;
  1245. /* skip writing during file defragment */
  1246. if (is_inode_flag_set(inode, FI_DO_DEFRAG))
  1247. goto skip_write;
  1248. /* during POR, we don't need to trigger writepage at all. */
  1249. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1250. goto skip_write;
  1251. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1252. blk_start_plug(&plug);
  1253. ret = f2fs_write_cache_pages(mapping, wbc);
  1254. blk_finish_plug(&plug);
  1255. /*
  1256. * if some pages were truncated, we cannot guarantee its mapping->host
  1257. * to detect pending bios.
  1258. */
  1259. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  1260. remove_dirty_inode(inode);
  1261. return ret;
  1262. skip_write:
  1263. wbc->pages_skipped += get_dirty_pages(inode);
  1264. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1265. return 0;
  1266. }
  1267. static void f2fs_write_failed(struct address_space *mapping, loff_t to)
  1268. {
  1269. struct inode *inode = mapping->host;
  1270. loff_t i_size = i_size_read(inode);
  1271. if (to > i_size) {
  1272. truncate_pagecache(inode, i_size);
  1273. truncate_blocks(inode, i_size, true);
  1274. }
  1275. }
  1276. static int prepare_write_begin(struct f2fs_sb_info *sbi,
  1277. struct page *page, loff_t pos, unsigned len,
  1278. block_t *blk_addr, bool *node_changed)
  1279. {
  1280. struct inode *inode = page->mapping->host;
  1281. pgoff_t index = page->index;
  1282. struct dnode_of_data dn;
  1283. struct page *ipage;
  1284. bool locked = false;
  1285. struct extent_info ei;
  1286. int err = 0;
  1287. /*
  1288. * we already allocated all the blocks, so we don't need to get
  1289. * the block addresses when there is no need to fill the page.
  1290. */
  1291. if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
  1292. len == PAGE_SIZE)
  1293. return 0;
  1294. if (f2fs_has_inline_data(inode) ||
  1295. (pos & PAGE_MASK) >= i_size_read(inode)) {
  1296. f2fs_lock_op(sbi);
  1297. locked = true;
  1298. }
  1299. restart:
  1300. /* check inline_data */
  1301. ipage = get_node_page(sbi, inode->i_ino);
  1302. if (IS_ERR(ipage)) {
  1303. err = PTR_ERR(ipage);
  1304. goto unlock_out;
  1305. }
  1306. set_new_dnode(&dn, inode, ipage, ipage, 0);
  1307. if (f2fs_has_inline_data(inode)) {
  1308. if (pos + len <= MAX_INLINE_DATA) {
  1309. read_inline_data(page, ipage);
  1310. set_inode_flag(inode, FI_DATA_EXIST);
  1311. if (inode->i_nlink)
  1312. set_inline_node(ipage);
  1313. } else {
  1314. err = f2fs_convert_inline_page(&dn, page);
  1315. if (err)
  1316. goto out;
  1317. if (dn.data_blkaddr == NULL_ADDR)
  1318. err = f2fs_get_block(&dn, index);
  1319. }
  1320. } else if (locked) {
  1321. err = f2fs_get_block(&dn, index);
  1322. } else {
  1323. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  1324. dn.data_blkaddr = ei.blk + index - ei.fofs;
  1325. } else {
  1326. /* hole case */
  1327. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  1328. if (err || dn.data_blkaddr == NULL_ADDR) {
  1329. f2fs_put_dnode(&dn);
  1330. f2fs_lock_op(sbi);
  1331. locked = true;
  1332. goto restart;
  1333. }
  1334. }
  1335. }
  1336. /* convert_inline_page can make node_changed */
  1337. *blk_addr = dn.data_blkaddr;
  1338. *node_changed = dn.node_changed;
  1339. out:
  1340. f2fs_put_dnode(&dn);
  1341. unlock_out:
  1342. if (locked)
  1343. f2fs_unlock_op(sbi);
  1344. return err;
  1345. }
  1346. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  1347. loff_t pos, unsigned len, unsigned flags,
  1348. struct page **pagep, void **fsdata)
  1349. {
  1350. struct inode *inode = mapping->host;
  1351. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1352. struct page *page = NULL;
  1353. pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
  1354. bool need_balance = false;
  1355. block_t blkaddr = NULL_ADDR;
  1356. int err = 0;
  1357. trace_f2fs_write_begin(inode, pos, len, flags);
  1358. /*
  1359. * We should check this at this moment to avoid deadlock on inode page
  1360. * and #0 page. The locking rule for inline_data conversion should be:
  1361. * lock_page(page #0) -> lock_page(inode_page)
  1362. */
  1363. if (index != 0) {
  1364. err = f2fs_convert_inline_inode(inode);
  1365. if (err)
  1366. goto fail;
  1367. }
  1368. repeat:
  1369. page = grab_cache_page_write_begin(mapping, index, flags);
  1370. if (!page) {
  1371. err = -ENOMEM;
  1372. goto fail;
  1373. }
  1374. *pagep = page;
  1375. err = prepare_write_begin(sbi, page, pos, len,
  1376. &blkaddr, &need_balance);
  1377. if (err)
  1378. goto fail;
  1379. if (need_balance && has_not_enough_free_secs(sbi, 0)) {
  1380. unlock_page(page);
  1381. f2fs_balance_fs(sbi, true);
  1382. lock_page(page);
  1383. if (page->mapping != mapping) {
  1384. /* The page got truncated from under us */
  1385. f2fs_put_page(page, 1);
  1386. goto repeat;
  1387. }
  1388. }
  1389. f2fs_wait_on_page_writeback(page, DATA, false);
  1390. /* wait for GCed encrypted page writeback */
  1391. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  1392. f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
  1393. if (len == PAGE_SIZE)
  1394. goto out_update;
  1395. if (PageUptodate(page))
  1396. goto out_clear;
  1397. if ((pos & PAGE_MASK) >= i_size_read(inode)) {
  1398. unsigned start = pos & (PAGE_SIZE - 1);
  1399. unsigned end = start + len;
  1400. /* Reading beyond i_size is simple: memset to zero */
  1401. zero_user_segments(page, 0, start, end, PAGE_SIZE);
  1402. goto out_update;
  1403. }
  1404. if (blkaddr == NEW_ADDR) {
  1405. zero_user_segment(page, 0, PAGE_SIZE);
  1406. } else {
  1407. struct bio *bio;
  1408. bio = f2fs_grab_bio(inode, blkaddr, 1);
  1409. if (IS_ERR(bio)) {
  1410. err = PTR_ERR(bio);
  1411. goto fail;
  1412. }
  1413. bio_set_op_attrs(bio, REQ_OP_READ, READ_SYNC);
  1414. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
  1415. bio_put(bio);
  1416. err = -EFAULT;
  1417. goto fail;
  1418. }
  1419. __submit_bio(sbi, bio, DATA);
  1420. lock_page(page);
  1421. if (unlikely(page->mapping != mapping)) {
  1422. f2fs_put_page(page, 1);
  1423. goto repeat;
  1424. }
  1425. if (unlikely(!PageUptodate(page))) {
  1426. err = -EIO;
  1427. goto fail;
  1428. }
  1429. }
  1430. out_update:
  1431. if (!PageUptodate(page))
  1432. SetPageUptodate(page);
  1433. out_clear:
  1434. clear_cold_data(page);
  1435. return 0;
  1436. fail:
  1437. f2fs_put_page(page, 1);
  1438. f2fs_write_failed(mapping, pos + len);
  1439. return err;
  1440. }
  1441. static int f2fs_write_end(struct file *file,
  1442. struct address_space *mapping,
  1443. loff_t pos, unsigned len, unsigned copied,
  1444. struct page *page, void *fsdata)
  1445. {
  1446. struct inode *inode = page->mapping->host;
  1447. trace_f2fs_write_end(inode, pos, len, copied);
  1448. set_page_dirty(page);
  1449. if (pos + copied > i_size_read(inode))
  1450. f2fs_i_size_write(inode, pos + copied);
  1451. f2fs_put_page(page, 1);
  1452. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1453. return copied;
  1454. }
  1455. static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
  1456. loff_t offset)
  1457. {
  1458. unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
  1459. if (offset & blocksize_mask)
  1460. return -EINVAL;
  1461. if (iov_iter_alignment(iter) & blocksize_mask)
  1462. return -EINVAL;
  1463. return 0;
  1464. }
  1465. static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
  1466. {
  1467. struct address_space *mapping = iocb->ki_filp->f_mapping;
  1468. struct inode *inode = mapping->host;
  1469. size_t count = iov_iter_count(iter);
  1470. loff_t offset = iocb->ki_pos;
  1471. int rw = iov_iter_rw(iter);
  1472. int err;
  1473. err = check_direct_IO(inode, iter, offset);
  1474. if (err)
  1475. return err;
  1476. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  1477. return 0;
  1478. if (test_opt(F2FS_I_SB(inode), LFS))
  1479. return 0;
  1480. trace_f2fs_direct_IO_enter(inode, offset, count, rw);
  1481. down_read(&F2FS_I(inode)->dio_rwsem[rw]);
  1482. err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
  1483. up_read(&F2FS_I(inode)->dio_rwsem[rw]);
  1484. if (rw == WRITE) {
  1485. if (err > 0)
  1486. set_inode_flag(inode, FI_UPDATE_WRITE);
  1487. else if (err < 0)
  1488. f2fs_write_failed(mapping, offset + count);
  1489. }
  1490. trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
  1491. return err;
  1492. }
  1493. void f2fs_invalidate_page(struct page *page, unsigned int offset,
  1494. unsigned int length)
  1495. {
  1496. struct inode *inode = page->mapping->host;
  1497. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1498. if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
  1499. (offset % PAGE_SIZE || length != PAGE_SIZE))
  1500. return;
  1501. if (PageDirty(page)) {
  1502. if (inode->i_ino == F2FS_META_INO(sbi))
  1503. dec_page_count(sbi, F2FS_DIRTY_META);
  1504. else if (inode->i_ino == F2FS_NODE_INO(sbi))
  1505. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1506. else
  1507. inode_dec_dirty_pages(inode);
  1508. }
  1509. /* This is atomic written page, keep Private */
  1510. if (IS_ATOMIC_WRITTEN_PAGE(page))
  1511. return;
  1512. set_page_private(page, 0);
  1513. ClearPagePrivate(page);
  1514. }
  1515. int f2fs_release_page(struct page *page, gfp_t wait)
  1516. {
  1517. /* If this is dirty page, keep PagePrivate */
  1518. if (PageDirty(page))
  1519. return 0;
  1520. /* This is atomic written page, keep Private */
  1521. if (IS_ATOMIC_WRITTEN_PAGE(page))
  1522. return 0;
  1523. set_page_private(page, 0);
  1524. ClearPagePrivate(page);
  1525. return 1;
  1526. }
  1527. /*
  1528. * This was copied from __set_page_dirty_buffers which gives higher performance
  1529. * in very high speed storages. (e.g., pmem)
  1530. */
  1531. void f2fs_set_page_dirty_nobuffers(struct page *page)
  1532. {
  1533. struct address_space *mapping = page->mapping;
  1534. unsigned long flags;
  1535. if (unlikely(!mapping))
  1536. return;
  1537. spin_lock(&mapping->private_lock);
  1538. lock_page_memcg(page);
  1539. SetPageDirty(page);
  1540. spin_unlock(&mapping->private_lock);
  1541. spin_lock_irqsave(&mapping->tree_lock, flags);
  1542. WARN_ON_ONCE(!PageUptodate(page));
  1543. account_page_dirtied(page, mapping);
  1544. radix_tree_tag_set(&mapping->page_tree,
  1545. page_index(page), PAGECACHE_TAG_DIRTY);
  1546. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1547. unlock_page_memcg(page);
  1548. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1549. return;
  1550. }
  1551. static int f2fs_set_data_page_dirty(struct page *page)
  1552. {
  1553. struct address_space *mapping = page->mapping;
  1554. struct inode *inode = mapping->host;
  1555. trace_f2fs_set_page_dirty(page, DATA);
  1556. if (!PageUptodate(page))
  1557. SetPageUptodate(page);
  1558. if (f2fs_is_atomic_file(inode)) {
  1559. if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
  1560. register_inmem_page(inode, page);
  1561. return 1;
  1562. }
  1563. /*
  1564. * Previously, this page has been registered, we just
  1565. * return here.
  1566. */
  1567. return 0;
  1568. }
  1569. if (!PageDirty(page)) {
  1570. f2fs_set_page_dirty_nobuffers(page);
  1571. update_dirty_page(inode, page);
  1572. return 1;
  1573. }
  1574. return 0;
  1575. }
  1576. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  1577. {
  1578. struct inode *inode = mapping->host;
  1579. if (f2fs_has_inline_data(inode))
  1580. return 0;
  1581. /* make sure allocating whole blocks */
  1582. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  1583. filemap_write_and_wait(mapping);
  1584. return generic_block_bmap(mapping, block, get_data_block_bmap);
  1585. }
  1586. const struct address_space_operations f2fs_dblock_aops = {
  1587. .readpage = f2fs_read_data_page,
  1588. .readpages = f2fs_read_data_pages,
  1589. .writepage = f2fs_write_data_page,
  1590. .writepages = f2fs_write_data_pages,
  1591. .write_begin = f2fs_write_begin,
  1592. .write_end = f2fs_write_end,
  1593. .set_page_dirty = f2fs_set_data_page_dirty,
  1594. .invalidatepage = f2fs_invalidate_page,
  1595. .releasepage = f2fs_release_page,
  1596. .direct_IO = f2fs_direct_IO,
  1597. .bmap = f2fs_bmap,
  1598. };