compression.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138
  1. /*
  2. * Copyright (C) 2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/bio.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/file.h>
  22. #include <linux/fs.h>
  23. #include <linux/pagemap.h>
  24. #include <linux/highmem.h>
  25. #include <linux/time.h>
  26. #include <linux/init.h>
  27. #include <linux/string.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/mpage.h>
  30. #include <linux/swap.h>
  31. #include <linux/writeback.h>
  32. #include <linux/bit_spinlock.h>
  33. #include <linux/slab.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "ordered-data.h"
  40. #include "compression.h"
  41. #include "extent_io.h"
  42. #include "extent_map.h"
  43. struct compressed_bio {
  44. /* number of bios pending for this compressed extent */
  45. atomic_t pending_bios;
  46. /* the pages with the compressed data on them */
  47. struct page **compressed_pages;
  48. /* inode that owns this data */
  49. struct inode *inode;
  50. /* starting offset in the inode for our pages */
  51. u64 start;
  52. /* number of bytes in the inode we're working on */
  53. unsigned long len;
  54. /* number of bytes on disk */
  55. unsigned long compressed_len;
  56. /* the compression algorithm for this bio */
  57. int compress_type;
  58. /* number of compressed pages in the array */
  59. unsigned long nr_pages;
  60. /* IO errors */
  61. int errors;
  62. int mirror_num;
  63. /* for reads, this is the bio we are copying the data into */
  64. struct bio *orig_bio;
  65. /*
  66. * the start of a variable length array of checksums only
  67. * used by reads
  68. */
  69. u32 sums;
  70. };
  71. static int btrfs_decompress_biovec(int type, struct page **pages_in,
  72. u64 disk_start, struct bio_vec *bvec,
  73. int vcnt, size_t srclen);
  74. static inline int compressed_bio_size(struct btrfs_root *root,
  75. unsigned long disk_size)
  76. {
  77. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  78. return sizeof(struct compressed_bio) +
  79. (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
  80. }
  81. static struct bio *compressed_bio_alloc(struct block_device *bdev,
  82. u64 first_byte, gfp_t gfp_flags)
  83. {
  84. return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
  85. }
  86. static int check_compressed_csum(struct inode *inode,
  87. struct compressed_bio *cb,
  88. u64 disk_start)
  89. {
  90. int ret;
  91. struct page *page;
  92. unsigned long i;
  93. char *kaddr;
  94. u32 csum;
  95. u32 *cb_sum = &cb->sums;
  96. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
  97. return 0;
  98. for (i = 0; i < cb->nr_pages; i++) {
  99. page = cb->compressed_pages[i];
  100. csum = ~(u32)0;
  101. kaddr = kmap_atomic(page);
  102. csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
  103. btrfs_csum_final(csum, (char *)&csum);
  104. kunmap_atomic(kaddr);
  105. if (csum != *cb_sum) {
  106. btrfs_info(BTRFS_I(inode)->root->fs_info,
  107. "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
  108. btrfs_ino(inode), disk_start, csum, *cb_sum,
  109. cb->mirror_num);
  110. ret = -EIO;
  111. goto fail;
  112. }
  113. cb_sum++;
  114. }
  115. ret = 0;
  116. fail:
  117. return ret;
  118. }
  119. /* when we finish reading compressed pages from the disk, we
  120. * decompress them and then run the bio end_io routines on the
  121. * decompressed pages (in the inode address space).
  122. *
  123. * This allows the checksumming and other IO error handling routines
  124. * to work normally
  125. *
  126. * The compressed pages are freed here, and it must be run
  127. * in process context
  128. */
  129. static void end_compressed_bio_read(struct bio *bio)
  130. {
  131. struct compressed_bio *cb = bio->bi_private;
  132. struct inode *inode;
  133. struct page *page;
  134. unsigned long index;
  135. int ret;
  136. if (bio->bi_error)
  137. cb->errors = 1;
  138. /* if there are more bios still pending for this compressed
  139. * extent, just exit
  140. */
  141. if (!atomic_dec_and_test(&cb->pending_bios))
  142. goto out;
  143. inode = cb->inode;
  144. ret = check_compressed_csum(inode, cb,
  145. (u64)bio->bi_iter.bi_sector << 9);
  146. if (ret)
  147. goto csum_failed;
  148. /* ok, we're the last bio for this extent, lets start
  149. * the decompression.
  150. */
  151. ret = btrfs_decompress_biovec(cb->compress_type,
  152. cb->compressed_pages,
  153. cb->start,
  154. cb->orig_bio->bi_io_vec,
  155. cb->orig_bio->bi_vcnt,
  156. cb->compressed_len);
  157. csum_failed:
  158. if (ret)
  159. cb->errors = 1;
  160. /* release the compressed pages */
  161. index = 0;
  162. for (index = 0; index < cb->nr_pages; index++) {
  163. page = cb->compressed_pages[index];
  164. page->mapping = NULL;
  165. put_page(page);
  166. }
  167. /* do io completion on the original bio */
  168. if (cb->errors) {
  169. bio_io_error(cb->orig_bio);
  170. } else {
  171. int i;
  172. struct bio_vec *bvec;
  173. /*
  174. * we have verified the checksum already, set page
  175. * checked so the end_io handlers know about it
  176. */
  177. bio_for_each_segment_all(bvec, cb->orig_bio, i)
  178. SetPageChecked(bvec->bv_page);
  179. bio_endio(cb->orig_bio);
  180. }
  181. /* finally free the cb struct */
  182. kfree(cb->compressed_pages);
  183. kfree(cb);
  184. out:
  185. bio_put(bio);
  186. }
  187. /*
  188. * Clear the writeback bits on all of the file
  189. * pages for a compressed write
  190. */
  191. static noinline void end_compressed_writeback(struct inode *inode,
  192. const struct compressed_bio *cb)
  193. {
  194. unsigned long index = cb->start >> PAGE_SHIFT;
  195. unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
  196. struct page *pages[16];
  197. unsigned long nr_pages = end_index - index + 1;
  198. int i;
  199. int ret;
  200. if (cb->errors)
  201. mapping_set_error(inode->i_mapping, -EIO);
  202. while (nr_pages > 0) {
  203. ret = find_get_pages_contig(inode->i_mapping, index,
  204. min_t(unsigned long,
  205. nr_pages, ARRAY_SIZE(pages)), pages);
  206. if (ret == 0) {
  207. nr_pages -= 1;
  208. index += 1;
  209. continue;
  210. }
  211. for (i = 0; i < ret; i++) {
  212. if (cb->errors)
  213. SetPageError(pages[i]);
  214. end_page_writeback(pages[i]);
  215. put_page(pages[i]);
  216. }
  217. nr_pages -= ret;
  218. index += ret;
  219. }
  220. /* the inode may be gone now */
  221. }
  222. /*
  223. * do the cleanup once all the compressed pages hit the disk.
  224. * This will clear writeback on the file pages and free the compressed
  225. * pages.
  226. *
  227. * This also calls the writeback end hooks for the file pages so that
  228. * metadata and checksums can be updated in the file.
  229. */
  230. static void end_compressed_bio_write(struct bio *bio)
  231. {
  232. struct extent_io_tree *tree;
  233. struct compressed_bio *cb = bio->bi_private;
  234. struct inode *inode;
  235. struct page *page;
  236. unsigned long index;
  237. if (bio->bi_error)
  238. cb->errors = 1;
  239. /* if there are more bios still pending for this compressed
  240. * extent, just exit
  241. */
  242. if (!atomic_dec_and_test(&cb->pending_bios))
  243. goto out;
  244. /* ok, we're the last bio for this extent, step one is to
  245. * call back into the FS and do all the end_io operations
  246. */
  247. inode = cb->inode;
  248. tree = &BTRFS_I(inode)->io_tree;
  249. cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
  250. tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
  251. cb->start,
  252. cb->start + cb->len - 1,
  253. NULL,
  254. bio->bi_error ? 0 : 1);
  255. cb->compressed_pages[0]->mapping = NULL;
  256. end_compressed_writeback(inode, cb);
  257. /* note, our inode could be gone now */
  258. /*
  259. * release the compressed pages, these came from alloc_page and
  260. * are not attached to the inode at all
  261. */
  262. index = 0;
  263. for (index = 0; index < cb->nr_pages; index++) {
  264. page = cb->compressed_pages[index];
  265. page->mapping = NULL;
  266. put_page(page);
  267. }
  268. /* finally free the cb struct */
  269. kfree(cb->compressed_pages);
  270. kfree(cb);
  271. out:
  272. bio_put(bio);
  273. }
  274. /*
  275. * worker function to build and submit bios for previously compressed pages.
  276. * The corresponding pages in the inode should be marked for writeback
  277. * and the compressed pages should have a reference on them for dropping
  278. * when the IO is complete.
  279. *
  280. * This also checksums the file bytes and gets things ready for
  281. * the end io hooks.
  282. */
  283. int btrfs_submit_compressed_write(struct inode *inode, u64 start,
  284. unsigned long len, u64 disk_start,
  285. unsigned long compressed_len,
  286. struct page **compressed_pages,
  287. unsigned long nr_pages)
  288. {
  289. struct bio *bio = NULL;
  290. struct btrfs_root *root = BTRFS_I(inode)->root;
  291. struct compressed_bio *cb;
  292. unsigned long bytes_left;
  293. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  294. int pg_index = 0;
  295. struct page *page;
  296. u64 first_byte = disk_start;
  297. struct block_device *bdev;
  298. int ret;
  299. int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  300. WARN_ON(start & ((u64)PAGE_SIZE - 1));
  301. cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
  302. if (!cb)
  303. return -ENOMEM;
  304. atomic_set(&cb->pending_bios, 0);
  305. cb->errors = 0;
  306. cb->inode = inode;
  307. cb->start = start;
  308. cb->len = len;
  309. cb->mirror_num = 0;
  310. cb->compressed_pages = compressed_pages;
  311. cb->compressed_len = compressed_len;
  312. cb->orig_bio = NULL;
  313. cb->nr_pages = nr_pages;
  314. bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  315. bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
  316. if (!bio) {
  317. kfree(cb);
  318. return -ENOMEM;
  319. }
  320. bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
  321. bio->bi_private = cb;
  322. bio->bi_end_io = end_compressed_bio_write;
  323. atomic_inc(&cb->pending_bios);
  324. /* create and submit bios for the compressed pages */
  325. bytes_left = compressed_len;
  326. for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
  327. page = compressed_pages[pg_index];
  328. page->mapping = inode->i_mapping;
  329. if (bio->bi_iter.bi_size)
  330. ret = io_tree->ops->merge_bio_hook(page, 0,
  331. PAGE_SIZE,
  332. bio, 0);
  333. else
  334. ret = 0;
  335. page->mapping = NULL;
  336. if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
  337. PAGE_SIZE) {
  338. bio_get(bio);
  339. /*
  340. * inc the count before we submit the bio so
  341. * we know the end IO handler won't happen before
  342. * we inc the count. Otherwise, the cb might get
  343. * freed before we're done setting it up
  344. */
  345. atomic_inc(&cb->pending_bios);
  346. ret = btrfs_bio_wq_end_io(root->fs_info, bio,
  347. BTRFS_WQ_ENDIO_DATA);
  348. BUG_ON(ret); /* -ENOMEM */
  349. if (!skip_sum) {
  350. ret = btrfs_csum_one_bio(root, inode, bio,
  351. start, 1);
  352. BUG_ON(ret); /* -ENOMEM */
  353. }
  354. ret = btrfs_map_bio(root, bio, 0, 1);
  355. if (ret) {
  356. bio->bi_error = ret;
  357. bio_endio(bio);
  358. }
  359. bio_put(bio);
  360. bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
  361. BUG_ON(!bio);
  362. bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
  363. bio->bi_private = cb;
  364. bio->bi_end_io = end_compressed_bio_write;
  365. bio_add_page(bio, page, PAGE_SIZE, 0);
  366. }
  367. if (bytes_left < PAGE_SIZE) {
  368. btrfs_info(BTRFS_I(inode)->root->fs_info,
  369. "bytes left %lu compress len %lu nr %lu",
  370. bytes_left, cb->compressed_len, cb->nr_pages);
  371. }
  372. bytes_left -= PAGE_SIZE;
  373. first_byte += PAGE_SIZE;
  374. cond_resched();
  375. }
  376. bio_get(bio);
  377. ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
  378. BUG_ON(ret); /* -ENOMEM */
  379. if (!skip_sum) {
  380. ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
  381. BUG_ON(ret); /* -ENOMEM */
  382. }
  383. ret = btrfs_map_bio(root, bio, 0, 1);
  384. if (ret) {
  385. bio->bi_error = ret;
  386. bio_endio(bio);
  387. }
  388. bio_put(bio);
  389. return 0;
  390. }
  391. static noinline int add_ra_bio_pages(struct inode *inode,
  392. u64 compressed_end,
  393. struct compressed_bio *cb)
  394. {
  395. unsigned long end_index;
  396. unsigned long pg_index;
  397. u64 last_offset;
  398. u64 isize = i_size_read(inode);
  399. int ret;
  400. struct page *page;
  401. unsigned long nr_pages = 0;
  402. struct extent_map *em;
  403. struct address_space *mapping = inode->i_mapping;
  404. struct extent_map_tree *em_tree;
  405. struct extent_io_tree *tree;
  406. u64 end;
  407. int misses = 0;
  408. page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
  409. last_offset = (page_offset(page) + PAGE_SIZE);
  410. em_tree = &BTRFS_I(inode)->extent_tree;
  411. tree = &BTRFS_I(inode)->io_tree;
  412. if (isize == 0)
  413. return 0;
  414. end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
  415. while (last_offset < compressed_end) {
  416. pg_index = last_offset >> PAGE_SHIFT;
  417. if (pg_index > end_index)
  418. break;
  419. rcu_read_lock();
  420. page = radix_tree_lookup(&mapping->page_tree, pg_index);
  421. rcu_read_unlock();
  422. if (page && !radix_tree_exceptional_entry(page)) {
  423. misses++;
  424. if (misses > 4)
  425. break;
  426. goto next;
  427. }
  428. page = __page_cache_alloc(mapping_gfp_constraint(mapping,
  429. ~__GFP_FS));
  430. if (!page)
  431. break;
  432. if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
  433. put_page(page);
  434. goto next;
  435. }
  436. end = last_offset + PAGE_SIZE - 1;
  437. /*
  438. * at this point, we have a locked page in the page cache
  439. * for these bytes in the file. But, we have to make
  440. * sure they map to this compressed extent on disk.
  441. */
  442. set_page_extent_mapped(page);
  443. lock_extent(tree, last_offset, end);
  444. read_lock(&em_tree->lock);
  445. em = lookup_extent_mapping(em_tree, last_offset,
  446. PAGE_SIZE);
  447. read_unlock(&em_tree->lock);
  448. if (!em || last_offset < em->start ||
  449. (last_offset + PAGE_SIZE > extent_map_end(em)) ||
  450. (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
  451. free_extent_map(em);
  452. unlock_extent(tree, last_offset, end);
  453. unlock_page(page);
  454. put_page(page);
  455. break;
  456. }
  457. free_extent_map(em);
  458. if (page->index == end_index) {
  459. char *userpage;
  460. size_t zero_offset = isize & (PAGE_SIZE - 1);
  461. if (zero_offset) {
  462. int zeros;
  463. zeros = PAGE_SIZE - zero_offset;
  464. userpage = kmap_atomic(page);
  465. memset(userpage + zero_offset, 0, zeros);
  466. flush_dcache_page(page);
  467. kunmap_atomic(userpage);
  468. }
  469. }
  470. ret = bio_add_page(cb->orig_bio, page,
  471. PAGE_SIZE, 0);
  472. if (ret == PAGE_SIZE) {
  473. nr_pages++;
  474. put_page(page);
  475. } else {
  476. unlock_extent(tree, last_offset, end);
  477. unlock_page(page);
  478. put_page(page);
  479. break;
  480. }
  481. next:
  482. last_offset += PAGE_SIZE;
  483. }
  484. return 0;
  485. }
  486. /*
  487. * for a compressed read, the bio we get passed has all the inode pages
  488. * in it. We don't actually do IO on those pages but allocate new ones
  489. * to hold the compressed pages on disk.
  490. *
  491. * bio->bi_iter.bi_sector points to the compressed extent on disk
  492. * bio->bi_io_vec points to all of the inode pages
  493. * bio->bi_vcnt is a count of pages
  494. *
  495. * After the compressed pages are read, we copy the bytes into the
  496. * bio we were passed and then call the bio end_io calls
  497. */
  498. int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
  499. int mirror_num, unsigned long bio_flags)
  500. {
  501. struct extent_io_tree *tree;
  502. struct extent_map_tree *em_tree;
  503. struct compressed_bio *cb;
  504. struct btrfs_root *root = BTRFS_I(inode)->root;
  505. unsigned long uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
  506. unsigned long compressed_len;
  507. unsigned long nr_pages;
  508. unsigned long pg_index;
  509. struct page *page;
  510. struct block_device *bdev;
  511. struct bio *comp_bio;
  512. u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
  513. u64 em_len;
  514. u64 em_start;
  515. struct extent_map *em;
  516. int ret = -ENOMEM;
  517. int faili = 0;
  518. u32 *sums;
  519. tree = &BTRFS_I(inode)->io_tree;
  520. em_tree = &BTRFS_I(inode)->extent_tree;
  521. /* we need the actual starting offset of this extent in the file */
  522. read_lock(&em_tree->lock);
  523. em = lookup_extent_mapping(em_tree,
  524. page_offset(bio->bi_io_vec->bv_page),
  525. PAGE_SIZE);
  526. read_unlock(&em_tree->lock);
  527. if (!em)
  528. return -EIO;
  529. compressed_len = em->block_len;
  530. cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
  531. if (!cb)
  532. goto out;
  533. atomic_set(&cb->pending_bios, 0);
  534. cb->errors = 0;
  535. cb->inode = inode;
  536. cb->mirror_num = mirror_num;
  537. sums = &cb->sums;
  538. cb->start = em->orig_start;
  539. em_len = em->len;
  540. em_start = em->start;
  541. free_extent_map(em);
  542. em = NULL;
  543. cb->len = uncompressed_len;
  544. cb->compressed_len = compressed_len;
  545. cb->compress_type = extent_compress_type(bio_flags);
  546. cb->orig_bio = bio;
  547. nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
  548. cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
  549. GFP_NOFS);
  550. if (!cb->compressed_pages)
  551. goto fail1;
  552. bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  553. for (pg_index = 0; pg_index < nr_pages; pg_index++) {
  554. cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
  555. __GFP_HIGHMEM);
  556. if (!cb->compressed_pages[pg_index]) {
  557. faili = pg_index - 1;
  558. ret = -ENOMEM;
  559. goto fail2;
  560. }
  561. }
  562. faili = nr_pages - 1;
  563. cb->nr_pages = nr_pages;
  564. add_ra_bio_pages(inode, em_start + em_len, cb);
  565. /* include any pages we added in add_ra-bio_pages */
  566. uncompressed_len = bio->bi_vcnt * PAGE_SIZE;
  567. cb->len = uncompressed_len;
  568. comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
  569. if (!comp_bio)
  570. goto fail2;
  571. bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
  572. comp_bio->bi_private = cb;
  573. comp_bio->bi_end_io = end_compressed_bio_read;
  574. atomic_inc(&cb->pending_bios);
  575. for (pg_index = 0; pg_index < nr_pages; pg_index++) {
  576. page = cb->compressed_pages[pg_index];
  577. page->mapping = inode->i_mapping;
  578. page->index = em_start >> PAGE_SHIFT;
  579. if (comp_bio->bi_iter.bi_size)
  580. ret = tree->ops->merge_bio_hook(page, 0,
  581. PAGE_SIZE,
  582. comp_bio, 0);
  583. else
  584. ret = 0;
  585. page->mapping = NULL;
  586. if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
  587. PAGE_SIZE) {
  588. bio_get(comp_bio);
  589. ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
  590. BTRFS_WQ_ENDIO_DATA);
  591. BUG_ON(ret); /* -ENOMEM */
  592. /*
  593. * inc the count before we submit the bio so
  594. * we know the end IO handler won't happen before
  595. * we inc the count. Otherwise, the cb might get
  596. * freed before we're done setting it up
  597. */
  598. atomic_inc(&cb->pending_bios);
  599. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
  600. ret = btrfs_lookup_bio_sums(root, inode,
  601. comp_bio, sums);
  602. BUG_ON(ret); /* -ENOMEM */
  603. }
  604. sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
  605. root->sectorsize);
  606. ret = btrfs_map_bio(root, comp_bio, mirror_num, 0);
  607. if (ret) {
  608. bio->bi_error = ret;
  609. bio_endio(comp_bio);
  610. }
  611. bio_put(comp_bio);
  612. comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
  613. GFP_NOFS);
  614. BUG_ON(!comp_bio);
  615. bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
  616. comp_bio->bi_private = cb;
  617. comp_bio->bi_end_io = end_compressed_bio_read;
  618. bio_add_page(comp_bio, page, PAGE_SIZE, 0);
  619. }
  620. cur_disk_byte += PAGE_SIZE;
  621. }
  622. bio_get(comp_bio);
  623. ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
  624. BTRFS_WQ_ENDIO_DATA);
  625. BUG_ON(ret); /* -ENOMEM */
  626. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
  627. ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
  628. BUG_ON(ret); /* -ENOMEM */
  629. }
  630. ret = btrfs_map_bio(root, comp_bio, mirror_num, 0);
  631. if (ret) {
  632. bio->bi_error = ret;
  633. bio_endio(comp_bio);
  634. }
  635. bio_put(comp_bio);
  636. return 0;
  637. fail2:
  638. while (faili >= 0) {
  639. __free_page(cb->compressed_pages[faili]);
  640. faili--;
  641. }
  642. kfree(cb->compressed_pages);
  643. fail1:
  644. kfree(cb);
  645. out:
  646. free_extent_map(em);
  647. return ret;
  648. }
  649. static struct {
  650. struct list_head idle_ws;
  651. spinlock_t ws_lock;
  652. /* Number of free workspaces */
  653. int free_ws;
  654. /* Total number of allocated workspaces */
  655. atomic_t total_ws;
  656. /* Waiters for a free workspace */
  657. wait_queue_head_t ws_wait;
  658. } btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
  659. static const struct btrfs_compress_op * const btrfs_compress_op[] = {
  660. &btrfs_zlib_compress,
  661. &btrfs_lzo_compress,
  662. };
  663. void __init btrfs_init_compress(void)
  664. {
  665. int i;
  666. for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
  667. struct list_head *workspace;
  668. INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
  669. spin_lock_init(&btrfs_comp_ws[i].ws_lock);
  670. atomic_set(&btrfs_comp_ws[i].total_ws, 0);
  671. init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
  672. /*
  673. * Preallocate one workspace for each compression type so
  674. * we can guarantee forward progress in the worst case
  675. */
  676. workspace = btrfs_compress_op[i]->alloc_workspace();
  677. if (IS_ERR(workspace)) {
  678. printk(KERN_WARNING
  679. "BTRFS: cannot preallocate compression workspace, will try later");
  680. } else {
  681. atomic_set(&btrfs_comp_ws[i].total_ws, 1);
  682. btrfs_comp_ws[i].free_ws = 1;
  683. list_add(workspace, &btrfs_comp_ws[i].idle_ws);
  684. }
  685. }
  686. }
  687. /*
  688. * This finds an available workspace or allocates a new one.
  689. * If it's not possible to allocate a new one, waits until there's one.
  690. * Preallocation makes a forward progress guarantees and we do not return
  691. * errors.
  692. */
  693. static struct list_head *find_workspace(int type)
  694. {
  695. struct list_head *workspace;
  696. int cpus = num_online_cpus();
  697. int idx = type - 1;
  698. struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
  699. spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
  700. atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
  701. wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
  702. int *free_ws = &btrfs_comp_ws[idx].free_ws;
  703. again:
  704. spin_lock(ws_lock);
  705. if (!list_empty(idle_ws)) {
  706. workspace = idle_ws->next;
  707. list_del(workspace);
  708. (*free_ws)--;
  709. spin_unlock(ws_lock);
  710. return workspace;
  711. }
  712. if (atomic_read(total_ws) > cpus) {
  713. DEFINE_WAIT(wait);
  714. spin_unlock(ws_lock);
  715. prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
  716. if (atomic_read(total_ws) > cpus && !*free_ws)
  717. schedule();
  718. finish_wait(ws_wait, &wait);
  719. goto again;
  720. }
  721. atomic_inc(total_ws);
  722. spin_unlock(ws_lock);
  723. workspace = btrfs_compress_op[idx]->alloc_workspace();
  724. if (IS_ERR(workspace)) {
  725. atomic_dec(total_ws);
  726. wake_up(ws_wait);
  727. /*
  728. * Do not return the error but go back to waiting. There's a
  729. * workspace preallocated for each type and the compression
  730. * time is bounded so we get to a workspace eventually. This
  731. * makes our caller's life easier.
  732. *
  733. * To prevent silent and low-probability deadlocks (when the
  734. * initial preallocation fails), check if there are any
  735. * workspaces at all.
  736. */
  737. if (atomic_read(total_ws) == 0) {
  738. static DEFINE_RATELIMIT_STATE(_rs,
  739. /* once per minute */ 60 * HZ,
  740. /* no burst */ 1);
  741. if (__ratelimit(&_rs)) {
  742. printk(KERN_WARNING
  743. "no compression workspaces, low memory, retrying");
  744. }
  745. }
  746. goto again;
  747. }
  748. return workspace;
  749. }
  750. /*
  751. * put a workspace struct back on the list or free it if we have enough
  752. * idle ones sitting around
  753. */
  754. static void free_workspace(int type, struct list_head *workspace)
  755. {
  756. int idx = type - 1;
  757. struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
  758. spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
  759. atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
  760. wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
  761. int *free_ws = &btrfs_comp_ws[idx].free_ws;
  762. spin_lock(ws_lock);
  763. if (*free_ws < num_online_cpus()) {
  764. list_add(workspace, idle_ws);
  765. (*free_ws)++;
  766. spin_unlock(ws_lock);
  767. goto wake;
  768. }
  769. spin_unlock(ws_lock);
  770. btrfs_compress_op[idx]->free_workspace(workspace);
  771. atomic_dec(total_ws);
  772. wake:
  773. /*
  774. * Make sure counter is updated before we wake up waiters.
  775. */
  776. smp_mb();
  777. if (waitqueue_active(ws_wait))
  778. wake_up(ws_wait);
  779. }
  780. /*
  781. * cleanup function for module exit
  782. */
  783. static void free_workspaces(void)
  784. {
  785. struct list_head *workspace;
  786. int i;
  787. for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
  788. while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
  789. workspace = btrfs_comp_ws[i].idle_ws.next;
  790. list_del(workspace);
  791. btrfs_compress_op[i]->free_workspace(workspace);
  792. atomic_dec(&btrfs_comp_ws[i].total_ws);
  793. }
  794. }
  795. }
  796. /*
  797. * given an address space and start/len, compress the bytes.
  798. *
  799. * pages are allocated to hold the compressed result and stored
  800. * in 'pages'
  801. *
  802. * out_pages is used to return the number of pages allocated. There
  803. * may be pages allocated even if we return an error
  804. *
  805. * total_in is used to return the number of bytes actually read. It
  806. * may be smaller then len if we had to exit early because we
  807. * ran out of room in the pages array or because we cross the
  808. * max_out threshold.
  809. *
  810. * total_out is used to return the total number of compressed bytes
  811. *
  812. * max_out tells us the max number of bytes that we're allowed to
  813. * stuff into pages
  814. */
  815. int btrfs_compress_pages(int type, struct address_space *mapping,
  816. u64 start, unsigned long len,
  817. struct page **pages,
  818. unsigned long nr_dest_pages,
  819. unsigned long *out_pages,
  820. unsigned long *total_in,
  821. unsigned long *total_out,
  822. unsigned long max_out)
  823. {
  824. struct list_head *workspace;
  825. int ret;
  826. workspace = find_workspace(type);
  827. ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
  828. start, len, pages,
  829. nr_dest_pages, out_pages,
  830. total_in, total_out,
  831. max_out);
  832. free_workspace(type, workspace);
  833. return ret;
  834. }
  835. /*
  836. * pages_in is an array of pages with compressed data.
  837. *
  838. * disk_start is the starting logical offset of this array in the file
  839. *
  840. * bvec is a bio_vec of pages from the file that we want to decompress into
  841. *
  842. * vcnt is the count of pages in the biovec
  843. *
  844. * srclen is the number of bytes in pages_in
  845. *
  846. * The basic idea is that we have a bio that was created by readpages.
  847. * The pages in the bio are for the uncompressed data, and they may not
  848. * be contiguous. They all correspond to the range of bytes covered by
  849. * the compressed extent.
  850. */
  851. static int btrfs_decompress_biovec(int type, struct page **pages_in,
  852. u64 disk_start, struct bio_vec *bvec,
  853. int vcnt, size_t srclen)
  854. {
  855. struct list_head *workspace;
  856. int ret;
  857. workspace = find_workspace(type);
  858. ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
  859. disk_start,
  860. bvec, vcnt, srclen);
  861. free_workspace(type, workspace);
  862. return ret;
  863. }
  864. /*
  865. * a less complex decompression routine. Our compressed data fits in a
  866. * single page, and we want to read a single page out of it.
  867. * start_byte tells us the offset into the compressed data we're interested in
  868. */
  869. int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
  870. unsigned long start_byte, size_t srclen, size_t destlen)
  871. {
  872. struct list_head *workspace;
  873. int ret;
  874. workspace = find_workspace(type);
  875. ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
  876. dest_page, start_byte,
  877. srclen, destlen);
  878. free_workspace(type, workspace);
  879. return ret;
  880. }
  881. void btrfs_exit_compress(void)
  882. {
  883. free_workspaces();
  884. }
  885. /*
  886. * Copy uncompressed data from working buffer to pages.
  887. *
  888. * buf_start is the byte offset we're of the start of our workspace buffer.
  889. *
  890. * total_out is the last byte of the buffer
  891. */
  892. int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
  893. unsigned long total_out, u64 disk_start,
  894. struct bio_vec *bvec, int vcnt,
  895. unsigned long *pg_index,
  896. unsigned long *pg_offset)
  897. {
  898. unsigned long buf_offset;
  899. unsigned long current_buf_start;
  900. unsigned long start_byte;
  901. unsigned long working_bytes = total_out - buf_start;
  902. unsigned long bytes;
  903. char *kaddr;
  904. struct page *page_out = bvec[*pg_index].bv_page;
  905. /*
  906. * start byte is the first byte of the page we're currently
  907. * copying into relative to the start of the compressed data.
  908. */
  909. start_byte = page_offset(page_out) - disk_start;
  910. /* we haven't yet hit data corresponding to this page */
  911. if (total_out <= start_byte)
  912. return 1;
  913. /*
  914. * the start of the data we care about is offset into
  915. * the middle of our working buffer
  916. */
  917. if (total_out > start_byte && buf_start < start_byte) {
  918. buf_offset = start_byte - buf_start;
  919. working_bytes -= buf_offset;
  920. } else {
  921. buf_offset = 0;
  922. }
  923. current_buf_start = buf_start;
  924. /* copy bytes from the working buffer into the pages */
  925. while (working_bytes > 0) {
  926. bytes = min(PAGE_SIZE - *pg_offset,
  927. PAGE_SIZE - buf_offset);
  928. bytes = min(bytes, working_bytes);
  929. kaddr = kmap_atomic(page_out);
  930. memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
  931. kunmap_atomic(kaddr);
  932. flush_dcache_page(page_out);
  933. *pg_offset += bytes;
  934. buf_offset += bytes;
  935. working_bytes -= bytes;
  936. current_buf_start += bytes;
  937. /* check if we need to pick another page */
  938. if (*pg_offset == PAGE_SIZE) {
  939. (*pg_index)++;
  940. if (*pg_index >= vcnt)
  941. return 0;
  942. page_out = bvec[*pg_index].bv_page;
  943. *pg_offset = 0;
  944. start_byte = page_offset(page_out) - disk_start;
  945. /*
  946. * make sure our new page is covered by this
  947. * working buffer
  948. */
  949. if (total_out <= start_byte)
  950. return 1;
  951. /*
  952. * the next page in the biovec might not be adjacent
  953. * to the last page, but it might still be found
  954. * inside this working buffer. bump our offset pointer
  955. */
  956. if (total_out > start_byte &&
  957. current_buf_start < start_byte) {
  958. buf_offset = start_byte - buf_start;
  959. working_bytes = total_out - start_byte;
  960. current_buf_start = buf_start + buf_offset;
  961. }
  962. }
  963. }
  964. return 1;
  965. }
  966. /*
  967. * When uncompressing data, we need to make sure and zero any parts of
  968. * the biovec that were not filled in by the decompression code. pg_index
  969. * and pg_offset indicate the last page and the last offset of that page
  970. * that have been filled in. This will zero everything remaining in the
  971. * biovec.
  972. */
  973. void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
  974. unsigned long pg_index,
  975. unsigned long pg_offset)
  976. {
  977. while (pg_index < vcnt) {
  978. struct page *page = bvec[pg_index].bv_page;
  979. unsigned long off = bvec[pg_index].bv_offset;
  980. unsigned long len = bvec[pg_index].bv_len;
  981. if (pg_offset < off)
  982. pg_offset = off;
  983. if (pg_offset < off + len) {
  984. unsigned long bytes = off + len - pg_offset;
  985. char *kaddr;
  986. kaddr = kmap_atomic(page);
  987. memset(kaddr + pg_offset, 0, bytes);
  988. kunmap_atomic(kaddr);
  989. }
  990. pg_index++;
  991. pg_offset = 0;
  992. }
  993. }