rdma.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025
  1. /*
  2. * NVMe over Fabrics RDMA host code.
  3. * Copyright (c) 2015-2016 HGST, a Western Digital Company.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/string.h>
  20. #include <linux/atomic.h>
  21. #include <linux/blk-mq.h>
  22. #include <linux/types.h>
  23. #include <linux/list.h>
  24. #include <linux/mutex.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/nvme.h>
  27. #include <asm/unaligned.h>
  28. #include <rdma/ib_verbs.h>
  29. #include <rdma/rdma_cm.h>
  30. #include <rdma/ib_cm.h>
  31. #include <linux/nvme-rdma.h>
  32. #include "nvme.h"
  33. #include "fabrics.h"
  34. #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */
  35. #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
  36. #define NVME_RDMA_MAX_SEGMENTS 256
  37. #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
  38. #define NVME_RDMA_MAX_PAGES_PER_MR 512
  39. #define NVME_RDMA_DEF_RECONNECT_DELAY 20
  40. /*
  41. * We handle AEN commands ourselves and don't even let the
  42. * block layer know about them.
  43. */
  44. #define NVME_RDMA_NR_AEN_COMMANDS 1
  45. #define NVME_RDMA_AQ_BLKMQ_DEPTH \
  46. (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
  47. struct nvme_rdma_device {
  48. struct ib_device *dev;
  49. struct ib_pd *pd;
  50. struct ib_mr *mr;
  51. struct kref ref;
  52. struct list_head entry;
  53. };
  54. struct nvme_rdma_qe {
  55. struct ib_cqe cqe;
  56. void *data;
  57. u64 dma;
  58. };
  59. struct nvme_rdma_queue;
  60. struct nvme_rdma_request {
  61. struct ib_mr *mr;
  62. struct nvme_rdma_qe sqe;
  63. struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
  64. u32 num_sge;
  65. int nents;
  66. bool inline_data;
  67. bool need_inval;
  68. struct ib_reg_wr reg_wr;
  69. struct ib_cqe reg_cqe;
  70. struct nvme_rdma_queue *queue;
  71. struct sg_table sg_table;
  72. struct scatterlist first_sgl[];
  73. };
  74. enum nvme_rdma_queue_flags {
  75. NVME_RDMA_Q_CONNECTED = (1 << 0),
  76. };
  77. struct nvme_rdma_queue {
  78. struct nvme_rdma_qe *rsp_ring;
  79. u8 sig_count;
  80. int queue_size;
  81. size_t cmnd_capsule_len;
  82. struct nvme_rdma_ctrl *ctrl;
  83. struct nvme_rdma_device *device;
  84. struct ib_cq *ib_cq;
  85. struct ib_qp *qp;
  86. unsigned long flags;
  87. struct rdma_cm_id *cm_id;
  88. int cm_error;
  89. struct completion cm_done;
  90. };
  91. struct nvme_rdma_ctrl {
  92. /* read and written in the hot path */
  93. spinlock_t lock;
  94. /* read only in the hot path */
  95. struct nvme_rdma_queue *queues;
  96. u32 queue_count;
  97. /* other member variables */
  98. struct blk_mq_tag_set tag_set;
  99. struct work_struct delete_work;
  100. struct work_struct reset_work;
  101. struct work_struct err_work;
  102. struct nvme_rdma_qe async_event_sqe;
  103. int reconnect_delay;
  104. struct delayed_work reconnect_work;
  105. struct list_head list;
  106. struct blk_mq_tag_set admin_tag_set;
  107. struct nvme_rdma_device *device;
  108. u64 cap;
  109. u32 max_fr_pages;
  110. union {
  111. struct sockaddr addr;
  112. struct sockaddr_in addr_in;
  113. };
  114. struct nvme_ctrl ctrl;
  115. };
  116. static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
  117. {
  118. return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
  119. }
  120. static LIST_HEAD(device_list);
  121. static DEFINE_MUTEX(device_list_mutex);
  122. static LIST_HEAD(nvme_rdma_ctrl_list);
  123. static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
  124. static struct workqueue_struct *nvme_rdma_wq;
  125. /*
  126. * Disabling this option makes small I/O goes faster, but is fundamentally
  127. * unsafe. With it turned off we will have to register a global rkey that
  128. * allows read and write access to all physical memory.
  129. */
  130. static bool register_always = true;
  131. module_param(register_always, bool, 0444);
  132. MODULE_PARM_DESC(register_always,
  133. "Use memory registration even for contiguous memory regions");
  134. static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
  135. struct rdma_cm_event *event);
  136. static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
  137. /* XXX: really should move to a generic header sooner or later.. */
  138. static inline void put_unaligned_le24(u32 val, u8 *p)
  139. {
  140. *p++ = val;
  141. *p++ = val >> 8;
  142. *p++ = val >> 16;
  143. }
  144. static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
  145. {
  146. return queue - queue->ctrl->queues;
  147. }
  148. static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
  149. {
  150. return queue->cmnd_capsule_len - sizeof(struct nvme_command);
  151. }
  152. static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
  153. size_t capsule_size, enum dma_data_direction dir)
  154. {
  155. ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
  156. kfree(qe->data);
  157. }
  158. static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
  159. size_t capsule_size, enum dma_data_direction dir)
  160. {
  161. qe->data = kzalloc(capsule_size, GFP_KERNEL);
  162. if (!qe->data)
  163. return -ENOMEM;
  164. qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
  165. if (ib_dma_mapping_error(ibdev, qe->dma)) {
  166. kfree(qe->data);
  167. return -ENOMEM;
  168. }
  169. return 0;
  170. }
  171. static void nvme_rdma_free_ring(struct ib_device *ibdev,
  172. struct nvme_rdma_qe *ring, size_t ib_queue_size,
  173. size_t capsule_size, enum dma_data_direction dir)
  174. {
  175. int i;
  176. for (i = 0; i < ib_queue_size; i++)
  177. nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
  178. kfree(ring);
  179. }
  180. static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
  181. size_t ib_queue_size, size_t capsule_size,
  182. enum dma_data_direction dir)
  183. {
  184. struct nvme_rdma_qe *ring;
  185. int i;
  186. ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
  187. if (!ring)
  188. return NULL;
  189. for (i = 0; i < ib_queue_size; i++) {
  190. if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
  191. goto out_free_ring;
  192. }
  193. return ring;
  194. out_free_ring:
  195. nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
  196. return NULL;
  197. }
  198. static void nvme_rdma_qp_event(struct ib_event *event, void *context)
  199. {
  200. pr_debug("QP event %d\n", event->event);
  201. }
  202. static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
  203. {
  204. wait_for_completion_interruptible_timeout(&queue->cm_done,
  205. msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
  206. return queue->cm_error;
  207. }
  208. static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
  209. {
  210. struct nvme_rdma_device *dev = queue->device;
  211. struct ib_qp_init_attr init_attr;
  212. int ret;
  213. memset(&init_attr, 0, sizeof(init_attr));
  214. init_attr.event_handler = nvme_rdma_qp_event;
  215. /* +1 for drain */
  216. init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
  217. /* +1 for drain */
  218. init_attr.cap.max_recv_wr = queue->queue_size + 1;
  219. init_attr.cap.max_recv_sge = 1;
  220. init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
  221. init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
  222. init_attr.qp_type = IB_QPT_RC;
  223. init_attr.send_cq = queue->ib_cq;
  224. init_attr.recv_cq = queue->ib_cq;
  225. ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
  226. queue->qp = queue->cm_id->qp;
  227. return ret;
  228. }
  229. static int nvme_rdma_reinit_request(void *data, struct request *rq)
  230. {
  231. struct nvme_rdma_ctrl *ctrl = data;
  232. struct nvme_rdma_device *dev = ctrl->device;
  233. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  234. int ret = 0;
  235. if (!req->need_inval)
  236. goto out;
  237. ib_dereg_mr(req->mr);
  238. req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
  239. ctrl->max_fr_pages);
  240. if (IS_ERR(req->mr)) {
  241. ret = PTR_ERR(req->mr);
  242. req->mr = NULL;
  243. }
  244. req->need_inval = false;
  245. out:
  246. return ret;
  247. }
  248. static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
  249. struct request *rq, unsigned int queue_idx)
  250. {
  251. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  252. struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
  253. struct nvme_rdma_device *dev = queue->device;
  254. if (req->mr)
  255. ib_dereg_mr(req->mr);
  256. nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
  257. DMA_TO_DEVICE);
  258. }
  259. static void nvme_rdma_exit_request(void *data, struct request *rq,
  260. unsigned int hctx_idx, unsigned int rq_idx)
  261. {
  262. return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
  263. }
  264. static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
  265. unsigned int hctx_idx, unsigned int rq_idx)
  266. {
  267. return __nvme_rdma_exit_request(data, rq, 0);
  268. }
  269. static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
  270. struct request *rq, unsigned int queue_idx)
  271. {
  272. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  273. struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
  274. struct nvme_rdma_device *dev = queue->device;
  275. struct ib_device *ibdev = dev->dev;
  276. int ret;
  277. BUG_ON(queue_idx >= ctrl->queue_count);
  278. ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
  279. DMA_TO_DEVICE);
  280. if (ret)
  281. return ret;
  282. req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
  283. ctrl->max_fr_pages);
  284. if (IS_ERR(req->mr)) {
  285. ret = PTR_ERR(req->mr);
  286. goto out_free_qe;
  287. }
  288. req->queue = queue;
  289. return 0;
  290. out_free_qe:
  291. nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
  292. DMA_TO_DEVICE);
  293. return -ENOMEM;
  294. }
  295. static int nvme_rdma_init_request(void *data, struct request *rq,
  296. unsigned int hctx_idx, unsigned int rq_idx,
  297. unsigned int numa_node)
  298. {
  299. return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
  300. }
  301. static int nvme_rdma_init_admin_request(void *data, struct request *rq,
  302. unsigned int hctx_idx, unsigned int rq_idx,
  303. unsigned int numa_node)
  304. {
  305. return __nvme_rdma_init_request(data, rq, 0);
  306. }
  307. static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  308. unsigned int hctx_idx)
  309. {
  310. struct nvme_rdma_ctrl *ctrl = data;
  311. struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
  312. BUG_ON(hctx_idx >= ctrl->queue_count);
  313. hctx->driver_data = queue;
  314. return 0;
  315. }
  316. static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  317. unsigned int hctx_idx)
  318. {
  319. struct nvme_rdma_ctrl *ctrl = data;
  320. struct nvme_rdma_queue *queue = &ctrl->queues[0];
  321. BUG_ON(hctx_idx != 0);
  322. hctx->driver_data = queue;
  323. return 0;
  324. }
  325. static void nvme_rdma_free_dev(struct kref *ref)
  326. {
  327. struct nvme_rdma_device *ndev =
  328. container_of(ref, struct nvme_rdma_device, ref);
  329. mutex_lock(&device_list_mutex);
  330. list_del(&ndev->entry);
  331. mutex_unlock(&device_list_mutex);
  332. if (!register_always)
  333. ib_dereg_mr(ndev->mr);
  334. ib_dealloc_pd(ndev->pd);
  335. kfree(ndev);
  336. }
  337. static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
  338. {
  339. kref_put(&dev->ref, nvme_rdma_free_dev);
  340. }
  341. static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
  342. {
  343. return kref_get_unless_zero(&dev->ref);
  344. }
  345. static struct nvme_rdma_device *
  346. nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
  347. {
  348. struct nvme_rdma_device *ndev;
  349. mutex_lock(&device_list_mutex);
  350. list_for_each_entry(ndev, &device_list, entry) {
  351. if (ndev->dev->node_guid == cm_id->device->node_guid &&
  352. nvme_rdma_dev_get(ndev))
  353. goto out_unlock;
  354. }
  355. ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
  356. if (!ndev)
  357. goto out_err;
  358. ndev->dev = cm_id->device;
  359. kref_init(&ndev->ref);
  360. ndev->pd = ib_alloc_pd(ndev->dev);
  361. if (IS_ERR(ndev->pd))
  362. goto out_free_dev;
  363. if (!register_always) {
  364. ndev->mr = ib_get_dma_mr(ndev->pd,
  365. IB_ACCESS_LOCAL_WRITE |
  366. IB_ACCESS_REMOTE_READ |
  367. IB_ACCESS_REMOTE_WRITE);
  368. if (IS_ERR(ndev->mr))
  369. goto out_free_pd;
  370. }
  371. if (!(ndev->dev->attrs.device_cap_flags &
  372. IB_DEVICE_MEM_MGT_EXTENSIONS)) {
  373. dev_err(&ndev->dev->dev,
  374. "Memory registrations not supported.\n");
  375. goto out_free_mr;
  376. }
  377. list_add(&ndev->entry, &device_list);
  378. out_unlock:
  379. mutex_unlock(&device_list_mutex);
  380. return ndev;
  381. out_free_mr:
  382. if (!register_always)
  383. ib_dereg_mr(ndev->mr);
  384. out_free_pd:
  385. ib_dealloc_pd(ndev->pd);
  386. out_free_dev:
  387. kfree(ndev);
  388. out_err:
  389. mutex_unlock(&device_list_mutex);
  390. return NULL;
  391. }
  392. static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
  393. {
  394. struct nvme_rdma_device *dev = queue->device;
  395. struct ib_device *ibdev = dev->dev;
  396. rdma_destroy_qp(queue->cm_id);
  397. ib_free_cq(queue->ib_cq);
  398. nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
  399. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  400. nvme_rdma_dev_put(dev);
  401. }
  402. static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
  403. struct nvme_rdma_device *dev)
  404. {
  405. struct ib_device *ibdev = dev->dev;
  406. const int send_wr_factor = 3; /* MR, SEND, INV */
  407. const int cq_factor = send_wr_factor + 1; /* + RECV */
  408. int comp_vector, idx = nvme_rdma_queue_idx(queue);
  409. int ret;
  410. queue->device = dev;
  411. /*
  412. * The admin queue is barely used once the controller is live, so don't
  413. * bother to spread it out.
  414. */
  415. if (idx == 0)
  416. comp_vector = 0;
  417. else
  418. comp_vector = idx % ibdev->num_comp_vectors;
  419. /* +1 for ib_stop_cq */
  420. queue->ib_cq = ib_alloc_cq(dev->dev, queue,
  421. cq_factor * queue->queue_size + 1, comp_vector,
  422. IB_POLL_SOFTIRQ);
  423. if (IS_ERR(queue->ib_cq)) {
  424. ret = PTR_ERR(queue->ib_cq);
  425. goto out;
  426. }
  427. ret = nvme_rdma_create_qp(queue, send_wr_factor);
  428. if (ret)
  429. goto out_destroy_ib_cq;
  430. queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
  431. sizeof(struct nvme_completion), DMA_FROM_DEVICE);
  432. if (!queue->rsp_ring) {
  433. ret = -ENOMEM;
  434. goto out_destroy_qp;
  435. }
  436. return 0;
  437. out_destroy_qp:
  438. ib_destroy_qp(queue->qp);
  439. out_destroy_ib_cq:
  440. ib_free_cq(queue->ib_cq);
  441. out:
  442. return ret;
  443. }
  444. static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
  445. int idx, size_t queue_size)
  446. {
  447. struct nvme_rdma_queue *queue;
  448. int ret;
  449. queue = &ctrl->queues[idx];
  450. queue->ctrl = ctrl;
  451. init_completion(&queue->cm_done);
  452. if (idx > 0)
  453. queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
  454. else
  455. queue->cmnd_capsule_len = sizeof(struct nvme_command);
  456. queue->queue_size = queue_size;
  457. queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
  458. RDMA_PS_TCP, IB_QPT_RC);
  459. if (IS_ERR(queue->cm_id)) {
  460. dev_info(ctrl->ctrl.device,
  461. "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
  462. return PTR_ERR(queue->cm_id);
  463. }
  464. queue->cm_error = -ETIMEDOUT;
  465. ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
  466. NVME_RDMA_CONNECT_TIMEOUT_MS);
  467. if (ret) {
  468. dev_info(ctrl->ctrl.device,
  469. "rdma_resolve_addr failed (%d).\n", ret);
  470. goto out_destroy_cm_id;
  471. }
  472. ret = nvme_rdma_wait_for_cm(queue);
  473. if (ret) {
  474. dev_info(ctrl->ctrl.device,
  475. "rdma_resolve_addr wait failed (%d).\n", ret);
  476. goto out_destroy_cm_id;
  477. }
  478. set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
  479. return 0;
  480. out_destroy_cm_id:
  481. rdma_destroy_id(queue->cm_id);
  482. return ret;
  483. }
  484. static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
  485. {
  486. rdma_disconnect(queue->cm_id);
  487. ib_drain_qp(queue->qp);
  488. }
  489. static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
  490. {
  491. nvme_rdma_destroy_queue_ib(queue);
  492. rdma_destroy_id(queue->cm_id);
  493. }
  494. static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
  495. {
  496. if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags))
  497. return;
  498. nvme_rdma_stop_queue(queue);
  499. nvme_rdma_free_queue(queue);
  500. }
  501. static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
  502. {
  503. int i;
  504. for (i = 1; i < ctrl->queue_count; i++)
  505. nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
  506. }
  507. static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
  508. {
  509. int i, ret = 0;
  510. for (i = 1; i < ctrl->queue_count; i++) {
  511. ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
  512. if (ret)
  513. break;
  514. }
  515. return ret;
  516. }
  517. static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
  518. {
  519. int i, ret;
  520. for (i = 1; i < ctrl->queue_count; i++) {
  521. ret = nvme_rdma_init_queue(ctrl, i, ctrl->ctrl.sqsize);
  522. if (ret) {
  523. dev_info(ctrl->ctrl.device,
  524. "failed to initialize i/o queue: %d\n", ret);
  525. goto out_free_queues;
  526. }
  527. }
  528. return 0;
  529. out_free_queues:
  530. for (; i >= 1; i--)
  531. nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
  532. return ret;
  533. }
  534. static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
  535. {
  536. nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
  537. sizeof(struct nvme_command), DMA_TO_DEVICE);
  538. nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
  539. blk_cleanup_queue(ctrl->ctrl.admin_q);
  540. blk_mq_free_tag_set(&ctrl->admin_tag_set);
  541. nvme_rdma_dev_put(ctrl->device);
  542. }
  543. static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
  544. {
  545. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  546. if (list_empty(&ctrl->list))
  547. goto free_ctrl;
  548. mutex_lock(&nvme_rdma_ctrl_mutex);
  549. list_del(&ctrl->list);
  550. mutex_unlock(&nvme_rdma_ctrl_mutex);
  551. kfree(ctrl->queues);
  552. nvmf_free_options(nctrl->opts);
  553. free_ctrl:
  554. kfree(ctrl);
  555. }
  556. static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
  557. {
  558. struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
  559. struct nvme_rdma_ctrl, reconnect_work);
  560. bool changed;
  561. int ret;
  562. if (ctrl->queue_count > 1) {
  563. nvme_rdma_free_io_queues(ctrl);
  564. ret = blk_mq_reinit_tagset(&ctrl->tag_set);
  565. if (ret)
  566. goto requeue;
  567. }
  568. nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
  569. ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
  570. if (ret)
  571. goto requeue;
  572. ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
  573. if (ret)
  574. goto requeue;
  575. blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
  576. ret = nvmf_connect_admin_queue(&ctrl->ctrl);
  577. if (ret)
  578. goto stop_admin_q;
  579. ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
  580. if (ret)
  581. goto stop_admin_q;
  582. nvme_start_keep_alive(&ctrl->ctrl);
  583. if (ctrl->queue_count > 1) {
  584. ret = nvme_rdma_init_io_queues(ctrl);
  585. if (ret)
  586. goto stop_admin_q;
  587. ret = nvme_rdma_connect_io_queues(ctrl);
  588. if (ret)
  589. goto stop_admin_q;
  590. }
  591. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  592. WARN_ON_ONCE(!changed);
  593. if (ctrl->queue_count > 1) {
  594. nvme_start_queues(&ctrl->ctrl);
  595. nvme_queue_scan(&ctrl->ctrl);
  596. nvme_queue_async_events(&ctrl->ctrl);
  597. }
  598. dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
  599. return;
  600. stop_admin_q:
  601. blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
  602. requeue:
  603. /* Make sure we are not resetting/deleting */
  604. if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
  605. dev_info(ctrl->ctrl.device,
  606. "Failed reconnect attempt, requeueing...\n");
  607. queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
  608. ctrl->reconnect_delay * HZ);
  609. }
  610. }
  611. static void nvme_rdma_error_recovery_work(struct work_struct *work)
  612. {
  613. struct nvme_rdma_ctrl *ctrl = container_of(work,
  614. struct nvme_rdma_ctrl, err_work);
  615. nvme_stop_keep_alive(&ctrl->ctrl);
  616. if (ctrl->queue_count > 1)
  617. nvme_stop_queues(&ctrl->ctrl);
  618. blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
  619. /* We must take care of fastfail/requeue all our inflight requests */
  620. if (ctrl->queue_count > 1)
  621. blk_mq_tagset_busy_iter(&ctrl->tag_set,
  622. nvme_cancel_request, &ctrl->ctrl);
  623. blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
  624. nvme_cancel_request, &ctrl->ctrl);
  625. dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
  626. ctrl->reconnect_delay);
  627. queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
  628. ctrl->reconnect_delay * HZ);
  629. }
  630. static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
  631. {
  632. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
  633. return;
  634. queue_work(nvme_rdma_wq, &ctrl->err_work);
  635. }
  636. static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
  637. const char *op)
  638. {
  639. struct nvme_rdma_queue *queue = cq->cq_context;
  640. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  641. if (ctrl->ctrl.state == NVME_CTRL_LIVE)
  642. dev_info(ctrl->ctrl.device,
  643. "%s for CQE 0x%p failed with status %s (%d)\n",
  644. op, wc->wr_cqe,
  645. ib_wc_status_msg(wc->status), wc->status);
  646. nvme_rdma_error_recovery(ctrl);
  647. }
  648. static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
  649. {
  650. if (unlikely(wc->status != IB_WC_SUCCESS))
  651. nvme_rdma_wr_error(cq, wc, "MEMREG");
  652. }
  653. static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
  654. {
  655. if (unlikely(wc->status != IB_WC_SUCCESS))
  656. nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
  657. }
  658. static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
  659. struct nvme_rdma_request *req)
  660. {
  661. struct ib_send_wr *bad_wr;
  662. struct ib_send_wr wr = {
  663. .opcode = IB_WR_LOCAL_INV,
  664. .next = NULL,
  665. .num_sge = 0,
  666. .send_flags = 0,
  667. .ex.invalidate_rkey = req->mr->rkey,
  668. };
  669. req->reg_cqe.done = nvme_rdma_inv_rkey_done;
  670. wr.wr_cqe = &req->reg_cqe;
  671. return ib_post_send(queue->qp, &wr, &bad_wr);
  672. }
  673. static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
  674. struct request *rq)
  675. {
  676. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  677. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  678. struct nvme_rdma_device *dev = queue->device;
  679. struct ib_device *ibdev = dev->dev;
  680. int res;
  681. if (!blk_rq_bytes(rq))
  682. return;
  683. if (req->need_inval) {
  684. res = nvme_rdma_inv_rkey(queue, req);
  685. if (res < 0) {
  686. dev_err(ctrl->ctrl.device,
  687. "Queueing INV WR for rkey %#x failed (%d)\n",
  688. req->mr->rkey, res);
  689. nvme_rdma_error_recovery(queue->ctrl);
  690. }
  691. }
  692. ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
  693. req->nents, rq_data_dir(rq) ==
  694. WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  695. nvme_cleanup_cmd(rq);
  696. sg_free_table_chained(&req->sg_table, true);
  697. }
  698. static int nvme_rdma_set_sg_null(struct nvme_command *c)
  699. {
  700. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  701. sg->addr = 0;
  702. put_unaligned_le24(0, sg->length);
  703. put_unaligned_le32(0, sg->key);
  704. sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
  705. return 0;
  706. }
  707. static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
  708. struct nvme_rdma_request *req, struct nvme_command *c)
  709. {
  710. struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
  711. req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
  712. req->sge[1].length = sg_dma_len(req->sg_table.sgl);
  713. req->sge[1].lkey = queue->device->pd->local_dma_lkey;
  714. sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
  715. sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
  716. sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
  717. req->inline_data = true;
  718. req->num_sge++;
  719. return 0;
  720. }
  721. static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
  722. struct nvme_rdma_request *req, struct nvme_command *c)
  723. {
  724. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  725. sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
  726. put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
  727. put_unaligned_le32(queue->device->mr->rkey, sg->key);
  728. sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
  729. return 0;
  730. }
  731. static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
  732. struct nvme_rdma_request *req, struct nvme_command *c,
  733. int count)
  734. {
  735. struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
  736. int nr;
  737. nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
  738. if (nr < count) {
  739. if (nr < 0)
  740. return nr;
  741. return -EINVAL;
  742. }
  743. ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
  744. req->reg_cqe.done = nvme_rdma_memreg_done;
  745. memset(&req->reg_wr, 0, sizeof(req->reg_wr));
  746. req->reg_wr.wr.opcode = IB_WR_REG_MR;
  747. req->reg_wr.wr.wr_cqe = &req->reg_cqe;
  748. req->reg_wr.wr.num_sge = 0;
  749. req->reg_wr.mr = req->mr;
  750. req->reg_wr.key = req->mr->rkey;
  751. req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
  752. IB_ACCESS_REMOTE_READ |
  753. IB_ACCESS_REMOTE_WRITE;
  754. req->need_inval = true;
  755. sg->addr = cpu_to_le64(req->mr->iova);
  756. put_unaligned_le24(req->mr->length, sg->length);
  757. put_unaligned_le32(req->mr->rkey, sg->key);
  758. sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
  759. NVME_SGL_FMT_INVALIDATE;
  760. return 0;
  761. }
  762. static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
  763. struct request *rq, unsigned int map_len,
  764. struct nvme_command *c)
  765. {
  766. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  767. struct nvme_rdma_device *dev = queue->device;
  768. struct ib_device *ibdev = dev->dev;
  769. int nents, count;
  770. int ret;
  771. req->num_sge = 1;
  772. req->inline_data = false;
  773. req->need_inval = false;
  774. c->common.flags |= NVME_CMD_SGL_METABUF;
  775. if (!blk_rq_bytes(rq))
  776. return nvme_rdma_set_sg_null(c);
  777. req->sg_table.sgl = req->first_sgl;
  778. ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
  779. req->sg_table.sgl);
  780. if (ret)
  781. return -ENOMEM;
  782. nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
  783. BUG_ON(nents > rq->nr_phys_segments);
  784. req->nents = nents;
  785. count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
  786. rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  787. if (unlikely(count <= 0)) {
  788. sg_free_table_chained(&req->sg_table, true);
  789. return -EIO;
  790. }
  791. if (count == 1) {
  792. if (rq_data_dir(rq) == WRITE &&
  793. map_len <= nvme_rdma_inline_data_size(queue) &&
  794. nvme_rdma_queue_idx(queue))
  795. return nvme_rdma_map_sg_inline(queue, req, c);
  796. if (!register_always)
  797. return nvme_rdma_map_sg_single(queue, req, c);
  798. }
  799. return nvme_rdma_map_sg_fr(queue, req, c, count);
  800. }
  801. static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
  802. {
  803. if (unlikely(wc->status != IB_WC_SUCCESS))
  804. nvme_rdma_wr_error(cq, wc, "SEND");
  805. }
  806. static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
  807. struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
  808. struct ib_send_wr *first, bool flush)
  809. {
  810. struct ib_send_wr wr, *bad_wr;
  811. int ret;
  812. sge->addr = qe->dma;
  813. sge->length = sizeof(struct nvme_command),
  814. sge->lkey = queue->device->pd->local_dma_lkey;
  815. qe->cqe.done = nvme_rdma_send_done;
  816. wr.next = NULL;
  817. wr.wr_cqe = &qe->cqe;
  818. wr.sg_list = sge;
  819. wr.num_sge = num_sge;
  820. wr.opcode = IB_WR_SEND;
  821. wr.send_flags = 0;
  822. /*
  823. * Unsignalled send completions are another giant desaster in the
  824. * IB Verbs spec: If we don't regularly post signalled sends
  825. * the send queue will fill up and only a QP reset will rescue us.
  826. * Would have been way to obvious to handle this in hardware or
  827. * at least the RDMA stack..
  828. *
  829. * This messy and racy code sniplet is copy and pasted from the iSER
  830. * initiator, and the magic '32' comes from there as well.
  831. *
  832. * Always signal the flushes. The magic request used for the flush
  833. * sequencer is not allocated in our driver's tagset and it's
  834. * triggered to be freed by blk_cleanup_queue(). So we need to
  835. * always mark it as signaled to ensure that the "wr_cqe", which is
  836. * embeded in request's payload, is not freed when __ib_process_cq()
  837. * calls wr_cqe->done().
  838. */
  839. if ((++queue->sig_count % 32) == 0 || flush)
  840. wr.send_flags |= IB_SEND_SIGNALED;
  841. if (first)
  842. first->next = &wr;
  843. else
  844. first = &wr;
  845. ret = ib_post_send(queue->qp, first, &bad_wr);
  846. if (ret) {
  847. dev_err(queue->ctrl->ctrl.device,
  848. "%s failed with error code %d\n", __func__, ret);
  849. }
  850. return ret;
  851. }
  852. static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
  853. struct nvme_rdma_qe *qe)
  854. {
  855. struct ib_recv_wr wr, *bad_wr;
  856. struct ib_sge list;
  857. int ret;
  858. list.addr = qe->dma;
  859. list.length = sizeof(struct nvme_completion);
  860. list.lkey = queue->device->pd->local_dma_lkey;
  861. qe->cqe.done = nvme_rdma_recv_done;
  862. wr.next = NULL;
  863. wr.wr_cqe = &qe->cqe;
  864. wr.sg_list = &list;
  865. wr.num_sge = 1;
  866. ret = ib_post_recv(queue->qp, &wr, &bad_wr);
  867. if (ret) {
  868. dev_err(queue->ctrl->ctrl.device,
  869. "%s failed with error code %d\n", __func__, ret);
  870. }
  871. return ret;
  872. }
  873. static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
  874. {
  875. u32 queue_idx = nvme_rdma_queue_idx(queue);
  876. if (queue_idx == 0)
  877. return queue->ctrl->admin_tag_set.tags[queue_idx];
  878. return queue->ctrl->tag_set.tags[queue_idx - 1];
  879. }
  880. static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
  881. {
  882. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
  883. struct nvme_rdma_queue *queue = &ctrl->queues[0];
  884. struct ib_device *dev = queue->device->dev;
  885. struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
  886. struct nvme_command *cmd = sqe->data;
  887. struct ib_sge sge;
  888. int ret;
  889. if (WARN_ON_ONCE(aer_idx != 0))
  890. return;
  891. ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
  892. memset(cmd, 0, sizeof(*cmd));
  893. cmd->common.opcode = nvme_admin_async_event;
  894. cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
  895. cmd->common.flags |= NVME_CMD_SGL_METABUF;
  896. nvme_rdma_set_sg_null(cmd);
  897. ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
  898. DMA_TO_DEVICE);
  899. ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
  900. WARN_ON_ONCE(ret);
  901. }
  902. static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
  903. struct nvme_completion *cqe, struct ib_wc *wc, int tag)
  904. {
  905. u16 status = le16_to_cpu(cqe->status);
  906. struct request *rq;
  907. struct nvme_rdma_request *req;
  908. int ret = 0;
  909. status >>= 1;
  910. rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
  911. if (!rq) {
  912. dev_err(queue->ctrl->ctrl.device,
  913. "tag 0x%x on QP %#x not found\n",
  914. cqe->command_id, queue->qp->qp_num);
  915. nvme_rdma_error_recovery(queue->ctrl);
  916. return ret;
  917. }
  918. req = blk_mq_rq_to_pdu(rq);
  919. if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
  920. memcpy(rq->special, cqe, sizeof(*cqe));
  921. if (rq->tag == tag)
  922. ret = 1;
  923. if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
  924. wc->ex.invalidate_rkey == req->mr->rkey)
  925. req->need_inval = false;
  926. blk_mq_complete_request(rq, status);
  927. return ret;
  928. }
  929. static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
  930. {
  931. struct nvme_rdma_qe *qe =
  932. container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
  933. struct nvme_rdma_queue *queue = cq->cq_context;
  934. struct ib_device *ibdev = queue->device->dev;
  935. struct nvme_completion *cqe = qe->data;
  936. const size_t len = sizeof(struct nvme_completion);
  937. int ret = 0;
  938. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  939. nvme_rdma_wr_error(cq, wc, "RECV");
  940. return 0;
  941. }
  942. ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
  943. /*
  944. * AEN requests are special as they don't time out and can
  945. * survive any kind of queue freeze and often don't respond to
  946. * aborts. We don't even bother to allocate a struct request
  947. * for them but rather special case them here.
  948. */
  949. if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
  950. cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
  951. nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
  952. else
  953. ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
  954. ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
  955. nvme_rdma_post_recv(queue, qe);
  956. return ret;
  957. }
  958. static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
  959. {
  960. __nvme_rdma_recv_done(cq, wc, -1);
  961. }
  962. static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
  963. {
  964. int ret, i;
  965. for (i = 0; i < queue->queue_size; i++) {
  966. ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
  967. if (ret)
  968. goto out_destroy_queue_ib;
  969. }
  970. return 0;
  971. out_destroy_queue_ib:
  972. nvme_rdma_destroy_queue_ib(queue);
  973. return ret;
  974. }
  975. static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
  976. struct rdma_cm_event *ev)
  977. {
  978. if (ev->param.conn.private_data_len) {
  979. struct nvme_rdma_cm_rej *rej =
  980. (struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
  981. dev_err(queue->ctrl->ctrl.device,
  982. "Connect rejected, status %d.", le16_to_cpu(rej->sts));
  983. /* XXX: Think of something clever to do here... */
  984. } else {
  985. dev_err(queue->ctrl->ctrl.device,
  986. "Connect rejected, no private data.\n");
  987. }
  988. return -ECONNRESET;
  989. }
  990. static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
  991. {
  992. struct nvme_rdma_device *dev;
  993. int ret;
  994. dev = nvme_rdma_find_get_device(queue->cm_id);
  995. if (!dev) {
  996. dev_err(queue->cm_id->device->dma_device,
  997. "no client data found!\n");
  998. return -ECONNREFUSED;
  999. }
  1000. ret = nvme_rdma_create_queue_ib(queue, dev);
  1001. if (ret) {
  1002. nvme_rdma_dev_put(dev);
  1003. goto out;
  1004. }
  1005. ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
  1006. if (ret) {
  1007. dev_err(queue->ctrl->ctrl.device,
  1008. "rdma_resolve_route failed (%d).\n",
  1009. queue->cm_error);
  1010. goto out_destroy_queue;
  1011. }
  1012. return 0;
  1013. out_destroy_queue:
  1014. nvme_rdma_destroy_queue_ib(queue);
  1015. out:
  1016. return ret;
  1017. }
  1018. static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
  1019. {
  1020. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  1021. struct rdma_conn_param param = { };
  1022. struct nvme_rdma_cm_req priv = { };
  1023. int ret;
  1024. param.qp_num = queue->qp->qp_num;
  1025. param.flow_control = 1;
  1026. param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
  1027. /* maximum retry count */
  1028. param.retry_count = 7;
  1029. param.rnr_retry_count = 7;
  1030. param.private_data = &priv;
  1031. param.private_data_len = sizeof(priv);
  1032. priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
  1033. priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
  1034. priv.hrqsize = cpu_to_le16(queue->queue_size);
  1035. priv.hsqsize = cpu_to_le16(queue->queue_size);
  1036. ret = rdma_connect(queue->cm_id, &param);
  1037. if (ret) {
  1038. dev_err(ctrl->ctrl.device,
  1039. "rdma_connect failed (%d).\n", ret);
  1040. goto out_destroy_queue_ib;
  1041. }
  1042. return 0;
  1043. out_destroy_queue_ib:
  1044. nvme_rdma_destroy_queue_ib(queue);
  1045. return ret;
  1046. }
  1047. /**
  1048. * nvme_rdma_device_unplug() - Handle RDMA device unplug
  1049. * @queue: Queue that owns the cm_id that caught the event
  1050. *
  1051. * DEVICE_REMOVAL event notifies us that the RDMA device is about
  1052. * to unplug so we should take care of destroying our RDMA resources.
  1053. * This event will be generated for each allocated cm_id.
  1054. *
  1055. * In our case, the RDMA resources are managed per controller and not
  1056. * only per queue. So the way we handle this is we trigger an implicit
  1057. * controller deletion upon the first DEVICE_REMOVAL event we see, and
  1058. * hold the event inflight until the controller deletion is completed.
  1059. *
  1060. * One exception that we need to handle is the destruction of the cm_id
  1061. * that caught the event. Since we hold the callout until the controller
  1062. * deletion is completed, we'll deadlock if the controller deletion will
  1063. * call rdma_destroy_id on this queue's cm_id. Thus, we claim ownership
  1064. * of destroying this queue before-hand, destroy the queue resources,
  1065. * then queue the controller deletion which won't destroy this queue and
  1066. * we destroy the cm_id implicitely by returning a non-zero rc to the callout.
  1067. */
  1068. static int nvme_rdma_device_unplug(struct nvme_rdma_queue *queue)
  1069. {
  1070. struct nvme_rdma_ctrl *ctrl = queue->ctrl;
  1071. int ret;
  1072. /* Own the controller deletion */
  1073. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
  1074. return 0;
  1075. dev_warn(ctrl->ctrl.device,
  1076. "Got rdma device removal event, deleting ctrl\n");
  1077. /* Get rid of reconnect work if its running */
  1078. cancel_delayed_work_sync(&ctrl->reconnect_work);
  1079. /* Disable the queue so ctrl delete won't free it */
  1080. if (test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags)) {
  1081. /* Free this queue ourselves */
  1082. nvme_rdma_stop_queue(queue);
  1083. nvme_rdma_destroy_queue_ib(queue);
  1084. /* Return non-zero so the cm_id will destroy implicitly */
  1085. ret = 1;
  1086. }
  1087. /* Queue controller deletion */
  1088. queue_work(nvme_rdma_wq, &ctrl->delete_work);
  1089. flush_work(&ctrl->delete_work);
  1090. return ret;
  1091. }
  1092. static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
  1093. struct rdma_cm_event *ev)
  1094. {
  1095. struct nvme_rdma_queue *queue = cm_id->context;
  1096. int cm_error = 0;
  1097. dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
  1098. rdma_event_msg(ev->event), ev->event,
  1099. ev->status, cm_id);
  1100. switch (ev->event) {
  1101. case RDMA_CM_EVENT_ADDR_RESOLVED:
  1102. cm_error = nvme_rdma_addr_resolved(queue);
  1103. break;
  1104. case RDMA_CM_EVENT_ROUTE_RESOLVED:
  1105. cm_error = nvme_rdma_route_resolved(queue);
  1106. break;
  1107. case RDMA_CM_EVENT_ESTABLISHED:
  1108. queue->cm_error = nvme_rdma_conn_established(queue);
  1109. /* complete cm_done regardless of success/failure */
  1110. complete(&queue->cm_done);
  1111. return 0;
  1112. case RDMA_CM_EVENT_REJECTED:
  1113. cm_error = nvme_rdma_conn_rejected(queue, ev);
  1114. break;
  1115. case RDMA_CM_EVENT_ADDR_ERROR:
  1116. case RDMA_CM_EVENT_ROUTE_ERROR:
  1117. case RDMA_CM_EVENT_CONNECT_ERROR:
  1118. case RDMA_CM_EVENT_UNREACHABLE:
  1119. dev_dbg(queue->ctrl->ctrl.device,
  1120. "CM error event %d\n", ev->event);
  1121. cm_error = -ECONNRESET;
  1122. break;
  1123. case RDMA_CM_EVENT_DISCONNECTED:
  1124. case RDMA_CM_EVENT_ADDR_CHANGE:
  1125. case RDMA_CM_EVENT_TIMEWAIT_EXIT:
  1126. dev_dbg(queue->ctrl->ctrl.device,
  1127. "disconnect received - connection closed\n");
  1128. nvme_rdma_error_recovery(queue->ctrl);
  1129. break;
  1130. case RDMA_CM_EVENT_DEVICE_REMOVAL:
  1131. /* return 1 means impliciy CM ID destroy */
  1132. return nvme_rdma_device_unplug(queue);
  1133. default:
  1134. dev_err(queue->ctrl->ctrl.device,
  1135. "Unexpected RDMA CM event (%d)\n", ev->event);
  1136. nvme_rdma_error_recovery(queue->ctrl);
  1137. break;
  1138. }
  1139. if (cm_error) {
  1140. queue->cm_error = cm_error;
  1141. complete(&queue->cm_done);
  1142. }
  1143. return 0;
  1144. }
  1145. static enum blk_eh_timer_return
  1146. nvme_rdma_timeout(struct request *rq, bool reserved)
  1147. {
  1148. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1149. /* queue error recovery */
  1150. nvme_rdma_error_recovery(req->queue->ctrl);
  1151. /* fail with DNR on cmd timeout */
  1152. rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
  1153. return BLK_EH_HANDLED;
  1154. }
  1155. static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
  1156. const struct blk_mq_queue_data *bd)
  1157. {
  1158. struct nvme_ns *ns = hctx->queue->queuedata;
  1159. struct nvme_rdma_queue *queue = hctx->driver_data;
  1160. struct request *rq = bd->rq;
  1161. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1162. struct nvme_rdma_qe *sqe = &req->sqe;
  1163. struct nvme_command *c = sqe->data;
  1164. bool flush = false;
  1165. struct ib_device *dev;
  1166. unsigned int map_len;
  1167. int ret;
  1168. WARN_ON_ONCE(rq->tag < 0);
  1169. dev = queue->device->dev;
  1170. ib_dma_sync_single_for_cpu(dev, sqe->dma,
  1171. sizeof(struct nvme_command), DMA_TO_DEVICE);
  1172. ret = nvme_setup_cmd(ns, rq, c);
  1173. if (ret)
  1174. return ret;
  1175. c->common.command_id = rq->tag;
  1176. blk_mq_start_request(rq);
  1177. map_len = nvme_map_len(rq);
  1178. ret = nvme_rdma_map_data(queue, rq, map_len, c);
  1179. if (ret < 0) {
  1180. dev_err(queue->ctrl->ctrl.device,
  1181. "Failed to map data (%d)\n", ret);
  1182. nvme_cleanup_cmd(rq);
  1183. goto err;
  1184. }
  1185. ib_dma_sync_single_for_device(dev, sqe->dma,
  1186. sizeof(struct nvme_command), DMA_TO_DEVICE);
  1187. if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
  1188. flush = true;
  1189. ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
  1190. req->need_inval ? &req->reg_wr.wr : NULL, flush);
  1191. if (ret) {
  1192. nvme_rdma_unmap_data(queue, rq);
  1193. goto err;
  1194. }
  1195. return BLK_MQ_RQ_QUEUE_OK;
  1196. err:
  1197. return (ret == -ENOMEM || ret == -EAGAIN) ?
  1198. BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
  1199. }
  1200. static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  1201. {
  1202. struct nvme_rdma_queue *queue = hctx->driver_data;
  1203. struct ib_cq *cq = queue->ib_cq;
  1204. struct ib_wc wc;
  1205. int found = 0;
  1206. ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
  1207. while (ib_poll_cq(cq, 1, &wc) > 0) {
  1208. struct ib_cqe *cqe = wc.wr_cqe;
  1209. if (cqe) {
  1210. if (cqe->done == nvme_rdma_recv_done)
  1211. found |= __nvme_rdma_recv_done(cq, &wc, tag);
  1212. else
  1213. cqe->done(cq, &wc);
  1214. }
  1215. }
  1216. return found;
  1217. }
  1218. static void nvme_rdma_complete_rq(struct request *rq)
  1219. {
  1220. struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
  1221. struct nvme_rdma_queue *queue = req->queue;
  1222. int error = 0;
  1223. nvme_rdma_unmap_data(queue, rq);
  1224. if (unlikely(rq->errors)) {
  1225. if (nvme_req_needs_retry(rq, rq->errors)) {
  1226. nvme_requeue_req(rq);
  1227. return;
  1228. }
  1229. if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
  1230. error = rq->errors;
  1231. else
  1232. error = nvme_error_status(rq->errors);
  1233. }
  1234. blk_mq_end_request(rq, error);
  1235. }
  1236. static struct blk_mq_ops nvme_rdma_mq_ops = {
  1237. .queue_rq = nvme_rdma_queue_rq,
  1238. .complete = nvme_rdma_complete_rq,
  1239. .map_queue = blk_mq_map_queue,
  1240. .init_request = nvme_rdma_init_request,
  1241. .exit_request = nvme_rdma_exit_request,
  1242. .reinit_request = nvme_rdma_reinit_request,
  1243. .init_hctx = nvme_rdma_init_hctx,
  1244. .poll = nvme_rdma_poll,
  1245. .timeout = nvme_rdma_timeout,
  1246. };
  1247. static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
  1248. .queue_rq = nvme_rdma_queue_rq,
  1249. .complete = nvme_rdma_complete_rq,
  1250. .map_queue = blk_mq_map_queue,
  1251. .init_request = nvme_rdma_init_admin_request,
  1252. .exit_request = nvme_rdma_exit_admin_request,
  1253. .reinit_request = nvme_rdma_reinit_request,
  1254. .init_hctx = nvme_rdma_init_admin_hctx,
  1255. .timeout = nvme_rdma_timeout,
  1256. };
  1257. static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
  1258. {
  1259. int error;
  1260. error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
  1261. if (error)
  1262. return error;
  1263. ctrl->device = ctrl->queues[0].device;
  1264. /*
  1265. * We need a reference on the device as long as the tag_set is alive,
  1266. * as the MRs in the request structures need a valid ib_device.
  1267. */
  1268. error = -EINVAL;
  1269. if (!nvme_rdma_dev_get(ctrl->device))
  1270. goto out_free_queue;
  1271. ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
  1272. ctrl->device->dev->attrs.max_fast_reg_page_list_len);
  1273. memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
  1274. ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
  1275. ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
  1276. ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
  1277. ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
  1278. ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
  1279. SG_CHUNK_SIZE * sizeof(struct scatterlist);
  1280. ctrl->admin_tag_set.driver_data = ctrl;
  1281. ctrl->admin_tag_set.nr_hw_queues = 1;
  1282. ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
  1283. error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
  1284. if (error)
  1285. goto out_put_dev;
  1286. ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
  1287. if (IS_ERR(ctrl->ctrl.admin_q)) {
  1288. error = PTR_ERR(ctrl->ctrl.admin_q);
  1289. goto out_free_tagset;
  1290. }
  1291. error = nvmf_connect_admin_queue(&ctrl->ctrl);
  1292. if (error)
  1293. goto out_cleanup_queue;
  1294. error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
  1295. if (error) {
  1296. dev_err(ctrl->ctrl.device,
  1297. "prop_get NVME_REG_CAP failed\n");
  1298. goto out_cleanup_queue;
  1299. }
  1300. ctrl->ctrl.sqsize =
  1301. min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
  1302. error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
  1303. if (error)
  1304. goto out_cleanup_queue;
  1305. ctrl->ctrl.max_hw_sectors =
  1306. (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
  1307. error = nvme_init_identify(&ctrl->ctrl);
  1308. if (error)
  1309. goto out_cleanup_queue;
  1310. error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
  1311. &ctrl->async_event_sqe, sizeof(struct nvme_command),
  1312. DMA_TO_DEVICE);
  1313. if (error)
  1314. goto out_cleanup_queue;
  1315. nvme_start_keep_alive(&ctrl->ctrl);
  1316. return 0;
  1317. out_cleanup_queue:
  1318. blk_cleanup_queue(ctrl->ctrl.admin_q);
  1319. out_free_tagset:
  1320. /* disconnect and drain the queue before freeing the tagset */
  1321. nvme_rdma_stop_queue(&ctrl->queues[0]);
  1322. blk_mq_free_tag_set(&ctrl->admin_tag_set);
  1323. out_put_dev:
  1324. nvme_rdma_dev_put(ctrl->device);
  1325. out_free_queue:
  1326. nvme_rdma_free_queue(&ctrl->queues[0]);
  1327. return error;
  1328. }
  1329. static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
  1330. {
  1331. nvme_stop_keep_alive(&ctrl->ctrl);
  1332. cancel_work_sync(&ctrl->err_work);
  1333. cancel_delayed_work_sync(&ctrl->reconnect_work);
  1334. if (ctrl->queue_count > 1) {
  1335. nvme_stop_queues(&ctrl->ctrl);
  1336. blk_mq_tagset_busy_iter(&ctrl->tag_set,
  1337. nvme_cancel_request, &ctrl->ctrl);
  1338. nvme_rdma_free_io_queues(ctrl);
  1339. }
  1340. if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
  1341. nvme_shutdown_ctrl(&ctrl->ctrl);
  1342. blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
  1343. blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
  1344. nvme_cancel_request, &ctrl->ctrl);
  1345. nvme_rdma_destroy_admin_queue(ctrl);
  1346. }
  1347. static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
  1348. {
  1349. nvme_uninit_ctrl(&ctrl->ctrl);
  1350. if (shutdown)
  1351. nvme_rdma_shutdown_ctrl(ctrl);
  1352. if (ctrl->ctrl.tagset) {
  1353. blk_cleanup_queue(ctrl->ctrl.connect_q);
  1354. blk_mq_free_tag_set(&ctrl->tag_set);
  1355. nvme_rdma_dev_put(ctrl->device);
  1356. }
  1357. nvme_put_ctrl(&ctrl->ctrl);
  1358. }
  1359. static void nvme_rdma_del_ctrl_work(struct work_struct *work)
  1360. {
  1361. struct nvme_rdma_ctrl *ctrl = container_of(work,
  1362. struct nvme_rdma_ctrl, delete_work);
  1363. __nvme_rdma_remove_ctrl(ctrl, true);
  1364. }
  1365. static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
  1366. {
  1367. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
  1368. return -EBUSY;
  1369. if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
  1370. return -EBUSY;
  1371. return 0;
  1372. }
  1373. static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
  1374. {
  1375. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  1376. int ret;
  1377. ret = __nvme_rdma_del_ctrl(ctrl);
  1378. if (ret)
  1379. return ret;
  1380. flush_work(&ctrl->delete_work);
  1381. return 0;
  1382. }
  1383. static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
  1384. {
  1385. struct nvme_rdma_ctrl *ctrl = container_of(work,
  1386. struct nvme_rdma_ctrl, delete_work);
  1387. __nvme_rdma_remove_ctrl(ctrl, false);
  1388. }
  1389. static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
  1390. {
  1391. struct nvme_rdma_ctrl *ctrl = container_of(work,
  1392. struct nvme_rdma_ctrl, reset_work);
  1393. int ret;
  1394. bool changed;
  1395. nvme_rdma_shutdown_ctrl(ctrl);
  1396. ret = nvme_rdma_configure_admin_queue(ctrl);
  1397. if (ret) {
  1398. /* ctrl is already shutdown, just remove the ctrl */
  1399. INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
  1400. goto del_dead_ctrl;
  1401. }
  1402. if (ctrl->queue_count > 1) {
  1403. ret = blk_mq_reinit_tagset(&ctrl->tag_set);
  1404. if (ret)
  1405. goto del_dead_ctrl;
  1406. ret = nvme_rdma_init_io_queues(ctrl);
  1407. if (ret)
  1408. goto del_dead_ctrl;
  1409. ret = nvme_rdma_connect_io_queues(ctrl);
  1410. if (ret)
  1411. goto del_dead_ctrl;
  1412. }
  1413. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  1414. WARN_ON_ONCE(!changed);
  1415. if (ctrl->queue_count > 1) {
  1416. nvme_start_queues(&ctrl->ctrl);
  1417. nvme_queue_scan(&ctrl->ctrl);
  1418. nvme_queue_async_events(&ctrl->ctrl);
  1419. }
  1420. return;
  1421. del_dead_ctrl:
  1422. /* Deleting this dead controller... */
  1423. dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
  1424. WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
  1425. }
  1426. static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
  1427. {
  1428. struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
  1429. if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
  1430. return -EBUSY;
  1431. if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
  1432. return -EBUSY;
  1433. flush_work(&ctrl->reset_work);
  1434. return 0;
  1435. }
  1436. static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
  1437. .name = "rdma",
  1438. .module = THIS_MODULE,
  1439. .is_fabrics = true,
  1440. .reg_read32 = nvmf_reg_read32,
  1441. .reg_read64 = nvmf_reg_read64,
  1442. .reg_write32 = nvmf_reg_write32,
  1443. .reset_ctrl = nvme_rdma_reset_ctrl,
  1444. .free_ctrl = nvme_rdma_free_ctrl,
  1445. .submit_async_event = nvme_rdma_submit_async_event,
  1446. .delete_ctrl = nvme_rdma_del_ctrl,
  1447. .get_subsysnqn = nvmf_get_subsysnqn,
  1448. .get_address = nvmf_get_address,
  1449. };
  1450. static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
  1451. {
  1452. struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
  1453. int ret;
  1454. ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
  1455. if (ret)
  1456. return ret;
  1457. ctrl->queue_count = opts->nr_io_queues + 1;
  1458. if (ctrl->queue_count < 2)
  1459. return 0;
  1460. dev_info(ctrl->ctrl.device,
  1461. "creating %d I/O queues.\n", opts->nr_io_queues);
  1462. ret = nvme_rdma_init_io_queues(ctrl);
  1463. if (ret)
  1464. return ret;
  1465. /*
  1466. * We need a reference on the device as long as the tag_set is alive,
  1467. * as the MRs in the request structures need a valid ib_device.
  1468. */
  1469. ret = -EINVAL;
  1470. if (!nvme_rdma_dev_get(ctrl->device))
  1471. goto out_free_io_queues;
  1472. memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
  1473. ctrl->tag_set.ops = &nvme_rdma_mq_ops;
  1474. ctrl->tag_set.queue_depth = ctrl->ctrl.sqsize;
  1475. ctrl->tag_set.reserved_tags = 1; /* fabric connect */
  1476. ctrl->tag_set.numa_node = NUMA_NO_NODE;
  1477. ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
  1478. ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
  1479. SG_CHUNK_SIZE * sizeof(struct scatterlist);
  1480. ctrl->tag_set.driver_data = ctrl;
  1481. ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
  1482. ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
  1483. ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
  1484. if (ret)
  1485. goto out_put_dev;
  1486. ctrl->ctrl.tagset = &ctrl->tag_set;
  1487. ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
  1488. if (IS_ERR(ctrl->ctrl.connect_q)) {
  1489. ret = PTR_ERR(ctrl->ctrl.connect_q);
  1490. goto out_free_tag_set;
  1491. }
  1492. ret = nvme_rdma_connect_io_queues(ctrl);
  1493. if (ret)
  1494. goto out_cleanup_connect_q;
  1495. return 0;
  1496. out_cleanup_connect_q:
  1497. blk_cleanup_queue(ctrl->ctrl.connect_q);
  1498. out_free_tag_set:
  1499. blk_mq_free_tag_set(&ctrl->tag_set);
  1500. out_put_dev:
  1501. nvme_rdma_dev_put(ctrl->device);
  1502. out_free_io_queues:
  1503. nvme_rdma_free_io_queues(ctrl);
  1504. return ret;
  1505. }
  1506. static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
  1507. {
  1508. u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
  1509. size_t buflen = strlen(p);
  1510. /* XXX: handle IPv6 addresses */
  1511. if (buflen > INET_ADDRSTRLEN)
  1512. return -EINVAL;
  1513. if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
  1514. return -EINVAL;
  1515. in_addr->sin_family = AF_INET;
  1516. return 0;
  1517. }
  1518. static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
  1519. struct nvmf_ctrl_options *opts)
  1520. {
  1521. struct nvme_rdma_ctrl *ctrl;
  1522. int ret;
  1523. bool changed;
  1524. ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
  1525. if (!ctrl)
  1526. return ERR_PTR(-ENOMEM);
  1527. ctrl->ctrl.opts = opts;
  1528. INIT_LIST_HEAD(&ctrl->list);
  1529. ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
  1530. if (ret) {
  1531. pr_err("malformed IP address passed: %s\n", opts->traddr);
  1532. goto out_free_ctrl;
  1533. }
  1534. if (opts->mask & NVMF_OPT_TRSVCID) {
  1535. u16 port;
  1536. ret = kstrtou16(opts->trsvcid, 0, &port);
  1537. if (ret)
  1538. goto out_free_ctrl;
  1539. ctrl->addr_in.sin_port = cpu_to_be16(port);
  1540. } else {
  1541. ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
  1542. }
  1543. ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
  1544. 0 /* no quirks, we're perfect! */);
  1545. if (ret)
  1546. goto out_free_ctrl;
  1547. ctrl->reconnect_delay = opts->reconnect_delay;
  1548. INIT_DELAYED_WORK(&ctrl->reconnect_work,
  1549. nvme_rdma_reconnect_ctrl_work);
  1550. INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
  1551. INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
  1552. INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
  1553. spin_lock_init(&ctrl->lock);
  1554. ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
  1555. ctrl->ctrl.sqsize = opts->queue_size;
  1556. ctrl->ctrl.kato = opts->kato;
  1557. ret = -ENOMEM;
  1558. ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
  1559. GFP_KERNEL);
  1560. if (!ctrl->queues)
  1561. goto out_uninit_ctrl;
  1562. ret = nvme_rdma_configure_admin_queue(ctrl);
  1563. if (ret)
  1564. goto out_kfree_queues;
  1565. /* sanity check icdoff */
  1566. if (ctrl->ctrl.icdoff) {
  1567. dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
  1568. goto out_remove_admin_queue;
  1569. }
  1570. /* sanity check keyed sgls */
  1571. if (!(ctrl->ctrl.sgls & (1 << 20))) {
  1572. dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
  1573. goto out_remove_admin_queue;
  1574. }
  1575. if (opts->queue_size > ctrl->ctrl.maxcmd) {
  1576. /* warn if maxcmd is lower than queue_size */
  1577. dev_warn(ctrl->ctrl.device,
  1578. "queue_size %zu > ctrl maxcmd %u, clamping down\n",
  1579. opts->queue_size, ctrl->ctrl.maxcmd);
  1580. opts->queue_size = ctrl->ctrl.maxcmd;
  1581. }
  1582. if (opts->nr_io_queues) {
  1583. ret = nvme_rdma_create_io_queues(ctrl);
  1584. if (ret)
  1585. goto out_remove_admin_queue;
  1586. }
  1587. changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
  1588. WARN_ON_ONCE(!changed);
  1589. dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
  1590. ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
  1591. kref_get(&ctrl->ctrl.kref);
  1592. mutex_lock(&nvme_rdma_ctrl_mutex);
  1593. list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
  1594. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1595. if (opts->nr_io_queues) {
  1596. nvme_queue_scan(&ctrl->ctrl);
  1597. nvme_queue_async_events(&ctrl->ctrl);
  1598. }
  1599. return &ctrl->ctrl;
  1600. out_remove_admin_queue:
  1601. nvme_stop_keep_alive(&ctrl->ctrl);
  1602. nvme_rdma_destroy_admin_queue(ctrl);
  1603. out_kfree_queues:
  1604. kfree(ctrl->queues);
  1605. out_uninit_ctrl:
  1606. nvme_uninit_ctrl(&ctrl->ctrl);
  1607. nvme_put_ctrl(&ctrl->ctrl);
  1608. if (ret > 0)
  1609. ret = -EIO;
  1610. return ERR_PTR(ret);
  1611. out_free_ctrl:
  1612. kfree(ctrl);
  1613. return ERR_PTR(ret);
  1614. }
  1615. static struct nvmf_transport_ops nvme_rdma_transport = {
  1616. .name = "rdma",
  1617. .required_opts = NVMF_OPT_TRADDR,
  1618. .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
  1619. .create_ctrl = nvme_rdma_create_ctrl,
  1620. };
  1621. static int __init nvme_rdma_init_module(void)
  1622. {
  1623. nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
  1624. if (!nvme_rdma_wq)
  1625. return -ENOMEM;
  1626. nvmf_register_transport(&nvme_rdma_transport);
  1627. return 0;
  1628. }
  1629. static void __exit nvme_rdma_cleanup_module(void)
  1630. {
  1631. struct nvme_rdma_ctrl *ctrl;
  1632. nvmf_unregister_transport(&nvme_rdma_transport);
  1633. mutex_lock(&nvme_rdma_ctrl_mutex);
  1634. list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
  1635. __nvme_rdma_del_ctrl(ctrl);
  1636. mutex_unlock(&nvme_rdma_ctrl_mutex);
  1637. destroy_workqueue(nvme_rdma_wq);
  1638. }
  1639. module_init(nvme_rdma_init_module);
  1640. module_exit(nvme_rdma_cleanup_module);
  1641. MODULE_LICENSE("GPL v2");