spi-fsl-espi.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931
  1. /*
  2. * Freescale eSPI controller driver.
  3. *
  4. * Copyright 2010 Freescale Semiconductor, Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the
  8. * Free Software Foundation; either version 2 of the License, or (at your
  9. * option) any later version.
  10. */
  11. #include <linux/delay.h>
  12. #include <linux/err.h>
  13. #include <linux/fsl_devices.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/irq.h>
  16. #include <linux/module.h>
  17. #include <linux/mm.h>
  18. #include <linux/of.h>
  19. #include <linux/of_address.h>
  20. #include <linux/of_irq.h>
  21. #include <linux/of_platform.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/spi/spi.h>
  24. #include <linux/pm_runtime.h>
  25. #include <sysdev/fsl_soc.h>
  26. #include "spi-fsl-lib.h"
  27. /* eSPI Controller registers */
  28. struct fsl_espi_reg {
  29. __be32 mode; /* 0x000 - eSPI mode register */
  30. __be32 event; /* 0x004 - eSPI event register */
  31. __be32 mask; /* 0x008 - eSPI mask register */
  32. __be32 command; /* 0x00c - eSPI command register */
  33. __be32 transmit; /* 0x010 - eSPI transmit FIFO access register*/
  34. __be32 receive; /* 0x014 - eSPI receive FIFO access register*/
  35. u8 res[8]; /* 0x018 - 0x01c reserved */
  36. __be32 csmode[4]; /* 0x020 - 0x02c eSPI cs mode register */
  37. };
  38. struct fsl_espi_transfer {
  39. const void *tx_buf;
  40. void *rx_buf;
  41. unsigned len;
  42. unsigned n_tx;
  43. unsigned n_rx;
  44. unsigned actual_length;
  45. int status;
  46. };
  47. /* eSPI Controller mode register definitions */
  48. #define SPMODE_ENABLE (1 << 31)
  49. #define SPMODE_LOOP (1 << 30)
  50. #define SPMODE_TXTHR(x) ((x) << 8)
  51. #define SPMODE_RXTHR(x) ((x) << 0)
  52. /* eSPI Controller CS mode register definitions */
  53. #define CSMODE_CI_INACTIVEHIGH (1 << 31)
  54. #define CSMODE_CP_BEGIN_EDGECLK (1 << 30)
  55. #define CSMODE_REV (1 << 29)
  56. #define CSMODE_DIV16 (1 << 28)
  57. #define CSMODE_PM(x) ((x) << 24)
  58. #define CSMODE_POL_1 (1 << 20)
  59. #define CSMODE_LEN(x) ((x) << 16)
  60. #define CSMODE_BEF(x) ((x) << 12)
  61. #define CSMODE_AFT(x) ((x) << 8)
  62. #define CSMODE_CG(x) ((x) << 3)
  63. /* Default mode/csmode for eSPI controller */
  64. #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3))
  65. #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
  66. | CSMODE_AFT(0) | CSMODE_CG(1))
  67. /* SPIE register values */
  68. #define SPIE_NE 0x00000200 /* Not empty */
  69. #define SPIE_NF 0x00000100 /* Not full */
  70. /* SPIM register values */
  71. #define SPIM_NE 0x00000200 /* Not empty */
  72. #define SPIM_NF 0x00000100 /* Not full */
  73. #define SPIE_RXCNT(reg) ((reg >> 24) & 0x3F)
  74. #define SPIE_TXCNT(reg) ((reg >> 16) & 0x3F)
  75. /* SPCOM register values */
  76. #define SPCOM_CS(x) ((x) << 30)
  77. #define SPCOM_TRANLEN(x) ((x) << 0)
  78. #define SPCOM_TRANLEN_MAX 0x10000 /* Max transaction length */
  79. #define AUTOSUSPEND_TIMEOUT 2000
  80. static void fsl_espi_change_mode(struct spi_device *spi)
  81. {
  82. struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
  83. struct spi_mpc8xxx_cs *cs = spi->controller_state;
  84. struct fsl_espi_reg *reg_base = mspi->reg_base;
  85. __be32 __iomem *mode = &reg_base->csmode[spi->chip_select];
  86. __be32 __iomem *espi_mode = &reg_base->mode;
  87. u32 tmp;
  88. unsigned long flags;
  89. /* Turn off IRQs locally to minimize time that SPI is disabled. */
  90. local_irq_save(flags);
  91. /* Turn off SPI unit prior changing mode */
  92. tmp = mpc8xxx_spi_read_reg(espi_mode);
  93. mpc8xxx_spi_write_reg(espi_mode, tmp & ~SPMODE_ENABLE);
  94. mpc8xxx_spi_write_reg(mode, cs->hw_mode);
  95. mpc8xxx_spi_write_reg(espi_mode, tmp);
  96. local_irq_restore(flags);
  97. }
  98. static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi)
  99. {
  100. u32 data;
  101. u16 data_h;
  102. u16 data_l;
  103. const u32 *tx = mpc8xxx_spi->tx;
  104. if (!tx)
  105. return 0;
  106. data = *tx++ << mpc8xxx_spi->tx_shift;
  107. data_l = data & 0xffff;
  108. data_h = (data >> 16) & 0xffff;
  109. swab16s(&data_l);
  110. swab16s(&data_h);
  111. data = data_h | data_l;
  112. mpc8xxx_spi->tx = tx;
  113. return data;
  114. }
  115. static int fsl_espi_setup_transfer(struct spi_device *spi,
  116. struct spi_transfer *t)
  117. {
  118. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
  119. int bits_per_word = 0;
  120. u8 pm;
  121. u32 hz = 0;
  122. struct spi_mpc8xxx_cs *cs = spi->controller_state;
  123. if (t) {
  124. bits_per_word = t->bits_per_word;
  125. hz = t->speed_hz;
  126. }
  127. /* spi_transfer level calls that work per-word */
  128. if (!bits_per_word)
  129. bits_per_word = spi->bits_per_word;
  130. if (!hz)
  131. hz = spi->max_speed_hz;
  132. cs->rx_shift = 0;
  133. cs->tx_shift = 0;
  134. cs->get_rx = mpc8xxx_spi_rx_buf_u32;
  135. cs->get_tx = mpc8xxx_spi_tx_buf_u32;
  136. if (bits_per_word <= 8) {
  137. cs->rx_shift = 8 - bits_per_word;
  138. } else {
  139. cs->rx_shift = 16 - bits_per_word;
  140. if (spi->mode & SPI_LSB_FIRST)
  141. cs->get_tx = fsl_espi_tx_buf_lsb;
  142. }
  143. mpc8xxx_spi->rx_shift = cs->rx_shift;
  144. mpc8xxx_spi->tx_shift = cs->tx_shift;
  145. mpc8xxx_spi->get_rx = cs->get_rx;
  146. mpc8xxx_spi->get_tx = cs->get_tx;
  147. bits_per_word = bits_per_word - 1;
  148. /* mask out bits we are going to set */
  149. cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
  150. cs->hw_mode |= CSMODE_LEN(bits_per_word);
  151. if ((mpc8xxx_spi->spibrg / hz) > 64) {
  152. cs->hw_mode |= CSMODE_DIV16;
  153. pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4);
  154. WARN_ONCE(pm > 33, "%s: Requested speed is too low: %d Hz. "
  155. "Will use %d Hz instead.\n", dev_name(&spi->dev),
  156. hz, mpc8xxx_spi->spibrg / (4 * 16 * (32 + 1)));
  157. if (pm > 33)
  158. pm = 33;
  159. } else {
  160. pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4);
  161. }
  162. if (pm)
  163. pm--;
  164. if (pm < 2)
  165. pm = 2;
  166. cs->hw_mode |= CSMODE_PM(pm);
  167. fsl_espi_change_mode(spi);
  168. return 0;
  169. }
  170. static int fsl_espi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t,
  171. unsigned int len)
  172. {
  173. u32 word;
  174. struct fsl_espi_reg *reg_base = mspi->reg_base;
  175. mspi->count = len;
  176. /* enable rx ints */
  177. mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);
  178. /* transmit word */
  179. word = mspi->get_tx(mspi);
  180. mpc8xxx_spi_write_reg(&reg_base->transmit, word);
  181. return 0;
  182. }
  183. static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
  184. {
  185. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
  186. struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
  187. unsigned int len = t->len;
  188. int ret;
  189. mpc8xxx_spi->len = t->len;
  190. len = roundup(len, 4) / 4;
  191. mpc8xxx_spi->tx = t->tx_buf;
  192. mpc8xxx_spi->rx = t->rx_buf;
  193. reinit_completion(&mpc8xxx_spi->done);
  194. /* Set SPCOM[CS] and SPCOM[TRANLEN] field */
  195. if (t->len > SPCOM_TRANLEN_MAX) {
  196. dev_err(mpc8xxx_spi->dev, "Transaction length (%d)"
  197. " beyond the SPCOM[TRANLEN] field\n", t->len);
  198. return -EINVAL;
  199. }
  200. mpc8xxx_spi_write_reg(&reg_base->command,
  201. (SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1)));
  202. ret = fsl_espi_cpu_bufs(mpc8xxx_spi, t, len);
  203. if (ret)
  204. return ret;
  205. /* Won't hang up forever, SPI bus sometimes got lost interrupts... */
  206. ret = wait_for_completion_timeout(&mpc8xxx_spi->done, 2 * HZ);
  207. if (ret == 0)
  208. dev_err(mpc8xxx_spi->dev,
  209. "Transaction hanging up (left %d bytes)\n",
  210. mpc8xxx_spi->count);
  211. /* disable rx ints */
  212. mpc8xxx_spi_write_reg(&reg_base->mask, 0);
  213. return mpc8xxx_spi->count;
  214. }
  215. static inline void fsl_espi_addr2cmd(unsigned int addr, u8 *cmd)
  216. {
  217. if (cmd) {
  218. cmd[1] = (u8)(addr >> 16);
  219. cmd[2] = (u8)(addr >> 8);
  220. cmd[3] = (u8)(addr >> 0);
  221. }
  222. }
  223. static inline unsigned int fsl_espi_cmd2addr(u8 *cmd)
  224. {
  225. if (cmd)
  226. return cmd[1] << 16 | cmd[2] << 8 | cmd[3] << 0;
  227. return 0;
  228. }
  229. static void fsl_espi_do_trans(struct spi_message *m,
  230. struct fsl_espi_transfer *tr)
  231. {
  232. struct spi_device *spi = m->spi;
  233. struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
  234. struct fsl_espi_transfer *espi_trans = tr;
  235. struct spi_message message;
  236. struct spi_transfer *t, *first, trans;
  237. int status = 0;
  238. spi_message_init(&message);
  239. memset(&trans, 0, sizeof(trans));
  240. first = list_first_entry(&m->transfers, struct spi_transfer,
  241. transfer_list);
  242. list_for_each_entry(t, &m->transfers, transfer_list) {
  243. if ((first->bits_per_word != t->bits_per_word) ||
  244. (first->speed_hz != t->speed_hz)) {
  245. espi_trans->status = -EINVAL;
  246. dev_err(mspi->dev,
  247. "bits_per_word/speed_hz should be same for the same SPI transfer\n");
  248. return;
  249. }
  250. trans.speed_hz = t->speed_hz;
  251. trans.bits_per_word = t->bits_per_word;
  252. trans.delay_usecs = max(first->delay_usecs, t->delay_usecs);
  253. }
  254. trans.len = espi_trans->len;
  255. trans.tx_buf = espi_trans->tx_buf;
  256. trans.rx_buf = espi_trans->rx_buf;
  257. spi_message_add_tail(&trans, &message);
  258. list_for_each_entry(t, &message.transfers, transfer_list) {
  259. if (t->bits_per_word || t->speed_hz) {
  260. status = -EINVAL;
  261. status = fsl_espi_setup_transfer(spi, t);
  262. if (status < 0)
  263. break;
  264. }
  265. if (t->len)
  266. status = fsl_espi_bufs(spi, t);
  267. if (status) {
  268. status = -EMSGSIZE;
  269. break;
  270. }
  271. if (t->delay_usecs)
  272. udelay(t->delay_usecs);
  273. }
  274. espi_trans->status = status;
  275. fsl_espi_setup_transfer(spi, NULL);
  276. }
  277. static void fsl_espi_cmd_trans(struct spi_message *m,
  278. struct fsl_espi_transfer *trans, u8 *rx_buff)
  279. {
  280. struct spi_transfer *t;
  281. u8 *local_buf;
  282. int i = 0;
  283. struct fsl_espi_transfer *espi_trans = trans;
  284. local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
  285. if (!local_buf) {
  286. espi_trans->status = -ENOMEM;
  287. return;
  288. }
  289. list_for_each_entry(t, &m->transfers, transfer_list) {
  290. if (t->tx_buf) {
  291. memcpy(local_buf + i, t->tx_buf, t->len);
  292. i += t->len;
  293. }
  294. }
  295. espi_trans->tx_buf = local_buf;
  296. espi_trans->rx_buf = local_buf;
  297. fsl_espi_do_trans(m, espi_trans);
  298. espi_trans->actual_length = espi_trans->len;
  299. kfree(local_buf);
  300. }
  301. static void fsl_espi_rw_trans(struct spi_message *m,
  302. struct fsl_espi_transfer *trans, u8 *rx_buff)
  303. {
  304. struct fsl_espi_transfer *espi_trans = trans;
  305. unsigned int total_len = espi_trans->len;
  306. struct spi_transfer *t;
  307. u8 *local_buf;
  308. u8 *rx_buf = rx_buff;
  309. unsigned int trans_len;
  310. unsigned int addr;
  311. unsigned int tx_only;
  312. unsigned int rx_pos = 0;
  313. unsigned int pos;
  314. int i, loop;
  315. local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
  316. if (!local_buf) {
  317. espi_trans->status = -ENOMEM;
  318. return;
  319. }
  320. for (pos = 0, loop = 0; pos < total_len; pos += trans_len, loop++) {
  321. trans_len = total_len - pos;
  322. i = 0;
  323. tx_only = 0;
  324. list_for_each_entry(t, &m->transfers, transfer_list) {
  325. if (t->tx_buf) {
  326. memcpy(local_buf + i, t->tx_buf, t->len);
  327. i += t->len;
  328. if (!t->rx_buf)
  329. tx_only += t->len;
  330. }
  331. }
  332. /* Add additional TX bytes to compensate SPCOM_TRANLEN_MAX */
  333. if (loop > 0)
  334. trans_len += tx_only;
  335. if (trans_len > SPCOM_TRANLEN_MAX)
  336. trans_len = SPCOM_TRANLEN_MAX;
  337. /* Update device offset */
  338. if (pos > 0) {
  339. addr = fsl_espi_cmd2addr(local_buf);
  340. addr += rx_pos;
  341. fsl_espi_addr2cmd(addr, local_buf);
  342. }
  343. espi_trans->len = trans_len;
  344. espi_trans->tx_buf = local_buf;
  345. espi_trans->rx_buf = local_buf;
  346. fsl_espi_do_trans(m, espi_trans);
  347. /* If there is at least one RX byte then copy it to rx_buf */
  348. if (tx_only < SPCOM_TRANLEN_MAX)
  349. memcpy(rx_buf + rx_pos, espi_trans->rx_buf + tx_only,
  350. trans_len - tx_only);
  351. rx_pos += trans_len - tx_only;
  352. if (loop > 0)
  353. espi_trans->actual_length += espi_trans->len - tx_only;
  354. else
  355. espi_trans->actual_length += espi_trans->len;
  356. }
  357. kfree(local_buf);
  358. }
  359. static int fsl_espi_do_one_msg(struct spi_master *master,
  360. struct spi_message *m)
  361. {
  362. struct spi_transfer *t;
  363. u8 *rx_buf = NULL;
  364. unsigned int n_tx = 0;
  365. unsigned int n_rx = 0;
  366. unsigned int xfer_len = 0;
  367. struct fsl_espi_transfer espi_trans;
  368. list_for_each_entry(t, &m->transfers, transfer_list) {
  369. if (t->tx_buf)
  370. n_tx += t->len;
  371. if (t->rx_buf) {
  372. n_rx += t->len;
  373. rx_buf = t->rx_buf;
  374. }
  375. if ((t->tx_buf) || (t->rx_buf))
  376. xfer_len += t->len;
  377. }
  378. espi_trans.n_tx = n_tx;
  379. espi_trans.n_rx = n_rx;
  380. espi_trans.len = xfer_len;
  381. espi_trans.actual_length = 0;
  382. espi_trans.status = 0;
  383. if (!rx_buf)
  384. fsl_espi_cmd_trans(m, &espi_trans, NULL);
  385. else
  386. fsl_espi_rw_trans(m, &espi_trans, rx_buf);
  387. m->actual_length = espi_trans.actual_length;
  388. m->status = espi_trans.status;
  389. spi_finalize_current_message(master);
  390. return 0;
  391. }
  392. static int fsl_espi_setup(struct spi_device *spi)
  393. {
  394. struct mpc8xxx_spi *mpc8xxx_spi;
  395. struct fsl_espi_reg *reg_base;
  396. int retval;
  397. u32 hw_mode;
  398. u32 loop_mode;
  399. struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);
  400. if (!spi->max_speed_hz)
  401. return -EINVAL;
  402. if (!cs) {
  403. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  404. if (!cs)
  405. return -ENOMEM;
  406. spi_set_ctldata(spi, cs);
  407. }
  408. mpc8xxx_spi = spi_master_get_devdata(spi->master);
  409. reg_base = mpc8xxx_spi->reg_base;
  410. pm_runtime_get_sync(mpc8xxx_spi->dev);
  411. hw_mode = cs->hw_mode; /* Save original settings */
  412. cs->hw_mode = mpc8xxx_spi_read_reg(
  413. &reg_base->csmode[spi->chip_select]);
  414. /* mask out bits we are going to set */
  415. cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
  416. | CSMODE_REV);
  417. if (spi->mode & SPI_CPHA)
  418. cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
  419. if (spi->mode & SPI_CPOL)
  420. cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
  421. if (!(spi->mode & SPI_LSB_FIRST))
  422. cs->hw_mode |= CSMODE_REV;
  423. /* Handle the loop mode */
  424. loop_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
  425. loop_mode &= ~SPMODE_LOOP;
  426. if (spi->mode & SPI_LOOP)
  427. loop_mode |= SPMODE_LOOP;
  428. mpc8xxx_spi_write_reg(&reg_base->mode, loop_mode);
  429. retval = fsl_espi_setup_transfer(spi, NULL);
  430. pm_runtime_mark_last_busy(mpc8xxx_spi->dev);
  431. pm_runtime_put_autosuspend(mpc8xxx_spi->dev);
  432. if (retval < 0) {
  433. cs->hw_mode = hw_mode; /* Restore settings */
  434. return retval;
  435. }
  436. return 0;
  437. }
  438. static void fsl_espi_cleanup(struct spi_device *spi)
  439. {
  440. struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);
  441. kfree(cs);
  442. spi_set_ctldata(spi, NULL);
  443. }
  444. void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
  445. {
  446. struct fsl_espi_reg *reg_base = mspi->reg_base;
  447. /* We need handle RX first */
  448. if (events & SPIE_NE) {
  449. u32 rx_data, tmp;
  450. u8 rx_data_8;
  451. int rx_nr_bytes = 4;
  452. int ret;
  453. /* Spin until RX is done */
  454. if (SPIE_RXCNT(events) < min(4, mspi->len)) {
  455. ret = spin_event_timeout(
  456. !(SPIE_RXCNT(events =
  457. mpc8xxx_spi_read_reg(&reg_base->event)) <
  458. min(4, mspi->len)),
  459. 10000, 0); /* 10 msec */
  460. if (!ret)
  461. dev_err(mspi->dev,
  462. "tired waiting for SPIE_RXCNT\n");
  463. }
  464. if (mspi->len >= 4) {
  465. rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
  466. } else if (mspi->len <= 0) {
  467. dev_err(mspi->dev,
  468. "unexpected RX(SPIE_NE) interrupt occurred,\n"
  469. "(local rxlen %d bytes, reg rxlen %d bytes)\n",
  470. min(4, mspi->len), SPIE_RXCNT(events));
  471. rx_nr_bytes = 0;
  472. } else {
  473. rx_nr_bytes = mspi->len;
  474. tmp = mspi->len;
  475. rx_data = 0;
  476. while (tmp--) {
  477. rx_data_8 = in_8((u8 *)&reg_base->receive);
  478. rx_data |= (rx_data_8 << (tmp * 8));
  479. }
  480. rx_data <<= (4 - mspi->len) * 8;
  481. }
  482. mspi->len -= rx_nr_bytes;
  483. if (mspi->rx)
  484. mspi->get_rx(rx_data, mspi);
  485. }
  486. if (!(events & SPIE_NF)) {
  487. int ret;
  488. /* spin until TX is done */
  489. ret = spin_event_timeout(((events = mpc8xxx_spi_read_reg(
  490. &reg_base->event)) & SPIE_NF), 1000, 0);
  491. if (!ret) {
  492. dev_err(mspi->dev, "tired waiting for SPIE_NF\n");
  493. /* Clear the SPIE bits */
  494. mpc8xxx_spi_write_reg(&reg_base->event, events);
  495. complete(&mspi->done);
  496. return;
  497. }
  498. }
  499. /* Clear the events */
  500. mpc8xxx_spi_write_reg(&reg_base->event, events);
  501. mspi->count -= 1;
  502. if (mspi->count) {
  503. u32 word = mspi->get_tx(mspi);
  504. mpc8xxx_spi_write_reg(&reg_base->transmit, word);
  505. } else {
  506. complete(&mspi->done);
  507. }
  508. }
  509. static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
  510. {
  511. struct mpc8xxx_spi *mspi = context_data;
  512. struct fsl_espi_reg *reg_base = mspi->reg_base;
  513. irqreturn_t ret = IRQ_NONE;
  514. u32 events;
  515. /* Get interrupt events(tx/rx) */
  516. events = mpc8xxx_spi_read_reg(&reg_base->event);
  517. if (events)
  518. ret = IRQ_HANDLED;
  519. dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);
  520. fsl_espi_cpu_irq(mspi, events);
  521. return ret;
  522. }
  523. #ifdef CONFIG_PM
  524. static int fsl_espi_runtime_suspend(struct device *dev)
  525. {
  526. struct spi_master *master = dev_get_drvdata(dev);
  527. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
  528. struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
  529. u32 regval;
  530. regval = mpc8xxx_spi_read_reg(&reg_base->mode);
  531. regval &= ~SPMODE_ENABLE;
  532. mpc8xxx_spi_write_reg(&reg_base->mode, regval);
  533. return 0;
  534. }
  535. static int fsl_espi_runtime_resume(struct device *dev)
  536. {
  537. struct spi_master *master = dev_get_drvdata(dev);
  538. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
  539. struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
  540. u32 regval;
  541. regval = mpc8xxx_spi_read_reg(&reg_base->mode);
  542. regval |= SPMODE_ENABLE;
  543. mpc8xxx_spi_write_reg(&reg_base->mode, regval);
  544. return 0;
  545. }
  546. #endif
  547. static size_t fsl_espi_max_transfer_size(struct spi_device *spi)
  548. {
  549. return SPCOM_TRANLEN_MAX;
  550. }
  551. static struct spi_master * fsl_espi_probe(struct device *dev,
  552. struct resource *mem, unsigned int irq)
  553. {
  554. struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
  555. struct spi_master *master;
  556. struct mpc8xxx_spi *mpc8xxx_spi;
  557. struct fsl_espi_reg *reg_base;
  558. struct device_node *nc;
  559. const __be32 *prop;
  560. u32 regval, csmode;
  561. int i, len, ret = 0;
  562. master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
  563. if (!master) {
  564. ret = -ENOMEM;
  565. goto err;
  566. }
  567. dev_set_drvdata(dev, master);
  568. mpc8xxx_spi_probe(dev, mem, irq);
  569. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
  570. master->setup = fsl_espi_setup;
  571. master->cleanup = fsl_espi_cleanup;
  572. master->transfer_one_message = fsl_espi_do_one_msg;
  573. master->auto_runtime_pm = true;
  574. master->max_transfer_size = fsl_espi_max_transfer_size;
  575. mpc8xxx_spi = spi_master_get_devdata(master);
  576. mpc8xxx_spi->reg_base = devm_ioremap_resource(dev, mem);
  577. if (IS_ERR(mpc8xxx_spi->reg_base)) {
  578. ret = PTR_ERR(mpc8xxx_spi->reg_base);
  579. goto err_probe;
  580. }
  581. reg_base = mpc8xxx_spi->reg_base;
  582. /* Register for SPI Interrupt */
  583. ret = devm_request_irq(dev, mpc8xxx_spi->irq, fsl_espi_irq,
  584. 0, "fsl_espi", mpc8xxx_spi);
  585. if (ret)
  586. goto err_probe;
  587. if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
  588. mpc8xxx_spi->rx_shift = 16;
  589. mpc8xxx_spi->tx_shift = 24;
  590. }
  591. /* SPI controller initializations */
  592. mpc8xxx_spi_write_reg(&reg_base->mode, 0);
  593. mpc8xxx_spi_write_reg(&reg_base->mask, 0);
  594. mpc8xxx_spi_write_reg(&reg_base->command, 0);
  595. mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
  596. /* Init eSPI CS mode register */
  597. for_each_available_child_of_node(master->dev.of_node, nc) {
  598. /* get chip select */
  599. prop = of_get_property(nc, "reg", &len);
  600. if (!prop || len < sizeof(*prop))
  601. continue;
  602. i = be32_to_cpup(prop);
  603. if (i < 0 || i >= pdata->max_chipselect)
  604. continue;
  605. csmode = CSMODE_INIT_VAL;
  606. /* check if CSBEF is set in device tree */
  607. prop = of_get_property(nc, "fsl,csbef", &len);
  608. if (prop && len >= sizeof(*prop)) {
  609. csmode &= ~(CSMODE_BEF(0xf));
  610. csmode |= CSMODE_BEF(be32_to_cpup(prop));
  611. }
  612. /* check if CSAFT is set in device tree */
  613. prop = of_get_property(nc, "fsl,csaft", &len);
  614. if (prop && len >= sizeof(*prop)) {
  615. csmode &= ~(CSMODE_AFT(0xf));
  616. csmode |= CSMODE_AFT(be32_to_cpup(prop));
  617. }
  618. mpc8xxx_spi_write_reg(&reg_base->csmode[i], csmode);
  619. dev_info(dev, "cs=%d, init_csmode=0x%x\n", i, csmode);
  620. }
  621. /* Enable SPI interface */
  622. regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
  623. mpc8xxx_spi_write_reg(&reg_base->mode, regval);
  624. pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
  625. pm_runtime_use_autosuspend(dev);
  626. pm_runtime_set_active(dev);
  627. pm_runtime_enable(dev);
  628. pm_runtime_get_sync(dev);
  629. ret = devm_spi_register_master(dev, master);
  630. if (ret < 0)
  631. goto err_pm;
  632. dev_info(dev, "at 0x%p (irq = %d)\n", reg_base, mpc8xxx_spi->irq);
  633. pm_runtime_mark_last_busy(dev);
  634. pm_runtime_put_autosuspend(dev);
  635. return master;
  636. err_pm:
  637. pm_runtime_put_noidle(dev);
  638. pm_runtime_disable(dev);
  639. pm_runtime_set_suspended(dev);
  640. err_probe:
  641. spi_master_put(master);
  642. err:
  643. return ERR_PTR(ret);
  644. }
  645. static int of_fsl_espi_get_chipselects(struct device *dev)
  646. {
  647. struct device_node *np = dev->of_node;
  648. struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
  649. const u32 *prop;
  650. int len;
  651. prop = of_get_property(np, "fsl,espi-num-chipselects", &len);
  652. if (!prop || len < sizeof(*prop)) {
  653. dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
  654. return -EINVAL;
  655. }
  656. pdata->max_chipselect = *prop;
  657. pdata->cs_control = NULL;
  658. return 0;
  659. }
  660. static int of_fsl_espi_probe(struct platform_device *ofdev)
  661. {
  662. struct device *dev = &ofdev->dev;
  663. struct device_node *np = ofdev->dev.of_node;
  664. struct spi_master *master;
  665. struct resource mem;
  666. unsigned int irq;
  667. int ret = -ENOMEM;
  668. ret = of_mpc8xxx_spi_probe(ofdev);
  669. if (ret)
  670. return ret;
  671. ret = of_fsl_espi_get_chipselects(dev);
  672. if (ret)
  673. goto err;
  674. ret = of_address_to_resource(np, 0, &mem);
  675. if (ret)
  676. goto err;
  677. irq = irq_of_parse_and_map(np, 0);
  678. if (!irq) {
  679. ret = -EINVAL;
  680. goto err;
  681. }
  682. master = fsl_espi_probe(dev, &mem, irq);
  683. if (IS_ERR(master)) {
  684. ret = PTR_ERR(master);
  685. goto err;
  686. }
  687. return 0;
  688. err:
  689. return ret;
  690. }
  691. static int of_fsl_espi_remove(struct platform_device *dev)
  692. {
  693. pm_runtime_disable(&dev->dev);
  694. return 0;
  695. }
  696. #ifdef CONFIG_PM_SLEEP
  697. static int of_fsl_espi_suspend(struct device *dev)
  698. {
  699. struct spi_master *master = dev_get_drvdata(dev);
  700. int ret;
  701. ret = spi_master_suspend(master);
  702. if (ret) {
  703. dev_warn(dev, "cannot suspend master\n");
  704. return ret;
  705. }
  706. ret = pm_runtime_force_suspend(dev);
  707. if (ret < 0)
  708. return ret;
  709. return 0;
  710. }
  711. static int of_fsl_espi_resume(struct device *dev)
  712. {
  713. struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
  714. struct spi_master *master = dev_get_drvdata(dev);
  715. struct mpc8xxx_spi *mpc8xxx_spi;
  716. struct fsl_espi_reg *reg_base;
  717. u32 regval;
  718. int i, ret;
  719. mpc8xxx_spi = spi_master_get_devdata(master);
  720. reg_base = mpc8xxx_spi->reg_base;
  721. /* SPI controller initializations */
  722. mpc8xxx_spi_write_reg(&reg_base->mode, 0);
  723. mpc8xxx_spi_write_reg(&reg_base->mask, 0);
  724. mpc8xxx_spi_write_reg(&reg_base->command, 0);
  725. mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
  726. /* Init eSPI CS mode register */
  727. for (i = 0; i < pdata->max_chipselect; i++)
  728. mpc8xxx_spi_write_reg(&reg_base->csmode[i], CSMODE_INIT_VAL);
  729. /* Enable SPI interface */
  730. regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
  731. mpc8xxx_spi_write_reg(&reg_base->mode, regval);
  732. ret = pm_runtime_force_resume(dev);
  733. if (ret < 0)
  734. return ret;
  735. return spi_master_resume(master);
  736. }
  737. #endif /* CONFIG_PM_SLEEP */
  738. static const struct dev_pm_ops espi_pm = {
  739. SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
  740. fsl_espi_runtime_resume, NULL)
  741. SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
  742. };
  743. static const struct of_device_id of_fsl_espi_match[] = {
  744. { .compatible = "fsl,mpc8536-espi" },
  745. {}
  746. };
  747. MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
  748. static struct platform_driver fsl_espi_driver = {
  749. .driver = {
  750. .name = "fsl_espi",
  751. .of_match_table = of_fsl_espi_match,
  752. .pm = &espi_pm,
  753. },
  754. .probe = of_fsl_espi_probe,
  755. .remove = of_fsl_espi_remove,
  756. };
  757. module_platform_driver(fsl_espi_driver);
  758. MODULE_AUTHOR("Mingkai Hu");
  759. MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
  760. MODULE_LICENSE("GPL");