delayed-inode.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "ctree.h"
  24. #define BTRFS_DELAYED_WRITEBACK 512
  25. #define BTRFS_DELAYED_BACKGROUND 128
  26. #define BTRFS_DELAYED_BATCH 16
  27. static struct kmem_cache *delayed_node_cache;
  28. int __init btrfs_delayed_inode_init(void)
  29. {
  30. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  31. sizeof(struct btrfs_delayed_node),
  32. 0,
  33. SLAB_MEM_SPREAD,
  34. NULL);
  35. if (!delayed_node_cache)
  36. return -ENOMEM;
  37. return 0;
  38. }
  39. void btrfs_delayed_inode_exit(void)
  40. {
  41. kmem_cache_destroy(delayed_node_cache);
  42. }
  43. static inline void btrfs_init_delayed_node(
  44. struct btrfs_delayed_node *delayed_node,
  45. struct btrfs_root *root, u64 inode_id)
  46. {
  47. delayed_node->root = root;
  48. delayed_node->inode_id = inode_id;
  49. atomic_set(&delayed_node->refs, 0);
  50. delayed_node->ins_root = RB_ROOT;
  51. delayed_node->del_root = RB_ROOT;
  52. mutex_init(&delayed_node->mutex);
  53. INIT_LIST_HEAD(&delayed_node->n_list);
  54. INIT_LIST_HEAD(&delayed_node->p_list);
  55. }
  56. static inline int btrfs_is_continuous_delayed_item(
  57. struct btrfs_delayed_item *item1,
  58. struct btrfs_delayed_item *item2)
  59. {
  60. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  61. item1->key.objectid == item2->key.objectid &&
  62. item1->key.type == item2->key.type &&
  63. item1->key.offset + 1 == item2->key.offset)
  64. return 1;
  65. return 0;
  66. }
  67. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  68. struct btrfs_root *root)
  69. {
  70. return root->fs_info->delayed_root;
  71. }
  72. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  73. {
  74. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  75. struct btrfs_root *root = btrfs_inode->root;
  76. u64 ino = btrfs_ino(inode);
  77. struct btrfs_delayed_node *node;
  78. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  79. if (node) {
  80. atomic_inc(&node->refs);
  81. return node;
  82. }
  83. spin_lock(&root->inode_lock);
  84. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  85. if (node) {
  86. if (btrfs_inode->delayed_node) {
  87. atomic_inc(&node->refs); /* can be accessed */
  88. BUG_ON(btrfs_inode->delayed_node != node);
  89. spin_unlock(&root->inode_lock);
  90. return node;
  91. }
  92. btrfs_inode->delayed_node = node;
  93. /* can be accessed and cached in the inode */
  94. atomic_add(2, &node->refs);
  95. spin_unlock(&root->inode_lock);
  96. return node;
  97. }
  98. spin_unlock(&root->inode_lock);
  99. return NULL;
  100. }
  101. /* Will return either the node or PTR_ERR(-ENOMEM) */
  102. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  103. struct inode *inode)
  104. {
  105. struct btrfs_delayed_node *node;
  106. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  107. struct btrfs_root *root = btrfs_inode->root;
  108. u64 ino = btrfs_ino(inode);
  109. int ret;
  110. again:
  111. node = btrfs_get_delayed_node(inode);
  112. if (node)
  113. return node;
  114. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  115. if (!node)
  116. return ERR_PTR(-ENOMEM);
  117. btrfs_init_delayed_node(node, root, ino);
  118. /* cached in the btrfs inode and can be accessed */
  119. atomic_add(2, &node->refs);
  120. ret = radix_tree_preload(GFP_NOFS);
  121. if (ret) {
  122. kmem_cache_free(delayed_node_cache, node);
  123. return ERR_PTR(ret);
  124. }
  125. spin_lock(&root->inode_lock);
  126. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  127. if (ret == -EEXIST) {
  128. spin_unlock(&root->inode_lock);
  129. kmem_cache_free(delayed_node_cache, node);
  130. radix_tree_preload_end();
  131. goto again;
  132. }
  133. btrfs_inode->delayed_node = node;
  134. spin_unlock(&root->inode_lock);
  135. radix_tree_preload_end();
  136. return node;
  137. }
  138. /*
  139. * Call it when holding delayed_node->mutex
  140. *
  141. * If mod = 1, add this node into the prepared list.
  142. */
  143. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  144. struct btrfs_delayed_node *node,
  145. int mod)
  146. {
  147. spin_lock(&root->lock);
  148. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  149. if (!list_empty(&node->p_list))
  150. list_move_tail(&node->p_list, &root->prepare_list);
  151. else if (mod)
  152. list_add_tail(&node->p_list, &root->prepare_list);
  153. } else {
  154. list_add_tail(&node->n_list, &root->node_list);
  155. list_add_tail(&node->p_list, &root->prepare_list);
  156. atomic_inc(&node->refs); /* inserted into list */
  157. root->nodes++;
  158. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  159. }
  160. spin_unlock(&root->lock);
  161. }
  162. /* Call it when holding delayed_node->mutex */
  163. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  164. struct btrfs_delayed_node *node)
  165. {
  166. spin_lock(&root->lock);
  167. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  168. root->nodes--;
  169. atomic_dec(&node->refs); /* not in the list */
  170. list_del_init(&node->n_list);
  171. if (!list_empty(&node->p_list))
  172. list_del_init(&node->p_list);
  173. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  174. }
  175. spin_unlock(&root->lock);
  176. }
  177. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  178. struct btrfs_delayed_root *delayed_root)
  179. {
  180. struct list_head *p;
  181. struct btrfs_delayed_node *node = NULL;
  182. spin_lock(&delayed_root->lock);
  183. if (list_empty(&delayed_root->node_list))
  184. goto out;
  185. p = delayed_root->node_list.next;
  186. node = list_entry(p, struct btrfs_delayed_node, n_list);
  187. atomic_inc(&node->refs);
  188. out:
  189. spin_unlock(&delayed_root->lock);
  190. return node;
  191. }
  192. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  193. struct btrfs_delayed_node *node)
  194. {
  195. struct btrfs_delayed_root *delayed_root;
  196. struct list_head *p;
  197. struct btrfs_delayed_node *next = NULL;
  198. delayed_root = node->root->fs_info->delayed_root;
  199. spin_lock(&delayed_root->lock);
  200. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  201. /* not in the list */
  202. if (list_empty(&delayed_root->node_list))
  203. goto out;
  204. p = delayed_root->node_list.next;
  205. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  206. goto out;
  207. else
  208. p = node->n_list.next;
  209. next = list_entry(p, struct btrfs_delayed_node, n_list);
  210. atomic_inc(&next->refs);
  211. out:
  212. spin_unlock(&delayed_root->lock);
  213. return next;
  214. }
  215. static void __btrfs_release_delayed_node(
  216. struct btrfs_delayed_node *delayed_node,
  217. int mod)
  218. {
  219. struct btrfs_delayed_root *delayed_root;
  220. if (!delayed_node)
  221. return;
  222. delayed_root = delayed_node->root->fs_info->delayed_root;
  223. mutex_lock(&delayed_node->mutex);
  224. if (delayed_node->count)
  225. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  226. else
  227. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  228. mutex_unlock(&delayed_node->mutex);
  229. if (atomic_dec_and_test(&delayed_node->refs)) {
  230. bool free = false;
  231. struct btrfs_root *root = delayed_node->root;
  232. spin_lock(&root->inode_lock);
  233. if (atomic_read(&delayed_node->refs) == 0) {
  234. radix_tree_delete(&root->delayed_nodes_tree,
  235. delayed_node->inode_id);
  236. free = true;
  237. }
  238. spin_unlock(&root->inode_lock);
  239. if (free)
  240. kmem_cache_free(delayed_node_cache, delayed_node);
  241. }
  242. }
  243. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  244. {
  245. __btrfs_release_delayed_node(node, 0);
  246. }
  247. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  248. struct btrfs_delayed_root *delayed_root)
  249. {
  250. struct list_head *p;
  251. struct btrfs_delayed_node *node = NULL;
  252. spin_lock(&delayed_root->lock);
  253. if (list_empty(&delayed_root->prepare_list))
  254. goto out;
  255. p = delayed_root->prepare_list.next;
  256. list_del_init(p);
  257. node = list_entry(p, struct btrfs_delayed_node, p_list);
  258. atomic_inc(&node->refs);
  259. out:
  260. spin_unlock(&delayed_root->lock);
  261. return node;
  262. }
  263. static inline void btrfs_release_prepared_delayed_node(
  264. struct btrfs_delayed_node *node)
  265. {
  266. __btrfs_release_delayed_node(node, 1);
  267. }
  268. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  269. {
  270. struct btrfs_delayed_item *item;
  271. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  272. if (item) {
  273. item->data_len = data_len;
  274. item->ins_or_del = 0;
  275. item->bytes_reserved = 0;
  276. item->delayed_node = NULL;
  277. atomic_set(&item->refs, 1);
  278. }
  279. return item;
  280. }
  281. /*
  282. * __btrfs_lookup_delayed_item - look up the delayed item by key
  283. * @delayed_node: pointer to the delayed node
  284. * @key: the key to look up
  285. * @prev: used to store the prev item if the right item isn't found
  286. * @next: used to store the next item if the right item isn't found
  287. *
  288. * Note: if we don't find the right item, we will return the prev item and
  289. * the next item.
  290. */
  291. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  292. struct rb_root *root,
  293. struct btrfs_key *key,
  294. struct btrfs_delayed_item **prev,
  295. struct btrfs_delayed_item **next)
  296. {
  297. struct rb_node *node, *prev_node = NULL;
  298. struct btrfs_delayed_item *delayed_item = NULL;
  299. int ret = 0;
  300. node = root->rb_node;
  301. while (node) {
  302. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  303. rb_node);
  304. prev_node = node;
  305. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  306. if (ret < 0)
  307. node = node->rb_right;
  308. else if (ret > 0)
  309. node = node->rb_left;
  310. else
  311. return delayed_item;
  312. }
  313. if (prev) {
  314. if (!prev_node)
  315. *prev = NULL;
  316. else if (ret < 0)
  317. *prev = delayed_item;
  318. else if ((node = rb_prev(prev_node)) != NULL) {
  319. *prev = rb_entry(node, struct btrfs_delayed_item,
  320. rb_node);
  321. } else
  322. *prev = NULL;
  323. }
  324. if (next) {
  325. if (!prev_node)
  326. *next = NULL;
  327. else if (ret > 0)
  328. *next = delayed_item;
  329. else if ((node = rb_next(prev_node)) != NULL) {
  330. *next = rb_entry(node, struct btrfs_delayed_item,
  331. rb_node);
  332. } else
  333. *next = NULL;
  334. }
  335. return NULL;
  336. }
  337. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  338. struct btrfs_delayed_node *delayed_node,
  339. struct btrfs_key *key)
  340. {
  341. struct btrfs_delayed_item *item;
  342. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  343. NULL, NULL);
  344. return item;
  345. }
  346. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  347. struct btrfs_delayed_item *ins,
  348. int action)
  349. {
  350. struct rb_node **p, *node;
  351. struct rb_node *parent_node = NULL;
  352. struct rb_root *root;
  353. struct btrfs_delayed_item *item;
  354. int cmp;
  355. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  356. root = &delayed_node->ins_root;
  357. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  358. root = &delayed_node->del_root;
  359. else
  360. BUG();
  361. p = &root->rb_node;
  362. node = &ins->rb_node;
  363. while (*p) {
  364. parent_node = *p;
  365. item = rb_entry(parent_node, struct btrfs_delayed_item,
  366. rb_node);
  367. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  368. if (cmp < 0)
  369. p = &(*p)->rb_right;
  370. else if (cmp > 0)
  371. p = &(*p)->rb_left;
  372. else
  373. return -EEXIST;
  374. }
  375. rb_link_node(node, parent_node, p);
  376. rb_insert_color(node, root);
  377. ins->delayed_node = delayed_node;
  378. ins->ins_or_del = action;
  379. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  380. action == BTRFS_DELAYED_INSERTION_ITEM &&
  381. ins->key.offset >= delayed_node->index_cnt)
  382. delayed_node->index_cnt = ins->key.offset + 1;
  383. delayed_node->count++;
  384. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  385. return 0;
  386. }
  387. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  388. struct btrfs_delayed_item *item)
  389. {
  390. return __btrfs_add_delayed_item(node, item,
  391. BTRFS_DELAYED_INSERTION_ITEM);
  392. }
  393. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  394. struct btrfs_delayed_item *item)
  395. {
  396. return __btrfs_add_delayed_item(node, item,
  397. BTRFS_DELAYED_DELETION_ITEM);
  398. }
  399. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  400. {
  401. int seq = atomic_inc_return(&delayed_root->items_seq);
  402. /*
  403. * atomic_dec_return implies a barrier for waitqueue_active
  404. */
  405. if ((atomic_dec_return(&delayed_root->items) <
  406. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  407. waitqueue_active(&delayed_root->wait))
  408. wake_up(&delayed_root->wait);
  409. }
  410. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  411. {
  412. struct rb_root *root;
  413. struct btrfs_delayed_root *delayed_root;
  414. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  415. BUG_ON(!delayed_root);
  416. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  417. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  418. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  419. root = &delayed_item->delayed_node->ins_root;
  420. else
  421. root = &delayed_item->delayed_node->del_root;
  422. rb_erase(&delayed_item->rb_node, root);
  423. delayed_item->delayed_node->count--;
  424. finish_one_item(delayed_root);
  425. }
  426. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  427. {
  428. if (item) {
  429. __btrfs_remove_delayed_item(item);
  430. if (atomic_dec_and_test(&item->refs))
  431. kfree(item);
  432. }
  433. }
  434. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  435. struct btrfs_delayed_node *delayed_node)
  436. {
  437. struct rb_node *p;
  438. struct btrfs_delayed_item *item = NULL;
  439. p = rb_first(&delayed_node->ins_root);
  440. if (p)
  441. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  442. return item;
  443. }
  444. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  445. struct btrfs_delayed_node *delayed_node)
  446. {
  447. struct rb_node *p;
  448. struct btrfs_delayed_item *item = NULL;
  449. p = rb_first(&delayed_node->del_root);
  450. if (p)
  451. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  452. return item;
  453. }
  454. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  455. struct btrfs_delayed_item *item)
  456. {
  457. struct rb_node *p;
  458. struct btrfs_delayed_item *next = NULL;
  459. p = rb_next(&item->rb_node);
  460. if (p)
  461. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  462. return next;
  463. }
  464. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  465. struct btrfs_root *root,
  466. struct btrfs_delayed_item *item)
  467. {
  468. struct btrfs_block_rsv *src_rsv;
  469. struct btrfs_block_rsv *dst_rsv;
  470. u64 num_bytes;
  471. int ret;
  472. if (!trans->bytes_reserved)
  473. return 0;
  474. src_rsv = trans->block_rsv;
  475. dst_rsv = &root->fs_info->delayed_block_rsv;
  476. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  477. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  478. if (!ret) {
  479. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  480. item->key.objectid,
  481. num_bytes, 1);
  482. item->bytes_reserved = num_bytes;
  483. }
  484. return ret;
  485. }
  486. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  487. struct btrfs_delayed_item *item)
  488. {
  489. struct btrfs_block_rsv *rsv;
  490. if (!item->bytes_reserved)
  491. return;
  492. rsv = &root->fs_info->delayed_block_rsv;
  493. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  494. item->key.objectid, item->bytes_reserved,
  495. 0);
  496. btrfs_block_rsv_release(root, rsv,
  497. item->bytes_reserved);
  498. }
  499. static int btrfs_delayed_inode_reserve_metadata(
  500. struct btrfs_trans_handle *trans,
  501. struct btrfs_root *root,
  502. struct inode *inode,
  503. struct btrfs_delayed_node *node)
  504. {
  505. struct btrfs_block_rsv *src_rsv;
  506. struct btrfs_block_rsv *dst_rsv;
  507. u64 num_bytes;
  508. int ret;
  509. bool release = false;
  510. src_rsv = trans->block_rsv;
  511. dst_rsv = &root->fs_info->delayed_block_rsv;
  512. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  513. /*
  514. * If our block_rsv is the delalloc block reserve then check and see if
  515. * we have our extra reservation for updating the inode. If not fall
  516. * through and try to reserve space quickly.
  517. *
  518. * We used to try and steal from the delalloc block rsv or the global
  519. * reserve, but we'd steal a full reservation, which isn't kind. We are
  520. * here through delalloc which means we've likely just cowed down close
  521. * to the leaf that contains the inode, so we would steal less just
  522. * doing the fallback inode update, so if we do end up having to steal
  523. * from the global block rsv we hopefully only steal one or two blocks
  524. * worth which is less likely to hurt us.
  525. */
  526. if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  527. spin_lock(&BTRFS_I(inode)->lock);
  528. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  529. &BTRFS_I(inode)->runtime_flags))
  530. release = true;
  531. else
  532. src_rsv = NULL;
  533. spin_unlock(&BTRFS_I(inode)->lock);
  534. }
  535. /*
  536. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  537. * which doesn't reserve space for speed. This is a problem since we
  538. * still need to reserve space for this update, so try to reserve the
  539. * space.
  540. *
  541. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  542. * we're accounted for.
  543. */
  544. if (!src_rsv || (!trans->bytes_reserved &&
  545. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  546. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  547. BTRFS_RESERVE_NO_FLUSH);
  548. /*
  549. * Since we're under a transaction reserve_metadata_bytes could
  550. * try to commit the transaction which will make it return
  551. * EAGAIN to make us stop the transaction we have, so return
  552. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  553. */
  554. if (ret == -EAGAIN)
  555. ret = -ENOSPC;
  556. if (!ret) {
  557. node->bytes_reserved = num_bytes;
  558. trace_btrfs_space_reservation(root->fs_info,
  559. "delayed_inode",
  560. btrfs_ino(inode),
  561. num_bytes, 1);
  562. }
  563. return ret;
  564. }
  565. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  566. /*
  567. * Migrate only takes a reservation, it doesn't touch the size of the
  568. * block_rsv. This is to simplify people who don't normally have things
  569. * migrated from their block rsv. If they go to release their
  570. * reservation, that will decrease the size as well, so if migrate
  571. * reduced size we'd end up with a negative size. But for the
  572. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  573. * but we could in fact do this reserve/migrate dance several times
  574. * between the time we did the original reservation and we'd clean it
  575. * up. So to take care of this, release the space for the meta
  576. * reservation here. I think it may be time for a documentation page on
  577. * how block rsvs. work.
  578. */
  579. if (!ret) {
  580. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  581. btrfs_ino(inode), num_bytes, 1);
  582. node->bytes_reserved = num_bytes;
  583. }
  584. if (release) {
  585. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  586. btrfs_ino(inode), num_bytes, 0);
  587. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  588. }
  589. return ret;
  590. }
  591. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  592. struct btrfs_delayed_node *node)
  593. {
  594. struct btrfs_block_rsv *rsv;
  595. if (!node->bytes_reserved)
  596. return;
  597. rsv = &root->fs_info->delayed_block_rsv;
  598. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  599. node->inode_id, node->bytes_reserved, 0);
  600. btrfs_block_rsv_release(root, rsv,
  601. node->bytes_reserved);
  602. node->bytes_reserved = 0;
  603. }
  604. /*
  605. * This helper will insert some continuous items into the same leaf according
  606. * to the free space of the leaf.
  607. */
  608. static int btrfs_batch_insert_items(struct btrfs_root *root,
  609. struct btrfs_path *path,
  610. struct btrfs_delayed_item *item)
  611. {
  612. struct btrfs_delayed_item *curr, *next;
  613. int free_space;
  614. int total_data_size = 0, total_size = 0;
  615. struct extent_buffer *leaf;
  616. char *data_ptr;
  617. struct btrfs_key *keys;
  618. u32 *data_size;
  619. struct list_head head;
  620. int slot;
  621. int nitems;
  622. int i;
  623. int ret = 0;
  624. BUG_ON(!path->nodes[0]);
  625. leaf = path->nodes[0];
  626. free_space = btrfs_leaf_free_space(root, leaf);
  627. INIT_LIST_HEAD(&head);
  628. next = item;
  629. nitems = 0;
  630. /*
  631. * count the number of the continuous items that we can insert in batch
  632. */
  633. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  634. free_space) {
  635. total_data_size += next->data_len;
  636. total_size += next->data_len + sizeof(struct btrfs_item);
  637. list_add_tail(&next->tree_list, &head);
  638. nitems++;
  639. curr = next;
  640. next = __btrfs_next_delayed_item(curr);
  641. if (!next)
  642. break;
  643. if (!btrfs_is_continuous_delayed_item(curr, next))
  644. break;
  645. }
  646. if (!nitems) {
  647. ret = 0;
  648. goto out;
  649. }
  650. /*
  651. * we need allocate some memory space, but it might cause the task
  652. * to sleep, so we set all locked nodes in the path to blocking locks
  653. * first.
  654. */
  655. btrfs_set_path_blocking(path);
  656. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  657. if (!keys) {
  658. ret = -ENOMEM;
  659. goto out;
  660. }
  661. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  662. if (!data_size) {
  663. ret = -ENOMEM;
  664. goto error;
  665. }
  666. /* get keys of all the delayed items */
  667. i = 0;
  668. list_for_each_entry(next, &head, tree_list) {
  669. keys[i] = next->key;
  670. data_size[i] = next->data_len;
  671. i++;
  672. }
  673. /* reset all the locked nodes in the patch to spinning locks. */
  674. btrfs_clear_path_blocking(path, NULL, 0);
  675. /* insert the keys of the items */
  676. setup_items_for_insert(root, path, keys, data_size,
  677. total_data_size, total_size, nitems);
  678. /* insert the dir index items */
  679. slot = path->slots[0];
  680. list_for_each_entry_safe(curr, next, &head, tree_list) {
  681. data_ptr = btrfs_item_ptr(leaf, slot, char);
  682. write_extent_buffer(leaf, &curr->data,
  683. (unsigned long)data_ptr,
  684. curr->data_len);
  685. slot++;
  686. btrfs_delayed_item_release_metadata(root, curr);
  687. list_del(&curr->tree_list);
  688. btrfs_release_delayed_item(curr);
  689. }
  690. error:
  691. kfree(data_size);
  692. kfree(keys);
  693. out:
  694. return ret;
  695. }
  696. /*
  697. * This helper can just do simple insertion that needn't extend item for new
  698. * data, such as directory name index insertion, inode insertion.
  699. */
  700. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  701. struct btrfs_root *root,
  702. struct btrfs_path *path,
  703. struct btrfs_delayed_item *delayed_item)
  704. {
  705. struct extent_buffer *leaf;
  706. char *ptr;
  707. int ret;
  708. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  709. delayed_item->data_len);
  710. if (ret < 0 && ret != -EEXIST)
  711. return ret;
  712. leaf = path->nodes[0];
  713. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  714. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  715. delayed_item->data_len);
  716. btrfs_mark_buffer_dirty(leaf);
  717. btrfs_delayed_item_release_metadata(root, delayed_item);
  718. return 0;
  719. }
  720. /*
  721. * we insert an item first, then if there are some continuous items, we try
  722. * to insert those items into the same leaf.
  723. */
  724. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  725. struct btrfs_path *path,
  726. struct btrfs_root *root,
  727. struct btrfs_delayed_node *node)
  728. {
  729. struct btrfs_delayed_item *curr, *prev;
  730. int ret = 0;
  731. do_again:
  732. mutex_lock(&node->mutex);
  733. curr = __btrfs_first_delayed_insertion_item(node);
  734. if (!curr)
  735. goto insert_end;
  736. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  737. if (ret < 0) {
  738. btrfs_release_path(path);
  739. goto insert_end;
  740. }
  741. prev = curr;
  742. curr = __btrfs_next_delayed_item(prev);
  743. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  744. /* insert the continuous items into the same leaf */
  745. path->slots[0]++;
  746. btrfs_batch_insert_items(root, path, curr);
  747. }
  748. btrfs_release_delayed_item(prev);
  749. btrfs_mark_buffer_dirty(path->nodes[0]);
  750. btrfs_release_path(path);
  751. mutex_unlock(&node->mutex);
  752. goto do_again;
  753. insert_end:
  754. mutex_unlock(&node->mutex);
  755. return ret;
  756. }
  757. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  758. struct btrfs_root *root,
  759. struct btrfs_path *path,
  760. struct btrfs_delayed_item *item)
  761. {
  762. struct btrfs_delayed_item *curr, *next;
  763. struct extent_buffer *leaf;
  764. struct btrfs_key key;
  765. struct list_head head;
  766. int nitems, i, last_item;
  767. int ret = 0;
  768. BUG_ON(!path->nodes[0]);
  769. leaf = path->nodes[0];
  770. i = path->slots[0];
  771. last_item = btrfs_header_nritems(leaf) - 1;
  772. if (i > last_item)
  773. return -ENOENT; /* FIXME: Is errno suitable? */
  774. next = item;
  775. INIT_LIST_HEAD(&head);
  776. btrfs_item_key_to_cpu(leaf, &key, i);
  777. nitems = 0;
  778. /*
  779. * count the number of the dir index items that we can delete in batch
  780. */
  781. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  782. list_add_tail(&next->tree_list, &head);
  783. nitems++;
  784. curr = next;
  785. next = __btrfs_next_delayed_item(curr);
  786. if (!next)
  787. break;
  788. if (!btrfs_is_continuous_delayed_item(curr, next))
  789. break;
  790. i++;
  791. if (i > last_item)
  792. break;
  793. btrfs_item_key_to_cpu(leaf, &key, i);
  794. }
  795. if (!nitems)
  796. return 0;
  797. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  798. if (ret)
  799. goto out;
  800. list_for_each_entry_safe(curr, next, &head, tree_list) {
  801. btrfs_delayed_item_release_metadata(root, curr);
  802. list_del(&curr->tree_list);
  803. btrfs_release_delayed_item(curr);
  804. }
  805. out:
  806. return ret;
  807. }
  808. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  809. struct btrfs_path *path,
  810. struct btrfs_root *root,
  811. struct btrfs_delayed_node *node)
  812. {
  813. struct btrfs_delayed_item *curr, *prev;
  814. int ret = 0;
  815. do_again:
  816. mutex_lock(&node->mutex);
  817. curr = __btrfs_first_delayed_deletion_item(node);
  818. if (!curr)
  819. goto delete_fail;
  820. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  821. if (ret < 0)
  822. goto delete_fail;
  823. else if (ret > 0) {
  824. /*
  825. * can't find the item which the node points to, so this node
  826. * is invalid, just drop it.
  827. */
  828. prev = curr;
  829. curr = __btrfs_next_delayed_item(prev);
  830. btrfs_release_delayed_item(prev);
  831. ret = 0;
  832. btrfs_release_path(path);
  833. if (curr) {
  834. mutex_unlock(&node->mutex);
  835. goto do_again;
  836. } else
  837. goto delete_fail;
  838. }
  839. btrfs_batch_delete_items(trans, root, path, curr);
  840. btrfs_release_path(path);
  841. mutex_unlock(&node->mutex);
  842. goto do_again;
  843. delete_fail:
  844. btrfs_release_path(path);
  845. mutex_unlock(&node->mutex);
  846. return ret;
  847. }
  848. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  849. {
  850. struct btrfs_delayed_root *delayed_root;
  851. if (delayed_node &&
  852. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  853. BUG_ON(!delayed_node->root);
  854. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  855. delayed_node->count--;
  856. delayed_root = delayed_node->root->fs_info->delayed_root;
  857. finish_one_item(delayed_root);
  858. }
  859. }
  860. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  861. {
  862. struct btrfs_delayed_root *delayed_root;
  863. ASSERT(delayed_node->root);
  864. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  865. delayed_node->count--;
  866. delayed_root = delayed_node->root->fs_info->delayed_root;
  867. finish_one_item(delayed_root);
  868. }
  869. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  870. struct btrfs_root *root,
  871. struct btrfs_path *path,
  872. struct btrfs_delayed_node *node)
  873. {
  874. struct btrfs_key key;
  875. struct btrfs_inode_item *inode_item;
  876. struct extent_buffer *leaf;
  877. int mod;
  878. int ret;
  879. key.objectid = node->inode_id;
  880. key.type = BTRFS_INODE_ITEM_KEY;
  881. key.offset = 0;
  882. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  883. mod = -1;
  884. else
  885. mod = 1;
  886. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  887. if (ret > 0) {
  888. btrfs_release_path(path);
  889. return -ENOENT;
  890. } else if (ret < 0) {
  891. return ret;
  892. }
  893. leaf = path->nodes[0];
  894. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  895. struct btrfs_inode_item);
  896. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  897. sizeof(struct btrfs_inode_item));
  898. btrfs_mark_buffer_dirty(leaf);
  899. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  900. goto no_iref;
  901. path->slots[0]++;
  902. if (path->slots[0] >= btrfs_header_nritems(leaf))
  903. goto search;
  904. again:
  905. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  906. if (key.objectid != node->inode_id)
  907. goto out;
  908. if (key.type != BTRFS_INODE_REF_KEY &&
  909. key.type != BTRFS_INODE_EXTREF_KEY)
  910. goto out;
  911. /*
  912. * Delayed iref deletion is for the inode who has only one link,
  913. * so there is only one iref. The case that several irefs are
  914. * in the same item doesn't exist.
  915. */
  916. btrfs_del_item(trans, root, path);
  917. out:
  918. btrfs_release_delayed_iref(node);
  919. no_iref:
  920. btrfs_release_path(path);
  921. err_out:
  922. btrfs_delayed_inode_release_metadata(root, node);
  923. btrfs_release_delayed_inode(node);
  924. return ret;
  925. search:
  926. btrfs_release_path(path);
  927. key.type = BTRFS_INODE_EXTREF_KEY;
  928. key.offset = -1;
  929. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  930. if (ret < 0)
  931. goto err_out;
  932. ASSERT(ret);
  933. ret = 0;
  934. leaf = path->nodes[0];
  935. path->slots[0]--;
  936. goto again;
  937. }
  938. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  939. struct btrfs_root *root,
  940. struct btrfs_path *path,
  941. struct btrfs_delayed_node *node)
  942. {
  943. int ret;
  944. mutex_lock(&node->mutex);
  945. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  946. mutex_unlock(&node->mutex);
  947. return 0;
  948. }
  949. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  950. mutex_unlock(&node->mutex);
  951. return ret;
  952. }
  953. static inline int
  954. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  955. struct btrfs_path *path,
  956. struct btrfs_delayed_node *node)
  957. {
  958. int ret;
  959. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  960. if (ret)
  961. return ret;
  962. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  963. if (ret)
  964. return ret;
  965. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  966. return ret;
  967. }
  968. /*
  969. * Called when committing the transaction.
  970. * Returns 0 on success.
  971. * Returns < 0 on error and returns with an aborted transaction with any
  972. * outstanding delayed items cleaned up.
  973. */
  974. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  975. struct btrfs_root *root, int nr)
  976. {
  977. struct btrfs_delayed_root *delayed_root;
  978. struct btrfs_delayed_node *curr_node, *prev_node;
  979. struct btrfs_path *path;
  980. struct btrfs_block_rsv *block_rsv;
  981. int ret = 0;
  982. bool count = (nr > 0);
  983. if (trans->aborted)
  984. return -EIO;
  985. path = btrfs_alloc_path();
  986. if (!path)
  987. return -ENOMEM;
  988. path->leave_spinning = 1;
  989. block_rsv = trans->block_rsv;
  990. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  991. delayed_root = btrfs_get_delayed_root(root);
  992. curr_node = btrfs_first_delayed_node(delayed_root);
  993. while (curr_node && (!count || (count && nr--))) {
  994. ret = __btrfs_commit_inode_delayed_items(trans, path,
  995. curr_node);
  996. if (ret) {
  997. btrfs_release_delayed_node(curr_node);
  998. curr_node = NULL;
  999. btrfs_abort_transaction(trans, ret);
  1000. break;
  1001. }
  1002. prev_node = curr_node;
  1003. curr_node = btrfs_next_delayed_node(curr_node);
  1004. btrfs_release_delayed_node(prev_node);
  1005. }
  1006. if (curr_node)
  1007. btrfs_release_delayed_node(curr_node);
  1008. btrfs_free_path(path);
  1009. trans->block_rsv = block_rsv;
  1010. return ret;
  1011. }
  1012. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1013. struct btrfs_root *root)
  1014. {
  1015. return __btrfs_run_delayed_items(trans, root, -1);
  1016. }
  1017. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1018. struct btrfs_root *root, int nr)
  1019. {
  1020. return __btrfs_run_delayed_items(trans, root, nr);
  1021. }
  1022. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1023. struct inode *inode)
  1024. {
  1025. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1026. struct btrfs_path *path;
  1027. struct btrfs_block_rsv *block_rsv;
  1028. int ret;
  1029. if (!delayed_node)
  1030. return 0;
  1031. mutex_lock(&delayed_node->mutex);
  1032. if (!delayed_node->count) {
  1033. mutex_unlock(&delayed_node->mutex);
  1034. btrfs_release_delayed_node(delayed_node);
  1035. return 0;
  1036. }
  1037. mutex_unlock(&delayed_node->mutex);
  1038. path = btrfs_alloc_path();
  1039. if (!path) {
  1040. btrfs_release_delayed_node(delayed_node);
  1041. return -ENOMEM;
  1042. }
  1043. path->leave_spinning = 1;
  1044. block_rsv = trans->block_rsv;
  1045. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1046. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1047. btrfs_release_delayed_node(delayed_node);
  1048. btrfs_free_path(path);
  1049. trans->block_rsv = block_rsv;
  1050. return ret;
  1051. }
  1052. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1053. {
  1054. struct btrfs_trans_handle *trans;
  1055. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1056. struct btrfs_path *path;
  1057. struct btrfs_block_rsv *block_rsv;
  1058. int ret;
  1059. if (!delayed_node)
  1060. return 0;
  1061. mutex_lock(&delayed_node->mutex);
  1062. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1063. mutex_unlock(&delayed_node->mutex);
  1064. btrfs_release_delayed_node(delayed_node);
  1065. return 0;
  1066. }
  1067. mutex_unlock(&delayed_node->mutex);
  1068. trans = btrfs_join_transaction(delayed_node->root);
  1069. if (IS_ERR(trans)) {
  1070. ret = PTR_ERR(trans);
  1071. goto out;
  1072. }
  1073. path = btrfs_alloc_path();
  1074. if (!path) {
  1075. ret = -ENOMEM;
  1076. goto trans_out;
  1077. }
  1078. path->leave_spinning = 1;
  1079. block_rsv = trans->block_rsv;
  1080. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1081. mutex_lock(&delayed_node->mutex);
  1082. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1083. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1084. path, delayed_node);
  1085. else
  1086. ret = 0;
  1087. mutex_unlock(&delayed_node->mutex);
  1088. btrfs_free_path(path);
  1089. trans->block_rsv = block_rsv;
  1090. trans_out:
  1091. btrfs_end_transaction(trans, delayed_node->root);
  1092. btrfs_btree_balance_dirty(delayed_node->root);
  1093. out:
  1094. btrfs_release_delayed_node(delayed_node);
  1095. return ret;
  1096. }
  1097. void btrfs_remove_delayed_node(struct inode *inode)
  1098. {
  1099. struct btrfs_delayed_node *delayed_node;
  1100. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1101. if (!delayed_node)
  1102. return;
  1103. BTRFS_I(inode)->delayed_node = NULL;
  1104. btrfs_release_delayed_node(delayed_node);
  1105. }
  1106. struct btrfs_async_delayed_work {
  1107. struct btrfs_delayed_root *delayed_root;
  1108. int nr;
  1109. struct btrfs_work work;
  1110. };
  1111. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1112. {
  1113. struct btrfs_async_delayed_work *async_work;
  1114. struct btrfs_delayed_root *delayed_root;
  1115. struct btrfs_trans_handle *trans;
  1116. struct btrfs_path *path;
  1117. struct btrfs_delayed_node *delayed_node = NULL;
  1118. struct btrfs_root *root;
  1119. struct btrfs_block_rsv *block_rsv;
  1120. int total_done = 0;
  1121. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1122. delayed_root = async_work->delayed_root;
  1123. path = btrfs_alloc_path();
  1124. if (!path)
  1125. goto out;
  1126. again:
  1127. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1128. goto free_path;
  1129. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1130. if (!delayed_node)
  1131. goto free_path;
  1132. path->leave_spinning = 1;
  1133. root = delayed_node->root;
  1134. trans = btrfs_join_transaction(root);
  1135. if (IS_ERR(trans))
  1136. goto release_path;
  1137. block_rsv = trans->block_rsv;
  1138. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1139. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1140. trans->block_rsv = block_rsv;
  1141. btrfs_end_transaction(trans, root);
  1142. btrfs_btree_balance_dirty_nodelay(root);
  1143. release_path:
  1144. btrfs_release_path(path);
  1145. total_done++;
  1146. btrfs_release_prepared_delayed_node(delayed_node);
  1147. if (async_work->nr == 0 || total_done < async_work->nr)
  1148. goto again;
  1149. free_path:
  1150. btrfs_free_path(path);
  1151. out:
  1152. wake_up(&delayed_root->wait);
  1153. kfree(async_work);
  1154. }
  1155. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1156. struct btrfs_fs_info *fs_info, int nr)
  1157. {
  1158. struct btrfs_async_delayed_work *async_work;
  1159. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1160. return 0;
  1161. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1162. if (!async_work)
  1163. return -ENOMEM;
  1164. async_work->delayed_root = delayed_root;
  1165. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1166. btrfs_async_run_delayed_root, NULL, NULL);
  1167. async_work->nr = nr;
  1168. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1169. return 0;
  1170. }
  1171. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1172. {
  1173. struct btrfs_delayed_root *delayed_root;
  1174. delayed_root = btrfs_get_delayed_root(root);
  1175. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1176. }
  1177. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1178. {
  1179. int val = atomic_read(&delayed_root->items_seq);
  1180. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1181. return 1;
  1182. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1183. return 1;
  1184. return 0;
  1185. }
  1186. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1187. {
  1188. struct btrfs_delayed_root *delayed_root;
  1189. struct btrfs_fs_info *fs_info = root->fs_info;
  1190. delayed_root = btrfs_get_delayed_root(root);
  1191. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1192. return;
  1193. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1194. int seq;
  1195. int ret;
  1196. seq = atomic_read(&delayed_root->items_seq);
  1197. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1198. if (ret)
  1199. return;
  1200. wait_event_interruptible(delayed_root->wait,
  1201. could_end_wait(delayed_root, seq));
  1202. return;
  1203. }
  1204. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1205. }
  1206. /* Will return 0 or -ENOMEM */
  1207. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1208. struct btrfs_root *root, const char *name,
  1209. int name_len, struct inode *dir,
  1210. struct btrfs_disk_key *disk_key, u8 type,
  1211. u64 index)
  1212. {
  1213. struct btrfs_delayed_node *delayed_node;
  1214. struct btrfs_delayed_item *delayed_item;
  1215. struct btrfs_dir_item *dir_item;
  1216. int ret;
  1217. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1218. if (IS_ERR(delayed_node))
  1219. return PTR_ERR(delayed_node);
  1220. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1221. if (!delayed_item) {
  1222. ret = -ENOMEM;
  1223. goto release_node;
  1224. }
  1225. delayed_item->key.objectid = btrfs_ino(dir);
  1226. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1227. delayed_item->key.offset = index;
  1228. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1229. dir_item->location = *disk_key;
  1230. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1231. btrfs_set_stack_dir_data_len(dir_item, 0);
  1232. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1233. btrfs_set_stack_dir_type(dir_item, type);
  1234. memcpy((char *)(dir_item + 1), name, name_len);
  1235. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1236. /*
  1237. * we have reserved enough space when we start a new transaction,
  1238. * so reserving metadata failure is impossible
  1239. */
  1240. BUG_ON(ret);
  1241. mutex_lock(&delayed_node->mutex);
  1242. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1243. if (unlikely(ret)) {
  1244. btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
  1245. "into the insertion tree of the delayed node"
  1246. "(root id: %llu, inode id: %llu, errno: %d)",
  1247. name_len, name, delayed_node->root->objectid,
  1248. delayed_node->inode_id, ret);
  1249. BUG();
  1250. }
  1251. mutex_unlock(&delayed_node->mutex);
  1252. release_node:
  1253. btrfs_release_delayed_node(delayed_node);
  1254. return ret;
  1255. }
  1256. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1257. struct btrfs_delayed_node *node,
  1258. struct btrfs_key *key)
  1259. {
  1260. struct btrfs_delayed_item *item;
  1261. mutex_lock(&node->mutex);
  1262. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1263. if (!item) {
  1264. mutex_unlock(&node->mutex);
  1265. return 1;
  1266. }
  1267. btrfs_delayed_item_release_metadata(root, item);
  1268. btrfs_release_delayed_item(item);
  1269. mutex_unlock(&node->mutex);
  1270. return 0;
  1271. }
  1272. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1273. struct btrfs_root *root, struct inode *dir,
  1274. u64 index)
  1275. {
  1276. struct btrfs_delayed_node *node;
  1277. struct btrfs_delayed_item *item;
  1278. struct btrfs_key item_key;
  1279. int ret;
  1280. node = btrfs_get_or_create_delayed_node(dir);
  1281. if (IS_ERR(node))
  1282. return PTR_ERR(node);
  1283. item_key.objectid = btrfs_ino(dir);
  1284. item_key.type = BTRFS_DIR_INDEX_KEY;
  1285. item_key.offset = index;
  1286. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1287. if (!ret)
  1288. goto end;
  1289. item = btrfs_alloc_delayed_item(0);
  1290. if (!item) {
  1291. ret = -ENOMEM;
  1292. goto end;
  1293. }
  1294. item->key = item_key;
  1295. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1296. /*
  1297. * we have reserved enough space when we start a new transaction,
  1298. * so reserving metadata failure is impossible.
  1299. */
  1300. BUG_ON(ret);
  1301. mutex_lock(&node->mutex);
  1302. ret = __btrfs_add_delayed_deletion_item(node, item);
  1303. if (unlikely(ret)) {
  1304. btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
  1305. "into the deletion tree of the delayed node"
  1306. "(root id: %llu, inode id: %llu, errno: %d)",
  1307. index, node->root->objectid, node->inode_id,
  1308. ret);
  1309. BUG();
  1310. }
  1311. mutex_unlock(&node->mutex);
  1312. end:
  1313. btrfs_release_delayed_node(node);
  1314. return ret;
  1315. }
  1316. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1317. {
  1318. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1319. if (!delayed_node)
  1320. return -ENOENT;
  1321. /*
  1322. * Since we have held i_mutex of this directory, it is impossible that
  1323. * a new directory index is added into the delayed node and index_cnt
  1324. * is updated now. So we needn't lock the delayed node.
  1325. */
  1326. if (!delayed_node->index_cnt) {
  1327. btrfs_release_delayed_node(delayed_node);
  1328. return -EINVAL;
  1329. }
  1330. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1331. btrfs_release_delayed_node(delayed_node);
  1332. return 0;
  1333. }
  1334. bool btrfs_readdir_get_delayed_items(struct inode *inode,
  1335. struct list_head *ins_list,
  1336. struct list_head *del_list)
  1337. {
  1338. struct btrfs_delayed_node *delayed_node;
  1339. struct btrfs_delayed_item *item;
  1340. delayed_node = btrfs_get_delayed_node(inode);
  1341. if (!delayed_node)
  1342. return false;
  1343. /*
  1344. * We can only do one readdir with delayed items at a time because of
  1345. * item->readdir_list.
  1346. */
  1347. inode_unlock_shared(inode);
  1348. inode_lock(inode);
  1349. mutex_lock(&delayed_node->mutex);
  1350. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1351. while (item) {
  1352. atomic_inc(&item->refs);
  1353. list_add_tail(&item->readdir_list, ins_list);
  1354. item = __btrfs_next_delayed_item(item);
  1355. }
  1356. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1357. while (item) {
  1358. atomic_inc(&item->refs);
  1359. list_add_tail(&item->readdir_list, del_list);
  1360. item = __btrfs_next_delayed_item(item);
  1361. }
  1362. mutex_unlock(&delayed_node->mutex);
  1363. /*
  1364. * This delayed node is still cached in the btrfs inode, so refs
  1365. * must be > 1 now, and we needn't check it is going to be freed
  1366. * or not.
  1367. *
  1368. * Besides that, this function is used to read dir, we do not
  1369. * insert/delete delayed items in this period. So we also needn't
  1370. * requeue or dequeue this delayed node.
  1371. */
  1372. atomic_dec(&delayed_node->refs);
  1373. return true;
  1374. }
  1375. void btrfs_readdir_put_delayed_items(struct inode *inode,
  1376. struct list_head *ins_list,
  1377. struct list_head *del_list)
  1378. {
  1379. struct btrfs_delayed_item *curr, *next;
  1380. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1381. list_del(&curr->readdir_list);
  1382. if (atomic_dec_and_test(&curr->refs))
  1383. kfree(curr);
  1384. }
  1385. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1386. list_del(&curr->readdir_list);
  1387. if (atomic_dec_and_test(&curr->refs))
  1388. kfree(curr);
  1389. }
  1390. /*
  1391. * The VFS is going to do up_read(), so we need to downgrade back to a
  1392. * read lock.
  1393. */
  1394. downgrade_write(&inode->i_rwsem);
  1395. }
  1396. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1397. u64 index)
  1398. {
  1399. struct btrfs_delayed_item *curr, *next;
  1400. int ret;
  1401. if (list_empty(del_list))
  1402. return 0;
  1403. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1404. if (curr->key.offset > index)
  1405. break;
  1406. list_del(&curr->readdir_list);
  1407. ret = (curr->key.offset == index);
  1408. if (atomic_dec_and_test(&curr->refs))
  1409. kfree(curr);
  1410. if (ret)
  1411. return 1;
  1412. else
  1413. continue;
  1414. }
  1415. return 0;
  1416. }
  1417. /*
  1418. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1419. *
  1420. */
  1421. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1422. struct list_head *ins_list, bool *emitted)
  1423. {
  1424. struct btrfs_dir_item *di;
  1425. struct btrfs_delayed_item *curr, *next;
  1426. struct btrfs_key location;
  1427. char *name;
  1428. int name_len;
  1429. int over = 0;
  1430. unsigned char d_type;
  1431. if (list_empty(ins_list))
  1432. return 0;
  1433. /*
  1434. * Changing the data of the delayed item is impossible. So
  1435. * we needn't lock them. And we have held i_mutex of the
  1436. * directory, nobody can delete any directory indexes now.
  1437. */
  1438. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1439. list_del(&curr->readdir_list);
  1440. if (curr->key.offset < ctx->pos) {
  1441. if (atomic_dec_and_test(&curr->refs))
  1442. kfree(curr);
  1443. continue;
  1444. }
  1445. ctx->pos = curr->key.offset;
  1446. di = (struct btrfs_dir_item *)curr->data;
  1447. name = (char *)(di + 1);
  1448. name_len = btrfs_stack_dir_name_len(di);
  1449. d_type = btrfs_filetype_table[di->type];
  1450. btrfs_disk_key_to_cpu(&location, &di->location);
  1451. over = !dir_emit(ctx, name, name_len,
  1452. location.objectid, d_type);
  1453. if (atomic_dec_and_test(&curr->refs))
  1454. kfree(curr);
  1455. if (over)
  1456. return 1;
  1457. *emitted = true;
  1458. }
  1459. return 0;
  1460. }
  1461. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1462. struct btrfs_inode_item *inode_item,
  1463. struct inode *inode)
  1464. {
  1465. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1466. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1467. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1468. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1469. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1470. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1471. btrfs_set_stack_inode_generation(inode_item,
  1472. BTRFS_I(inode)->generation);
  1473. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1474. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1475. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1476. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1477. btrfs_set_stack_inode_block_group(inode_item, 0);
  1478. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1479. inode->i_atime.tv_sec);
  1480. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1481. inode->i_atime.tv_nsec);
  1482. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1483. inode->i_mtime.tv_sec);
  1484. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1485. inode->i_mtime.tv_nsec);
  1486. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1487. inode->i_ctime.tv_sec);
  1488. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1489. inode->i_ctime.tv_nsec);
  1490. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1491. BTRFS_I(inode)->i_otime.tv_sec);
  1492. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1493. BTRFS_I(inode)->i_otime.tv_nsec);
  1494. }
  1495. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1496. {
  1497. struct btrfs_delayed_node *delayed_node;
  1498. struct btrfs_inode_item *inode_item;
  1499. delayed_node = btrfs_get_delayed_node(inode);
  1500. if (!delayed_node)
  1501. return -ENOENT;
  1502. mutex_lock(&delayed_node->mutex);
  1503. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1504. mutex_unlock(&delayed_node->mutex);
  1505. btrfs_release_delayed_node(delayed_node);
  1506. return -ENOENT;
  1507. }
  1508. inode_item = &delayed_node->inode_item;
  1509. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1510. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1511. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1512. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1513. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1514. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1515. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1516. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1517. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1518. inode->i_rdev = 0;
  1519. *rdev = btrfs_stack_inode_rdev(inode_item);
  1520. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1521. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1522. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1523. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1524. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1525. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1526. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1527. BTRFS_I(inode)->i_otime.tv_sec =
  1528. btrfs_stack_timespec_sec(&inode_item->otime);
  1529. BTRFS_I(inode)->i_otime.tv_nsec =
  1530. btrfs_stack_timespec_nsec(&inode_item->otime);
  1531. inode->i_generation = BTRFS_I(inode)->generation;
  1532. BTRFS_I(inode)->index_cnt = (u64)-1;
  1533. mutex_unlock(&delayed_node->mutex);
  1534. btrfs_release_delayed_node(delayed_node);
  1535. return 0;
  1536. }
  1537. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1538. struct btrfs_root *root, struct inode *inode)
  1539. {
  1540. struct btrfs_delayed_node *delayed_node;
  1541. int ret = 0;
  1542. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1543. if (IS_ERR(delayed_node))
  1544. return PTR_ERR(delayed_node);
  1545. mutex_lock(&delayed_node->mutex);
  1546. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1547. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1548. goto release_node;
  1549. }
  1550. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1551. delayed_node);
  1552. if (ret)
  1553. goto release_node;
  1554. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1555. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1556. delayed_node->count++;
  1557. atomic_inc(&root->fs_info->delayed_root->items);
  1558. release_node:
  1559. mutex_unlock(&delayed_node->mutex);
  1560. btrfs_release_delayed_node(delayed_node);
  1561. return ret;
  1562. }
  1563. int btrfs_delayed_delete_inode_ref(struct inode *inode)
  1564. {
  1565. struct btrfs_delayed_node *delayed_node;
  1566. /*
  1567. * we don't do delayed inode updates during log recovery because it
  1568. * leads to enospc problems. This means we also can't do
  1569. * delayed inode refs
  1570. */
  1571. if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
  1572. return -EAGAIN;
  1573. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1574. if (IS_ERR(delayed_node))
  1575. return PTR_ERR(delayed_node);
  1576. /*
  1577. * We don't reserve space for inode ref deletion is because:
  1578. * - We ONLY do async inode ref deletion for the inode who has only
  1579. * one link(i_nlink == 1), it means there is only one inode ref.
  1580. * And in most case, the inode ref and the inode item are in the
  1581. * same leaf, and we will deal with them at the same time.
  1582. * Since we are sure we will reserve the space for the inode item,
  1583. * it is unnecessary to reserve space for inode ref deletion.
  1584. * - If the inode ref and the inode item are not in the same leaf,
  1585. * We also needn't worry about enospc problem, because we reserve
  1586. * much more space for the inode update than it needs.
  1587. * - At the worst, we can steal some space from the global reservation.
  1588. * It is very rare.
  1589. */
  1590. mutex_lock(&delayed_node->mutex);
  1591. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1592. goto release_node;
  1593. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1594. delayed_node->count++;
  1595. atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
  1596. release_node:
  1597. mutex_unlock(&delayed_node->mutex);
  1598. btrfs_release_delayed_node(delayed_node);
  1599. return 0;
  1600. }
  1601. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1602. {
  1603. struct btrfs_root *root = delayed_node->root;
  1604. struct btrfs_delayed_item *curr_item, *prev_item;
  1605. mutex_lock(&delayed_node->mutex);
  1606. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1607. while (curr_item) {
  1608. btrfs_delayed_item_release_metadata(root, curr_item);
  1609. prev_item = curr_item;
  1610. curr_item = __btrfs_next_delayed_item(prev_item);
  1611. btrfs_release_delayed_item(prev_item);
  1612. }
  1613. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1614. while (curr_item) {
  1615. btrfs_delayed_item_release_metadata(root, curr_item);
  1616. prev_item = curr_item;
  1617. curr_item = __btrfs_next_delayed_item(prev_item);
  1618. btrfs_release_delayed_item(prev_item);
  1619. }
  1620. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1621. btrfs_release_delayed_iref(delayed_node);
  1622. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1623. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1624. btrfs_release_delayed_inode(delayed_node);
  1625. }
  1626. mutex_unlock(&delayed_node->mutex);
  1627. }
  1628. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1629. {
  1630. struct btrfs_delayed_node *delayed_node;
  1631. delayed_node = btrfs_get_delayed_node(inode);
  1632. if (!delayed_node)
  1633. return;
  1634. __btrfs_kill_delayed_node(delayed_node);
  1635. btrfs_release_delayed_node(delayed_node);
  1636. }
  1637. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1638. {
  1639. u64 inode_id = 0;
  1640. struct btrfs_delayed_node *delayed_nodes[8];
  1641. int i, n;
  1642. while (1) {
  1643. spin_lock(&root->inode_lock);
  1644. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1645. (void **)delayed_nodes, inode_id,
  1646. ARRAY_SIZE(delayed_nodes));
  1647. if (!n) {
  1648. spin_unlock(&root->inode_lock);
  1649. break;
  1650. }
  1651. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1652. for (i = 0; i < n; i++)
  1653. atomic_inc(&delayed_nodes[i]->refs);
  1654. spin_unlock(&root->inode_lock);
  1655. for (i = 0; i < n; i++) {
  1656. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1657. btrfs_release_delayed_node(delayed_nodes[i]);
  1658. }
  1659. }
  1660. }
  1661. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1662. {
  1663. struct btrfs_delayed_root *delayed_root;
  1664. struct btrfs_delayed_node *curr_node, *prev_node;
  1665. delayed_root = btrfs_get_delayed_root(root);
  1666. curr_node = btrfs_first_delayed_node(delayed_root);
  1667. while (curr_node) {
  1668. __btrfs_kill_delayed_node(curr_node);
  1669. prev_node = curr_node;
  1670. curr_node = btrfs_next_delayed_node(curr_node);
  1671. btrfs_release_delayed_node(prev_node);
  1672. }
  1673. }