chip.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093
  1. /*
  2. * Marvell 88e6xxx Ethernet switch single-chip support
  3. *
  4. * Copyright (c) 2008 Marvell Semiconductor
  5. *
  6. * Copyright (c) 2015 CMC Electronics, Inc.
  7. * Added support for VLAN Table Unit operations
  8. *
  9. * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. */
  16. #include <linux/delay.h>
  17. #include <linux/etherdevice.h>
  18. #include <linux/ethtool.h>
  19. #include <linux/if_bridge.h>
  20. #include <linux/jiffies.h>
  21. #include <linux/list.h>
  22. #include <linux/mdio.h>
  23. #include <linux/module.h>
  24. #include <linux/of_device.h>
  25. #include <linux/of_mdio.h>
  26. #include <linux/netdevice.h>
  27. #include <linux/gpio/consumer.h>
  28. #include <linux/phy.h>
  29. #include <net/dsa.h>
  30. #include <net/switchdev.h>
  31. #include "mv88e6xxx.h"
  32. static void assert_reg_lock(struct mv88e6xxx_chip *chip)
  33. {
  34. if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
  35. dev_err(chip->dev, "Switch registers lock not held!\n");
  36. dump_stack();
  37. }
  38. }
  39. /* The switch ADDR[4:1] configuration pins define the chip SMI device address
  40. * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
  41. *
  42. * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
  43. * is the only device connected to the SMI master. In this mode it responds to
  44. * all 32 possible SMI addresses, and thus maps directly the internal devices.
  45. *
  46. * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
  47. * multiple devices to share the SMI interface. In this mode it responds to only
  48. * 2 registers, used to indirectly access the internal SMI devices.
  49. */
  50. static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
  51. int addr, int reg, u16 *val)
  52. {
  53. if (!chip->smi_ops)
  54. return -EOPNOTSUPP;
  55. return chip->smi_ops->read(chip, addr, reg, val);
  56. }
  57. static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
  58. int addr, int reg, u16 val)
  59. {
  60. if (!chip->smi_ops)
  61. return -EOPNOTSUPP;
  62. return chip->smi_ops->write(chip, addr, reg, val);
  63. }
  64. static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
  65. int addr, int reg, u16 *val)
  66. {
  67. int ret;
  68. ret = mdiobus_read_nested(chip->bus, addr, reg);
  69. if (ret < 0)
  70. return ret;
  71. *val = ret & 0xffff;
  72. return 0;
  73. }
  74. static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
  75. int addr, int reg, u16 val)
  76. {
  77. int ret;
  78. ret = mdiobus_write_nested(chip->bus, addr, reg, val);
  79. if (ret < 0)
  80. return ret;
  81. return 0;
  82. }
  83. static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
  84. .read = mv88e6xxx_smi_single_chip_read,
  85. .write = mv88e6xxx_smi_single_chip_write,
  86. };
  87. static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
  88. {
  89. int ret;
  90. int i;
  91. for (i = 0; i < 16; i++) {
  92. ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
  93. if (ret < 0)
  94. return ret;
  95. if ((ret & SMI_CMD_BUSY) == 0)
  96. return 0;
  97. }
  98. return -ETIMEDOUT;
  99. }
  100. static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
  101. int addr, int reg, u16 *val)
  102. {
  103. int ret;
  104. /* Wait for the bus to become free. */
  105. ret = mv88e6xxx_smi_multi_chip_wait(chip);
  106. if (ret < 0)
  107. return ret;
  108. /* Transmit the read command. */
  109. ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
  110. SMI_CMD_OP_22_READ | (addr << 5) | reg);
  111. if (ret < 0)
  112. return ret;
  113. /* Wait for the read command to complete. */
  114. ret = mv88e6xxx_smi_multi_chip_wait(chip);
  115. if (ret < 0)
  116. return ret;
  117. /* Read the data. */
  118. ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
  119. if (ret < 0)
  120. return ret;
  121. *val = ret & 0xffff;
  122. return 0;
  123. }
  124. static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
  125. int addr, int reg, u16 val)
  126. {
  127. int ret;
  128. /* Wait for the bus to become free. */
  129. ret = mv88e6xxx_smi_multi_chip_wait(chip);
  130. if (ret < 0)
  131. return ret;
  132. /* Transmit the data to write. */
  133. ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
  134. if (ret < 0)
  135. return ret;
  136. /* Transmit the write command. */
  137. ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
  138. SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
  139. if (ret < 0)
  140. return ret;
  141. /* Wait for the write command to complete. */
  142. ret = mv88e6xxx_smi_multi_chip_wait(chip);
  143. if (ret < 0)
  144. return ret;
  145. return 0;
  146. }
  147. static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
  148. .read = mv88e6xxx_smi_multi_chip_read,
  149. .write = mv88e6xxx_smi_multi_chip_write,
  150. };
  151. static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
  152. int addr, int reg, u16 *val)
  153. {
  154. int err;
  155. assert_reg_lock(chip);
  156. err = mv88e6xxx_smi_read(chip, addr, reg, val);
  157. if (err)
  158. return err;
  159. dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
  160. addr, reg, *val);
  161. return 0;
  162. }
  163. static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
  164. int addr, int reg, u16 val)
  165. {
  166. int err;
  167. assert_reg_lock(chip);
  168. err = mv88e6xxx_smi_write(chip, addr, reg, val);
  169. if (err)
  170. return err;
  171. dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
  172. addr, reg, val);
  173. return 0;
  174. }
  175. /* Indirect write to single pointer-data register with an Update bit */
  176. static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
  177. u16 update)
  178. {
  179. u16 val;
  180. int i, err;
  181. /* Wait until the previous operation is completed */
  182. for (i = 0; i < 16; ++i) {
  183. err = mv88e6xxx_read(chip, addr, reg, &val);
  184. if (err)
  185. return err;
  186. if (!(val & BIT(15)))
  187. break;
  188. }
  189. if (i == 16)
  190. return -ETIMEDOUT;
  191. /* Set the Update bit to trigger a write operation */
  192. val = BIT(15) | update;
  193. return mv88e6xxx_write(chip, addr, reg, val);
  194. }
  195. static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
  196. {
  197. u16 val;
  198. int err;
  199. err = mv88e6xxx_read(chip, addr, reg, &val);
  200. if (err)
  201. return err;
  202. return val;
  203. }
  204. static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
  205. int reg, u16 val)
  206. {
  207. return mv88e6xxx_write(chip, addr, reg, val);
  208. }
  209. static int mv88e6xxx_mdio_read_direct(struct mv88e6xxx_chip *chip,
  210. int addr, int regnum)
  211. {
  212. if (addr >= 0)
  213. return _mv88e6xxx_reg_read(chip, addr, regnum);
  214. return 0xffff;
  215. }
  216. static int mv88e6xxx_mdio_write_direct(struct mv88e6xxx_chip *chip,
  217. int addr, int regnum, u16 val)
  218. {
  219. if (addr >= 0)
  220. return _mv88e6xxx_reg_write(chip, addr, regnum, val);
  221. return 0;
  222. }
  223. static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
  224. {
  225. int ret;
  226. unsigned long timeout;
  227. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
  228. if (ret < 0)
  229. return ret;
  230. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
  231. ret & ~GLOBAL_CONTROL_PPU_ENABLE);
  232. if (ret)
  233. return ret;
  234. timeout = jiffies + 1 * HZ;
  235. while (time_before(jiffies, timeout)) {
  236. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
  237. if (ret < 0)
  238. return ret;
  239. usleep_range(1000, 2000);
  240. if ((ret & GLOBAL_STATUS_PPU_MASK) !=
  241. GLOBAL_STATUS_PPU_POLLING)
  242. return 0;
  243. }
  244. return -ETIMEDOUT;
  245. }
  246. static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
  247. {
  248. int ret, err;
  249. unsigned long timeout;
  250. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
  251. if (ret < 0)
  252. return ret;
  253. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
  254. ret | GLOBAL_CONTROL_PPU_ENABLE);
  255. if (err)
  256. return err;
  257. timeout = jiffies + 1 * HZ;
  258. while (time_before(jiffies, timeout)) {
  259. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
  260. if (ret < 0)
  261. return ret;
  262. usleep_range(1000, 2000);
  263. if ((ret & GLOBAL_STATUS_PPU_MASK) ==
  264. GLOBAL_STATUS_PPU_POLLING)
  265. return 0;
  266. }
  267. return -ETIMEDOUT;
  268. }
  269. static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
  270. {
  271. struct mv88e6xxx_chip *chip;
  272. chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
  273. mutex_lock(&chip->reg_lock);
  274. if (mutex_trylock(&chip->ppu_mutex)) {
  275. if (mv88e6xxx_ppu_enable(chip) == 0)
  276. chip->ppu_disabled = 0;
  277. mutex_unlock(&chip->ppu_mutex);
  278. }
  279. mutex_unlock(&chip->reg_lock);
  280. }
  281. static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
  282. {
  283. struct mv88e6xxx_chip *chip = (void *)_ps;
  284. schedule_work(&chip->ppu_work);
  285. }
  286. static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
  287. {
  288. int ret;
  289. mutex_lock(&chip->ppu_mutex);
  290. /* If the PHY polling unit is enabled, disable it so that
  291. * we can access the PHY registers. If it was already
  292. * disabled, cancel the timer that is going to re-enable
  293. * it.
  294. */
  295. if (!chip->ppu_disabled) {
  296. ret = mv88e6xxx_ppu_disable(chip);
  297. if (ret < 0) {
  298. mutex_unlock(&chip->ppu_mutex);
  299. return ret;
  300. }
  301. chip->ppu_disabled = 1;
  302. } else {
  303. del_timer(&chip->ppu_timer);
  304. ret = 0;
  305. }
  306. return ret;
  307. }
  308. static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
  309. {
  310. /* Schedule a timer to re-enable the PHY polling unit. */
  311. mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
  312. mutex_unlock(&chip->ppu_mutex);
  313. }
  314. static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
  315. {
  316. mutex_init(&chip->ppu_mutex);
  317. INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
  318. init_timer(&chip->ppu_timer);
  319. chip->ppu_timer.data = (unsigned long)chip;
  320. chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
  321. }
  322. static int mv88e6xxx_mdio_read_ppu(struct mv88e6xxx_chip *chip, int addr,
  323. int regnum)
  324. {
  325. int ret;
  326. ret = mv88e6xxx_ppu_access_get(chip);
  327. if (ret >= 0) {
  328. ret = _mv88e6xxx_reg_read(chip, addr, regnum);
  329. mv88e6xxx_ppu_access_put(chip);
  330. }
  331. return ret;
  332. }
  333. static int mv88e6xxx_mdio_write_ppu(struct mv88e6xxx_chip *chip, int addr,
  334. int regnum, u16 val)
  335. {
  336. int ret;
  337. ret = mv88e6xxx_ppu_access_get(chip);
  338. if (ret >= 0) {
  339. ret = _mv88e6xxx_reg_write(chip, addr, regnum, val);
  340. mv88e6xxx_ppu_access_put(chip);
  341. }
  342. return ret;
  343. }
  344. static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
  345. {
  346. return chip->info->family == MV88E6XXX_FAMILY_6065;
  347. }
  348. static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
  349. {
  350. return chip->info->family == MV88E6XXX_FAMILY_6095;
  351. }
  352. static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
  353. {
  354. return chip->info->family == MV88E6XXX_FAMILY_6097;
  355. }
  356. static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
  357. {
  358. return chip->info->family == MV88E6XXX_FAMILY_6165;
  359. }
  360. static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
  361. {
  362. return chip->info->family == MV88E6XXX_FAMILY_6185;
  363. }
  364. static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
  365. {
  366. return chip->info->family == MV88E6XXX_FAMILY_6320;
  367. }
  368. static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
  369. {
  370. return chip->info->family == MV88E6XXX_FAMILY_6351;
  371. }
  372. static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
  373. {
  374. return chip->info->family == MV88E6XXX_FAMILY_6352;
  375. }
  376. static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
  377. {
  378. return chip->info->num_databases;
  379. }
  380. static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
  381. {
  382. /* Does the device have dedicated FID registers for ATU and VTU ops? */
  383. if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
  384. mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
  385. return true;
  386. return false;
  387. }
  388. /* We expect the switch to perform auto negotiation if there is a real
  389. * phy. However, in the case of a fixed link phy, we force the port
  390. * settings from the fixed link settings.
  391. */
  392. static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
  393. struct phy_device *phydev)
  394. {
  395. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  396. u32 reg;
  397. int ret;
  398. if (!phy_is_pseudo_fixed_link(phydev))
  399. return;
  400. mutex_lock(&chip->reg_lock);
  401. ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
  402. if (ret < 0)
  403. goto out;
  404. reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
  405. PORT_PCS_CTRL_FORCE_LINK |
  406. PORT_PCS_CTRL_DUPLEX_FULL |
  407. PORT_PCS_CTRL_FORCE_DUPLEX |
  408. PORT_PCS_CTRL_UNFORCED);
  409. reg |= PORT_PCS_CTRL_FORCE_LINK;
  410. if (phydev->link)
  411. reg |= PORT_PCS_CTRL_LINK_UP;
  412. if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
  413. goto out;
  414. switch (phydev->speed) {
  415. case SPEED_1000:
  416. reg |= PORT_PCS_CTRL_1000;
  417. break;
  418. case SPEED_100:
  419. reg |= PORT_PCS_CTRL_100;
  420. break;
  421. case SPEED_10:
  422. reg |= PORT_PCS_CTRL_10;
  423. break;
  424. default:
  425. pr_info("Unknown speed");
  426. goto out;
  427. }
  428. reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
  429. if (phydev->duplex == DUPLEX_FULL)
  430. reg |= PORT_PCS_CTRL_DUPLEX_FULL;
  431. if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
  432. (port >= chip->info->num_ports - 2)) {
  433. if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
  434. reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
  435. if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
  436. reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
  437. if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
  438. reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
  439. PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
  440. }
  441. _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
  442. out:
  443. mutex_unlock(&chip->reg_lock);
  444. }
  445. static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
  446. {
  447. int ret;
  448. int i;
  449. for (i = 0; i < 10; i++) {
  450. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
  451. if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
  452. return 0;
  453. }
  454. return -ETIMEDOUT;
  455. }
  456. static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
  457. {
  458. int ret;
  459. if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
  460. port = (port + 1) << 5;
  461. /* Snapshot the hardware statistics counters for this port. */
  462. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
  463. GLOBAL_STATS_OP_CAPTURE_PORT |
  464. GLOBAL_STATS_OP_HIST_RX_TX | port);
  465. if (ret < 0)
  466. return ret;
  467. /* Wait for the snapshotting to complete. */
  468. ret = _mv88e6xxx_stats_wait(chip);
  469. if (ret < 0)
  470. return ret;
  471. return 0;
  472. }
  473. static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
  474. int stat, u32 *val)
  475. {
  476. u32 _val;
  477. int ret;
  478. *val = 0;
  479. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
  480. GLOBAL_STATS_OP_READ_CAPTURED |
  481. GLOBAL_STATS_OP_HIST_RX_TX | stat);
  482. if (ret < 0)
  483. return;
  484. ret = _mv88e6xxx_stats_wait(chip);
  485. if (ret < 0)
  486. return;
  487. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
  488. if (ret < 0)
  489. return;
  490. _val = ret << 16;
  491. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
  492. if (ret < 0)
  493. return;
  494. *val = _val | ret;
  495. }
  496. static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
  497. { "in_good_octets", 8, 0x00, BANK0, },
  498. { "in_bad_octets", 4, 0x02, BANK0, },
  499. { "in_unicast", 4, 0x04, BANK0, },
  500. { "in_broadcasts", 4, 0x06, BANK0, },
  501. { "in_multicasts", 4, 0x07, BANK0, },
  502. { "in_pause", 4, 0x16, BANK0, },
  503. { "in_undersize", 4, 0x18, BANK0, },
  504. { "in_fragments", 4, 0x19, BANK0, },
  505. { "in_oversize", 4, 0x1a, BANK0, },
  506. { "in_jabber", 4, 0x1b, BANK0, },
  507. { "in_rx_error", 4, 0x1c, BANK0, },
  508. { "in_fcs_error", 4, 0x1d, BANK0, },
  509. { "out_octets", 8, 0x0e, BANK0, },
  510. { "out_unicast", 4, 0x10, BANK0, },
  511. { "out_broadcasts", 4, 0x13, BANK0, },
  512. { "out_multicasts", 4, 0x12, BANK0, },
  513. { "out_pause", 4, 0x15, BANK0, },
  514. { "excessive", 4, 0x11, BANK0, },
  515. { "collisions", 4, 0x1e, BANK0, },
  516. { "deferred", 4, 0x05, BANK0, },
  517. { "single", 4, 0x14, BANK0, },
  518. { "multiple", 4, 0x17, BANK0, },
  519. { "out_fcs_error", 4, 0x03, BANK0, },
  520. { "late", 4, 0x1f, BANK0, },
  521. { "hist_64bytes", 4, 0x08, BANK0, },
  522. { "hist_65_127bytes", 4, 0x09, BANK0, },
  523. { "hist_128_255bytes", 4, 0x0a, BANK0, },
  524. { "hist_256_511bytes", 4, 0x0b, BANK0, },
  525. { "hist_512_1023bytes", 4, 0x0c, BANK0, },
  526. { "hist_1024_max_bytes", 4, 0x0d, BANK0, },
  527. { "sw_in_discards", 4, 0x10, PORT, },
  528. { "sw_in_filtered", 2, 0x12, PORT, },
  529. { "sw_out_filtered", 2, 0x13, PORT, },
  530. { "in_discards", 4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  531. { "in_filtered", 4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  532. { "in_accepted", 4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  533. { "in_bad_accepted", 4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  534. { "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  535. { "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  536. { "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  537. { "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  538. { "tcam_counter_0", 4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  539. { "tcam_counter_1", 4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  540. { "tcam_counter_2", 4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
  541. { "tcam_counter_3", 4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
  542. { "in_da_unknown", 4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
  543. { "in_management", 4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
  544. { "out_queue_0", 4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  545. { "out_queue_1", 4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  546. { "out_queue_2", 4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  547. { "out_queue_3", 4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  548. { "out_queue_4", 4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  549. { "out_queue_5", 4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  550. { "out_queue_6", 4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  551. { "out_queue_7", 4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  552. { "out_cut_through", 4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
  553. { "out_octets_a", 4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
  554. { "out_octets_b", 4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
  555. { "out_management", 4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
  556. };
  557. static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
  558. struct mv88e6xxx_hw_stat *stat)
  559. {
  560. switch (stat->type) {
  561. case BANK0:
  562. return true;
  563. case BANK1:
  564. return mv88e6xxx_6320_family(chip);
  565. case PORT:
  566. return mv88e6xxx_6095_family(chip) ||
  567. mv88e6xxx_6185_family(chip) ||
  568. mv88e6xxx_6097_family(chip) ||
  569. mv88e6xxx_6165_family(chip) ||
  570. mv88e6xxx_6351_family(chip) ||
  571. mv88e6xxx_6352_family(chip);
  572. }
  573. return false;
  574. }
  575. static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
  576. struct mv88e6xxx_hw_stat *s,
  577. int port)
  578. {
  579. u32 low;
  580. u32 high = 0;
  581. int ret;
  582. u64 value;
  583. switch (s->type) {
  584. case PORT:
  585. ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
  586. if (ret < 0)
  587. return UINT64_MAX;
  588. low = ret;
  589. if (s->sizeof_stat == 4) {
  590. ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
  591. s->reg + 1);
  592. if (ret < 0)
  593. return UINT64_MAX;
  594. high = ret;
  595. }
  596. break;
  597. case BANK0:
  598. case BANK1:
  599. _mv88e6xxx_stats_read(chip, s->reg, &low);
  600. if (s->sizeof_stat == 8)
  601. _mv88e6xxx_stats_read(chip, s->reg + 1, &high);
  602. }
  603. value = (((u64)high) << 16) | low;
  604. return value;
  605. }
  606. static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
  607. uint8_t *data)
  608. {
  609. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  610. struct mv88e6xxx_hw_stat *stat;
  611. int i, j;
  612. for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
  613. stat = &mv88e6xxx_hw_stats[i];
  614. if (mv88e6xxx_has_stat(chip, stat)) {
  615. memcpy(data + j * ETH_GSTRING_LEN, stat->string,
  616. ETH_GSTRING_LEN);
  617. j++;
  618. }
  619. }
  620. }
  621. static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
  622. {
  623. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  624. struct mv88e6xxx_hw_stat *stat;
  625. int i, j;
  626. for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
  627. stat = &mv88e6xxx_hw_stats[i];
  628. if (mv88e6xxx_has_stat(chip, stat))
  629. j++;
  630. }
  631. return j;
  632. }
  633. static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
  634. uint64_t *data)
  635. {
  636. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  637. struct mv88e6xxx_hw_stat *stat;
  638. int ret;
  639. int i, j;
  640. mutex_lock(&chip->reg_lock);
  641. ret = _mv88e6xxx_stats_snapshot(chip, port);
  642. if (ret < 0) {
  643. mutex_unlock(&chip->reg_lock);
  644. return;
  645. }
  646. for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
  647. stat = &mv88e6xxx_hw_stats[i];
  648. if (mv88e6xxx_has_stat(chip, stat)) {
  649. data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
  650. j++;
  651. }
  652. }
  653. mutex_unlock(&chip->reg_lock);
  654. }
  655. static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
  656. {
  657. return 32 * sizeof(u16);
  658. }
  659. static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
  660. struct ethtool_regs *regs, void *_p)
  661. {
  662. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  663. u16 *p = _p;
  664. int i;
  665. regs->version = 0;
  666. memset(p, 0xff, 32 * sizeof(u16));
  667. mutex_lock(&chip->reg_lock);
  668. for (i = 0; i < 32; i++) {
  669. int ret;
  670. ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
  671. if (ret >= 0)
  672. p[i] = ret;
  673. }
  674. mutex_unlock(&chip->reg_lock);
  675. }
  676. static int _mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int reg, int offset,
  677. u16 mask)
  678. {
  679. unsigned long timeout = jiffies + HZ / 10;
  680. while (time_before(jiffies, timeout)) {
  681. int ret;
  682. ret = _mv88e6xxx_reg_read(chip, reg, offset);
  683. if (ret < 0)
  684. return ret;
  685. if (!(ret & mask))
  686. return 0;
  687. usleep_range(1000, 2000);
  688. }
  689. return -ETIMEDOUT;
  690. }
  691. static int mv88e6xxx_mdio_wait(struct mv88e6xxx_chip *chip)
  692. {
  693. return _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
  694. GLOBAL2_SMI_OP_BUSY);
  695. }
  696. static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
  697. {
  698. return _mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
  699. GLOBAL_ATU_OP_BUSY);
  700. }
  701. static int mv88e6xxx_mdio_read_indirect(struct mv88e6xxx_chip *chip,
  702. int addr, int regnum)
  703. {
  704. int ret;
  705. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
  706. GLOBAL2_SMI_OP_22_READ | (addr << 5) |
  707. regnum);
  708. if (ret < 0)
  709. return ret;
  710. ret = mv88e6xxx_mdio_wait(chip);
  711. if (ret < 0)
  712. return ret;
  713. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA);
  714. return ret;
  715. }
  716. static int mv88e6xxx_mdio_write_indirect(struct mv88e6xxx_chip *chip,
  717. int addr, int regnum, u16 val)
  718. {
  719. int ret;
  720. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
  721. if (ret < 0)
  722. return ret;
  723. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
  724. GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
  725. regnum);
  726. return mv88e6xxx_mdio_wait(chip);
  727. }
  728. static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
  729. struct ethtool_eee *e)
  730. {
  731. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  732. int reg;
  733. if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
  734. return -EOPNOTSUPP;
  735. mutex_lock(&chip->reg_lock);
  736. reg = mv88e6xxx_mdio_read_indirect(chip, port, 16);
  737. if (reg < 0)
  738. goto out;
  739. e->eee_enabled = !!(reg & 0x0200);
  740. e->tx_lpi_enabled = !!(reg & 0x0100);
  741. reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
  742. if (reg < 0)
  743. goto out;
  744. e->eee_active = !!(reg & PORT_STATUS_EEE);
  745. reg = 0;
  746. out:
  747. mutex_unlock(&chip->reg_lock);
  748. return reg;
  749. }
  750. static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
  751. struct phy_device *phydev, struct ethtool_eee *e)
  752. {
  753. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  754. int reg;
  755. int ret;
  756. if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
  757. return -EOPNOTSUPP;
  758. mutex_lock(&chip->reg_lock);
  759. ret = mv88e6xxx_mdio_read_indirect(chip, port, 16);
  760. if (ret < 0)
  761. goto out;
  762. reg = ret & ~0x0300;
  763. if (e->eee_enabled)
  764. reg |= 0x0200;
  765. if (e->tx_lpi_enabled)
  766. reg |= 0x0100;
  767. ret = mv88e6xxx_mdio_write_indirect(chip, port, 16, reg);
  768. out:
  769. mutex_unlock(&chip->reg_lock);
  770. return ret;
  771. }
  772. static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
  773. {
  774. int ret;
  775. if (mv88e6xxx_has_fid_reg(chip)) {
  776. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
  777. fid);
  778. if (ret < 0)
  779. return ret;
  780. } else if (mv88e6xxx_num_databases(chip) == 256) {
  781. /* ATU DBNum[7:4] are located in ATU Control 15:12 */
  782. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
  783. if (ret < 0)
  784. return ret;
  785. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
  786. (ret & 0xfff) |
  787. ((fid << 8) & 0xf000));
  788. if (ret < 0)
  789. return ret;
  790. /* ATU DBNum[3:0] are located in ATU Operation 3:0 */
  791. cmd |= fid & 0xf;
  792. }
  793. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
  794. if (ret < 0)
  795. return ret;
  796. return _mv88e6xxx_atu_wait(chip);
  797. }
  798. static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
  799. struct mv88e6xxx_atu_entry *entry)
  800. {
  801. u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
  802. if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
  803. unsigned int mask, shift;
  804. if (entry->trunk) {
  805. data |= GLOBAL_ATU_DATA_TRUNK;
  806. mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
  807. shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
  808. } else {
  809. mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
  810. shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
  811. }
  812. data |= (entry->portv_trunkid << shift) & mask;
  813. }
  814. return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
  815. }
  816. static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
  817. struct mv88e6xxx_atu_entry *entry,
  818. bool static_too)
  819. {
  820. int op;
  821. int err;
  822. err = _mv88e6xxx_atu_wait(chip);
  823. if (err)
  824. return err;
  825. err = _mv88e6xxx_atu_data_write(chip, entry);
  826. if (err)
  827. return err;
  828. if (entry->fid) {
  829. op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
  830. GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
  831. } else {
  832. op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
  833. GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
  834. }
  835. return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
  836. }
  837. static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
  838. u16 fid, bool static_too)
  839. {
  840. struct mv88e6xxx_atu_entry entry = {
  841. .fid = fid,
  842. .state = 0, /* EntryState bits must be 0 */
  843. };
  844. return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
  845. }
  846. static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
  847. int from_port, int to_port, bool static_too)
  848. {
  849. struct mv88e6xxx_atu_entry entry = {
  850. .trunk = false,
  851. .fid = fid,
  852. };
  853. /* EntryState bits must be 0xF */
  854. entry.state = GLOBAL_ATU_DATA_STATE_MASK;
  855. /* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
  856. entry.portv_trunkid = (to_port & 0x0f) << 4;
  857. entry.portv_trunkid |= from_port & 0x0f;
  858. return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
  859. }
  860. static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
  861. int port, bool static_too)
  862. {
  863. /* Destination port 0xF means remove the entries */
  864. return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
  865. }
  866. static const char * const mv88e6xxx_port_state_names[] = {
  867. [PORT_CONTROL_STATE_DISABLED] = "Disabled",
  868. [PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
  869. [PORT_CONTROL_STATE_LEARNING] = "Learning",
  870. [PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
  871. };
  872. static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
  873. u8 state)
  874. {
  875. struct dsa_switch *ds = chip->ds;
  876. int reg, ret = 0;
  877. u8 oldstate;
  878. reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
  879. if (reg < 0)
  880. return reg;
  881. oldstate = reg & PORT_CONTROL_STATE_MASK;
  882. if (oldstate != state) {
  883. /* Flush forwarding database if we're moving a port
  884. * from Learning or Forwarding state to Disabled or
  885. * Blocking or Listening state.
  886. */
  887. if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
  888. oldstate == PORT_CONTROL_STATE_FORWARDING) &&
  889. (state == PORT_CONTROL_STATE_DISABLED ||
  890. state == PORT_CONTROL_STATE_BLOCKING)) {
  891. ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
  892. if (ret)
  893. return ret;
  894. }
  895. reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
  896. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
  897. reg);
  898. if (ret)
  899. return ret;
  900. netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
  901. mv88e6xxx_port_state_names[state],
  902. mv88e6xxx_port_state_names[oldstate]);
  903. }
  904. return ret;
  905. }
  906. static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
  907. {
  908. struct net_device *bridge = chip->ports[port].bridge_dev;
  909. const u16 mask = (1 << chip->info->num_ports) - 1;
  910. struct dsa_switch *ds = chip->ds;
  911. u16 output_ports = 0;
  912. int reg;
  913. int i;
  914. /* allow CPU port or DSA link(s) to send frames to every port */
  915. if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
  916. output_ports = mask;
  917. } else {
  918. for (i = 0; i < chip->info->num_ports; ++i) {
  919. /* allow sending frames to every group member */
  920. if (bridge && chip->ports[i].bridge_dev == bridge)
  921. output_ports |= BIT(i);
  922. /* allow sending frames to CPU port and DSA link(s) */
  923. if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
  924. output_ports |= BIT(i);
  925. }
  926. }
  927. /* prevent frames from going back out of the port they came in on */
  928. output_ports &= ~BIT(port);
  929. reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
  930. if (reg < 0)
  931. return reg;
  932. reg &= ~mask;
  933. reg |= output_ports & mask;
  934. return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
  935. }
  936. static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
  937. u8 state)
  938. {
  939. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  940. int stp_state;
  941. int err;
  942. switch (state) {
  943. case BR_STATE_DISABLED:
  944. stp_state = PORT_CONTROL_STATE_DISABLED;
  945. break;
  946. case BR_STATE_BLOCKING:
  947. case BR_STATE_LISTENING:
  948. stp_state = PORT_CONTROL_STATE_BLOCKING;
  949. break;
  950. case BR_STATE_LEARNING:
  951. stp_state = PORT_CONTROL_STATE_LEARNING;
  952. break;
  953. case BR_STATE_FORWARDING:
  954. default:
  955. stp_state = PORT_CONTROL_STATE_FORWARDING;
  956. break;
  957. }
  958. mutex_lock(&chip->reg_lock);
  959. err = _mv88e6xxx_port_state(chip, port, stp_state);
  960. mutex_unlock(&chip->reg_lock);
  961. if (err)
  962. netdev_err(ds->ports[port].netdev,
  963. "failed to update state to %s\n",
  964. mv88e6xxx_port_state_names[stp_state]);
  965. }
  966. static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
  967. u16 *new, u16 *old)
  968. {
  969. struct dsa_switch *ds = chip->ds;
  970. u16 pvid;
  971. int ret;
  972. ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
  973. if (ret < 0)
  974. return ret;
  975. pvid = ret & PORT_DEFAULT_VLAN_MASK;
  976. if (new) {
  977. ret &= ~PORT_DEFAULT_VLAN_MASK;
  978. ret |= *new & PORT_DEFAULT_VLAN_MASK;
  979. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
  980. PORT_DEFAULT_VLAN, ret);
  981. if (ret < 0)
  982. return ret;
  983. netdev_dbg(ds->ports[port].netdev,
  984. "DefaultVID %d (was %d)\n", *new, pvid);
  985. }
  986. if (old)
  987. *old = pvid;
  988. return 0;
  989. }
  990. static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
  991. int port, u16 *pvid)
  992. {
  993. return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
  994. }
  995. static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
  996. int port, u16 pvid)
  997. {
  998. return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
  999. }
  1000. static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
  1001. {
  1002. return _mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
  1003. GLOBAL_VTU_OP_BUSY);
  1004. }
  1005. static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
  1006. {
  1007. int ret;
  1008. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
  1009. if (ret < 0)
  1010. return ret;
  1011. return _mv88e6xxx_vtu_wait(chip);
  1012. }
  1013. static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
  1014. {
  1015. int ret;
  1016. ret = _mv88e6xxx_vtu_wait(chip);
  1017. if (ret < 0)
  1018. return ret;
  1019. return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
  1020. }
  1021. static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
  1022. struct mv88e6xxx_vtu_stu_entry *entry,
  1023. unsigned int nibble_offset)
  1024. {
  1025. u16 regs[3];
  1026. int i;
  1027. int ret;
  1028. for (i = 0; i < 3; ++i) {
  1029. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
  1030. GLOBAL_VTU_DATA_0_3 + i);
  1031. if (ret < 0)
  1032. return ret;
  1033. regs[i] = ret;
  1034. }
  1035. for (i = 0; i < chip->info->num_ports; ++i) {
  1036. unsigned int shift = (i % 4) * 4 + nibble_offset;
  1037. u16 reg = regs[i / 4];
  1038. entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
  1039. }
  1040. return 0;
  1041. }
  1042. static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
  1043. struct mv88e6xxx_vtu_stu_entry *entry)
  1044. {
  1045. return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
  1046. }
  1047. static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
  1048. struct mv88e6xxx_vtu_stu_entry *entry)
  1049. {
  1050. return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
  1051. }
  1052. static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
  1053. struct mv88e6xxx_vtu_stu_entry *entry,
  1054. unsigned int nibble_offset)
  1055. {
  1056. u16 regs[3] = { 0 };
  1057. int i;
  1058. int ret;
  1059. for (i = 0; i < chip->info->num_ports; ++i) {
  1060. unsigned int shift = (i % 4) * 4 + nibble_offset;
  1061. u8 data = entry->data[i];
  1062. regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
  1063. }
  1064. for (i = 0; i < 3; ++i) {
  1065. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
  1066. GLOBAL_VTU_DATA_0_3 + i, regs[i]);
  1067. if (ret < 0)
  1068. return ret;
  1069. }
  1070. return 0;
  1071. }
  1072. static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
  1073. struct mv88e6xxx_vtu_stu_entry *entry)
  1074. {
  1075. return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
  1076. }
  1077. static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
  1078. struct mv88e6xxx_vtu_stu_entry *entry)
  1079. {
  1080. return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
  1081. }
  1082. static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
  1083. {
  1084. return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
  1085. vid & GLOBAL_VTU_VID_MASK);
  1086. }
  1087. static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
  1088. struct mv88e6xxx_vtu_stu_entry *entry)
  1089. {
  1090. struct mv88e6xxx_vtu_stu_entry next = { 0 };
  1091. int ret;
  1092. ret = _mv88e6xxx_vtu_wait(chip);
  1093. if (ret < 0)
  1094. return ret;
  1095. ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
  1096. if (ret < 0)
  1097. return ret;
  1098. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
  1099. if (ret < 0)
  1100. return ret;
  1101. next.vid = ret & GLOBAL_VTU_VID_MASK;
  1102. next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
  1103. if (next.valid) {
  1104. ret = mv88e6xxx_vtu_data_read(chip, &next);
  1105. if (ret < 0)
  1106. return ret;
  1107. if (mv88e6xxx_has_fid_reg(chip)) {
  1108. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
  1109. GLOBAL_VTU_FID);
  1110. if (ret < 0)
  1111. return ret;
  1112. next.fid = ret & GLOBAL_VTU_FID_MASK;
  1113. } else if (mv88e6xxx_num_databases(chip) == 256) {
  1114. /* VTU DBNum[7:4] are located in VTU Operation 11:8, and
  1115. * VTU DBNum[3:0] are located in VTU Operation 3:0
  1116. */
  1117. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
  1118. GLOBAL_VTU_OP);
  1119. if (ret < 0)
  1120. return ret;
  1121. next.fid = (ret & 0xf00) >> 4;
  1122. next.fid |= ret & 0xf;
  1123. }
  1124. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
  1125. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
  1126. GLOBAL_VTU_SID);
  1127. if (ret < 0)
  1128. return ret;
  1129. next.sid = ret & GLOBAL_VTU_SID_MASK;
  1130. }
  1131. }
  1132. *entry = next;
  1133. return 0;
  1134. }
  1135. static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
  1136. struct switchdev_obj_port_vlan *vlan,
  1137. int (*cb)(struct switchdev_obj *obj))
  1138. {
  1139. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  1140. struct mv88e6xxx_vtu_stu_entry next;
  1141. u16 pvid;
  1142. int err;
  1143. if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
  1144. return -EOPNOTSUPP;
  1145. mutex_lock(&chip->reg_lock);
  1146. err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
  1147. if (err)
  1148. goto unlock;
  1149. err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
  1150. if (err)
  1151. goto unlock;
  1152. do {
  1153. err = _mv88e6xxx_vtu_getnext(chip, &next);
  1154. if (err)
  1155. break;
  1156. if (!next.valid)
  1157. break;
  1158. if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
  1159. continue;
  1160. /* reinit and dump this VLAN obj */
  1161. vlan->vid_begin = next.vid;
  1162. vlan->vid_end = next.vid;
  1163. vlan->flags = 0;
  1164. if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
  1165. vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
  1166. if (next.vid == pvid)
  1167. vlan->flags |= BRIDGE_VLAN_INFO_PVID;
  1168. err = cb(&vlan->obj);
  1169. if (err)
  1170. break;
  1171. } while (next.vid < GLOBAL_VTU_VID_MASK);
  1172. unlock:
  1173. mutex_unlock(&chip->reg_lock);
  1174. return err;
  1175. }
  1176. static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
  1177. struct mv88e6xxx_vtu_stu_entry *entry)
  1178. {
  1179. u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
  1180. u16 reg = 0;
  1181. int ret;
  1182. ret = _mv88e6xxx_vtu_wait(chip);
  1183. if (ret < 0)
  1184. return ret;
  1185. if (!entry->valid)
  1186. goto loadpurge;
  1187. /* Write port member tags */
  1188. ret = mv88e6xxx_vtu_data_write(chip, entry);
  1189. if (ret < 0)
  1190. return ret;
  1191. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
  1192. reg = entry->sid & GLOBAL_VTU_SID_MASK;
  1193. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
  1194. reg);
  1195. if (ret < 0)
  1196. return ret;
  1197. }
  1198. if (mv88e6xxx_has_fid_reg(chip)) {
  1199. reg = entry->fid & GLOBAL_VTU_FID_MASK;
  1200. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
  1201. reg);
  1202. if (ret < 0)
  1203. return ret;
  1204. } else if (mv88e6xxx_num_databases(chip) == 256) {
  1205. /* VTU DBNum[7:4] are located in VTU Operation 11:8, and
  1206. * VTU DBNum[3:0] are located in VTU Operation 3:0
  1207. */
  1208. op |= (entry->fid & 0xf0) << 8;
  1209. op |= entry->fid & 0xf;
  1210. }
  1211. reg = GLOBAL_VTU_VID_VALID;
  1212. loadpurge:
  1213. reg |= entry->vid & GLOBAL_VTU_VID_MASK;
  1214. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
  1215. if (ret < 0)
  1216. return ret;
  1217. return _mv88e6xxx_vtu_cmd(chip, op);
  1218. }
  1219. static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
  1220. struct mv88e6xxx_vtu_stu_entry *entry)
  1221. {
  1222. struct mv88e6xxx_vtu_stu_entry next = { 0 };
  1223. int ret;
  1224. ret = _mv88e6xxx_vtu_wait(chip);
  1225. if (ret < 0)
  1226. return ret;
  1227. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
  1228. sid & GLOBAL_VTU_SID_MASK);
  1229. if (ret < 0)
  1230. return ret;
  1231. ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
  1232. if (ret < 0)
  1233. return ret;
  1234. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
  1235. if (ret < 0)
  1236. return ret;
  1237. next.sid = ret & GLOBAL_VTU_SID_MASK;
  1238. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
  1239. if (ret < 0)
  1240. return ret;
  1241. next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
  1242. if (next.valid) {
  1243. ret = mv88e6xxx_stu_data_read(chip, &next);
  1244. if (ret < 0)
  1245. return ret;
  1246. }
  1247. *entry = next;
  1248. return 0;
  1249. }
  1250. static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
  1251. struct mv88e6xxx_vtu_stu_entry *entry)
  1252. {
  1253. u16 reg = 0;
  1254. int ret;
  1255. ret = _mv88e6xxx_vtu_wait(chip);
  1256. if (ret < 0)
  1257. return ret;
  1258. if (!entry->valid)
  1259. goto loadpurge;
  1260. /* Write port states */
  1261. ret = mv88e6xxx_stu_data_write(chip, entry);
  1262. if (ret < 0)
  1263. return ret;
  1264. reg = GLOBAL_VTU_VID_VALID;
  1265. loadpurge:
  1266. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
  1267. if (ret < 0)
  1268. return ret;
  1269. reg = entry->sid & GLOBAL_VTU_SID_MASK;
  1270. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
  1271. if (ret < 0)
  1272. return ret;
  1273. return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
  1274. }
  1275. static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
  1276. u16 *new, u16 *old)
  1277. {
  1278. struct dsa_switch *ds = chip->ds;
  1279. u16 upper_mask;
  1280. u16 fid;
  1281. int ret;
  1282. if (mv88e6xxx_num_databases(chip) == 4096)
  1283. upper_mask = 0xff;
  1284. else if (mv88e6xxx_num_databases(chip) == 256)
  1285. upper_mask = 0xf;
  1286. else
  1287. return -EOPNOTSUPP;
  1288. /* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
  1289. ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
  1290. if (ret < 0)
  1291. return ret;
  1292. fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
  1293. if (new) {
  1294. ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
  1295. ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
  1296. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
  1297. ret);
  1298. if (ret < 0)
  1299. return ret;
  1300. }
  1301. /* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
  1302. ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
  1303. if (ret < 0)
  1304. return ret;
  1305. fid |= (ret & upper_mask) << 4;
  1306. if (new) {
  1307. ret &= ~upper_mask;
  1308. ret |= (*new >> 4) & upper_mask;
  1309. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
  1310. ret);
  1311. if (ret < 0)
  1312. return ret;
  1313. netdev_dbg(ds->ports[port].netdev,
  1314. "FID %d (was %d)\n", *new, fid);
  1315. }
  1316. if (old)
  1317. *old = fid;
  1318. return 0;
  1319. }
  1320. static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
  1321. int port, u16 *fid)
  1322. {
  1323. return _mv88e6xxx_port_fid(chip, port, NULL, fid);
  1324. }
  1325. static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
  1326. int port, u16 fid)
  1327. {
  1328. return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
  1329. }
  1330. static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
  1331. {
  1332. DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
  1333. struct mv88e6xxx_vtu_stu_entry vlan;
  1334. int i, err;
  1335. bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);
  1336. /* Set every FID bit used by the (un)bridged ports */
  1337. for (i = 0; i < chip->info->num_ports; ++i) {
  1338. err = _mv88e6xxx_port_fid_get(chip, i, fid);
  1339. if (err)
  1340. return err;
  1341. set_bit(*fid, fid_bitmap);
  1342. }
  1343. /* Set every FID bit used by the VLAN entries */
  1344. err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
  1345. if (err)
  1346. return err;
  1347. do {
  1348. err = _mv88e6xxx_vtu_getnext(chip, &vlan);
  1349. if (err)
  1350. return err;
  1351. if (!vlan.valid)
  1352. break;
  1353. set_bit(vlan.fid, fid_bitmap);
  1354. } while (vlan.vid < GLOBAL_VTU_VID_MASK);
  1355. /* The reset value 0x000 is used to indicate that multiple address
  1356. * databases are not needed. Return the next positive available.
  1357. */
  1358. *fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
  1359. if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
  1360. return -ENOSPC;
  1361. /* Clear the database */
  1362. return _mv88e6xxx_atu_flush(chip, *fid, true);
  1363. }
  1364. static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
  1365. struct mv88e6xxx_vtu_stu_entry *entry)
  1366. {
  1367. struct dsa_switch *ds = chip->ds;
  1368. struct mv88e6xxx_vtu_stu_entry vlan = {
  1369. .valid = true,
  1370. .vid = vid,
  1371. };
  1372. int i, err;
  1373. err = _mv88e6xxx_fid_new(chip, &vlan.fid);
  1374. if (err)
  1375. return err;
  1376. /* exclude all ports except the CPU and DSA ports */
  1377. for (i = 0; i < chip->info->num_ports; ++i)
  1378. vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
  1379. ? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
  1380. : GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
  1381. if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
  1382. mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
  1383. struct mv88e6xxx_vtu_stu_entry vstp;
  1384. /* Adding a VTU entry requires a valid STU entry. As VSTP is not
  1385. * implemented, only one STU entry is needed to cover all VTU
  1386. * entries. Thus, validate the SID 0.
  1387. */
  1388. vlan.sid = 0;
  1389. err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
  1390. if (err)
  1391. return err;
  1392. if (vstp.sid != vlan.sid || !vstp.valid) {
  1393. memset(&vstp, 0, sizeof(vstp));
  1394. vstp.valid = true;
  1395. vstp.sid = vlan.sid;
  1396. err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
  1397. if (err)
  1398. return err;
  1399. }
  1400. }
  1401. *entry = vlan;
  1402. return 0;
  1403. }
  1404. static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
  1405. struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
  1406. {
  1407. int err;
  1408. if (!vid)
  1409. return -EINVAL;
  1410. err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
  1411. if (err)
  1412. return err;
  1413. err = _mv88e6xxx_vtu_getnext(chip, entry);
  1414. if (err)
  1415. return err;
  1416. if (entry->vid != vid || !entry->valid) {
  1417. if (!creat)
  1418. return -EOPNOTSUPP;
  1419. /* -ENOENT would've been more appropriate, but switchdev expects
  1420. * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
  1421. */
  1422. err = _mv88e6xxx_vtu_new(chip, vid, entry);
  1423. }
  1424. return err;
  1425. }
  1426. static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
  1427. u16 vid_begin, u16 vid_end)
  1428. {
  1429. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  1430. struct mv88e6xxx_vtu_stu_entry vlan;
  1431. int i, err;
  1432. if (!vid_begin)
  1433. return -EOPNOTSUPP;
  1434. mutex_lock(&chip->reg_lock);
  1435. err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
  1436. if (err)
  1437. goto unlock;
  1438. do {
  1439. err = _mv88e6xxx_vtu_getnext(chip, &vlan);
  1440. if (err)
  1441. goto unlock;
  1442. if (!vlan.valid)
  1443. break;
  1444. if (vlan.vid > vid_end)
  1445. break;
  1446. for (i = 0; i < chip->info->num_ports; ++i) {
  1447. if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
  1448. continue;
  1449. if (vlan.data[i] ==
  1450. GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
  1451. continue;
  1452. if (chip->ports[i].bridge_dev ==
  1453. chip->ports[port].bridge_dev)
  1454. break; /* same bridge, check next VLAN */
  1455. netdev_warn(ds->ports[port].netdev,
  1456. "hardware VLAN %d already used by %s\n",
  1457. vlan.vid,
  1458. netdev_name(chip->ports[i].bridge_dev));
  1459. err = -EOPNOTSUPP;
  1460. goto unlock;
  1461. }
  1462. } while (vlan.vid < vid_end);
  1463. unlock:
  1464. mutex_unlock(&chip->reg_lock);
  1465. return err;
  1466. }
  1467. static const char * const mv88e6xxx_port_8021q_mode_names[] = {
  1468. [PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
  1469. [PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
  1470. [PORT_CONTROL_2_8021Q_CHECK] = "Check",
  1471. [PORT_CONTROL_2_8021Q_SECURE] = "Secure",
  1472. };
  1473. static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
  1474. bool vlan_filtering)
  1475. {
  1476. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  1477. u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
  1478. PORT_CONTROL_2_8021Q_DISABLED;
  1479. int ret;
  1480. if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
  1481. return -EOPNOTSUPP;
  1482. mutex_lock(&chip->reg_lock);
  1483. ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
  1484. if (ret < 0)
  1485. goto unlock;
  1486. old = ret & PORT_CONTROL_2_8021Q_MASK;
  1487. if (new != old) {
  1488. ret &= ~PORT_CONTROL_2_8021Q_MASK;
  1489. ret |= new & PORT_CONTROL_2_8021Q_MASK;
  1490. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
  1491. ret);
  1492. if (ret < 0)
  1493. goto unlock;
  1494. netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
  1495. mv88e6xxx_port_8021q_mode_names[new],
  1496. mv88e6xxx_port_8021q_mode_names[old]);
  1497. }
  1498. ret = 0;
  1499. unlock:
  1500. mutex_unlock(&chip->reg_lock);
  1501. return ret;
  1502. }
  1503. static int
  1504. mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
  1505. const struct switchdev_obj_port_vlan *vlan,
  1506. struct switchdev_trans *trans)
  1507. {
  1508. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  1509. int err;
  1510. if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
  1511. return -EOPNOTSUPP;
  1512. /* If the requested port doesn't belong to the same bridge as the VLAN
  1513. * members, do not support it (yet) and fallback to software VLAN.
  1514. */
  1515. err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
  1516. vlan->vid_end);
  1517. if (err)
  1518. return err;
  1519. /* We don't need any dynamic resource from the kernel (yet),
  1520. * so skip the prepare phase.
  1521. */
  1522. return 0;
  1523. }
  1524. static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
  1525. u16 vid, bool untagged)
  1526. {
  1527. struct mv88e6xxx_vtu_stu_entry vlan;
  1528. int err;
  1529. err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
  1530. if (err)
  1531. return err;
  1532. vlan.data[port] = untagged ?
  1533. GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
  1534. GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
  1535. return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
  1536. }
  1537. static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
  1538. const struct switchdev_obj_port_vlan *vlan,
  1539. struct switchdev_trans *trans)
  1540. {
  1541. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  1542. bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
  1543. bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
  1544. u16 vid;
  1545. if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
  1546. return;
  1547. mutex_lock(&chip->reg_lock);
  1548. for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
  1549. if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
  1550. netdev_err(ds->ports[port].netdev,
  1551. "failed to add VLAN %d%c\n",
  1552. vid, untagged ? 'u' : 't');
  1553. if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
  1554. netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
  1555. vlan->vid_end);
  1556. mutex_unlock(&chip->reg_lock);
  1557. }
  1558. static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
  1559. int port, u16 vid)
  1560. {
  1561. struct dsa_switch *ds = chip->ds;
  1562. struct mv88e6xxx_vtu_stu_entry vlan;
  1563. int i, err;
  1564. err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
  1565. if (err)
  1566. return err;
  1567. /* Tell switchdev if this VLAN is handled in software */
  1568. if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
  1569. return -EOPNOTSUPP;
  1570. vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
  1571. /* keep the VLAN unless all ports are excluded */
  1572. vlan.valid = false;
  1573. for (i = 0; i < chip->info->num_ports; ++i) {
  1574. if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
  1575. continue;
  1576. if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
  1577. vlan.valid = true;
  1578. break;
  1579. }
  1580. }
  1581. err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
  1582. if (err)
  1583. return err;
  1584. return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
  1585. }
  1586. static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
  1587. const struct switchdev_obj_port_vlan *vlan)
  1588. {
  1589. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  1590. u16 pvid, vid;
  1591. int err = 0;
  1592. if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
  1593. return -EOPNOTSUPP;
  1594. mutex_lock(&chip->reg_lock);
  1595. err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
  1596. if (err)
  1597. goto unlock;
  1598. for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
  1599. err = _mv88e6xxx_port_vlan_del(chip, port, vid);
  1600. if (err)
  1601. goto unlock;
  1602. if (vid == pvid) {
  1603. err = _mv88e6xxx_port_pvid_set(chip, port, 0);
  1604. if (err)
  1605. goto unlock;
  1606. }
  1607. }
  1608. unlock:
  1609. mutex_unlock(&chip->reg_lock);
  1610. return err;
  1611. }
  1612. static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
  1613. const unsigned char *addr)
  1614. {
  1615. int i, ret;
  1616. for (i = 0; i < 3; i++) {
  1617. ret = _mv88e6xxx_reg_write(
  1618. chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
  1619. (addr[i * 2] << 8) | addr[i * 2 + 1]);
  1620. if (ret < 0)
  1621. return ret;
  1622. }
  1623. return 0;
  1624. }
  1625. static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
  1626. unsigned char *addr)
  1627. {
  1628. int i, ret;
  1629. for (i = 0; i < 3; i++) {
  1630. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
  1631. GLOBAL_ATU_MAC_01 + i);
  1632. if (ret < 0)
  1633. return ret;
  1634. addr[i * 2] = ret >> 8;
  1635. addr[i * 2 + 1] = ret & 0xff;
  1636. }
  1637. return 0;
  1638. }
  1639. static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
  1640. struct mv88e6xxx_atu_entry *entry)
  1641. {
  1642. int ret;
  1643. ret = _mv88e6xxx_atu_wait(chip);
  1644. if (ret < 0)
  1645. return ret;
  1646. ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
  1647. if (ret < 0)
  1648. return ret;
  1649. ret = _mv88e6xxx_atu_data_write(chip, entry);
  1650. if (ret < 0)
  1651. return ret;
  1652. return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
  1653. }
  1654. static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
  1655. const unsigned char *addr, u16 vid,
  1656. u8 state)
  1657. {
  1658. struct mv88e6xxx_atu_entry entry = { 0 };
  1659. struct mv88e6xxx_vtu_stu_entry vlan;
  1660. int err;
  1661. /* Null VLAN ID corresponds to the port private database */
  1662. if (vid == 0)
  1663. err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
  1664. else
  1665. err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
  1666. if (err)
  1667. return err;
  1668. entry.fid = vlan.fid;
  1669. entry.state = state;
  1670. ether_addr_copy(entry.mac, addr);
  1671. if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
  1672. entry.trunk = false;
  1673. entry.portv_trunkid = BIT(port);
  1674. }
  1675. return _mv88e6xxx_atu_load(chip, &entry);
  1676. }
  1677. static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
  1678. const struct switchdev_obj_port_fdb *fdb,
  1679. struct switchdev_trans *trans)
  1680. {
  1681. /* We don't need any dynamic resource from the kernel (yet),
  1682. * so skip the prepare phase.
  1683. */
  1684. return 0;
  1685. }
  1686. static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
  1687. const struct switchdev_obj_port_fdb *fdb,
  1688. struct switchdev_trans *trans)
  1689. {
  1690. int state = is_multicast_ether_addr(fdb->addr) ?
  1691. GLOBAL_ATU_DATA_STATE_MC_STATIC :
  1692. GLOBAL_ATU_DATA_STATE_UC_STATIC;
  1693. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  1694. mutex_lock(&chip->reg_lock);
  1695. if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
  1696. netdev_err(ds->ports[port].netdev,
  1697. "failed to load MAC address\n");
  1698. mutex_unlock(&chip->reg_lock);
  1699. }
  1700. static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
  1701. const struct switchdev_obj_port_fdb *fdb)
  1702. {
  1703. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  1704. int ret;
  1705. mutex_lock(&chip->reg_lock);
  1706. ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
  1707. GLOBAL_ATU_DATA_STATE_UNUSED);
  1708. mutex_unlock(&chip->reg_lock);
  1709. return ret;
  1710. }
  1711. static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
  1712. struct mv88e6xxx_atu_entry *entry)
  1713. {
  1714. struct mv88e6xxx_atu_entry next = { 0 };
  1715. int ret;
  1716. next.fid = fid;
  1717. ret = _mv88e6xxx_atu_wait(chip);
  1718. if (ret < 0)
  1719. return ret;
  1720. ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
  1721. if (ret < 0)
  1722. return ret;
  1723. ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
  1724. if (ret < 0)
  1725. return ret;
  1726. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
  1727. if (ret < 0)
  1728. return ret;
  1729. next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
  1730. if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
  1731. unsigned int mask, shift;
  1732. if (ret & GLOBAL_ATU_DATA_TRUNK) {
  1733. next.trunk = true;
  1734. mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
  1735. shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
  1736. } else {
  1737. next.trunk = false;
  1738. mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
  1739. shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
  1740. }
  1741. next.portv_trunkid = (ret & mask) >> shift;
  1742. }
  1743. *entry = next;
  1744. return 0;
  1745. }
  1746. static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
  1747. u16 fid, u16 vid, int port,
  1748. struct switchdev_obj_port_fdb *fdb,
  1749. int (*cb)(struct switchdev_obj *obj))
  1750. {
  1751. struct mv88e6xxx_atu_entry addr = {
  1752. .mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
  1753. };
  1754. int err;
  1755. err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
  1756. if (err)
  1757. return err;
  1758. do {
  1759. err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
  1760. if (err)
  1761. break;
  1762. if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
  1763. break;
  1764. if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
  1765. bool is_static = addr.state ==
  1766. (is_multicast_ether_addr(addr.mac) ?
  1767. GLOBAL_ATU_DATA_STATE_MC_STATIC :
  1768. GLOBAL_ATU_DATA_STATE_UC_STATIC);
  1769. fdb->vid = vid;
  1770. ether_addr_copy(fdb->addr, addr.mac);
  1771. fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;
  1772. err = cb(&fdb->obj);
  1773. if (err)
  1774. break;
  1775. }
  1776. } while (!is_broadcast_ether_addr(addr.mac));
  1777. return err;
  1778. }
  1779. static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
  1780. struct switchdev_obj_port_fdb *fdb,
  1781. int (*cb)(struct switchdev_obj *obj))
  1782. {
  1783. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  1784. struct mv88e6xxx_vtu_stu_entry vlan = {
  1785. .vid = GLOBAL_VTU_VID_MASK, /* all ones */
  1786. };
  1787. u16 fid;
  1788. int err;
  1789. mutex_lock(&chip->reg_lock);
  1790. /* Dump port's default Filtering Information Database (VLAN ID 0) */
  1791. err = _mv88e6xxx_port_fid_get(chip, port, &fid);
  1792. if (err)
  1793. goto unlock;
  1794. err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
  1795. if (err)
  1796. goto unlock;
  1797. /* Dump VLANs' Filtering Information Databases */
  1798. err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
  1799. if (err)
  1800. goto unlock;
  1801. do {
  1802. err = _mv88e6xxx_vtu_getnext(chip, &vlan);
  1803. if (err)
  1804. break;
  1805. if (!vlan.valid)
  1806. break;
  1807. err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
  1808. port, fdb, cb);
  1809. if (err)
  1810. break;
  1811. } while (vlan.vid < GLOBAL_VTU_VID_MASK);
  1812. unlock:
  1813. mutex_unlock(&chip->reg_lock);
  1814. return err;
  1815. }
  1816. static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
  1817. struct net_device *bridge)
  1818. {
  1819. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  1820. int i, err = 0;
  1821. mutex_lock(&chip->reg_lock);
  1822. /* Assign the bridge and remap each port's VLANTable */
  1823. chip->ports[port].bridge_dev = bridge;
  1824. for (i = 0; i < chip->info->num_ports; ++i) {
  1825. if (chip->ports[i].bridge_dev == bridge) {
  1826. err = _mv88e6xxx_port_based_vlan_map(chip, i);
  1827. if (err)
  1828. break;
  1829. }
  1830. }
  1831. mutex_unlock(&chip->reg_lock);
  1832. return err;
  1833. }
  1834. static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
  1835. {
  1836. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  1837. struct net_device *bridge = chip->ports[port].bridge_dev;
  1838. int i;
  1839. mutex_lock(&chip->reg_lock);
  1840. /* Unassign the bridge and remap each port's VLANTable */
  1841. chip->ports[port].bridge_dev = NULL;
  1842. for (i = 0; i < chip->info->num_ports; ++i)
  1843. if (i == port || chip->ports[i].bridge_dev == bridge)
  1844. if (_mv88e6xxx_port_based_vlan_map(chip, i))
  1845. netdev_warn(ds->ports[i].netdev,
  1846. "failed to remap\n");
  1847. mutex_unlock(&chip->reg_lock);
  1848. }
  1849. static int _mv88e6xxx_mdio_page_write(struct mv88e6xxx_chip *chip,
  1850. int port, int page, int reg, int val)
  1851. {
  1852. int ret;
  1853. ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
  1854. if (ret < 0)
  1855. goto restore_page_0;
  1856. ret = mv88e6xxx_mdio_write_indirect(chip, port, reg, val);
  1857. restore_page_0:
  1858. mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
  1859. return ret;
  1860. }
  1861. static int _mv88e6xxx_mdio_page_read(struct mv88e6xxx_chip *chip,
  1862. int port, int page, int reg)
  1863. {
  1864. int ret;
  1865. ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
  1866. if (ret < 0)
  1867. goto restore_page_0;
  1868. ret = mv88e6xxx_mdio_read_indirect(chip, port, reg);
  1869. restore_page_0:
  1870. mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
  1871. return ret;
  1872. }
  1873. static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
  1874. {
  1875. bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
  1876. u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
  1877. struct gpio_desc *gpiod = chip->reset;
  1878. unsigned long timeout;
  1879. int ret;
  1880. int i;
  1881. /* Set all ports to the disabled state. */
  1882. for (i = 0; i < chip->info->num_ports; i++) {
  1883. ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
  1884. if (ret < 0)
  1885. return ret;
  1886. ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
  1887. ret & 0xfffc);
  1888. if (ret)
  1889. return ret;
  1890. }
  1891. /* Wait for transmit queues to drain. */
  1892. usleep_range(2000, 4000);
  1893. /* If there is a gpio connected to the reset pin, toggle it */
  1894. if (gpiod) {
  1895. gpiod_set_value_cansleep(gpiod, 1);
  1896. usleep_range(10000, 20000);
  1897. gpiod_set_value_cansleep(gpiod, 0);
  1898. usleep_range(10000, 20000);
  1899. }
  1900. /* Reset the switch. Keep the PPU active if requested. The PPU
  1901. * needs to be active to support indirect phy register access
  1902. * through global registers 0x18 and 0x19.
  1903. */
  1904. if (ppu_active)
  1905. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
  1906. else
  1907. ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
  1908. if (ret)
  1909. return ret;
  1910. /* Wait up to one second for reset to complete. */
  1911. timeout = jiffies + 1 * HZ;
  1912. while (time_before(jiffies, timeout)) {
  1913. ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
  1914. if (ret < 0)
  1915. return ret;
  1916. if ((ret & is_reset) == is_reset)
  1917. break;
  1918. usleep_range(1000, 2000);
  1919. }
  1920. if (time_after(jiffies, timeout))
  1921. ret = -ETIMEDOUT;
  1922. else
  1923. ret = 0;
  1924. return ret;
  1925. }
  1926. static int mv88e6xxx_power_on_serdes(struct mv88e6xxx_chip *chip)
  1927. {
  1928. int ret;
  1929. ret = _mv88e6xxx_mdio_page_read(chip, REG_FIBER_SERDES,
  1930. PAGE_FIBER_SERDES, MII_BMCR);
  1931. if (ret < 0)
  1932. return ret;
  1933. if (ret & BMCR_PDOWN) {
  1934. ret &= ~BMCR_PDOWN;
  1935. ret = _mv88e6xxx_mdio_page_write(chip, REG_FIBER_SERDES,
  1936. PAGE_FIBER_SERDES, MII_BMCR,
  1937. ret);
  1938. }
  1939. return ret;
  1940. }
  1941. static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
  1942. int reg, u16 *val)
  1943. {
  1944. int addr = chip->info->port_base_addr + port;
  1945. if (port >= chip->info->num_ports)
  1946. return -EINVAL;
  1947. return mv88e6xxx_read(chip, addr, reg, val);
  1948. }
  1949. static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
  1950. {
  1951. struct dsa_switch *ds = chip->ds;
  1952. int ret;
  1953. u16 reg;
  1954. if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
  1955. mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
  1956. mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
  1957. mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
  1958. /* MAC Forcing register: don't force link, speed,
  1959. * duplex or flow control state to any particular
  1960. * values on physical ports, but force the CPU port
  1961. * and all DSA ports to their maximum bandwidth and
  1962. * full duplex.
  1963. */
  1964. reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
  1965. if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
  1966. reg &= ~PORT_PCS_CTRL_UNFORCED;
  1967. reg |= PORT_PCS_CTRL_FORCE_LINK |
  1968. PORT_PCS_CTRL_LINK_UP |
  1969. PORT_PCS_CTRL_DUPLEX_FULL |
  1970. PORT_PCS_CTRL_FORCE_DUPLEX;
  1971. if (mv88e6xxx_6065_family(chip))
  1972. reg |= PORT_PCS_CTRL_100;
  1973. else
  1974. reg |= PORT_PCS_CTRL_1000;
  1975. } else {
  1976. reg |= PORT_PCS_CTRL_UNFORCED;
  1977. }
  1978. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
  1979. PORT_PCS_CTRL, reg);
  1980. if (ret)
  1981. return ret;
  1982. }
  1983. /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
  1984. * disable Header mode, enable IGMP/MLD snooping, disable VLAN
  1985. * tunneling, determine priority by looking at 802.1p and IP
  1986. * priority fields (IP prio has precedence), and set STP state
  1987. * to Forwarding.
  1988. *
  1989. * If this is the CPU link, use DSA or EDSA tagging depending
  1990. * on which tagging mode was configured.
  1991. *
  1992. * If this is a link to another switch, use DSA tagging mode.
  1993. *
  1994. * If this is the upstream port for this switch, enable
  1995. * forwarding of unknown unicasts and multicasts.
  1996. */
  1997. reg = 0;
  1998. if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
  1999. mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
  2000. mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
  2001. mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
  2002. reg = PORT_CONTROL_IGMP_MLD_SNOOP |
  2003. PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
  2004. PORT_CONTROL_STATE_FORWARDING;
  2005. if (dsa_is_cpu_port(ds, port)) {
  2006. if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip))
  2007. reg |= PORT_CONTROL_DSA_TAG;
  2008. if (mv88e6xxx_6352_family(chip) ||
  2009. mv88e6xxx_6351_family(chip) ||
  2010. mv88e6xxx_6165_family(chip) ||
  2011. mv88e6xxx_6097_family(chip) ||
  2012. mv88e6xxx_6320_family(chip)) {
  2013. reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
  2014. PORT_CONTROL_FORWARD_UNKNOWN |
  2015. PORT_CONTROL_FORWARD_UNKNOWN_MC;
  2016. }
  2017. if (mv88e6xxx_6352_family(chip) ||
  2018. mv88e6xxx_6351_family(chip) ||
  2019. mv88e6xxx_6165_family(chip) ||
  2020. mv88e6xxx_6097_family(chip) ||
  2021. mv88e6xxx_6095_family(chip) ||
  2022. mv88e6xxx_6065_family(chip) ||
  2023. mv88e6xxx_6185_family(chip) ||
  2024. mv88e6xxx_6320_family(chip)) {
  2025. reg |= PORT_CONTROL_EGRESS_ADD_TAG;
  2026. }
  2027. }
  2028. if (dsa_is_dsa_port(ds, port)) {
  2029. if (mv88e6xxx_6095_family(chip) ||
  2030. mv88e6xxx_6185_family(chip))
  2031. reg |= PORT_CONTROL_DSA_TAG;
  2032. if (mv88e6xxx_6352_family(chip) ||
  2033. mv88e6xxx_6351_family(chip) ||
  2034. mv88e6xxx_6165_family(chip) ||
  2035. mv88e6xxx_6097_family(chip) ||
  2036. mv88e6xxx_6320_family(chip)) {
  2037. reg |= PORT_CONTROL_FRAME_MODE_DSA;
  2038. }
  2039. if (port == dsa_upstream_port(ds))
  2040. reg |= PORT_CONTROL_FORWARD_UNKNOWN |
  2041. PORT_CONTROL_FORWARD_UNKNOWN_MC;
  2042. }
  2043. if (reg) {
  2044. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
  2045. PORT_CONTROL, reg);
  2046. if (ret)
  2047. return ret;
  2048. }
  2049. /* If this port is connected to a SerDes, make sure the SerDes is not
  2050. * powered down.
  2051. */
  2052. if (mv88e6xxx_6352_family(chip)) {
  2053. ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
  2054. if (ret < 0)
  2055. return ret;
  2056. ret &= PORT_STATUS_CMODE_MASK;
  2057. if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
  2058. (ret == PORT_STATUS_CMODE_1000BASE_X) ||
  2059. (ret == PORT_STATUS_CMODE_SGMII)) {
  2060. ret = mv88e6xxx_power_on_serdes(chip);
  2061. if (ret < 0)
  2062. return ret;
  2063. }
  2064. }
  2065. /* Port Control 2: don't force a good FCS, set the maximum frame size to
  2066. * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
  2067. * untagged frames on this port, do a destination address lookup on all
  2068. * received packets as usual, disable ARP mirroring and don't send a
  2069. * copy of all transmitted/received frames on this port to the CPU.
  2070. */
  2071. reg = 0;
  2072. if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
  2073. mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
  2074. mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
  2075. mv88e6xxx_6185_family(chip))
  2076. reg = PORT_CONTROL_2_MAP_DA;
  2077. if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
  2078. mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
  2079. reg |= PORT_CONTROL_2_JUMBO_10240;
  2080. if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
  2081. /* Set the upstream port this port should use */
  2082. reg |= dsa_upstream_port(ds);
  2083. /* enable forwarding of unknown multicast addresses to
  2084. * the upstream port
  2085. */
  2086. if (port == dsa_upstream_port(ds))
  2087. reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
  2088. }
  2089. reg |= PORT_CONTROL_2_8021Q_DISABLED;
  2090. if (reg) {
  2091. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
  2092. PORT_CONTROL_2, reg);
  2093. if (ret)
  2094. return ret;
  2095. }
  2096. /* Port Association Vector: when learning source addresses
  2097. * of packets, add the address to the address database using
  2098. * a port bitmap that has only the bit for this port set and
  2099. * the other bits clear.
  2100. */
  2101. reg = 1 << port;
  2102. /* Disable learning for CPU port */
  2103. if (dsa_is_cpu_port(ds, port))
  2104. reg = 0;
  2105. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
  2106. reg);
  2107. if (ret)
  2108. return ret;
  2109. /* Egress rate control 2: disable egress rate control. */
  2110. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
  2111. 0x0000);
  2112. if (ret)
  2113. return ret;
  2114. if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
  2115. mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
  2116. mv88e6xxx_6320_family(chip)) {
  2117. /* Do not limit the period of time that this port can
  2118. * be paused for by the remote end or the period of
  2119. * time that this port can pause the remote end.
  2120. */
  2121. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
  2122. PORT_PAUSE_CTRL, 0x0000);
  2123. if (ret)
  2124. return ret;
  2125. /* Port ATU control: disable limiting the number of
  2126. * address database entries that this port is allowed
  2127. * to use.
  2128. */
  2129. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
  2130. PORT_ATU_CONTROL, 0x0000);
  2131. /* Priority Override: disable DA, SA and VTU priority
  2132. * override.
  2133. */
  2134. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
  2135. PORT_PRI_OVERRIDE, 0x0000);
  2136. if (ret)
  2137. return ret;
  2138. /* Port Ethertype: use the Ethertype DSA Ethertype
  2139. * value.
  2140. */
  2141. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
  2142. PORT_ETH_TYPE, ETH_P_EDSA);
  2143. if (ret)
  2144. return ret;
  2145. /* Tag Remap: use an identity 802.1p prio -> switch
  2146. * prio mapping.
  2147. */
  2148. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
  2149. PORT_TAG_REGMAP_0123, 0x3210);
  2150. if (ret)
  2151. return ret;
  2152. /* Tag Remap 2: use an identity 802.1p prio -> switch
  2153. * prio mapping.
  2154. */
  2155. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
  2156. PORT_TAG_REGMAP_4567, 0x7654);
  2157. if (ret)
  2158. return ret;
  2159. }
  2160. /* Rate Control: disable ingress rate limiting. */
  2161. if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
  2162. mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
  2163. mv88e6xxx_6320_family(chip)) {
  2164. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
  2165. PORT_RATE_CONTROL, 0x0001);
  2166. if (ret)
  2167. return ret;
  2168. } else if (mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip)) {
  2169. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
  2170. PORT_RATE_CONTROL, 0x0000);
  2171. if (ret)
  2172. return ret;
  2173. }
  2174. /* Port Control 1: disable trunking, disable sending
  2175. * learning messages to this port.
  2176. */
  2177. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
  2178. 0x0000);
  2179. if (ret)
  2180. return ret;
  2181. /* Port based VLAN map: give each port the same default address
  2182. * database, and allow bidirectional communication between the
  2183. * CPU and DSA port(s), and the other ports.
  2184. */
  2185. ret = _mv88e6xxx_port_fid_set(chip, port, 0);
  2186. if (ret)
  2187. return ret;
  2188. ret = _mv88e6xxx_port_based_vlan_map(chip, port);
  2189. if (ret)
  2190. return ret;
  2191. /* Default VLAN ID and priority: don't set a default VLAN
  2192. * ID, and set the default packet priority to zero.
  2193. */
  2194. ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
  2195. 0x0000);
  2196. if (ret)
  2197. return ret;
  2198. return 0;
  2199. }
  2200. static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
  2201. {
  2202. int err;
  2203. err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
  2204. (addr[0] << 8) | addr[1]);
  2205. if (err)
  2206. return err;
  2207. err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
  2208. (addr[2] << 8) | addr[3]);
  2209. if (err)
  2210. return err;
  2211. return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
  2212. (addr[4] << 8) | addr[5]);
  2213. }
  2214. static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
  2215. unsigned int msecs)
  2216. {
  2217. const unsigned int coeff = chip->info->age_time_coeff;
  2218. const unsigned int min = 0x01 * coeff;
  2219. const unsigned int max = 0xff * coeff;
  2220. u8 age_time;
  2221. u16 val;
  2222. int err;
  2223. if (msecs < min || msecs > max)
  2224. return -ERANGE;
  2225. /* Round to nearest multiple of coeff */
  2226. age_time = (msecs + coeff / 2) / coeff;
  2227. err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
  2228. if (err)
  2229. return err;
  2230. /* AgeTime is 11:4 bits */
  2231. val &= ~0xff0;
  2232. val |= age_time << 4;
  2233. return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
  2234. }
  2235. static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
  2236. unsigned int ageing_time)
  2237. {
  2238. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2239. int err;
  2240. mutex_lock(&chip->reg_lock);
  2241. err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
  2242. mutex_unlock(&chip->reg_lock);
  2243. return err;
  2244. }
  2245. static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
  2246. {
  2247. struct dsa_switch *ds = chip->ds;
  2248. u32 upstream_port = dsa_upstream_port(ds);
  2249. u16 reg;
  2250. int err;
  2251. /* Enable the PHY Polling Unit if present, don't discard any packets,
  2252. * and mask all interrupt sources.
  2253. */
  2254. reg = 0;
  2255. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
  2256. mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
  2257. reg |= GLOBAL_CONTROL_PPU_ENABLE;
  2258. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
  2259. if (err)
  2260. return err;
  2261. /* Configure the upstream port, and configure it as the port to which
  2262. * ingress and egress and ARP monitor frames are to be sent.
  2263. */
  2264. reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
  2265. upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
  2266. upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
  2267. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
  2268. reg);
  2269. if (err)
  2270. return err;
  2271. /* Disable remote management, and set the switch's DSA device number. */
  2272. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
  2273. GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
  2274. (ds->index & 0x1f));
  2275. if (err)
  2276. return err;
  2277. /* Clear all the VTU and STU entries */
  2278. err = _mv88e6xxx_vtu_stu_flush(chip);
  2279. if (err < 0)
  2280. return err;
  2281. /* Set the default address aging time to 5 minutes, and
  2282. * enable address learn messages to be sent to all message
  2283. * ports.
  2284. */
  2285. err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
  2286. GLOBAL_ATU_CONTROL_LEARN2ALL);
  2287. if (err)
  2288. return err;
  2289. err = mv88e6xxx_g1_set_age_time(chip, 300000);
  2290. if (err)
  2291. return err;
  2292. /* Clear all ATU entries */
  2293. err = _mv88e6xxx_atu_flush(chip, 0, true);
  2294. if (err)
  2295. return err;
  2296. /* Configure the IP ToS mapping registers. */
  2297. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
  2298. if (err)
  2299. return err;
  2300. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
  2301. if (err)
  2302. return err;
  2303. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
  2304. if (err)
  2305. return err;
  2306. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
  2307. if (err)
  2308. return err;
  2309. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
  2310. if (err)
  2311. return err;
  2312. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
  2313. if (err)
  2314. return err;
  2315. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
  2316. if (err)
  2317. return err;
  2318. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
  2319. if (err)
  2320. return err;
  2321. /* Configure the IEEE 802.1p priority mapping register. */
  2322. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
  2323. if (err)
  2324. return err;
  2325. /* Clear the statistics counters for all ports */
  2326. err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
  2327. GLOBAL_STATS_OP_FLUSH_ALL);
  2328. if (err)
  2329. return err;
  2330. /* Wait for the flush to complete. */
  2331. err = _mv88e6xxx_stats_wait(chip);
  2332. if (err)
  2333. return err;
  2334. return 0;
  2335. }
  2336. static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
  2337. int target, int port)
  2338. {
  2339. u16 val = (target << 8) | (port & 0xf);
  2340. return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
  2341. }
  2342. static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
  2343. {
  2344. int target, port;
  2345. int err;
  2346. /* Initialize the routing port to the 32 possible target devices */
  2347. for (target = 0; target < 32; ++target) {
  2348. port = 0xf;
  2349. if (target < DSA_MAX_SWITCHES) {
  2350. port = chip->ds->rtable[target];
  2351. if (port == DSA_RTABLE_NONE)
  2352. port = 0xf;
  2353. }
  2354. err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
  2355. if (err)
  2356. break;
  2357. }
  2358. return err;
  2359. }
  2360. static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
  2361. bool hask, u16 mask)
  2362. {
  2363. const u16 port_mask = BIT(chip->info->num_ports) - 1;
  2364. u16 val = (num << 12) | (mask & port_mask);
  2365. if (hask)
  2366. val |= GLOBAL2_TRUNK_MASK_HASK;
  2367. return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
  2368. }
  2369. static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
  2370. u16 map)
  2371. {
  2372. const u16 port_mask = BIT(chip->info->num_ports) - 1;
  2373. u16 val = (id << 11) | (map & port_mask);
  2374. return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
  2375. }
  2376. static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
  2377. {
  2378. const u16 port_mask = BIT(chip->info->num_ports) - 1;
  2379. int i, err;
  2380. /* Clear all eight possible Trunk Mask vectors */
  2381. for (i = 0; i < 8; ++i) {
  2382. err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
  2383. if (err)
  2384. return err;
  2385. }
  2386. /* Clear all sixteen possible Trunk ID routing vectors */
  2387. for (i = 0; i < 16; ++i) {
  2388. err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
  2389. if (err)
  2390. return err;
  2391. }
  2392. return 0;
  2393. }
  2394. static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
  2395. {
  2396. int port, err;
  2397. /* Init all Ingress Rate Limit resources of all ports */
  2398. for (port = 0; port < chip->info->num_ports; ++port) {
  2399. /* XXX newer chips (like 88E6390) have different 2-bit ops */
  2400. err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
  2401. GLOBAL2_IRL_CMD_OP_INIT_ALL |
  2402. (port << 8));
  2403. if (err)
  2404. break;
  2405. /* Wait for the operation to complete */
  2406. err = _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
  2407. GLOBAL2_IRL_CMD_BUSY);
  2408. if (err)
  2409. break;
  2410. }
  2411. return err;
  2412. }
  2413. /* Indirect write to the Switch MAC/WoL/WoF register */
  2414. static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
  2415. unsigned int pointer, u8 data)
  2416. {
  2417. u16 val = (pointer << 8) | data;
  2418. return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
  2419. }
  2420. static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
  2421. {
  2422. int i, err;
  2423. for (i = 0; i < 6; i++) {
  2424. err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
  2425. if (err)
  2426. break;
  2427. }
  2428. return err;
  2429. }
  2430. static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
  2431. u8 data)
  2432. {
  2433. u16 val = (pointer << 8) | (data & 0x7);
  2434. return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
  2435. }
  2436. static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
  2437. {
  2438. int i, err;
  2439. /* Clear all sixteen possible Priority Override entries */
  2440. for (i = 0; i < 16; i++) {
  2441. err = mv88e6xxx_g2_pot_write(chip, i, 0);
  2442. if (err)
  2443. break;
  2444. }
  2445. return err;
  2446. }
  2447. static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
  2448. {
  2449. return _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
  2450. GLOBAL2_EEPROM_CMD_BUSY |
  2451. GLOBAL2_EEPROM_CMD_RUNNING);
  2452. }
  2453. static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
  2454. {
  2455. int err;
  2456. err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
  2457. if (err)
  2458. return err;
  2459. return mv88e6xxx_g2_eeprom_wait(chip);
  2460. }
  2461. static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
  2462. u8 addr, u16 *data)
  2463. {
  2464. u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
  2465. int err;
  2466. err = mv88e6xxx_g2_eeprom_wait(chip);
  2467. if (err)
  2468. return err;
  2469. err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
  2470. if (err)
  2471. return err;
  2472. return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
  2473. }
  2474. static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
  2475. u8 addr, u16 data)
  2476. {
  2477. u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
  2478. int err;
  2479. err = mv88e6xxx_g2_eeprom_wait(chip);
  2480. if (err)
  2481. return err;
  2482. err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
  2483. if (err)
  2484. return err;
  2485. return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
  2486. }
  2487. static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
  2488. {
  2489. u16 reg;
  2490. int err;
  2491. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
  2492. /* Consider the frames with reserved multicast destination
  2493. * addresses matching 01:80:c2:00:00:2x as MGMT.
  2494. */
  2495. err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
  2496. 0xffff);
  2497. if (err)
  2498. return err;
  2499. }
  2500. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
  2501. /* Consider the frames with reserved multicast destination
  2502. * addresses matching 01:80:c2:00:00:0x as MGMT.
  2503. */
  2504. err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
  2505. 0xffff);
  2506. if (err)
  2507. return err;
  2508. }
  2509. /* Ignore removed tag data on doubly tagged packets, disable
  2510. * flow control messages, force flow control priority to the
  2511. * highest, and send all special multicast frames to the CPU
  2512. * port at the highest priority.
  2513. */
  2514. reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
  2515. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
  2516. mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
  2517. reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
  2518. err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
  2519. if (err)
  2520. return err;
  2521. /* Program the DSA routing table. */
  2522. err = mv88e6xxx_g2_set_device_mapping(chip);
  2523. if (err)
  2524. return err;
  2525. /* Clear all trunk masks and mapping. */
  2526. err = mv88e6xxx_g2_clear_trunk(chip);
  2527. if (err)
  2528. return err;
  2529. if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
  2530. /* Disable ingress rate limiting by resetting all per port
  2531. * ingress rate limit resources to their initial state.
  2532. */
  2533. err = mv88e6xxx_g2_clear_irl(chip);
  2534. if (err)
  2535. return err;
  2536. }
  2537. if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
  2538. /* Initialize Cross-chip Port VLAN Table to reset defaults */
  2539. err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
  2540. GLOBAL2_PVT_ADDR_OP_INIT_ONES);
  2541. if (err)
  2542. return err;
  2543. }
  2544. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
  2545. /* Clear the priority override table. */
  2546. err = mv88e6xxx_g2_clear_pot(chip);
  2547. if (err)
  2548. return err;
  2549. }
  2550. return 0;
  2551. }
  2552. static int mv88e6xxx_setup(struct dsa_switch *ds)
  2553. {
  2554. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2555. int err;
  2556. int i;
  2557. chip->ds = ds;
  2558. ds->slave_mii_bus = chip->mdio_bus;
  2559. mutex_lock(&chip->reg_lock);
  2560. err = mv88e6xxx_switch_reset(chip);
  2561. if (err)
  2562. goto unlock;
  2563. /* Setup Switch Port Registers */
  2564. for (i = 0; i < chip->info->num_ports; i++) {
  2565. err = mv88e6xxx_setup_port(chip, i);
  2566. if (err)
  2567. goto unlock;
  2568. }
  2569. /* Setup Switch Global 1 Registers */
  2570. err = mv88e6xxx_g1_setup(chip);
  2571. if (err)
  2572. goto unlock;
  2573. /* Setup Switch Global 2 Registers */
  2574. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
  2575. err = mv88e6xxx_g2_setup(chip);
  2576. if (err)
  2577. goto unlock;
  2578. }
  2579. unlock:
  2580. mutex_unlock(&chip->reg_lock);
  2581. return err;
  2582. }
  2583. static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
  2584. {
  2585. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2586. int err;
  2587. mutex_lock(&chip->reg_lock);
  2588. /* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
  2589. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
  2590. err = mv88e6xxx_g2_set_switch_mac(chip, addr);
  2591. else
  2592. err = mv88e6xxx_g1_set_switch_mac(chip, addr);
  2593. mutex_unlock(&chip->reg_lock);
  2594. return err;
  2595. }
  2596. #ifdef CONFIG_NET_DSA_HWMON
  2597. static int mv88e6xxx_mdio_page_read(struct dsa_switch *ds, int port, int page,
  2598. int reg)
  2599. {
  2600. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2601. int ret;
  2602. mutex_lock(&chip->reg_lock);
  2603. ret = _mv88e6xxx_mdio_page_read(chip, port, page, reg);
  2604. mutex_unlock(&chip->reg_lock);
  2605. return ret;
  2606. }
  2607. static int mv88e6xxx_mdio_page_write(struct dsa_switch *ds, int port, int page,
  2608. int reg, int val)
  2609. {
  2610. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2611. int ret;
  2612. mutex_lock(&chip->reg_lock);
  2613. ret = _mv88e6xxx_mdio_page_write(chip, port, page, reg, val);
  2614. mutex_unlock(&chip->reg_lock);
  2615. return ret;
  2616. }
  2617. #endif
  2618. static int mv88e6xxx_port_to_mdio_addr(struct mv88e6xxx_chip *chip, int port)
  2619. {
  2620. if (port >= 0 && port < chip->info->num_ports)
  2621. return port;
  2622. return -EINVAL;
  2623. }
  2624. static int mv88e6xxx_mdio_read(struct mii_bus *bus, int port, int regnum)
  2625. {
  2626. struct mv88e6xxx_chip *chip = bus->priv;
  2627. int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
  2628. int ret;
  2629. if (addr < 0)
  2630. return 0xffff;
  2631. mutex_lock(&chip->reg_lock);
  2632. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
  2633. ret = mv88e6xxx_mdio_read_ppu(chip, addr, regnum);
  2634. else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY))
  2635. ret = mv88e6xxx_mdio_read_indirect(chip, addr, regnum);
  2636. else
  2637. ret = mv88e6xxx_mdio_read_direct(chip, addr, regnum);
  2638. mutex_unlock(&chip->reg_lock);
  2639. return ret;
  2640. }
  2641. static int mv88e6xxx_mdio_write(struct mii_bus *bus, int port, int regnum,
  2642. u16 val)
  2643. {
  2644. struct mv88e6xxx_chip *chip = bus->priv;
  2645. int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
  2646. int ret;
  2647. if (addr < 0)
  2648. return 0xffff;
  2649. mutex_lock(&chip->reg_lock);
  2650. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
  2651. ret = mv88e6xxx_mdio_write_ppu(chip, addr, regnum, val);
  2652. else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY))
  2653. ret = mv88e6xxx_mdio_write_indirect(chip, addr, regnum, val);
  2654. else
  2655. ret = mv88e6xxx_mdio_write_direct(chip, addr, regnum, val);
  2656. mutex_unlock(&chip->reg_lock);
  2657. return ret;
  2658. }
  2659. static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
  2660. struct device_node *np)
  2661. {
  2662. static int index;
  2663. struct mii_bus *bus;
  2664. int err;
  2665. if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
  2666. mv88e6xxx_ppu_state_init(chip);
  2667. if (np)
  2668. chip->mdio_np = of_get_child_by_name(np, "mdio");
  2669. bus = devm_mdiobus_alloc(chip->dev);
  2670. if (!bus)
  2671. return -ENOMEM;
  2672. bus->priv = (void *)chip;
  2673. if (np) {
  2674. bus->name = np->full_name;
  2675. snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
  2676. } else {
  2677. bus->name = "mv88e6xxx SMI";
  2678. snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
  2679. }
  2680. bus->read = mv88e6xxx_mdio_read;
  2681. bus->write = mv88e6xxx_mdio_write;
  2682. bus->parent = chip->dev;
  2683. if (chip->mdio_np)
  2684. err = of_mdiobus_register(bus, chip->mdio_np);
  2685. else
  2686. err = mdiobus_register(bus);
  2687. if (err) {
  2688. dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
  2689. goto out;
  2690. }
  2691. chip->mdio_bus = bus;
  2692. return 0;
  2693. out:
  2694. if (chip->mdio_np)
  2695. of_node_put(chip->mdio_np);
  2696. return err;
  2697. }
  2698. static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
  2699. {
  2700. struct mii_bus *bus = chip->mdio_bus;
  2701. mdiobus_unregister(bus);
  2702. if (chip->mdio_np)
  2703. of_node_put(chip->mdio_np);
  2704. }
  2705. #ifdef CONFIG_NET_DSA_HWMON
  2706. static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
  2707. {
  2708. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2709. int ret;
  2710. int val;
  2711. *temp = 0;
  2712. mutex_lock(&chip->reg_lock);
  2713. ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x6);
  2714. if (ret < 0)
  2715. goto error;
  2716. /* Enable temperature sensor */
  2717. ret = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
  2718. if (ret < 0)
  2719. goto error;
  2720. ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret | (1 << 5));
  2721. if (ret < 0)
  2722. goto error;
  2723. /* Wait for temperature to stabilize */
  2724. usleep_range(10000, 12000);
  2725. val = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
  2726. if (val < 0) {
  2727. ret = val;
  2728. goto error;
  2729. }
  2730. /* Disable temperature sensor */
  2731. ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret & ~(1 << 5));
  2732. if (ret < 0)
  2733. goto error;
  2734. *temp = ((val & 0x1f) - 5) * 5;
  2735. error:
  2736. mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x0);
  2737. mutex_unlock(&chip->reg_lock);
  2738. return ret;
  2739. }
  2740. static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
  2741. {
  2742. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2743. int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
  2744. int ret;
  2745. *temp = 0;
  2746. ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 27);
  2747. if (ret < 0)
  2748. return ret;
  2749. *temp = (ret & 0xff) - 25;
  2750. return 0;
  2751. }
  2752. static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
  2753. {
  2754. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2755. if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
  2756. return -EOPNOTSUPP;
  2757. if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
  2758. return mv88e63xx_get_temp(ds, temp);
  2759. return mv88e61xx_get_temp(ds, temp);
  2760. }
  2761. static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
  2762. {
  2763. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2764. int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
  2765. int ret;
  2766. if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
  2767. return -EOPNOTSUPP;
  2768. *temp = 0;
  2769. ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
  2770. if (ret < 0)
  2771. return ret;
  2772. *temp = (((ret >> 8) & 0x1f) * 5) - 25;
  2773. return 0;
  2774. }
  2775. static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
  2776. {
  2777. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2778. int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
  2779. int ret;
  2780. if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
  2781. return -EOPNOTSUPP;
  2782. ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
  2783. if (ret < 0)
  2784. return ret;
  2785. temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
  2786. return mv88e6xxx_mdio_page_write(ds, phy, 6, 26,
  2787. (ret & 0xe0ff) | (temp << 8));
  2788. }
  2789. static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
  2790. {
  2791. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2792. int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
  2793. int ret;
  2794. if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
  2795. return -EOPNOTSUPP;
  2796. *alarm = false;
  2797. ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
  2798. if (ret < 0)
  2799. return ret;
  2800. *alarm = !!(ret & 0x40);
  2801. return 0;
  2802. }
  2803. #endif /* CONFIG_NET_DSA_HWMON */
  2804. static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
  2805. {
  2806. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2807. return chip->eeprom_len;
  2808. }
  2809. static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
  2810. struct ethtool_eeprom *eeprom, u8 *data)
  2811. {
  2812. unsigned int offset = eeprom->offset;
  2813. unsigned int len = eeprom->len;
  2814. u16 val;
  2815. int err;
  2816. eeprom->len = 0;
  2817. if (offset & 1) {
  2818. err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
  2819. if (err)
  2820. return err;
  2821. *data++ = (val >> 8) & 0xff;
  2822. offset++;
  2823. len--;
  2824. eeprom->len++;
  2825. }
  2826. while (len >= 2) {
  2827. err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
  2828. if (err)
  2829. return err;
  2830. *data++ = val & 0xff;
  2831. *data++ = (val >> 8) & 0xff;
  2832. offset += 2;
  2833. len -= 2;
  2834. eeprom->len += 2;
  2835. }
  2836. if (len) {
  2837. err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
  2838. if (err)
  2839. return err;
  2840. *data++ = val & 0xff;
  2841. offset++;
  2842. len--;
  2843. eeprom->len++;
  2844. }
  2845. return 0;
  2846. }
  2847. static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
  2848. struct ethtool_eeprom *eeprom, u8 *data)
  2849. {
  2850. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2851. int err;
  2852. mutex_lock(&chip->reg_lock);
  2853. if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
  2854. err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
  2855. else
  2856. err = -EOPNOTSUPP;
  2857. mutex_unlock(&chip->reg_lock);
  2858. if (err)
  2859. return err;
  2860. eeprom->magic = 0xc3ec4951;
  2861. return 0;
  2862. }
  2863. static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
  2864. struct ethtool_eeprom *eeprom, u8 *data)
  2865. {
  2866. unsigned int offset = eeprom->offset;
  2867. unsigned int len = eeprom->len;
  2868. u16 val;
  2869. int err;
  2870. /* Ensure the RO WriteEn bit is set */
  2871. err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
  2872. if (err)
  2873. return err;
  2874. if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
  2875. return -EROFS;
  2876. eeprom->len = 0;
  2877. if (offset & 1) {
  2878. err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
  2879. if (err)
  2880. return err;
  2881. val = (*data++ << 8) | (val & 0xff);
  2882. err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
  2883. if (err)
  2884. return err;
  2885. offset++;
  2886. len--;
  2887. eeprom->len++;
  2888. }
  2889. while (len >= 2) {
  2890. val = *data++;
  2891. val |= *data++ << 8;
  2892. err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
  2893. if (err)
  2894. return err;
  2895. offset += 2;
  2896. len -= 2;
  2897. eeprom->len += 2;
  2898. }
  2899. if (len) {
  2900. err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
  2901. if (err)
  2902. return err;
  2903. val = (val & 0xff00) | *data++;
  2904. err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
  2905. if (err)
  2906. return err;
  2907. offset++;
  2908. len--;
  2909. eeprom->len++;
  2910. }
  2911. return 0;
  2912. }
  2913. static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
  2914. struct ethtool_eeprom *eeprom, u8 *data)
  2915. {
  2916. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  2917. int err;
  2918. if (eeprom->magic != 0xc3ec4951)
  2919. return -EINVAL;
  2920. mutex_lock(&chip->reg_lock);
  2921. if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
  2922. err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
  2923. else
  2924. err = -EOPNOTSUPP;
  2925. mutex_unlock(&chip->reg_lock);
  2926. return err;
  2927. }
  2928. static const struct mv88e6xxx_info mv88e6xxx_table[] = {
  2929. [MV88E6085] = {
  2930. .prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
  2931. .family = MV88E6XXX_FAMILY_6097,
  2932. .name = "Marvell 88E6085",
  2933. .num_databases = 4096,
  2934. .num_ports = 10,
  2935. .port_base_addr = 0x10,
  2936. .age_time_coeff = 15000,
  2937. .flags = MV88E6XXX_FLAGS_FAMILY_6097,
  2938. },
  2939. [MV88E6095] = {
  2940. .prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
  2941. .family = MV88E6XXX_FAMILY_6095,
  2942. .name = "Marvell 88E6095/88E6095F",
  2943. .num_databases = 256,
  2944. .num_ports = 11,
  2945. .port_base_addr = 0x10,
  2946. .age_time_coeff = 15000,
  2947. .flags = MV88E6XXX_FLAGS_FAMILY_6095,
  2948. },
  2949. [MV88E6123] = {
  2950. .prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
  2951. .family = MV88E6XXX_FAMILY_6165,
  2952. .name = "Marvell 88E6123",
  2953. .num_databases = 4096,
  2954. .num_ports = 3,
  2955. .port_base_addr = 0x10,
  2956. .age_time_coeff = 15000,
  2957. .flags = MV88E6XXX_FLAGS_FAMILY_6165,
  2958. },
  2959. [MV88E6131] = {
  2960. .prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
  2961. .family = MV88E6XXX_FAMILY_6185,
  2962. .name = "Marvell 88E6131",
  2963. .num_databases = 256,
  2964. .num_ports = 8,
  2965. .port_base_addr = 0x10,
  2966. .age_time_coeff = 15000,
  2967. .flags = MV88E6XXX_FLAGS_FAMILY_6185,
  2968. },
  2969. [MV88E6161] = {
  2970. .prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
  2971. .family = MV88E6XXX_FAMILY_6165,
  2972. .name = "Marvell 88E6161",
  2973. .num_databases = 4096,
  2974. .num_ports = 6,
  2975. .port_base_addr = 0x10,
  2976. .age_time_coeff = 15000,
  2977. .flags = MV88E6XXX_FLAGS_FAMILY_6165,
  2978. },
  2979. [MV88E6165] = {
  2980. .prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
  2981. .family = MV88E6XXX_FAMILY_6165,
  2982. .name = "Marvell 88E6165",
  2983. .num_databases = 4096,
  2984. .num_ports = 6,
  2985. .port_base_addr = 0x10,
  2986. .age_time_coeff = 15000,
  2987. .flags = MV88E6XXX_FLAGS_FAMILY_6165,
  2988. },
  2989. [MV88E6171] = {
  2990. .prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
  2991. .family = MV88E6XXX_FAMILY_6351,
  2992. .name = "Marvell 88E6171",
  2993. .num_databases = 4096,
  2994. .num_ports = 7,
  2995. .port_base_addr = 0x10,
  2996. .age_time_coeff = 15000,
  2997. .flags = MV88E6XXX_FLAGS_FAMILY_6351,
  2998. },
  2999. [MV88E6172] = {
  3000. .prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
  3001. .family = MV88E6XXX_FAMILY_6352,
  3002. .name = "Marvell 88E6172",
  3003. .num_databases = 4096,
  3004. .num_ports = 7,
  3005. .port_base_addr = 0x10,
  3006. .age_time_coeff = 15000,
  3007. .flags = MV88E6XXX_FLAGS_FAMILY_6352,
  3008. },
  3009. [MV88E6175] = {
  3010. .prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
  3011. .family = MV88E6XXX_FAMILY_6351,
  3012. .name = "Marvell 88E6175",
  3013. .num_databases = 4096,
  3014. .num_ports = 7,
  3015. .port_base_addr = 0x10,
  3016. .age_time_coeff = 15000,
  3017. .flags = MV88E6XXX_FLAGS_FAMILY_6351,
  3018. },
  3019. [MV88E6176] = {
  3020. .prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
  3021. .family = MV88E6XXX_FAMILY_6352,
  3022. .name = "Marvell 88E6176",
  3023. .num_databases = 4096,
  3024. .num_ports = 7,
  3025. .port_base_addr = 0x10,
  3026. .age_time_coeff = 15000,
  3027. .flags = MV88E6XXX_FLAGS_FAMILY_6352,
  3028. },
  3029. [MV88E6185] = {
  3030. .prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
  3031. .family = MV88E6XXX_FAMILY_6185,
  3032. .name = "Marvell 88E6185",
  3033. .num_databases = 256,
  3034. .num_ports = 10,
  3035. .port_base_addr = 0x10,
  3036. .age_time_coeff = 15000,
  3037. .flags = MV88E6XXX_FLAGS_FAMILY_6185,
  3038. },
  3039. [MV88E6240] = {
  3040. .prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
  3041. .family = MV88E6XXX_FAMILY_6352,
  3042. .name = "Marvell 88E6240",
  3043. .num_databases = 4096,
  3044. .num_ports = 7,
  3045. .port_base_addr = 0x10,
  3046. .age_time_coeff = 15000,
  3047. .flags = MV88E6XXX_FLAGS_FAMILY_6352,
  3048. },
  3049. [MV88E6320] = {
  3050. .prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
  3051. .family = MV88E6XXX_FAMILY_6320,
  3052. .name = "Marvell 88E6320",
  3053. .num_databases = 4096,
  3054. .num_ports = 7,
  3055. .port_base_addr = 0x10,
  3056. .age_time_coeff = 15000,
  3057. .flags = MV88E6XXX_FLAGS_FAMILY_6320,
  3058. },
  3059. [MV88E6321] = {
  3060. .prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
  3061. .family = MV88E6XXX_FAMILY_6320,
  3062. .name = "Marvell 88E6321",
  3063. .num_databases = 4096,
  3064. .num_ports = 7,
  3065. .port_base_addr = 0x10,
  3066. .age_time_coeff = 15000,
  3067. .flags = MV88E6XXX_FLAGS_FAMILY_6320,
  3068. },
  3069. [MV88E6350] = {
  3070. .prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
  3071. .family = MV88E6XXX_FAMILY_6351,
  3072. .name = "Marvell 88E6350",
  3073. .num_databases = 4096,
  3074. .num_ports = 7,
  3075. .port_base_addr = 0x10,
  3076. .age_time_coeff = 15000,
  3077. .flags = MV88E6XXX_FLAGS_FAMILY_6351,
  3078. },
  3079. [MV88E6351] = {
  3080. .prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
  3081. .family = MV88E6XXX_FAMILY_6351,
  3082. .name = "Marvell 88E6351",
  3083. .num_databases = 4096,
  3084. .num_ports = 7,
  3085. .port_base_addr = 0x10,
  3086. .age_time_coeff = 15000,
  3087. .flags = MV88E6XXX_FLAGS_FAMILY_6351,
  3088. },
  3089. [MV88E6352] = {
  3090. .prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
  3091. .family = MV88E6XXX_FAMILY_6352,
  3092. .name = "Marvell 88E6352",
  3093. .num_databases = 4096,
  3094. .num_ports = 7,
  3095. .port_base_addr = 0x10,
  3096. .age_time_coeff = 15000,
  3097. .flags = MV88E6XXX_FLAGS_FAMILY_6352,
  3098. },
  3099. };
  3100. static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
  3101. {
  3102. int i;
  3103. for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
  3104. if (mv88e6xxx_table[i].prod_num == prod_num)
  3105. return &mv88e6xxx_table[i];
  3106. return NULL;
  3107. }
  3108. static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
  3109. {
  3110. const struct mv88e6xxx_info *info;
  3111. unsigned int prod_num, rev;
  3112. u16 id;
  3113. int err;
  3114. mutex_lock(&chip->reg_lock);
  3115. err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
  3116. mutex_unlock(&chip->reg_lock);
  3117. if (err)
  3118. return err;
  3119. prod_num = (id & 0xfff0) >> 4;
  3120. rev = id & 0x000f;
  3121. info = mv88e6xxx_lookup_info(prod_num);
  3122. if (!info)
  3123. return -ENODEV;
  3124. /* Update the compatible info with the probed one */
  3125. chip->info = info;
  3126. dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
  3127. chip->info->prod_num, chip->info->name, rev);
  3128. return 0;
  3129. }
  3130. static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
  3131. {
  3132. struct mv88e6xxx_chip *chip;
  3133. chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
  3134. if (!chip)
  3135. return NULL;
  3136. chip->dev = dev;
  3137. mutex_init(&chip->reg_lock);
  3138. return chip;
  3139. }
  3140. static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
  3141. struct mii_bus *bus, int sw_addr)
  3142. {
  3143. /* ADDR[0] pin is unavailable externally and considered zero */
  3144. if (sw_addr & 0x1)
  3145. return -EINVAL;
  3146. if (sw_addr == 0)
  3147. chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
  3148. else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_MULTI_CHIP))
  3149. chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
  3150. else
  3151. return -EINVAL;
  3152. chip->bus = bus;
  3153. chip->sw_addr = sw_addr;
  3154. return 0;
  3155. }
  3156. static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
  3157. struct device *host_dev, int sw_addr,
  3158. void **priv)
  3159. {
  3160. struct mv88e6xxx_chip *chip;
  3161. struct mii_bus *bus;
  3162. int err;
  3163. bus = dsa_host_dev_to_mii_bus(host_dev);
  3164. if (!bus)
  3165. return NULL;
  3166. chip = mv88e6xxx_alloc_chip(dsa_dev);
  3167. if (!chip)
  3168. return NULL;
  3169. /* Legacy SMI probing will only support chips similar to 88E6085 */
  3170. chip->info = &mv88e6xxx_table[MV88E6085];
  3171. err = mv88e6xxx_smi_init(chip, bus, sw_addr);
  3172. if (err)
  3173. goto free;
  3174. err = mv88e6xxx_detect(chip);
  3175. if (err)
  3176. goto free;
  3177. err = mv88e6xxx_mdio_register(chip, NULL);
  3178. if (err)
  3179. goto free;
  3180. *priv = chip;
  3181. return chip->info->name;
  3182. free:
  3183. devm_kfree(dsa_dev, chip);
  3184. return NULL;
  3185. }
  3186. static struct dsa_switch_driver mv88e6xxx_switch_driver = {
  3187. .tag_protocol = DSA_TAG_PROTO_EDSA,
  3188. .probe = mv88e6xxx_drv_probe,
  3189. .setup = mv88e6xxx_setup,
  3190. .set_addr = mv88e6xxx_set_addr,
  3191. .adjust_link = mv88e6xxx_adjust_link,
  3192. .get_strings = mv88e6xxx_get_strings,
  3193. .get_ethtool_stats = mv88e6xxx_get_ethtool_stats,
  3194. .get_sset_count = mv88e6xxx_get_sset_count,
  3195. .set_eee = mv88e6xxx_set_eee,
  3196. .get_eee = mv88e6xxx_get_eee,
  3197. #ifdef CONFIG_NET_DSA_HWMON
  3198. .get_temp = mv88e6xxx_get_temp,
  3199. .get_temp_limit = mv88e6xxx_get_temp_limit,
  3200. .set_temp_limit = mv88e6xxx_set_temp_limit,
  3201. .get_temp_alarm = mv88e6xxx_get_temp_alarm,
  3202. #endif
  3203. .get_eeprom_len = mv88e6xxx_get_eeprom_len,
  3204. .get_eeprom = mv88e6xxx_get_eeprom,
  3205. .set_eeprom = mv88e6xxx_set_eeprom,
  3206. .get_regs_len = mv88e6xxx_get_regs_len,
  3207. .get_regs = mv88e6xxx_get_regs,
  3208. .set_ageing_time = mv88e6xxx_set_ageing_time,
  3209. .port_bridge_join = mv88e6xxx_port_bridge_join,
  3210. .port_bridge_leave = mv88e6xxx_port_bridge_leave,
  3211. .port_stp_state_set = mv88e6xxx_port_stp_state_set,
  3212. .port_vlan_filtering = mv88e6xxx_port_vlan_filtering,
  3213. .port_vlan_prepare = mv88e6xxx_port_vlan_prepare,
  3214. .port_vlan_add = mv88e6xxx_port_vlan_add,
  3215. .port_vlan_del = mv88e6xxx_port_vlan_del,
  3216. .port_vlan_dump = mv88e6xxx_port_vlan_dump,
  3217. .port_fdb_prepare = mv88e6xxx_port_fdb_prepare,
  3218. .port_fdb_add = mv88e6xxx_port_fdb_add,
  3219. .port_fdb_del = mv88e6xxx_port_fdb_del,
  3220. .port_fdb_dump = mv88e6xxx_port_fdb_dump,
  3221. };
  3222. static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
  3223. struct device_node *np)
  3224. {
  3225. struct device *dev = chip->dev;
  3226. struct dsa_switch *ds;
  3227. ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
  3228. if (!ds)
  3229. return -ENOMEM;
  3230. ds->dev = dev;
  3231. ds->priv = chip;
  3232. ds->drv = &mv88e6xxx_switch_driver;
  3233. dev_set_drvdata(dev, ds);
  3234. return dsa_register_switch(ds, np);
  3235. }
  3236. static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
  3237. {
  3238. dsa_unregister_switch(chip->ds);
  3239. }
  3240. static int mv88e6xxx_probe(struct mdio_device *mdiodev)
  3241. {
  3242. struct device *dev = &mdiodev->dev;
  3243. struct device_node *np = dev->of_node;
  3244. const struct mv88e6xxx_info *compat_info;
  3245. struct mv88e6xxx_chip *chip;
  3246. u32 eeprom_len;
  3247. int err;
  3248. compat_info = of_device_get_match_data(dev);
  3249. if (!compat_info)
  3250. return -EINVAL;
  3251. chip = mv88e6xxx_alloc_chip(dev);
  3252. if (!chip)
  3253. return -ENOMEM;
  3254. chip->info = compat_info;
  3255. err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
  3256. if (err)
  3257. return err;
  3258. err = mv88e6xxx_detect(chip);
  3259. if (err)
  3260. return err;
  3261. chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
  3262. if (IS_ERR(chip->reset))
  3263. return PTR_ERR(chip->reset);
  3264. if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
  3265. !of_property_read_u32(np, "eeprom-length", &eeprom_len))
  3266. chip->eeprom_len = eeprom_len;
  3267. err = mv88e6xxx_mdio_register(chip, np);
  3268. if (err)
  3269. return err;
  3270. err = mv88e6xxx_register_switch(chip, np);
  3271. if (err) {
  3272. mv88e6xxx_mdio_unregister(chip);
  3273. return err;
  3274. }
  3275. return 0;
  3276. }
  3277. static void mv88e6xxx_remove(struct mdio_device *mdiodev)
  3278. {
  3279. struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
  3280. struct mv88e6xxx_chip *chip = ds_to_priv(ds);
  3281. mv88e6xxx_unregister_switch(chip);
  3282. mv88e6xxx_mdio_unregister(chip);
  3283. }
  3284. static const struct of_device_id mv88e6xxx_of_match[] = {
  3285. {
  3286. .compatible = "marvell,mv88e6085",
  3287. .data = &mv88e6xxx_table[MV88E6085],
  3288. },
  3289. { /* sentinel */ },
  3290. };
  3291. MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);
  3292. static struct mdio_driver mv88e6xxx_driver = {
  3293. .probe = mv88e6xxx_probe,
  3294. .remove = mv88e6xxx_remove,
  3295. .mdiodrv.driver = {
  3296. .name = "mv88e6085",
  3297. .of_match_table = mv88e6xxx_of_match,
  3298. },
  3299. };
  3300. static int __init mv88e6xxx_init(void)
  3301. {
  3302. register_switch_driver(&mv88e6xxx_switch_driver);
  3303. return mdio_driver_register(&mv88e6xxx_driver);
  3304. }
  3305. module_init(mv88e6xxx_init);
  3306. static void __exit mv88e6xxx_cleanup(void)
  3307. {
  3308. mdio_driver_unregister(&mv88e6xxx_driver);
  3309. unregister_switch_driver(&mv88e6xxx_switch_driver);
  3310. }
  3311. module_exit(mv88e6xxx_cleanup);
  3312. MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
  3313. MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
  3314. MODULE_LICENSE("GPL");