htt_tx.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/etherdevice.h>
  18. #include "htt.h"
  19. #include "mac.h"
  20. #include "hif.h"
  21. #include "txrx.h"
  22. #include "debug.h"
  23. static u8 ath10k_htt_tx_txq_calc_size(size_t count)
  24. {
  25. int exp;
  26. int factor;
  27. exp = 0;
  28. factor = count >> 7;
  29. while (factor >= 64 && exp < 4) {
  30. factor >>= 3;
  31. exp++;
  32. }
  33. if (exp == 4)
  34. return 0xff;
  35. if (count > 0)
  36. factor = max(1, factor);
  37. return SM(exp, HTT_TX_Q_STATE_ENTRY_EXP) |
  38. SM(factor, HTT_TX_Q_STATE_ENTRY_FACTOR);
  39. }
  40. static void __ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  41. struct ieee80211_txq *txq)
  42. {
  43. struct ath10k *ar = hw->priv;
  44. struct ath10k_sta *arsta;
  45. struct ath10k_vif *arvif = (void *)txq->vif->drv_priv;
  46. unsigned long frame_cnt;
  47. unsigned long byte_cnt;
  48. int idx;
  49. u32 bit;
  50. u16 peer_id;
  51. u8 tid;
  52. u8 count;
  53. lockdep_assert_held(&ar->htt.tx_lock);
  54. if (!ar->htt.tx_q_state.enabled)
  55. return;
  56. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  57. return;
  58. if (txq->sta) {
  59. arsta = (void *)txq->sta->drv_priv;
  60. peer_id = arsta->peer_id;
  61. } else {
  62. peer_id = arvif->peer_id;
  63. }
  64. tid = txq->tid;
  65. bit = BIT(peer_id % 32);
  66. idx = peer_id / 32;
  67. ieee80211_txq_get_depth(txq, &frame_cnt, &byte_cnt);
  68. count = ath10k_htt_tx_txq_calc_size(byte_cnt);
  69. if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
  70. unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
  71. ath10k_warn(ar, "refusing to update txq for peer_id %hu tid %hhu due to out of bounds\n",
  72. peer_id, tid);
  73. return;
  74. }
  75. ar->htt.tx_q_state.vaddr->count[tid][peer_id] = count;
  76. ar->htt.tx_q_state.vaddr->map[tid][idx] &= ~bit;
  77. ar->htt.tx_q_state.vaddr->map[tid][idx] |= count ? bit : 0;
  78. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update peer_id %hu tid %hhu count %hhu\n",
  79. peer_id, tid, count);
  80. }
  81. static void __ath10k_htt_tx_txq_sync(struct ath10k *ar)
  82. {
  83. u32 seq;
  84. size_t size;
  85. lockdep_assert_held(&ar->htt.tx_lock);
  86. if (!ar->htt.tx_q_state.enabled)
  87. return;
  88. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  89. return;
  90. seq = le32_to_cpu(ar->htt.tx_q_state.vaddr->seq);
  91. seq++;
  92. ar->htt.tx_q_state.vaddr->seq = cpu_to_le32(seq);
  93. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update commit seq %u\n",
  94. seq);
  95. size = sizeof(*ar->htt.tx_q_state.vaddr);
  96. dma_sync_single_for_device(ar->dev,
  97. ar->htt.tx_q_state.paddr,
  98. size,
  99. DMA_TO_DEVICE);
  100. }
  101. void ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  102. struct ieee80211_txq *txq)
  103. {
  104. struct ath10k *ar = hw->priv;
  105. spin_lock_bh(&ar->htt.tx_lock);
  106. __ath10k_htt_tx_txq_recalc(hw, txq);
  107. spin_unlock_bh(&ar->htt.tx_lock);
  108. }
  109. void ath10k_htt_tx_txq_sync(struct ath10k *ar)
  110. {
  111. spin_lock_bh(&ar->htt.tx_lock);
  112. __ath10k_htt_tx_txq_sync(ar);
  113. spin_unlock_bh(&ar->htt.tx_lock);
  114. }
  115. void ath10k_htt_tx_txq_update(struct ieee80211_hw *hw,
  116. struct ieee80211_txq *txq)
  117. {
  118. struct ath10k *ar = hw->priv;
  119. spin_lock_bh(&ar->htt.tx_lock);
  120. __ath10k_htt_tx_txq_recalc(hw, txq);
  121. __ath10k_htt_tx_txq_sync(ar);
  122. spin_unlock_bh(&ar->htt.tx_lock);
  123. }
  124. void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt)
  125. {
  126. lockdep_assert_held(&htt->tx_lock);
  127. htt->num_pending_tx--;
  128. if (htt->num_pending_tx == htt->max_num_pending_tx - 1)
  129. ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  130. }
  131. int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt)
  132. {
  133. lockdep_assert_held(&htt->tx_lock);
  134. if (htt->num_pending_tx >= htt->max_num_pending_tx)
  135. return -EBUSY;
  136. htt->num_pending_tx++;
  137. if (htt->num_pending_tx == htt->max_num_pending_tx)
  138. ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  139. return 0;
  140. }
  141. int ath10k_htt_tx_mgmt_inc_pending(struct ath10k_htt *htt, bool is_mgmt,
  142. bool is_presp)
  143. {
  144. struct ath10k *ar = htt->ar;
  145. lockdep_assert_held(&htt->tx_lock);
  146. if (!is_mgmt || !ar->hw_params.max_probe_resp_desc_thres)
  147. return 0;
  148. if (is_presp &&
  149. ar->hw_params.max_probe_resp_desc_thres < htt->num_pending_mgmt_tx)
  150. return -EBUSY;
  151. htt->num_pending_mgmt_tx++;
  152. return 0;
  153. }
  154. void ath10k_htt_tx_mgmt_dec_pending(struct ath10k_htt *htt)
  155. {
  156. lockdep_assert_held(&htt->tx_lock);
  157. if (!htt->ar->hw_params.max_probe_resp_desc_thres)
  158. return;
  159. htt->num_pending_mgmt_tx--;
  160. }
  161. int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb)
  162. {
  163. struct ath10k *ar = htt->ar;
  164. int ret;
  165. lockdep_assert_held(&htt->tx_lock);
  166. ret = idr_alloc(&htt->pending_tx, skb, 0,
  167. htt->max_num_pending_tx, GFP_ATOMIC);
  168. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret);
  169. return ret;
  170. }
  171. void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id)
  172. {
  173. struct ath10k *ar = htt->ar;
  174. lockdep_assert_held(&htt->tx_lock);
  175. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id);
  176. idr_remove(&htt->pending_tx, msdu_id);
  177. }
  178. static void ath10k_htt_tx_free_cont_frag_desc(struct ath10k_htt *htt)
  179. {
  180. size_t size;
  181. if (!htt->frag_desc.vaddr)
  182. return;
  183. size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
  184. dma_free_coherent(htt->ar->dev,
  185. size,
  186. htt->frag_desc.vaddr,
  187. htt->frag_desc.paddr);
  188. }
  189. static int ath10k_htt_tx_alloc_cont_frag_desc(struct ath10k_htt *htt)
  190. {
  191. struct ath10k *ar = htt->ar;
  192. size_t size;
  193. if (!ar->hw_params.continuous_frag_desc)
  194. return 0;
  195. size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
  196. htt->frag_desc.vaddr = dma_alloc_coherent(ar->dev, size,
  197. &htt->frag_desc.paddr,
  198. GFP_KERNEL);
  199. if (!htt->frag_desc.vaddr) {
  200. ath10k_err(ar, "failed to alloc fragment desc memory\n");
  201. return -ENOMEM;
  202. }
  203. return 0;
  204. }
  205. static void ath10k_htt_tx_free_txq(struct ath10k_htt *htt)
  206. {
  207. struct ath10k *ar = htt->ar;
  208. size_t size;
  209. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  210. ar->running_fw->fw_file.fw_features))
  211. return;
  212. size = sizeof(*htt->tx_q_state.vaddr);
  213. dma_unmap_single(ar->dev, htt->tx_q_state.paddr, size, DMA_TO_DEVICE);
  214. kfree(htt->tx_q_state.vaddr);
  215. }
  216. static int ath10k_htt_tx_alloc_txq(struct ath10k_htt *htt)
  217. {
  218. struct ath10k *ar = htt->ar;
  219. size_t size;
  220. int ret;
  221. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  222. ar->running_fw->fw_file.fw_features))
  223. return 0;
  224. htt->tx_q_state.num_peers = HTT_TX_Q_STATE_NUM_PEERS;
  225. htt->tx_q_state.num_tids = HTT_TX_Q_STATE_NUM_TIDS;
  226. htt->tx_q_state.type = HTT_Q_DEPTH_TYPE_BYTES;
  227. size = sizeof(*htt->tx_q_state.vaddr);
  228. htt->tx_q_state.vaddr = kzalloc(size, GFP_KERNEL);
  229. if (!htt->tx_q_state.vaddr)
  230. return -ENOMEM;
  231. htt->tx_q_state.paddr = dma_map_single(ar->dev, htt->tx_q_state.vaddr,
  232. size, DMA_TO_DEVICE);
  233. ret = dma_mapping_error(ar->dev, htt->tx_q_state.paddr);
  234. if (ret) {
  235. ath10k_warn(ar, "failed to dma map tx_q_state: %d\n", ret);
  236. kfree(htt->tx_q_state.vaddr);
  237. return -EIO;
  238. }
  239. return 0;
  240. }
  241. int ath10k_htt_tx_alloc(struct ath10k_htt *htt)
  242. {
  243. struct ath10k *ar = htt->ar;
  244. int ret, size;
  245. ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n",
  246. htt->max_num_pending_tx);
  247. spin_lock_init(&htt->tx_lock);
  248. idr_init(&htt->pending_tx);
  249. size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
  250. htt->txbuf.vaddr = dma_alloc_coherent(ar->dev, size,
  251. &htt->txbuf.paddr,
  252. GFP_KERNEL);
  253. if (!htt->txbuf.vaddr) {
  254. ath10k_err(ar, "failed to alloc tx buffer\n");
  255. ret = -ENOMEM;
  256. goto free_idr_pending_tx;
  257. }
  258. ret = ath10k_htt_tx_alloc_cont_frag_desc(htt);
  259. if (ret) {
  260. ath10k_err(ar, "failed to alloc cont frag desc: %d\n", ret);
  261. goto free_txbuf;
  262. }
  263. ret = ath10k_htt_tx_alloc_txq(htt);
  264. if (ret) {
  265. ath10k_err(ar, "failed to alloc txq: %d\n", ret);
  266. goto free_frag_desc;
  267. }
  268. size = roundup_pow_of_two(htt->max_num_pending_tx);
  269. ret = kfifo_alloc(&htt->txdone_fifo, size, GFP_KERNEL);
  270. if (ret) {
  271. ath10k_err(ar, "failed to alloc txdone fifo: %d\n", ret);
  272. goto free_txq;
  273. }
  274. return 0;
  275. free_txq:
  276. ath10k_htt_tx_free_txq(htt);
  277. free_frag_desc:
  278. ath10k_htt_tx_free_cont_frag_desc(htt);
  279. free_txbuf:
  280. size = htt->max_num_pending_tx *
  281. sizeof(struct ath10k_htt_txbuf);
  282. dma_free_coherent(htt->ar->dev, size, htt->txbuf.vaddr,
  283. htt->txbuf.paddr);
  284. free_idr_pending_tx:
  285. idr_destroy(&htt->pending_tx);
  286. return ret;
  287. }
  288. static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx)
  289. {
  290. struct ath10k *ar = ctx;
  291. struct ath10k_htt *htt = &ar->htt;
  292. struct htt_tx_done tx_done = {0};
  293. ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id);
  294. tx_done.msdu_id = msdu_id;
  295. tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
  296. ath10k_txrx_tx_unref(htt, &tx_done);
  297. return 0;
  298. }
  299. void ath10k_htt_tx_free(struct ath10k_htt *htt)
  300. {
  301. int size;
  302. tasklet_kill(&htt->txrx_compl_task);
  303. idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar);
  304. idr_destroy(&htt->pending_tx);
  305. if (htt->txbuf.vaddr) {
  306. size = htt->max_num_pending_tx *
  307. sizeof(struct ath10k_htt_txbuf);
  308. dma_free_coherent(htt->ar->dev, size, htt->txbuf.vaddr,
  309. htt->txbuf.paddr);
  310. }
  311. ath10k_htt_tx_free_txq(htt);
  312. ath10k_htt_tx_free_cont_frag_desc(htt);
  313. WARN_ON(!kfifo_is_empty(&htt->txdone_fifo));
  314. kfifo_free(&htt->txdone_fifo);
  315. }
  316. void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  317. {
  318. dev_kfree_skb_any(skb);
  319. }
  320. void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  321. {
  322. dev_kfree_skb_any(skb);
  323. }
  324. EXPORT_SYMBOL(ath10k_htt_hif_tx_complete);
  325. int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt)
  326. {
  327. struct ath10k *ar = htt->ar;
  328. struct sk_buff *skb;
  329. struct htt_cmd *cmd;
  330. int len = 0;
  331. int ret;
  332. len += sizeof(cmd->hdr);
  333. len += sizeof(cmd->ver_req);
  334. skb = ath10k_htc_alloc_skb(ar, len);
  335. if (!skb)
  336. return -ENOMEM;
  337. skb_put(skb, len);
  338. cmd = (struct htt_cmd *)skb->data;
  339. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ;
  340. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  341. if (ret) {
  342. dev_kfree_skb_any(skb);
  343. return ret;
  344. }
  345. return 0;
  346. }
  347. int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie)
  348. {
  349. struct ath10k *ar = htt->ar;
  350. struct htt_stats_req *req;
  351. struct sk_buff *skb;
  352. struct htt_cmd *cmd;
  353. int len = 0, ret;
  354. len += sizeof(cmd->hdr);
  355. len += sizeof(cmd->stats_req);
  356. skb = ath10k_htc_alloc_skb(ar, len);
  357. if (!skb)
  358. return -ENOMEM;
  359. skb_put(skb, len);
  360. cmd = (struct htt_cmd *)skb->data;
  361. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ;
  362. req = &cmd->stats_req;
  363. memset(req, 0, sizeof(*req));
  364. /* currently we support only max 8 bit masks so no need to worry
  365. * about endian support */
  366. req->upload_types[0] = mask;
  367. req->reset_types[0] = mask;
  368. req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID;
  369. req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff);
  370. req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32);
  371. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  372. if (ret) {
  373. ath10k_warn(ar, "failed to send htt type stats request: %d",
  374. ret);
  375. dev_kfree_skb_any(skb);
  376. return ret;
  377. }
  378. return 0;
  379. }
  380. int ath10k_htt_send_frag_desc_bank_cfg(struct ath10k_htt *htt)
  381. {
  382. struct ath10k *ar = htt->ar;
  383. struct sk_buff *skb;
  384. struct htt_cmd *cmd;
  385. struct htt_frag_desc_bank_cfg *cfg;
  386. int ret, size;
  387. u8 info;
  388. if (!ar->hw_params.continuous_frag_desc)
  389. return 0;
  390. if (!htt->frag_desc.paddr) {
  391. ath10k_warn(ar, "invalid frag desc memory\n");
  392. return -EINVAL;
  393. }
  394. size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg);
  395. skb = ath10k_htc_alloc_skb(ar, size);
  396. if (!skb)
  397. return -ENOMEM;
  398. skb_put(skb, size);
  399. cmd = (struct htt_cmd *)skb->data;
  400. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
  401. info = 0;
  402. info |= SM(htt->tx_q_state.type,
  403. HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
  404. if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  405. ar->running_fw->fw_file.fw_features))
  406. info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
  407. cfg = &cmd->frag_desc_bank_cfg;
  408. cfg->info = info;
  409. cfg->num_banks = 1;
  410. cfg->desc_size = sizeof(struct htt_msdu_ext_desc);
  411. cfg->bank_base_addrs[0] = __cpu_to_le32(htt->frag_desc.paddr);
  412. cfg->bank_id[0].bank_min_id = 0;
  413. cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
  414. 1);
  415. cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
  416. cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
  417. cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
  418. cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
  419. cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
  420. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
  421. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  422. if (ret) {
  423. ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
  424. ret);
  425. dev_kfree_skb_any(skb);
  426. return ret;
  427. }
  428. return 0;
  429. }
  430. int ath10k_htt_send_rx_ring_cfg_ll(struct ath10k_htt *htt)
  431. {
  432. struct ath10k *ar = htt->ar;
  433. struct sk_buff *skb;
  434. struct htt_cmd *cmd;
  435. struct htt_rx_ring_setup_ring *ring;
  436. const int num_rx_ring = 1;
  437. u16 flags;
  438. u32 fw_idx;
  439. int len;
  440. int ret;
  441. /*
  442. * the HW expects the buffer to be an integral number of 4-byte
  443. * "words"
  444. */
  445. BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
  446. BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
  447. len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup.hdr)
  448. + (sizeof(*ring) * num_rx_ring);
  449. skb = ath10k_htc_alloc_skb(ar, len);
  450. if (!skb)
  451. return -ENOMEM;
  452. skb_put(skb, len);
  453. cmd = (struct htt_cmd *)skb->data;
  454. ring = &cmd->rx_setup.rings[0];
  455. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
  456. cmd->rx_setup.hdr.num_rings = 1;
  457. /* FIXME: do we need all of this? */
  458. flags = 0;
  459. flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
  460. flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
  461. flags |= HTT_RX_RING_FLAGS_PPDU_START;
  462. flags |= HTT_RX_RING_FLAGS_PPDU_END;
  463. flags |= HTT_RX_RING_FLAGS_MPDU_START;
  464. flags |= HTT_RX_RING_FLAGS_MPDU_END;
  465. flags |= HTT_RX_RING_FLAGS_MSDU_START;
  466. flags |= HTT_RX_RING_FLAGS_MSDU_END;
  467. flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
  468. flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
  469. flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
  470. flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
  471. flags |= HTT_RX_RING_FLAGS_CTRL_RX;
  472. flags |= HTT_RX_RING_FLAGS_MGMT_RX;
  473. flags |= HTT_RX_RING_FLAGS_NULL_RX;
  474. flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
  475. fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
  476. ring->fw_idx_shadow_reg_paddr =
  477. __cpu_to_le32(htt->rx_ring.alloc_idx.paddr);
  478. ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr);
  479. ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
  480. ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
  481. ring->flags = __cpu_to_le16(flags);
  482. ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
  483. #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
  484. ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
  485. ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
  486. ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
  487. ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
  488. ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
  489. ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
  490. ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
  491. ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
  492. ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
  493. ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
  494. #undef desc_offset
  495. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  496. if (ret) {
  497. dev_kfree_skb_any(skb);
  498. return ret;
  499. }
  500. return 0;
  501. }
  502. int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt,
  503. u8 max_subfrms_ampdu,
  504. u8 max_subfrms_amsdu)
  505. {
  506. struct ath10k *ar = htt->ar;
  507. struct htt_aggr_conf *aggr_conf;
  508. struct sk_buff *skb;
  509. struct htt_cmd *cmd;
  510. int len;
  511. int ret;
  512. /* Firmware defaults are: amsdu = 3 and ampdu = 64 */
  513. if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64)
  514. return -EINVAL;
  515. if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31)
  516. return -EINVAL;
  517. len = sizeof(cmd->hdr);
  518. len += sizeof(cmd->aggr_conf);
  519. skb = ath10k_htc_alloc_skb(ar, len);
  520. if (!skb)
  521. return -ENOMEM;
  522. skb_put(skb, len);
  523. cmd = (struct htt_cmd *)skb->data;
  524. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG;
  525. aggr_conf = &cmd->aggr_conf;
  526. aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu;
  527. aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu;
  528. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d",
  529. aggr_conf->max_num_amsdu_subframes,
  530. aggr_conf->max_num_ampdu_subframes);
  531. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  532. if (ret) {
  533. dev_kfree_skb_any(skb);
  534. return ret;
  535. }
  536. return 0;
  537. }
  538. int ath10k_htt_tx_fetch_resp(struct ath10k *ar,
  539. __le32 token,
  540. __le16 fetch_seq_num,
  541. struct htt_tx_fetch_record *records,
  542. size_t num_records)
  543. {
  544. struct sk_buff *skb;
  545. struct htt_cmd *cmd;
  546. const u16 resp_id = 0;
  547. int len = 0;
  548. int ret;
  549. /* Response IDs are echo-ed back only for host driver convienence
  550. * purposes. They aren't used for anything in the driver yet so use 0.
  551. */
  552. len += sizeof(cmd->hdr);
  553. len += sizeof(cmd->tx_fetch_resp);
  554. len += sizeof(cmd->tx_fetch_resp.records[0]) * num_records;
  555. skb = ath10k_htc_alloc_skb(ar, len);
  556. if (!skb)
  557. return -ENOMEM;
  558. skb_put(skb, len);
  559. cmd = (struct htt_cmd *)skb->data;
  560. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FETCH_RESP;
  561. cmd->tx_fetch_resp.resp_id = cpu_to_le16(resp_id);
  562. cmd->tx_fetch_resp.fetch_seq_num = fetch_seq_num;
  563. cmd->tx_fetch_resp.num_records = cpu_to_le16(num_records);
  564. cmd->tx_fetch_resp.token = token;
  565. memcpy(cmd->tx_fetch_resp.records, records,
  566. sizeof(records[0]) * num_records);
  567. ret = ath10k_htc_send(&ar->htc, ar->htt.eid, skb);
  568. if (ret) {
  569. ath10k_warn(ar, "failed to submit htc command: %d\n", ret);
  570. goto err_free_skb;
  571. }
  572. return 0;
  573. err_free_skb:
  574. dev_kfree_skb_any(skb);
  575. return ret;
  576. }
  577. static u8 ath10k_htt_tx_get_vdev_id(struct ath10k *ar, struct sk_buff *skb)
  578. {
  579. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  580. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  581. struct ath10k_vif *arvif;
  582. if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
  583. return ar->scan.vdev_id;
  584. } else if (cb->vif) {
  585. arvif = (void *)cb->vif->drv_priv;
  586. return arvif->vdev_id;
  587. } else if (ar->monitor_started) {
  588. return ar->monitor_vdev_id;
  589. } else {
  590. return 0;
  591. }
  592. }
  593. static u8 ath10k_htt_tx_get_tid(struct sk_buff *skb, bool is_eth)
  594. {
  595. struct ieee80211_hdr *hdr = (void *)skb->data;
  596. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  597. if (!is_eth && ieee80211_is_mgmt(hdr->frame_control))
  598. return HTT_DATA_TX_EXT_TID_MGMT;
  599. else if (cb->flags & ATH10K_SKB_F_QOS)
  600. return skb->priority % IEEE80211_QOS_CTL_TID_MASK;
  601. else
  602. return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
  603. }
  604. int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
  605. {
  606. struct ath10k *ar = htt->ar;
  607. struct device *dev = ar->dev;
  608. struct sk_buff *txdesc = NULL;
  609. struct htt_cmd *cmd;
  610. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  611. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  612. int len = 0;
  613. int msdu_id = -1;
  614. int res;
  615. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  616. len += sizeof(cmd->hdr);
  617. len += sizeof(cmd->mgmt_tx);
  618. spin_lock_bh(&htt->tx_lock);
  619. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  620. spin_unlock_bh(&htt->tx_lock);
  621. if (res < 0)
  622. goto err;
  623. msdu_id = res;
  624. if ((ieee80211_is_action(hdr->frame_control) ||
  625. ieee80211_is_deauth(hdr->frame_control) ||
  626. ieee80211_is_disassoc(hdr->frame_control)) &&
  627. ieee80211_has_protected(hdr->frame_control)) {
  628. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  629. }
  630. txdesc = ath10k_htc_alloc_skb(ar, len);
  631. if (!txdesc) {
  632. res = -ENOMEM;
  633. goto err_free_msdu_id;
  634. }
  635. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  636. DMA_TO_DEVICE);
  637. res = dma_mapping_error(dev, skb_cb->paddr);
  638. if (res) {
  639. res = -EIO;
  640. goto err_free_txdesc;
  641. }
  642. skb_put(txdesc, len);
  643. cmd = (struct htt_cmd *)txdesc->data;
  644. memset(cmd, 0, len);
  645. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_MGMT_TX;
  646. cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr);
  647. cmd->mgmt_tx.len = __cpu_to_le32(msdu->len);
  648. cmd->mgmt_tx.desc_id = __cpu_to_le32(msdu_id);
  649. cmd->mgmt_tx.vdev_id = __cpu_to_le32(vdev_id);
  650. memcpy(cmd->mgmt_tx.hdr, msdu->data,
  651. min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN));
  652. res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc);
  653. if (res)
  654. goto err_unmap_msdu;
  655. return 0;
  656. err_unmap_msdu:
  657. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  658. err_free_txdesc:
  659. dev_kfree_skb_any(txdesc);
  660. err_free_msdu_id:
  661. spin_lock_bh(&htt->tx_lock);
  662. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  663. spin_unlock_bh(&htt->tx_lock);
  664. err:
  665. return res;
  666. }
  667. int ath10k_htt_tx(struct ath10k_htt *htt, enum ath10k_hw_txrx_mode txmode,
  668. struct sk_buff *msdu)
  669. {
  670. struct ath10k *ar = htt->ar;
  671. struct device *dev = ar->dev;
  672. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  673. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
  674. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  675. struct ath10k_hif_sg_item sg_items[2];
  676. struct ath10k_htt_txbuf *txbuf;
  677. struct htt_data_tx_desc_frag *frags;
  678. bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
  679. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  680. u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
  681. int prefetch_len;
  682. int res;
  683. u8 flags0 = 0;
  684. u16 msdu_id, flags1 = 0;
  685. u16 freq = 0;
  686. u32 frags_paddr = 0;
  687. u32 txbuf_paddr;
  688. struct htt_msdu_ext_desc *ext_desc = NULL;
  689. spin_lock_bh(&htt->tx_lock);
  690. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  691. spin_unlock_bh(&htt->tx_lock);
  692. if (res < 0)
  693. goto err;
  694. msdu_id = res;
  695. prefetch_len = min(htt->prefetch_len, msdu->len);
  696. prefetch_len = roundup(prefetch_len, 4);
  697. txbuf = &htt->txbuf.vaddr[msdu_id];
  698. txbuf_paddr = htt->txbuf.paddr +
  699. (sizeof(struct ath10k_htt_txbuf) * msdu_id);
  700. if ((ieee80211_is_action(hdr->frame_control) ||
  701. ieee80211_is_deauth(hdr->frame_control) ||
  702. ieee80211_is_disassoc(hdr->frame_control)) &&
  703. ieee80211_has_protected(hdr->frame_control)) {
  704. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  705. } else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
  706. txmode == ATH10K_HW_TXRX_RAW &&
  707. ieee80211_has_protected(hdr->frame_control)) {
  708. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  709. }
  710. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  711. DMA_TO_DEVICE);
  712. res = dma_mapping_error(dev, skb_cb->paddr);
  713. if (res) {
  714. res = -EIO;
  715. goto err_free_msdu_id;
  716. }
  717. if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
  718. freq = ar->scan.roc_freq;
  719. switch (txmode) {
  720. case ATH10K_HW_TXRX_RAW:
  721. case ATH10K_HW_TXRX_NATIVE_WIFI:
  722. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  723. /* pass through */
  724. case ATH10K_HW_TXRX_ETHERNET:
  725. if (ar->hw_params.continuous_frag_desc) {
  726. memset(&htt->frag_desc.vaddr[msdu_id], 0,
  727. sizeof(struct htt_msdu_ext_desc));
  728. frags = (struct htt_data_tx_desc_frag *)
  729. &htt->frag_desc.vaddr[msdu_id].frags;
  730. ext_desc = &htt->frag_desc.vaddr[msdu_id];
  731. frags[0].tword_addr.paddr_lo =
  732. __cpu_to_le32(skb_cb->paddr);
  733. frags[0].tword_addr.paddr_hi = 0;
  734. frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
  735. frags_paddr = htt->frag_desc.paddr +
  736. (sizeof(struct htt_msdu_ext_desc) * msdu_id);
  737. } else {
  738. frags = txbuf->frags;
  739. frags[0].dword_addr.paddr =
  740. __cpu_to_le32(skb_cb->paddr);
  741. frags[0].dword_addr.len = __cpu_to_le32(msdu->len);
  742. frags[1].dword_addr.paddr = 0;
  743. frags[1].dword_addr.len = 0;
  744. frags_paddr = txbuf_paddr;
  745. }
  746. flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  747. break;
  748. case ATH10K_HW_TXRX_MGMT:
  749. flags0 |= SM(ATH10K_HW_TXRX_MGMT,
  750. HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  751. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  752. frags_paddr = skb_cb->paddr;
  753. break;
  754. }
  755. /* Normally all commands go through HTC which manages tx credits for
  756. * each endpoint and notifies when tx is completed.
  757. *
  758. * HTT endpoint is creditless so there's no need to care about HTC
  759. * flags. In that case it is trivial to fill the HTC header here.
  760. *
  761. * MSDU transmission is considered completed upon HTT event. This
  762. * implies no relevant resources can be freed until after the event is
  763. * received. That's why HTC tx completion handler itself is ignored by
  764. * setting NULL to transfer_context for all sg items.
  765. *
  766. * There is simply no point in pushing HTT TX_FRM through HTC tx path
  767. * as it's a waste of resources. By bypassing HTC it is possible to
  768. * avoid extra memory allocations, compress data structures and thus
  769. * improve performance. */
  770. txbuf->htc_hdr.eid = htt->eid;
  771. txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
  772. sizeof(txbuf->cmd_tx) +
  773. prefetch_len);
  774. txbuf->htc_hdr.flags = 0;
  775. if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
  776. flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
  777. flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
  778. flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
  779. if (msdu->ip_summed == CHECKSUM_PARTIAL &&
  780. !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
  781. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
  782. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
  783. if (ar->hw_params.continuous_frag_desc)
  784. ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE;
  785. }
  786. /* Prevent firmware from sending up tx inspection requests. There's
  787. * nothing ath10k can do with frames requested for inspection so force
  788. * it to simply rely a regular tx completion with discard status.
  789. */
  790. flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
  791. txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
  792. txbuf->cmd_tx.flags0 = flags0;
  793. txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
  794. txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
  795. txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
  796. txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr);
  797. if (ath10k_mac_tx_frm_has_freq(ar)) {
  798. txbuf->cmd_tx.offchan_tx.peerid =
  799. __cpu_to_le16(HTT_INVALID_PEERID);
  800. txbuf->cmd_tx.offchan_tx.freq =
  801. __cpu_to_le16(freq);
  802. } else {
  803. txbuf->cmd_tx.peerid =
  804. __cpu_to_le32(HTT_INVALID_PEERID);
  805. }
  806. trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
  807. ath10k_dbg(ar, ATH10K_DBG_HTT,
  808. "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %08x, msdu_paddr %08x vdev %hhu tid %hhu freq %hu\n",
  809. flags0, flags1, msdu->len, msdu_id, frags_paddr,
  810. (u32)skb_cb->paddr, vdev_id, tid, freq);
  811. ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
  812. msdu->data, msdu->len);
  813. trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
  814. trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
  815. sg_items[0].transfer_id = 0;
  816. sg_items[0].transfer_context = NULL;
  817. sg_items[0].vaddr = &txbuf->htc_hdr;
  818. sg_items[0].paddr = txbuf_paddr +
  819. sizeof(txbuf->frags);
  820. sg_items[0].len = sizeof(txbuf->htc_hdr) +
  821. sizeof(txbuf->cmd_hdr) +
  822. sizeof(txbuf->cmd_tx);
  823. sg_items[1].transfer_id = 0;
  824. sg_items[1].transfer_context = NULL;
  825. sg_items[1].vaddr = msdu->data;
  826. sg_items[1].paddr = skb_cb->paddr;
  827. sg_items[1].len = prefetch_len;
  828. res = ath10k_hif_tx_sg(htt->ar,
  829. htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
  830. sg_items, ARRAY_SIZE(sg_items));
  831. if (res)
  832. goto err_unmap_msdu;
  833. return 0;
  834. err_unmap_msdu:
  835. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  836. err_free_msdu_id:
  837. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  838. err:
  839. return res;
  840. }