pci.c 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/aer.h>
  15. #include <linux/bitops.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/blk-mq.h>
  18. #include <linux/cpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/errno.h>
  21. #include <linux/fs.h>
  22. #include <linux/genhd.h>
  23. #include <linux/hdreg.h>
  24. #include <linux/idr.h>
  25. #include <linux/init.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/io.h>
  28. #include <linux/kdev_t.h>
  29. #include <linux/kernel.h>
  30. #include <linux/mm.h>
  31. #include <linux/module.h>
  32. #include <linux/moduleparam.h>
  33. #include <linux/mutex.h>
  34. #include <linux/pci.h>
  35. #include <linux/poison.h>
  36. #include <linux/ptrace.h>
  37. #include <linux/sched.h>
  38. #include <linux/slab.h>
  39. #include <linux/t10-pi.h>
  40. #include <linux/timer.h>
  41. #include <linux/types.h>
  42. #include <linux/io-64-nonatomic-lo-hi.h>
  43. #include <asm/unaligned.h>
  44. #include "nvme.h"
  45. #define NVME_Q_DEPTH 1024
  46. #define NVME_AQ_DEPTH 256
  47. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  48. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  49. /*
  50. * We handle AEN commands ourselves and don't even let the
  51. * block layer know about them.
  52. */
  53. #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
  54. static int use_threaded_interrupts;
  55. module_param(use_threaded_interrupts, int, 0);
  56. static bool use_cmb_sqes = true;
  57. module_param(use_cmb_sqes, bool, 0644);
  58. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  59. static struct workqueue_struct *nvme_workq;
  60. struct nvme_dev;
  61. struct nvme_queue;
  62. static int nvme_reset(struct nvme_dev *dev);
  63. static void nvme_process_cq(struct nvme_queue *nvmeq);
  64. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  65. /*
  66. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  67. */
  68. struct nvme_dev {
  69. struct nvme_queue **queues;
  70. struct blk_mq_tag_set tagset;
  71. struct blk_mq_tag_set admin_tagset;
  72. u32 __iomem *dbs;
  73. struct device *dev;
  74. struct dma_pool *prp_page_pool;
  75. struct dma_pool *prp_small_pool;
  76. unsigned queue_count;
  77. unsigned online_queues;
  78. unsigned max_qid;
  79. int q_depth;
  80. u32 db_stride;
  81. struct msix_entry *entry;
  82. void __iomem *bar;
  83. struct work_struct reset_work;
  84. struct work_struct remove_work;
  85. struct timer_list watchdog_timer;
  86. struct mutex shutdown_lock;
  87. bool subsystem;
  88. void __iomem *cmb;
  89. dma_addr_t cmb_dma_addr;
  90. u64 cmb_size;
  91. u32 cmbsz;
  92. struct nvme_ctrl ctrl;
  93. struct completion ioq_wait;
  94. };
  95. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  96. {
  97. return container_of(ctrl, struct nvme_dev, ctrl);
  98. }
  99. /*
  100. * An NVM Express queue. Each device has at least two (one for admin
  101. * commands and one for I/O commands).
  102. */
  103. struct nvme_queue {
  104. struct device *q_dmadev;
  105. struct nvme_dev *dev;
  106. char irqname[24]; /* nvme4294967295-65535\0 */
  107. spinlock_t q_lock;
  108. struct nvme_command *sq_cmds;
  109. struct nvme_command __iomem *sq_cmds_io;
  110. volatile struct nvme_completion *cqes;
  111. struct blk_mq_tags **tags;
  112. dma_addr_t sq_dma_addr;
  113. dma_addr_t cq_dma_addr;
  114. u32 __iomem *q_db;
  115. u16 q_depth;
  116. s16 cq_vector;
  117. u16 sq_tail;
  118. u16 cq_head;
  119. u16 qid;
  120. u8 cq_phase;
  121. u8 cqe_seen;
  122. };
  123. /*
  124. * The nvme_iod describes the data in an I/O, including the list of PRP
  125. * entries. You can't see it in this data structure because C doesn't let
  126. * me express that. Use nvme_init_iod to ensure there's enough space
  127. * allocated to store the PRP list.
  128. */
  129. struct nvme_iod {
  130. struct nvme_queue *nvmeq;
  131. int aborted;
  132. int npages; /* In the PRP list. 0 means small pool in use */
  133. int nents; /* Used in scatterlist */
  134. int length; /* Of data, in bytes */
  135. dma_addr_t first_dma;
  136. struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
  137. struct scatterlist *sg;
  138. struct scatterlist inline_sg[0];
  139. };
  140. /*
  141. * Check we didin't inadvertently grow the command struct
  142. */
  143. static inline void _nvme_check_size(void)
  144. {
  145. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  146. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  147. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  148. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  149. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  150. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  151. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  152. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  153. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  154. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
  155. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  156. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  157. }
  158. /*
  159. * Max size of iod being embedded in the request payload
  160. */
  161. #define NVME_INT_PAGES 2
  162. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  163. /*
  164. * Will slightly overestimate the number of pages needed. This is OK
  165. * as it only leads to a small amount of wasted memory for the lifetime of
  166. * the I/O.
  167. */
  168. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  169. {
  170. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  171. dev->ctrl.page_size);
  172. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  173. }
  174. static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
  175. unsigned int size, unsigned int nseg)
  176. {
  177. return sizeof(__le64 *) * nvme_npages(size, dev) +
  178. sizeof(struct scatterlist) * nseg;
  179. }
  180. static unsigned int nvme_cmd_size(struct nvme_dev *dev)
  181. {
  182. return sizeof(struct nvme_iod) +
  183. nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
  184. }
  185. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  186. unsigned int hctx_idx)
  187. {
  188. struct nvme_dev *dev = data;
  189. struct nvme_queue *nvmeq = dev->queues[0];
  190. WARN_ON(hctx_idx != 0);
  191. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  192. WARN_ON(nvmeq->tags);
  193. hctx->driver_data = nvmeq;
  194. nvmeq->tags = &dev->admin_tagset.tags[0];
  195. return 0;
  196. }
  197. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  198. {
  199. struct nvme_queue *nvmeq = hctx->driver_data;
  200. nvmeq->tags = NULL;
  201. }
  202. static int nvme_admin_init_request(void *data, struct request *req,
  203. unsigned int hctx_idx, unsigned int rq_idx,
  204. unsigned int numa_node)
  205. {
  206. struct nvme_dev *dev = data;
  207. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  208. struct nvme_queue *nvmeq = dev->queues[0];
  209. BUG_ON(!nvmeq);
  210. iod->nvmeq = nvmeq;
  211. return 0;
  212. }
  213. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  214. unsigned int hctx_idx)
  215. {
  216. struct nvme_dev *dev = data;
  217. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  218. if (!nvmeq->tags)
  219. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  220. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  221. hctx->driver_data = nvmeq;
  222. return 0;
  223. }
  224. static int nvme_init_request(void *data, struct request *req,
  225. unsigned int hctx_idx, unsigned int rq_idx,
  226. unsigned int numa_node)
  227. {
  228. struct nvme_dev *dev = data;
  229. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  230. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  231. BUG_ON(!nvmeq);
  232. iod->nvmeq = nvmeq;
  233. return 0;
  234. }
  235. /**
  236. * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  237. * @nvmeq: The queue to use
  238. * @cmd: The command to send
  239. *
  240. * Safe to use from interrupt context
  241. */
  242. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  243. struct nvme_command *cmd)
  244. {
  245. u16 tail = nvmeq->sq_tail;
  246. if (nvmeq->sq_cmds_io)
  247. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  248. else
  249. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  250. if (++tail == nvmeq->q_depth)
  251. tail = 0;
  252. writel(tail, nvmeq->q_db);
  253. nvmeq->sq_tail = tail;
  254. }
  255. static __le64 **iod_list(struct request *req)
  256. {
  257. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  258. return (__le64 **)(iod->sg + req->nr_phys_segments);
  259. }
  260. static int nvme_init_iod(struct request *rq, unsigned size,
  261. struct nvme_dev *dev)
  262. {
  263. struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
  264. int nseg = rq->nr_phys_segments;
  265. if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
  266. iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
  267. if (!iod->sg)
  268. return BLK_MQ_RQ_QUEUE_BUSY;
  269. } else {
  270. iod->sg = iod->inline_sg;
  271. }
  272. iod->aborted = 0;
  273. iod->npages = -1;
  274. iod->nents = 0;
  275. iod->length = size;
  276. if (!(rq->cmd_flags & REQ_DONTPREP)) {
  277. rq->retries = 0;
  278. rq->cmd_flags |= REQ_DONTPREP;
  279. }
  280. return 0;
  281. }
  282. static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
  283. {
  284. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  285. const int last_prp = dev->ctrl.page_size / 8 - 1;
  286. int i;
  287. __le64 **list = iod_list(req);
  288. dma_addr_t prp_dma = iod->first_dma;
  289. nvme_cleanup_cmd(req);
  290. if (iod->npages == 0)
  291. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  292. for (i = 0; i < iod->npages; i++) {
  293. __le64 *prp_list = list[i];
  294. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  295. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  296. prp_dma = next_prp_dma;
  297. }
  298. if (iod->sg != iod->inline_sg)
  299. kfree(iod->sg);
  300. }
  301. #ifdef CONFIG_BLK_DEV_INTEGRITY
  302. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  303. {
  304. if (be32_to_cpu(pi->ref_tag) == v)
  305. pi->ref_tag = cpu_to_be32(p);
  306. }
  307. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  308. {
  309. if (be32_to_cpu(pi->ref_tag) == p)
  310. pi->ref_tag = cpu_to_be32(v);
  311. }
  312. /**
  313. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  314. *
  315. * The virtual start sector is the one that was originally submitted by the
  316. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  317. * start sector may be different. Remap protection information to match the
  318. * physical LBA on writes, and back to the original seed on reads.
  319. *
  320. * Type 0 and 3 do not have a ref tag, so no remapping required.
  321. */
  322. static void nvme_dif_remap(struct request *req,
  323. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  324. {
  325. struct nvme_ns *ns = req->rq_disk->private_data;
  326. struct bio_integrity_payload *bip;
  327. struct t10_pi_tuple *pi;
  328. void *p, *pmap;
  329. u32 i, nlb, ts, phys, virt;
  330. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  331. return;
  332. bip = bio_integrity(req->bio);
  333. if (!bip)
  334. return;
  335. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  336. p = pmap;
  337. virt = bip_get_seed(bip);
  338. phys = nvme_block_nr(ns, blk_rq_pos(req));
  339. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  340. ts = ns->disk->queue->integrity.tuple_size;
  341. for (i = 0; i < nlb; i++, virt++, phys++) {
  342. pi = (struct t10_pi_tuple *)p;
  343. dif_swap(phys, virt, pi);
  344. p += ts;
  345. }
  346. kunmap_atomic(pmap);
  347. }
  348. #else /* CONFIG_BLK_DEV_INTEGRITY */
  349. static void nvme_dif_remap(struct request *req,
  350. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  351. {
  352. }
  353. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  354. {
  355. }
  356. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  357. {
  358. }
  359. #endif
  360. static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
  361. int total_len)
  362. {
  363. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  364. struct dma_pool *pool;
  365. int length = total_len;
  366. struct scatterlist *sg = iod->sg;
  367. int dma_len = sg_dma_len(sg);
  368. u64 dma_addr = sg_dma_address(sg);
  369. u32 page_size = dev->ctrl.page_size;
  370. int offset = dma_addr & (page_size - 1);
  371. __le64 *prp_list;
  372. __le64 **list = iod_list(req);
  373. dma_addr_t prp_dma;
  374. int nprps, i;
  375. length -= (page_size - offset);
  376. if (length <= 0)
  377. return true;
  378. dma_len -= (page_size - offset);
  379. if (dma_len) {
  380. dma_addr += (page_size - offset);
  381. } else {
  382. sg = sg_next(sg);
  383. dma_addr = sg_dma_address(sg);
  384. dma_len = sg_dma_len(sg);
  385. }
  386. if (length <= page_size) {
  387. iod->first_dma = dma_addr;
  388. return true;
  389. }
  390. nprps = DIV_ROUND_UP(length, page_size);
  391. if (nprps <= (256 / 8)) {
  392. pool = dev->prp_small_pool;
  393. iod->npages = 0;
  394. } else {
  395. pool = dev->prp_page_pool;
  396. iod->npages = 1;
  397. }
  398. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  399. if (!prp_list) {
  400. iod->first_dma = dma_addr;
  401. iod->npages = -1;
  402. return false;
  403. }
  404. list[0] = prp_list;
  405. iod->first_dma = prp_dma;
  406. i = 0;
  407. for (;;) {
  408. if (i == page_size >> 3) {
  409. __le64 *old_prp_list = prp_list;
  410. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  411. if (!prp_list)
  412. return false;
  413. list[iod->npages++] = prp_list;
  414. prp_list[0] = old_prp_list[i - 1];
  415. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  416. i = 1;
  417. }
  418. prp_list[i++] = cpu_to_le64(dma_addr);
  419. dma_len -= page_size;
  420. dma_addr += page_size;
  421. length -= page_size;
  422. if (length <= 0)
  423. break;
  424. if (dma_len > 0)
  425. continue;
  426. BUG_ON(dma_len < 0);
  427. sg = sg_next(sg);
  428. dma_addr = sg_dma_address(sg);
  429. dma_len = sg_dma_len(sg);
  430. }
  431. return true;
  432. }
  433. static int nvme_map_data(struct nvme_dev *dev, struct request *req,
  434. unsigned size, struct nvme_command *cmnd)
  435. {
  436. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  437. struct request_queue *q = req->q;
  438. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  439. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  440. int ret = BLK_MQ_RQ_QUEUE_ERROR;
  441. sg_init_table(iod->sg, req->nr_phys_segments);
  442. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  443. if (!iod->nents)
  444. goto out;
  445. ret = BLK_MQ_RQ_QUEUE_BUSY;
  446. if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
  447. goto out;
  448. if (!nvme_setup_prps(dev, req, size))
  449. goto out_unmap;
  450. ret = BLK_MQ_RQ_QUEUE_ERROR;
  451. if (blk_integrity_rq(req)) {
  452. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  453. goto out_unmap;
  454. sg_init_table(&iod->meta_sg, 1);
  455. if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
  456. goto out_unmap;
  457. if (rq_data_dir(req))
  458. nvme_dif_remap(req, nvme_dif_prep);
  459. if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
  460. goto out_unmap;
  461. }
  462. cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  463. cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
  464. if (blk_integrity_rq(req))
  465. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
  466. return BLK_MQ_RQ_QUEUE_OK;
  467. out_unmap:
  468. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  469. out:
  470. return ret;
  471. }
  472. static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
  473. {
  474. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  475. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  476. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  477. if (iod->nents) {
  478. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  479. if (blk_integrity_rq(req)) {
  480. if (!rq_data_dir(req))
  481. nvme_dif_remap(req, nvme_dif_complete);
  482. dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
  483. }
  484. }
  485. nvme_free_iod(dev, req);
  486. }
  487. /*
  488. * NOTE: ns is NULL when called on the admin queue.
  489. */
  490. static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  491. const struct blk_mq_queue_data *bd)
  492. {
  493. struct nvme_ns *ns = hctx->queue->queuedata;
  494. struct nvme_queue *nvmeq = hctx->driver_data;
  495. struct nvme_dev *dev = nvmeq->dev;
  496. struct request *req = bd->rq;
  497. struct nvme_command cmnd;
  498. unsigned map_len;
  499. int ret = BLK_MQ_RQ_QUEUE_OK;
  500. /*
  501. * If formated with metadata, require the block layer provide a buffer
  502. * unless this namespace is formated such that the metadata can be
  503. * stripped/generated by the controller with PRACT=1.
  504. */
  505. if (ns && ns->ms && !blk_integrity_rq(req)) {
  506. if (!(ns->pi_type && ns->ms == 8) &&
  507. req->cmd_type != REQ_TYPE_DRV_PRIV) {
  508. blk_mq_end_request(req, -EFAULT);
  509. return BLK_MQ_RQ_QUEUE_OK;
  510. }
  511. }
  512. map_len = nvme_map_len(req);
  513. ret = nvme_init_iod(req, map_len, dev);
  514. if (ret)
  515. return ret;
  516. ret = nvme_setup_cmd(ns, req, &cmnd);
  517. if (ret)
  518. goto out;
  519. if (req->nr_phys_segments)
  520. ret = nvme_map_data(dev, req, map_len, &cmnd);
  521. if (ret)
  522. goto out;
  523. cmnd.common.command_id = req->tag;
  524. blk_mq_start_request(req);
  525. spin_lock_irq(&nvmeq->q_lock);
  526. if (unlikely(nvmeq->cq_vector < 0)) {
  527. if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
  528. ret = BLK_MQ_RQ_QUEUE_BUSY;
  529. else
  530. ret = BLK_MQ_RQ_QUEUE_ERROR;
  531. spin_unlock_irq(&nvmeq->q_lock);
  532. goto out;
  533. }
  534. __nvme_submit_cmd(nvmeq, &cmnd);
  535. nvme_process_cq(nvmeq);
  536. spin_unlock_irq(&nvmeq->q_lock);
  537. return BLK_MQ_RQ_QUEUE_OK;
  538. out:
  539. nvme_free_iod(dev, req);
  540. return ret;
  541. }
  542. static void nvme_complete_rq(struct request *req)
  543. {
  544. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  545. struct nvme_dev *dev = iod->nvmeq->dev;
  546. int error = 0;
  547. nvme_unmap_data(dev, req);
  548. if (unlikely(req->errors)) {
  549. if (nvme_req_needs_retry(req, req->errors)) {
  550. req->retries++;
  551. nvme_requeue_req(req);
  552. return;
  553. }
  554. if (req->cmd_type == REQ_TYPE_DRV_PRIV)
  555. error = req->errors;
  556. else
  557. error = nvme_error_status(req->errors);
  558. }
  559. if (unlikely(iod->aborted)) {
  560. dev_warn(dev->ctrl.device,
  561. "completing aborted command with status: %04x\n",
  562. req->errors);
  563. }
  564. blk_mq_end_request(req, error);
  565. }
  566. /* We read the CQE phase first to check if the rest of the entry is valid */
  567. static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
  568. u16 phase)
  569. {
  570. return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
  571. }
  572. static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
  573. {
  574. u16 head, phase;
  575. head = nvmeq->cq_head;
  576. phase = nvmeq->cq_phase;
  577. while (nvme_cqe_valid(nvmeq, head, phase)) {
  578. struct nvme_completion cqe = nvmeq->cqes[head];
  579. struct request *req;
  580. if (++head == nvmeq->q_depth) {
  581. head = 0;
  582. phase = !phase;
  583. }
  584. if (tag && *tag == cqe.command_id)
  585. *tag = -1;
  586. if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
  587. dev_warn(nvmeq->dev->ctrl.device,
  588. "invalid id %d completed on queue %d\n",
  589. cqe.command_id, le16_to_cpu(cqe.sq_id));
  590. continue;
  591. }
  592. /*
  593. * AEN requests are special as they don't time out and can
  594. * survive any kind of queue freeze and often don't respond to
  595. * aborts. We don't even bother to allocate a struct request
  596. * for them but rather special case them here.
  597. */
  598. if (unlikely(nvmeq->qid == 0 &&
  599. cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
  600. nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
  601. continue;
  602. }
  603. req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
  604. if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
  605. memcpy(req->special, &cqe, sizeof(cqe));
  606. blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
  607. }
  608. /* If the controller ignores the cq head doorbell and continuously
  609. * writes to the queue, it is theoretically possible to wrap around
  610. * the queue twice and mistakenly return IRQ_NONE. Linux only
  611. * requires that 0.1% of your interrupts are handled, so this isn't
  612. * a big problem.
  613. */
  614. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  615. return;
  616. if (likely(nvmeq->cq_vector >= 0))
  617. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  618. nvmeq->cq_head = head;
  619. nvmeq->cq_phase = phase;
  620. nvmeq->cqe_seen = 1;
  621. }
  622. static void nvme_process_cq(struct nvme_queue *nvmeq)
  623. {
  624. __nvme_process_cq(nvmeq, NULL);
  625. }
  626. static irqreturn_t nvme_irq(int irq, void *data)
  627. {
  628. irqreturn_t result;
  629. struct nvme_queue *nvmeq = data;
  630. spin_lock(&nvmeq->q_lock);
  631. nvme_process_cq(nvmeq);
  632. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  633. nvmeq->cqe_seen = 0;
  634. spin_unlock(&nvmeq->q_lock);
  635. return result;
  636. }
  637. static irqreturn_t nvme_irq_check(int irq, void *data)
  638. {
  639. struct nvme_queue *nvmeq = data;
  640. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
  641. return IRQ_WAKE_THREAD;
  642. return IRQ_NONE;
  643. }
  644. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  645. {
  646. struct nvme_queue *nvmeq = hctx->driver_data;
  647. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
  648. spin_lock_irq(&nvmeq->q_lock);
  649. __nvme_process_cq(nvmeq, &tag);
  650. spin_unlock_irq(&nvmeq->q_lock);
  651. if (tag == -1)
  652. return 1;
  653. }
  654. return 0;
  655. }
  656. static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
  657. {
  658. struct nvme_dev *dev = to_nvme_dev(ctrl);
  659. struct nvme_queue *nvmeq = dev->queues[0];
  660. struct nvme_command c;
  661. memset(&c, 0, sizeof(c));
  662. c.common.opcode = nvme_admin_async_event;
  663. c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
  664. spin_lock_irq(&nvmeq->q_lock);
  665. __nvme_submit_cmd(nvmeq, &c);
  666. spin_unlock_irq(&nvmeq->q_lock);
  667. }
  668. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  669. {
  670. struct nvme_command c;
  671. memset(&c, 0, sizeof(c));
  672. c.delete_queue.opcode = opcode;
  673. c.delete_queue.qid = cpu_to_le16(id);
  674. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  675. }
  676. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  677. struct nvme_queue *nvmeq)
  678. {
  679. struct nvme_command c;
  680. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  681. /*
  682. * Note: we (ab)use the fact the the prp fields survive if no data
  683. * is attached to the request.
  684. */
  685. memset(&c, 0, sizeof(c));
  686. c.create_cq.opcode = nvme_admin_create_cq;
  687. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  688. c.create_cq.cqid = cpu_to_le16(qid);
  689. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  690. c.create_cq.cq_flags = cpu_to_le16(flags);
  691. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  692. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  693. }
  694. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  695. struct nvme_queue *nvmeq)
  696. {
  697. struct nvme_command c;
  698. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
  699. /*
  700. * Note: we (ab)use the fact the the prp fields survive if no data
  701. * is attached to the request.
  702. */
  703. memset(&c, 0, sizeof(c));
  704. c.create_sq.opcode = nvme_admin_create_sq;
  705. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  706. c.create_sq.sqid = cpu_to_le16(qid);
  707. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  708. c.create_sq.sq_flags = cpu_to_le16(flags);
  709. c.create_sq.cqid = cpu_to_le16(qid);
  710. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  711. }
  712. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  713. {
  714. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  715. }
  716. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  717. {
  718. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  719. }
  720. static void abort_endio(struct request *req, int error)
  721. {
  722. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  723. struct nvme_queue *nvmeq = iod->nvmeq;
  724. u16 status = req->errors;
  725. dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
  726. atomic_inc(&nvmeq->dev->ctrl.abort_limit);
  727. blk_mq_free_request(req);
  728. }
  729. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  730. {
  731. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  732. struct nvme_queue *nvmeq = iod->nvmeq;
  733. struct nvme_dev *dev = nvmeq->dev;
  734. struct request *abort_req;
  735. struct nvme_command cmd;
  736. /*
  737. * Shutdown immediately if controller times out while starting. The
  738. * reset work will see the pci device disabled when it gets the forced
  739. * cancellation error. All outstanding requests are completed on
  740. * shutdown, so we return BLK_EH_HANDLED.
  741. */
  742. if (dev->ctrl.state == NVME_CTRL_RESETTING) {
  743. dev_warn(dev->ctrl.device,
  744. "I/O %d QID %d timeout, disable controller\n",
  745. req->tag, nvmeq->qid);
  746. nvme_dev_disable(dev, false);
  747. req->errors = NVME_SC_CANCELLED;
  748. return BLK_EH_HANDLED;
  749. }
  750. /*
  751. * Shutdown the controller immediately and schedule a reset if the
  752. * command was already aborted once before and still hasn't been
  753. * returned to the driver, or if this is the admin queue.
  754. */
  755. if (!nvmeq->qid || iod->aborted) {
  756. dev_warn(dev->ctrl.device,
  757. "I/O %d QID %d timeout, reset controller\n",
  758. req->tag, nvmeq->qid);
  759. nvme_dev_disable(dev, false);
  760. queue_work(nvme_workq, &dev->reset_work);
  761. /*
  762. * Mark the request as handled, since the inline shutdown
  763. * forces all outstanding requests to complete.
  764. */
  765. req->errors = NVME_SC_CANCELLED;
  766. return BLK_EH_HANDLED;
  767. }
  768. iod->aborted = 1;
  769. if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
  770. atomic_inc(&dev->ctrl.abort_limit);
  771. return BLK_EH_RESET_TIMER;
  772. }
  773. memset(&cmd, 0, sizeof(cmd));
  774. cmd.abort.opcode = nvme_admin_abort_cmd;
  775. cmd.abort.cid = req->tag;
  776. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  777. dev_warn(nvmeq->dev->ctrl.device,
  778. "I/O %d QID %d timeout, aborting\n",
  779. req->tag, nvmeq->qid);
  780. abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
  781. BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  782. if (IS_ERR(abort_req)) {
  783. atomic_inc(&dev->ctrl.abort_limit);
  784. return BLK_EH_RESET_TIMER;
  785. }
  786. abort_req->timeout = ADMIN_TIMEOUT;
  787. abort_req->end_io_data = NULL;
  788. blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
  789. /*
  790. * The aborted req will be completed on receiving the abort req.
  791. * We enable the timer again. If hit twice, it'll cause a device reset,
  792. * as the device then is in a faulty state.
  793. */
  794. return BLK_EH_RESET_TIMER;
  795. }
  796. static void nvme_free_queue(struct nvme_queue *nvmeq)
  797. {
  798. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  799. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  800. if (nvmeq->sq_cmds)
  801. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  802. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  803. kfree(nvmeq);
  804. }
  805. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  806. {
  807. int i;
  808. for (i = dev->queue_count - 1; i >= lowest; i--) {
  809. struct nvme_queue *nvmeq = dev->queues[i];
  810. dev->queue_count--;
  811. dev->queues[i] = NULL;
  812. nvme_free_queue(nvmeq);
  813. }
  814. }
  815. /**
  816. * nvme_suspend_queue - put queue into suspended state
  817. * @nvmeq - queue to suspend
  818. */
  819. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  820. {
  821. int vector;
  822. spin_lock_irq(&nvmeq->q_lock);
  823. if (nvmeq->cq_vector == -1) {
  824. spin_unlock_irq(&nvmeq->q_lock);
  825. return 1;
  826. }
  827. vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
  828. nvmeq->dev->online_queues--;
  829. nvmeq->cq_vector = -1;
  830. spin_unlock_irq(&nvmeq->q_lock);
  831. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  832. blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
  833. irq_set_affinity_hint(vector, NULL);
  834. free_irq(vector, nvmeq);
  835. return 0;
  836. }
  837. static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
  838. {
  839. struct nvme_queue *nvmeq = dev->queues[0];
  840. if (!nvmeq)
  841. return;
  842. if (nvme_suspend_queue(nvmeq))
  843. return;
  844. if (shutdown)
  845. nvme_shutdown_ctrl(&dev->ctrl);
  846. else
  847. nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
  848. dev->bar + NVME_REG_CAP));
  849. spin_lock_irq(&nvmeq->q_lock);
  850. nvme_process_cq(nvmeq);
  851. spin_unlock_irq(&nvmeq->q_lock);
  852. }
  853. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  854. int entry_size)
  855. {
  856. int q_depth = dev->q_depth;
  857. unsigned q_size_aligned = roundup(q_depth * entry_size,
  858. dev->ctrl.page_size);
  859. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  860. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  861. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  862. q_depth = div_u64(mem_per_q, entry_size);
  863. /*
  864. * Ensure the reduced q_depth is above some threshold where it
  865. * would be better to map queues in system memory with the
  866. * original depth
  867. */
  868. if (q_depth < 64)
  869. return -ENOMEM;
  870. }
  871. return q_depth;
  872. }
  873. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  874. int qid, int depth)
  875. {
  876. if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
  877. unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
  878. dev->ctrl.page_size);
  879. nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
  880. nvmeq->sq_cmds_io = dev->cmb + offset;
  881. } else {
  882. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  883. &nvmeq->sq_dma_addr, GFP_KERNEL);
  884. if (!nvmeq->sq_cmds)
  885. return -ENOMEM;
  886. }
  887. return 0;
  888. }
  889. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  890. int depth)
  891. {
  892. struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
  893. if (!nvmeq)
  894. return NULL;
  895. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  896. &nvmeq->cq_dma_addr, GFP_KERNEL);
  897. if (!nvmeq->cqes)
  898. goto free_nvmeq;
  899. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  900. goto free_cqdma;
  901. nvmeq->q_dmadev = dev->dev;
  902. nvmeq->dev = dev;
  903. snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
  904. dev->ctrl.instance, qid);
  905. spin_lock_init(&nvmeq->q_lock);
  906. nvmeq->cq_head = 0;
  907. nvmeq->cq_phase = 1;
  908. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  909. nvmeq->q_depth = depth;
  910. nvmeq->qid = qid;
  911. nvmeq->cq_vector = -1;
  912. dev->queues[qid] = nvmeq;
  913. dev->queue_count++;
  914. return nvmeq;
  915. free_cqdma:
  916. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  917. nvmeq->cq_dma_addr);
  918. free_nvmeq:
  919. kfree(nvmeq);
  920. return NULL;
  921. }
  922. static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  923. const char *name)
  924. {
  925. if (use_threaded_interrupts)
  926. return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
  927. nvme_irq_check, nvme_irq, IRQF_SHARED,
  928. name, nvmeq);
  929. return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
  930. IRQF_SHARED, name, nvmeq);
  931. }
  932. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  933. {
  934. struct nvme_dev *dev = nvmeq->dev;
  935. spin_lock_irq(&nvmeq->q_lock);
  936. nvmeq->sq_tail = 0;
  937. nvmeq->cq_head = 0;
  938. nvmeq->cq_phase = 1;
  939. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  940. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  941. dev->online_queues++;
  942. spin_unlock_irq(&nvmeq->q_lock);
  943. }
  944. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  945. {
  946. struct nvme_dev *dev = nvmeq->dev;
  947. int result;
  948. nvmeq->cq_vector = qid - 1;
  949. result = adapter_alloc_cq(dev, qid, nvmeq);
  950. if (result < 0)
  951. return result;
  952. result = adapter_alloc_sq(dev, qid, nvmeq);
  953. if (result < 0)
  954. goto release_cq;
  955. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  956. if (result < 0)
  957. goto release_sq;
  958. nvme_init_queue(nvmeq, qid);
  959. return result;
  960. release_sq:
  961. adapter_delete_sq(dev, qid);
  962. release_cq:
  963. adapter_delete_cq(dev, qid);
  964. return result;
  965. }
  966. static struct blk_mq_ops nvme_mq_admin_ops = {
  967. .queue_rq = nvme_queue_rq,
  968. .complete = nvme_complete_rq,
  969. .map_queue = blk_mq_map_queue,
  970. .init_hctx = nvme_admin_init_hctx,
  971. .exit_hctx = nvme_admin_exit_hctx,
  972. .init_request = nvme_admin_init_request,
  973. .timeout = nvme_timeout,
  974. };
  975. static struct blk_mq_ops nvme_mq_ops = {
  976. .queue_rq = nvme_queue_rq,
  977. .complete = nvme_complete_rq,
  978. .map_queue = blk_mq_map_queue,
  979. .init_hctx = nvme_init_hctx,
  980. .init_request = nvme_init_request,
  981. .timeout = nvme_timeout,
  982. .poll = nvme_poll,
  983. };
  984. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  985. {
  986. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  987. /*
  988. * If the controller was reset during removal, it's possible
  989. * user requests may be waiting on a stopped queue. Start the
  990. * queue to flush these to completion.
  991. */
  992. blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
  993. blk_cleanup_queue(dev->ctrl.admin_q);
  994. blk_mq_free_tag_set(&dev->admin_tagset);
  995. }
  996. }
  997. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  998. {
  999. if (!dev->ctrl.admin_q) {
  1000. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1001. dev->admin_tagset.nr_hw_queues = 1;
  1002. /*
  1003. * Subtract one to leave an empty queue entry for 'Full Queue'
  1004. * condition. See NVM-Express 1.2 specification, section 4.1.2.
  1005. */
  1006. dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
  1007. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1008. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1009. dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
  1010. dev->admin_tagset.driver_data = dev;
  1011. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1012. return -ENOMEM;
  1013. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1014. if (IS_ERR(dev->ctrl.admin_q)) {
  1015. blk_mq_free_tag_set(&dev->admin_tagset);
  1016. return -ENOMEM;
  1017. }
  1018. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1019. nvme_dev_remove_admin(dev);
  1020. dev->ctrl.admin_q = NULL;
  1021. return -ENODEV;
  1022. }
  1023. } else
  1024. blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
  1025. return 0;
  1026. }
  1027. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  1028. {
  1029. int result;
  1030. u32 aqa;
  1031. u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1032. struct nvme_queue *nvmeq;
  1033. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
  1034. NVME_CAP_NSSRC(cap) : 0;
  1035. if (dev->subsystem &&
  1036. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1037. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1038. result = nvme_disable_ctrl(&dev->ctrl, cap);
  1039. if (result < 0)
  1040. return result;
  1041. nvmeq = dev->queues[0];
  1042. if (!nvmeq) {
  1043. nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
  1044. if (!nvmeq)
  1045. return -ENOMEM;
  1046. }
  1047. aqa = nvmeq->q_depth - 1;
  1048. aqa |= aqa << 16;
  1049. writel(aqa, dev->bar + NVME_REG_AQA);
  1050. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1051. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1052. result = nvme_enable_ctrl(&dev->ctrl, cap);
  1053. if (result)
  1054. goto free_nvmeq;
  1055. nvmeq->cq_vector = 0;
  1056. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  1057. if (result) {
  1058. nvmeq->cq_vector = -1;
  1059. goto free_nvmeq;
  1060. }
  1061. return result;
  1062. free_nvmeq:
  1063. nvme_free_queues(dev, 0);
  1064. return result;
  1065. }
  1066. static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
  1067. {
  1068. /* If true, indicates loss of adapter communication, possibly by a
  1069. * NVMe Subsystem reset.
  1070. */
  1071. bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
  1072. /* If there is a reset ongoing, we shouldn't reset again. */
  1073. if (work_busy(&dev->reset_work))
  1074. return false;
  1075. /* We shouldn't reset unless the controller is on fatal error state
  1076. * _or_ if we lost the communication with it.
  1077. */
  1078. if (!(csts & NVME_CSTS_CFS) && !nssro)
  1079. return false;
  1080. /* If PCI error recovery process is happening, we cannot reset or
  1081. * the recovery mechanism will surely fail.
  1082. */
  1083. if (pci_channel_offline(to_pci_dev(dev->dev)))
  1084. return false;
  1085. return true;
  1086. }
  1087. static void nvme_watchdog_timer(unsigned long data)
  1088. {
  1089. struct nvme_dev *dev = (struct nvme_dev *)data;
  1090. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1091. /* Skip controllers under certain specific conditions. */
  1092. if (nvme_should_reset(dev, csts)) {
  1093. if (queue_work(nvme_workq, &dev->reset_work))
  1094. dev_warn(dev->dev,
  1095. "Failed status: 0x%x, reset controller.\n",
  1096. csts);
  1097. return;
  1098. }
  1099. mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
  1100. }
  1101. static int nvme_create_io_queues(struct nvme_dev *dev)
  1102. {
  1103. unsigned i, max;
  1104. int ret = 0;
  1105. for (i = dev->queue_count; i <= dev->max_qid; i++) {
  1106. if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
  1107. ret = -ENOMEM;
  1108. break;
  1109. }
  1110. }
  1111. max = min(dev->max_qid, dev->queue_count - 1);
  1112. for (i = dev->online_queues; i <= max; i++) {
  1113. ret = nvme_create_queue(dev->queues[i], i);
  1114. if (ret) {
  1115. nvme_free_queues(dev, i);
  1116. break;
  1117. }
  1118. }
  1119. /*
  1120. * Ignore failing Create SQ/CQ commands, we can continue with less
  1121. * than the desired aount of queues, and even a controller without
  1122. * I/O queues an still be used to issue admin commands. This might
  1123. * be useful to upgrade a buggy firmware for example.
  1124. */
  1125. return ret >= 0 ? 0 : ret;
  1126. }
  1127. static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
  1128. {
  1129. u64 szu, size, offset;
  1130. u32 cmbloc;
  1131. resource_size_t bar_size;
  1132. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1133. void __iomem *cmb;
  1134. dma_addr_t dma_addr;
  1135. if (!use_cmb_sqes)
  1136. return NULL;
  1137. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1138. if (!(NVME_CMB_SZ(dev->cmbsz)))
  1139. return NULL;
  1140. cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1141. szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
  1142. size = szu * NVME_CMB_SZ(dev->cmbsz);
  1143. offset = szu * NVME_CMB_OFST(cmbloc);
  1144. bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
  1145. if (offset > bar_size)
  1146. return NULL;
  1147. /*
  1148. * Controllers may support a CMB size larger than their BAR,
  1149. * for example, due to being behind a bridge. Reduce the CMB to
  1150. * the reported size of the BAR
  1151. */
  1152. if (size > bar_size - offset)
  1153. size = bar_size - offset;
  1154. dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
  1155. cmb = ioremap_wc(dma_addr, size);
  1156. if (!cmb)
  1157. return NULL;
  1158. dev->cmb_dma_addr = dma_addr;
  1159. dev->cmb_size = size;
  1160. return cmb;
  1161. }
  1162. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1163. {
  1164. if (dev->cmb) {
  1165. iounmap(dev->cmb);
  1166. dev->cmb = NULL;
  1167. }
  1168. }
  1169. static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1170. {
  1171. return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1172. }
  1173. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1174. {
  1175. struct nvme_queue *adminq = dev->queues[0];
  1176. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1177. int result, i, vecs, nr_io_queues, size;
  1178. nr_io_queues = num_online_cpus();
  1179. result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
  1180. if (result < 0)
  1181. return result;
  1182. if (nr_io_queues == 0)
  1183. return 0;
  1184. if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
  1185. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1186. sizeof(struct nvme_command));
  1187. if (result > 0)
  1188. dev->q_depth = result;
  1189. else
  1190. nvme_release_cmb(dev);
  1191. }
  1192. size = db_bar_size(dev, nr_io_queues);
  1193. if (size > 8192) {
  1194. iounmap(dev->bar);
  1195. do {
  1196. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1197. if (dev->bar)
  1198. break;
  1199. if (!--nr_io_queues)
  1200. return -ENOMEM;
  1201. size = db_bar_size(dev, nr_io_queues);
  1202. } while (1);
  1203. dev->dbs = dev->bar + 4096;
  1204. adminq->q_db = dev->dbs;
  1205. }
  1206. /* Deregister the admin queue's interrupt */
  1207. free_irq(dev->entry[0].vector, adminq);
  1208. /*
  1209. * If we enable msix early due to not intx, disable it again before
  1210. * setting up the full range we need.
  1211. */
  1212. if (pdev->msi_enabled)
  1213. pci_disable_msi(pdev);
  1214. else if (pdev->msix_enabled)
  1215. pci_disable_msix(pdev);
  1216. for (i = 0; i < nr_io_queues; i++)
  1217. dev->entry[i].entry = i;
  1218. vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
  1219. if (vecs < 0) {
  1220. vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
  1221. if (vecs < 0) {
  1222. vecs = 1;
  1223. } else {
  1224. for (i = 0; i < vecs; i++)
  1225. dev->entry[i].vector = i + pdev->irq;
  1226. }
  1227. }
  1228. /*
  1229. * Should investigate if there's a performance win from allocating
  1230. * more queues than interrupt vectors; it might allow the submission
  1231. * path to scale better, even if the receive path is limited by the
  1232. * number of interrupts.
  1233. */
  1234. nr_io_queues = vecs;
  1235. dev->max_qid = nr_io_queues;
  1236. result = queue_request_irq(dev, adminq, adminq->irqname);
  1237. if (result) {
  1238. adminq->cq_vector = -1;
  1239. goto free_queues;
  1240. }
  1241. return nvme_create_io_queues(dev);
  1242. free_queues:
  1243. nvme_free_queues(dev, 1);
  1244. return result;
  1245. }
  1246. static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
  1247. {
  1248. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1249. struct nvme_queue *nvmeq;
  1250. int i;
  1251. for (i = 0; i < dev->online_queues; i++) {
  1252. nvmeq = dev->queues[i];
  1253. if (!nvmeq->tags || !(*nvmeq->tags))
  1254. continue;
  1255. irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
  1256. blk_mq_tags_cpumask(*nvmeq->tags));
  1257. }
  1258. }
  1259. static void nvme_del_queue_end(struct request *req, int error)
  1260. {
  1261. struct nvme_queue *nvmeq = req->end_io_data;
  1262. blk_mq_free_request(req);
  1263. complete(&nvmeq->dev->ioq_wait);
  1264. }
  1265. static void nvme_del_cq_end(struct request *req, int error)
  1266. {
  1267. struct nvme_queue *nvmeq = req->end_io_data;
  1268. if (!error) {
  1269. unsigned long flags;
  1270. /*
  1271. * We might be called with the AQ q_lock held
  1272. * and the I/O queue q_lock should always
  1273. * nest inside the AQ one.
  1274. */
  1275. spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
  1276. SINGLE_DEPTH_NESTING);
  1277. nvme_process_cq(nvmeq);
  1278. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  1279. }
  1280. nvme_del_queue_end(req, error);
  1281. }
  1282. static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
  1283. {
  1284. struct request_queue *q = nvmeq->dev->ctrl.admin_q;
  1285. struct request *req;
  1286. struct nvme_command cmd;
  1287. memset(&cmd, 0, sizeof(cmd));
  1288. cmd.delete_queue.opcode = opcode;
  1289. cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1290. req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  1291. if (IS_ERR(req))
  1292. return PTR_ERR(req);
  1293. req->timeout = ADMIN_TIMEOUT;
  1294. req->end_io_data = nvmeq;
  1295. blk_execute_rq_nowait(q, NULL, req, false,
  1296. opcode == nvme_admin_delete_cq ?
  1297. nvme_del_cq_end : nvme_del_queue_end);
  1298. return 0;
  1299. }
  1300. static void nvme_disable_io_queues(struct nvme_dev *dev)
  1301. {
  1302. int pass, queues = dev->online_queues - 1;
  1303. unsigned long timeout;
  1304. u8 opcode = nvme_admin_delete_sq;
  1305. for (pass = 0; pass < 2; pass++) {
  1306. int sent = 0, i = queues;
  1307. reinit_completion(&dev->ioq_wait);
  1308. retry:
  1309. timeout = ADMIN_TIMEOUT;
  1310. for (; i > 0; i--, sent++)
  1311. if (nvme_delete_queue(dev->queues[i], opcode))
  1312. break;
  1313. while (sent--) {
  1314. timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
  1315. if (timeout == 0)
  1316. return;
  1317. if (i)
  1318. goto retry;
  1319. }
  1320. opcode = nvme_admin_delete_cq;
  1321. }
  1322. }
  1323. /*
  1324. * Return: error value if an error occurred setting up the queues or calling
  1325. * Identify Device. 0 if these succeeded, even if adding some of the
  1326. * namespaces failed. At the moment, these failures are silent. TBD which
  1327. * failures should be reported.
  1328. */
  1329. static int nvme_dev_add(struct nvme_dev *dev)
  1330. {
  1331. if (!dev->ctrl.tagset) {
  1332. dev->tagset.ops = &nvme_mq_ops;
  1333. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1334. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1335. dev->tagset.numa_node = dev_to_node(dev->dev);
  1336. dev->tagset.queue_depth =
  1337. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1338. dev->tagset.cmd_size = nvme_cmd_size(dev);
  1339. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1340. dev->tagset.driver_data = dev;
  1341. if (blk_mq_alloc_tag_set(&dev->tagset))
  1342. return 0;
  1343. dev->ctrl.tagset = &dev->tagset;
  1344. } else {
  1345. blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
  1346. /* Free previously allocated queues that are no longer usable */
  1347. nvme_free_queues(dev, dev->online_queues);
  1348. }
  1349. return 0;
  1350. }
  1351. static int nvme_pci_enable(struct nvme_dev *dev)
  1352. {
  1353. u64 cap;
  1354. int result = -ENOMEM;
  1355. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1356. if (pci_enable_device_mem(pdev))
  1357. return result;
  1358. pci_set_master(pdev);
  1359. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1360. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1361. goto disable;
  1362. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1363. result = -ENODEV;
  1364. goto disable;
  1365. }
  1366. /*
  1367. * Some devices and/or platforms don't advertise or work with INTx
  1368. * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
  1369. * adjust this later.
  1370. */
  1371. if (pci_enable_msix(pdev, dev->entry, 1)) {
  1372. pci_enable_msi(pdev);
  1373. dev->entry[0].vector = pdev->irq;
  1374. }
  1375. if (!dev->entry[0].vector) {
  1376. result = -ENODEV;
  1377. goto disable;
  1378. }
  1379. cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1380. dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
  1381. dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
  1382. dev->dbs = dev->bar + 4096;
  1383. /*
  1384. * Temporary fix for the Apple controller found in the MacBook8,1 and
  1385. * some MacBook7,1 to avoid controller resets and data loss.
  1386. */
  1387. if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
  1388. dev->q_depth = 2;
  1389. dev_warn(dev->dev, "detected Apple NVMe controller, set "
  1390. "queue depth=%u to work around controller resets\n",
  1391. dev->q_depth);
  1392. }
  1393. if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
  1394. dev->cmb = nvme_map_cmb(dev);
  1395. pci_enable_pcie_error_reporting(pdev);
  1396. pci_save_state(pdev);
  1397. return 0;
  1398. disable:
  1399. pci_disable_device(pdev);
  1400. return result;
  1401. }
  1402. static void nvme_dev_unmap(struct nvme_dev *dev)
  1403. {
  1404. if (dev->bar)
  1405. iounmap(dev->bar);
  1406. pci_release_mem_regions(to_pci_dev(dev->dev));
  1407. }
  1408. static void nvme_pci_disable(struct nvme_dev *dev)
  1409. {
  1410. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1411. if (pdev->msi_enabled)
  1412. pci_disable_msi(pdev);
  1413. else if (pdev->msix_enabled)
  1414. pci_disable_msix(pdev);
  1415. if (pci_is_enabled(pdev)) {
  1416. pci_disable_pcie_error_reporting(pdev);
  1417. pci_disable_device(pdev);
  1418. }
  1419. }
  1420. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
  1421. {
  1422. int i;
  1423. u32 csts = -1;
  1424. del_timer_sync(&dev->watchdog_timer);
  1425. mutex_lock(&dev->shutdown_lock);
  1426. if (pci_is_enabled(to_pci_dev(dev->dev))) {
  1427. nvme_stop_queues(&dev->ctrl);
  1428. csts = readl(dev->bar + NVME_REG_CSTS);
  1429. }
  1430. for (i = dev->queue_count - 1; i > 0; i--)
  1431. nvme_suspend_queue(dev->queues[i]);
  1432. if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
  1433. nvme_suspend_queue(dev->queues[0]);
  1434. } else {
  1435. nvme_disable_io_queues(dev);
  1436. nvme_disable_admin_queue(dev, shutdown);
  1437. }
  1438. nvme_pci_disable(dev);
  1439. blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
  1440. blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
  1441. mutex_unlock(&dev->shutdown_lock);
  1442. }
  1443. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1444. {
  1445. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1446. PAGE_SIZE, PAGE_SIZE, 0);
  1447. if (!dev->prp_page_pool)
  1448. return -ENOMEM;
  1449. /* Optimisation for I/Os between 4k and 128k */
  1450. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1451. 256, 256, 0);
  1452. if (!dev->prp_small_pool) {
  1453. dma_pool_destroy(dev->prp_page_pool);
  1454. return -ENOMEM;
  1455. }
  1456. return 0;
  1457. }
  1458. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1459. {
  1460. dma_pool_destroy(dev->prp_page_pool);
  1461. dma_pool_destroy(dev->prp_small_pool);
  1462. }
  1463. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1464. {
  1465. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1466. put_device(dev->dev);
  1467. if (dev->tagset.tags)
  1468. blk_mq_free_tag_set(&dev->tagset);
  1469. if (dev->ctrl.admin_q)
  1470. blk_put_queue(dev->ctrl.admin_q);
  1471. kfree(dev->queues);
  1472. kfree(dev->entry);
  1473. kfree(dev);
  1474. }
  1475. static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
  1476. {
  1477. dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
  1478. kref_get(&dev->ctrl.kref);
  1479. nvme_dev_disable(dev, false);
  1480. if (!schedule_work(&dev->remove_work))
  1481. nvme_put_ctrl(&dev->ctrl);
  1482. }
  1483. static void nvme_reset_work(struct work_struct *work)
  1484. {
  1485. struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
  1486. int result = -ENODEV;
  1487. if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
  1488. goto out;
  1489. /*
  1490. * If we're called to reset a live controller first shut it down before
  1491. * moving on.
  1492. */
  1493. if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
  1494. nvme_dev_disable(dev, false);
  1495. if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
  1496. goto out;
  1497. result = nvme_pci_enable(dev);
  1498. if (result)
  1499. goto out;
  1500. result = nvme_configure_admin_queue(dev);
  1501. if (result)
  1502. goto out;
  1503. nvme_init_queue(dev->queues[0], 0);
  1504. result = nvme_alloc_admin_tags(dev);
  1505. if (result)
  1506. goto out;
  1507. result = nvme_init_identify(&dev->ctrl);
  1508. if (result)
  1509. goto out;
  1510. result = nvme_setup_io_queues(dev);
  1511. if (result)
  1512. goto out;
  1513. /*
  1514. * A controller that can not execute IO typically requires user
  1515. * intervention to correct. For such degraded controllers, the driver
  1516. * should not submit commands the user did not request, so skip
  1517. * registering for asynchronous event notification on this condition.
  1518. */
  1519. if (dev->online_queues > 1)
  1520. nvme_queue_async_events(&dev->ctrl);
  1521. mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
  1522. /*
  1523. * Keep the controller around but remove all namespaces if we don't have
  1524. * any working I/O queue.
  1525. */
  1526. if (dev->online_queues < 2) {
  1527. dev_warn(dev->ctrl.device, "IO queues not created\n");
  1528. nvme_kill_queues(&dev->ctrl);
  1529. nvme_remove_namespaces(&dev->ctrl);
  1530. } else {
  1531. nvme_start_queues(&dev->ctrl);
  1532. nvme_dev_add(dev);
  1533. }
  1534. if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
  1535. dev_warn(dev->ctrl.device, "failed to mark controller live\n");
  1536. goto out;
  1537. }
  1538. if (dev->online_queues > 1)
  1539. nvme_queue_scan(&dev->ctrl);
  1540. return;
  1541. out:
  1542. nvme_remove_dead_ctrl(dev, result);
  1543. }
  1544. static void nvme_remove_dead_ctrl_work(struct work_struct *work)
  1545. {
  1546. struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
  1547. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1548. nvme_kill_queues(&dev->ctrl);
  1549. if (pci_get_drvdata(pdev))
  1550. device_release_driver(&pdev->dev);
  1551. nvme_put_ctrl(&dev->ctrl);
  1552. }
  1553. static int nvme_reset(struct nvme_dev *dev)
  1554. {
  1555. if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
  1556. return -ENODEV;
  1557. if (!queue_work(nvme_workq, &dev->reset_work))
  1558. return -EBUSY;
  1559. flush_work(&dev->reset_work);
  1560. return 0;
  1561. }
  1562. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  1563. {
  1564. *val = readl(to_nvme_dev(ctrl)->bar + off);
  1565. return 0;
  1566. }
  1567. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  1568. {
  1569. writel(val, to_nvme_dev(ctrl)->bar + off);
  1570. return 0;
  1571. }
  1572. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  1573. {
  1574. *val = readq(to_nvme_dev(ctrl)->bar + off);
  1575. return 0;
  1576. }
  1577. static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
  1578. {
  1579. return nvme_reset(to_nvme_dev(ctrl));
  1580. }
  1581. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  1582. .name = "pcie",
  1583. .module = THIS_MODULE,
  1584. .reg_read32 = nvme_pci_reg_read32,
  1585. .reg_write32 = nvme_pci_reg_write32,
  1586. .reg_read64 = nvme_pci_reg_read64,
  1587. .reset_ctrl = nvme_pci_reset_ctrl,
  1588. .free_ctrl = nvme_pci_free_ctrl,
  1589. .post_scan = nvme_pci_post_scan,
  1590. .submit_async_event = nvme_pci_submit_async_event,
  1591. };
  1592. static int nvme_dev_map(struct nvme_dev *dev)
  1593. {
  1594. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1595. if (pci_request_mem_regions(pdev, "nvme"))
  1596. return -ENODEV;
  1597. dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
  1598. if (!dev->bar)
  1599. goto release;
  1600. return 0;
  1601. release:
  1602. pci_release_mem_regions(pdev);
  1603. return -ENODEV;
  1604. }
  1605. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1606. {
  1607. int node, result = -ENOMEM;
  1608. struct nvme_dev *dev;
  1609. node = dev_to_node(&pdev->dev);
  1610. if (node == NUMA_NO_NODE)
  1611. set_dev_node(&pdev->dev, first_memory_node);
  1612. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  1613. if (!dev)
  1614. return -ENOMEM;
  1615. dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
  1616. GFP_KERNEL, node);
  1617. if (!dev->entry)
  1618. goto free;
  1619. dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
  1620. GFP_KERNEL, node);
  1621. if (!dev->queues)
  1622. goto free;
  1623. dev->dev = get_device(&pdev->dev);
  1624. pci_set_drvdata(pdev, dev);
  1625. result = nvme_dev_map(dev);
  1626. if (result)
  1627. goto free;
  1628. INIT_WORK(&dev->reset_work, nvme_reset_work);
  1629. INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
  1630. setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
  1631. (unsigned long)dev);
  1632. mutex_init(&dev->shutdown_lock);
  1633. init_completion(&dev->ioq_wait);
  1634. result = nvme_setup_prp_pools(dev);
  1635. if (result)
  1636. goto put_pci;
  1637. result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
  1638. id->driver_data);
  1639. if (result)
  1640. goto release_pools;
  1641. dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
  1642. queue_work(nvme_workq, &dev->reset_work);
  1643. return 0;
  1644. release_pools:
  1645. nvme_release_prp_pools(dev);
  1646. put_pci:
  1647. put_device(dev->dev);
  1648. nvme_dev_unmap(dev);
  1649. free:
  1650. kfree(dev->queues);
  1651. kfree(dev->entry);
  1652. kfree(dev);
  1653. return result;
  1654. }
  1655. static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
  1656. {
  1657. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1658. if (prepare)
  1659. nvme_dev_disable(dev, false);
  1660. else
  1661. queue_work(nvme_workq, &dev->reset_work);
  1662. }
  1663. static void nvme_shutdown(struct pci_dev *pdev)
  1664. {
  1665. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1666. nvme_dev_disable(dev, true);
  1667. }
  1668. /*
  1669. * The driver's remove may be called on a device in a partially initialized
  1670. * state. This function must not have any dependencies on the device state in
  1671. * order to proceed.
  1672. */
  1673. static void nvme_remove(struct pci_dev *pdev)
  1674. {
  1675. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1676. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
  1677. pci_set_drvdata(pdev, NULL);
  1678. if (!pci_device_is_present(pdev))
  1679. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
  1680. flush_work(&dev->reset_work);
  1681. nvme_uninit_ctrl(&dev->ctrl);
  1682. nvme_dev_disable(dev, true);
  1683. nvme_dev_remove_admin(dev);
  1684. nvme_free_queues(dev, 0);
  1685. nvme_release_cmb(dev);
  1686. nvme_release_prp_pools(dev);
  1687. nvme_dev_unmap(dev);
  1688. nvme_put_ctrl(&dev->ctrl);
  1689. }
  1690. static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
  1691. {
  1692. int ret = 0;
  1693. if (numvfs == 0) {
  1694. if (pci_vfs_assigned(pdev)) {
  1695. dev_warn(&pdev->dev,
  1696. "Cannot disable SR-IOV VFs while assigned\n");
  1697. return -EPERM;
  1698. }
  1699. pci_disable_sriov(pdev);
  1700. return 0;
  1701. }
  1702. ret = pci_enable_sriov(pdev, numvfs);
  1703. return ret ? ret : numvfs;
  1704. }
  1705. #ifdef CONFIG_PM_SLEEP
  1706. static int nvme_suspend(struct device *dev)
  1707. {
  1708. struct pci_dev *pdev = to_pci_dev(dev);
  1709. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1710. nvme_dev_disable(ndev, true);
  1711. return 0;
  1712. }
  1713. static int nvme_resume(struct device *dev)
  1714. {
  1715. struct pci_dev *pdev = to_pci_dev(dev);
  1716. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1717. queue_work(nvme_workq, &ndev->reset_work);
  1718. return 0;
  1719. }
  1720. #endif
  1721. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  1722. static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
  1723. pci_channel_state_t state)
  1724. {
  1725. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1726. /*
  1727. * A frozen channel requires a reset. When detected, this method will
  1728. * shutdown the controller to quiesce. The controller will be restarted
  1729. * after the slot reset through driver's slot_reset callback.
  1730. */
  1731. switch (state) {
  1732. case pci_channel_io_normal:
  1733. return PCI_ERS_RESULT_CAN_RECOVER;
  1734. case pci_channel_io_frozen:
  1735. dev_warn(dev->ctrl.device,
  1736. "frozen state error detected, reset controller\n");
  1737. nvme_dev_disable(dev, false);
  1738. return PCI_ERS_RESULT_NEED_RESET;
  1739. case pci_channel_io_perm_failure:
  1740. dev_warn(dev->ctrl.device,
  1741. "failure state error detected, request disconnect\n");
  1742. return PCI_ERS_RESULT_DISCONNECT;
  1743. }
  1744. return PCI_ERS_RESULT_NEED_RESET;
  1745. }
  1746. static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
  1747. {
  1748. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1749. dev_info(dev->ctrl.device, "restart after slot reset\n");
  1750. pci_restore_state(pdev);
  1751. queue_work(nvme_workq, &dev->reset_work);
  1752. return PCI_ERS_RESULT_RECOVERED;
  1753. }
  1754. static void nvme_error_resume(struct pci_dev *pdev)
  1755. {
  1756. pci_cleanup_aer_uncorrect_error_status(pdev);
  1757. }
  1758. static const struct pci_error_handlers nvme_err_handler = {
  1759. .error_detected = nvme_error_detected,
  1760. .slot_reset = nvme_slot_reset,
  1761. .resume = nvme_error_resume,
  1762. .reset_notify = nvme_reset_notify,
  1763. };
  1764. /* Move to pci_ids.h later */
  1765. #define PCI_CLASS_STORAGE_EXPRESS 0x010802
  1766. static const struct pci_device_id nvme_id_table[] = {
  1767. { PCI_VDEVICE(INTEL, 0x0953),
  1768. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  1769. NVME_QUIRK_DISCARD_ZEROES, },
  1770. { PCI_VDEVICE(INTEL, 0x0a53),
  1771. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  1772. NVME_QUIRK_DISCARD_ZEROES, },
  1773. { PCI_VDEVICE(INTEL, 0x0a54),
  1774. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  1775. NVME_QUIRK_DISCARD_ZEROES, },
  1776. { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
  1777. .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
  1778. { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
  1779. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  1780. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  1781. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  1782. { 0, }
  1783. };
  1784. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  1785. static struct pci_driver nvme_driver = {
  1786. .name = "nvme",
  1787. .id_table = nvme_id_table,
  1788. .probe = nvme_probe,
  1789. .remove = nvme_remove,
  1790. .shutdown = nvme_shutdown,
  1791. .driver = {
  1792. .pm = &nvme_dev_pm_ops,
  1793. },
  1794. .sriov_configure = nvme_pci_sriov_configure,
  1795. .err_handler = &nvme_err_handler,
  1796. };
  1797. static int __init nvme_init(void)
  1798. {
  1799. int result;
  1800. nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
  1801. if (!nvme_workq)
  1802. return -ENOMEM;
  1803. result = pci_register_driver(&nvme_driver);
  1804. if (result)
  1805. destroy_workqueue(nvme_workq);
  1806. return result;
  1807. }
  1808. static void __exit nvme_exit(void)
  1809. {
  1810. pci_unregister_driver(&nvme_driver);
  1811. destroy_workqueue(nvme_workq);
  1812. _nvme_check_size();
  1813. }
  1814. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  1815. MODULE_LICENSE("GPL");
  1816. MODULE_VERSION("1.0");
  1817. module_init(nvme_init);
  1818. module_exit(nvme_exit);