mtdpart.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. #include <linux/kconfig.h>
  33. #include "mtdcore.h"
  34. /* Our partition linked list */
  35. static LIST_HEAD(mtd_partitions);
  36. static DEFINE_MUTEX(mtd_partitions_mutex);
  37. /* Our partition node structure */
  38. struct mtd_part {
  39. struct mtd_info mtd;
  40. struct mtd_info *master;
  41. uint64_t offset;
  42. struct list_head list;
  43. };
  44. /*
  45. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  46. * the pointer to that structure.
  47. */
  48. static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
  49. {
  50. return container_of(mtd, struct mtd_part, mtd);
  51. }
  52. /*
  53. * MTD methods which simply translate the effective address and pass through
  54. * to the _real_ device.
  55. */
  56. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  57. size_t *retlen, u_char *buf)
  58. {
  59. struct mtd_part *part = mtd_to_part(mtd);
  60. struct mtd_ecc_stats stats;
  61. int res;
  62. stats = part->master->ecc_stats;
  63. res = part->master->_read(part->master, from + part->offset, len,
  64. retlen, buf);
  65. if (unlikely(mtd_is_eccerr(res)))
  66. mtd->ecc_stats.failed +=
  67. part->master->ecc_stats.failed - stats.failed;
  68. else
  69. mtd->ecc_stats.corrected +=
  70. part->master->ecc_stats.corrected - stats.corrected;
  71. return res;
  72. }
  73. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  74. size_t *retlen, void **virt, resource_size_t *phys)
  75. {
  76. struct mtd_part *part = mtd_to_part(mtd);
  77. return part->master->_point(part->master, from + part->offset, len,
  78. retlen, virt, phys);
  79. }
  80. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  81. {
  82. struct mtd_part *part = mtd_to_part(mtd);
  83. return part->master->_unpoint(part->master, from + part->offset, len);
  84. }
  85. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  86. unsigned long len,
  87. unsigned long offset,
  88. unsigned long flags)
  89. {
  90. struct mtd_part *part = mtd_to_part(mtd);
  91. offset += part->offset;
  92. return part->master->_get_unmapped_area(part->master, len, offset,
  93. flags);
  94. }
  95. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  96. struct mtd_oob_ops *ops)
  97. {
  98. struct mtd_part *part = mtd_to_part(mtd);
  99. int res;
  100. if (from >= mtd->size)
  101. return -EINVAL;
  102. if (ops->datbuf && from + ops->len > mtd->size)
  103. return -EINVAL;
  104. /*
  105. * If OOB is also requested, make sure that we do not read past the end
  106. * of this partition.
  107. */
  108. if (ops->oobbuf) {
  109. size_t len, pages;
  110. len = mtd_oobavail(mtd, ops);
  111. pages = mtd_div_by_ws(mtd->size, mtd);
  112. pages -= mtd_div_by_ws(from, mtd);
  113. if (ops->ooboffs + ops->ooblen > pages * len)
  114. return -EINVAL;
  115. }
  116. res = part->master->_read_oob(part->master, from + part->offset, ops);
  117. if (unlikely(res)) {
  118. if (mtd_is_bitflip(res))
  119. mtd->ecc_stats.corrected++;
  120. if (mtd_is_eccerr(res))
  121. mtd->ecc_stats.failed++;
  122. }
  123. return res;
  124. }
  125. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  126. size_t len, size_t *retlen, u_char *buf)
  127. {
  128. struct mtd_part *part = mtd_to_part(mtd);
  129. return part->master->_read_user_prot_reg(part->master, from, len,
  130. retlen, buf);
  131. }
  132. static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
  133. size_t *retlen, struct otp_info *buf)
  134. {
  135. struct mtd_part *part = mtd_to_part(mtd);
  136. return part->master->_get_user_prot_info(part->master, len, retlen,
  137. buf);
  138. }
  139. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  140. size_t len, size_t *retlen, u_char *buf)
  141. {
  142. struct mtd_part *part = mtd_to_part(mtd);
  143. return part->master->_read_fact_prot_reg(part->master, from, len,
  144. retlen, buf);
  145. }
  146. static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
  147. size_t *retlen, struct otp_info *buf)
  148. {
  149. struct mtd_part *part = mtd_to_part(mtd);
  150. return part->master->_get_fact_prot_info(part->master, len, retlen,
  151. buf);
  152. }
  153. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  154. size_t *retlen, const u_char *buf)
  155. {
  156. struct mtd_part *part = mtd_to_part(mtd);
  157. return part->master->_write(part->master, to + part->offset, len,
  158. retlen, buf);
  159. }
  160. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  161. size_t *retlen, const u_char *buf)
  162. {
  163. struct mtd_part *part = mtd_to_part(mtd);
  164. return part->master->_panic_write(part->master, to + part->offset, len,
  165. retlen, buf);
  166. }
  167. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  168. struct mtd_oob_ops *ops)
  169. {
  170. struct mtd_part *part = mtd_to_part(mtd);
  171. if (to >= mtd->size)
  172. return -EINVAL;
  173. if (ops->datbuf && to + ops->len > mtd->size)
  174. return -EINVAL;
  175. return part->master->_write_oob(part->master, to + part->offset, ops);
  176. }
  177. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  178. size_t len, size_t *retlen, u_char *buf)
  179. {
  180. struct mtd_part *part = mtd_to_part(mtd);
  181. return part->master->_write_user_prot_reg(part->master, from, len,
  182. retlen, buf);
  183. }
  184. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  185. size_t len)
  186. {
  187. struct mtd_part *part = mtd_to_part(mtd);
  188. return part->master->_lock_user_prot_reg(part->master, from, len);
  189. }
  190. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  191. unsigned long count, loff_t to, size_t *retlen)
  192. {
  193. struct mtd_part *part = mtd_to_part(mtd);
  194. return part->master->_writev(part->master, vecs, count,
  195. to + part->offset, retlen);
  196. }
  197. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  198. {
  199. struct mtd_part *part = mtd_to_part(mtd);
  200. int ret;
  201. instr->addr += part->offset;
  202. ret = part->master->_erase(part->master, instr);
  203. if (ret) {
  204. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  205. instr->fail_addr -= part->offset;
  206. instr->addr -= part->offset;
  207. }
  208. return ret;
  209. }
  210. void mtd_erase_callback(struct erase_info *instr)
  211. {
  212. if (instr->mtd->_erase == part_erase) {
  213. struct mtd_part *part = mtd_to_part(instr->mtd);
  214. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  215. instr->fail_addr -= part->offset;
  216. instr->addr -= part->offset;
  217. }
  218. if (instr->callback)
  219. instr->callback(instr);
  220. }
  221. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  222. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  223. {
  224. struct mtd_part *part = mtd_to_part(mtd);
  225. return part->master->_lock(part->master, ofs + part->offset, len);
  226. }
  227. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  228. {
  229. struct mtd_part *part = mtd_to_part(mtd);
  230. return part->master->_unlock(part->master, ofs + part->offset, len);
  231. }
  232. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  233. {
  234. struct mtd_part *part = mtd_to_part(mtd);
  235. return part->master->_is_locked(part->master, ofs + part->offset, len);
  236. }
  237. static void part_sync(struct mtd_info *mtd)
  238. {
  239. struct mtd_part *part = mtd_to_part(mtd);
  240. part->master->_sync(part->master);
  241. }
  242. static int part_suspend(struct mtd_info *mtd)
  243. {
  244. struct mtd_part *part = mtd_to_part(mtd);
  245. return part->master->_suspend(part->master);
  246. }
  247. static void part_resume(struct mtd_info *mtd)
  248. {
  249. struct mtd_part *part = mtd_to_part(mtd);
  250. part->master->_resume(part->master);
  251. }
  252. static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  253. {
  254. struct mtd_part *part = mtd_to_part(mtd);
  255. ofs += part->offset;
  256. return part->master->_block_isreserved(part->master, ofs);
  257. }
  258. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  259. {
  260. struct mtd_part *part = mtd_to_part(mtd);
  261. ofs += part->offset;
  262. return part->master->_block_isbad(part->master, ofs);
  263. }
  264. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  265. {
  266. struct mtd_part *part = mtd_to_part(mtd);
  267. int res;
  268. ofs += part->offset;
  269. res = part->master->_block_markbad(part->master, ofs);
  270. if (!res)
  271. mtd->ecc_stats.badblocks++;
  272. return res;
  273. }
  274. static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
  275. struct mtd_oob_region *oobregion)
  276. {
  277. struct mtd_part *part = mtd_to_part(mtd);
  278. return mtd_ooblayout_ecc(part->master, section, oobregion);
  279. }
  280. static int part_ooblayout_free(struct mtd_info *mtd, int section,
  281. struct mtd_oob_region *oobregion)
  282. {
  283. struct mtd_part *part = mtd_to_part(mtd);
  284. return mtd_ooblayout_free(part->master, section, oobregion);
  285. }
  286. static const struct mtd_ooblayout_ops part_ooblayout_ops = {
  287. .ecc = part_ooblayout_ecc,
  288. .free = part_ooblayout_free,
  289. };
  290. static inline void free_partition(struct mtd_part *p)
  291. {
  292. kfree(p->mtd.name);
  293. kfree(p);
  294. }
  295. /*
  296. * This function unregisters and destroy all slave MTD objects which are
  297. * attached to the given master MTD object.
  298. */
  299. int del_mtd_partitions(struct mtd_info *master)
  300. {
  301. struct mtd_part *slave, *next;
  302. int ret, err = 0;
  303. mutex_lock(&mtd_partitions_mutex);
  304. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  305. if (slave->master == master) {
  306. ret = del_mtd_device(&slave->mtd);
  307. if (ret < 0) {
  308. err = ret;
  309. continue;
  310. }
  311. list_del(&slave->list);
  312. free_partition(slave);
  313. }
  314. mutex_unlock(&mtd_partitions_mutex);
  315. return err;
  316. }
  317. static struct mtd_part *allocate_partition(struct mtd_info *master,
  318. const struct mtd_partition *part, int partno,
  319. uint64_t cur_offset)
  320. {
  321. struct mtd_part *slave;
  322. char *name;
  323. /* allocate the partition structure */
  324. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  325. name = kstrdup(part->name, GFP_KERNEL);
  326. if (!name || !slave) {
  327. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  328. master->name);
  329. kfree(name);
  330. kfree(slave);
  331. return ERR_PTR(-ENOMEM);
  332. }
  333. /* set up the MTD object for this partition */
  334. slave->mtd.type = master->type;
  335. slave->mtd.flags = master->flags & ~part->mask_flags;
  336. slave->mtd.size = part->size;
  337. slave->mtd.writesize = master->writesize;
  338. slave->mtd.writebufsize = master->writebufsize;
  339. slave->mtd.oobsize = master->oobsize;
  340. slave->mtd.oobavail = master->oobavail;
  341. slave->mtd.subpage_sft = master->subpage_sft;
  342. slave->mtd.name = name;
  343. slave->mtd.owner = master->owner;
  344. /* NOTE: Historically, we didn't arrange MTDs as a tree out of
  345. * concern for showing the same data in multiple partitions.
  346. * However, it is very useful to have the master node present,
  347. * so the MTD_PARTITIONED_MASTER option allows that. The master
  348. * will have device nodes etc only if this is set, so make the
  349. * parent conditional on that option. Note, this is a way to
  350. * distinguish between the master and the partition in sysfs.
  351. */
  352. slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ?
  353. &master->dev :
  354. master->dev.parent;
  355. slave->mtd._read = part_read;
  356. slave->mtd._write = part_write;
  357. if (master->_panic_write)
  358. slave->mtd._panic_write = part_panic_write;
  359. if (master->_point && master->_unpoint) {
  360. slave->mtd._point = part_point;
  361. slave->mtd._unpoint = part_unpoint;
  362. }
  363. if (master->_get_unmapped_area)
  364. slave->mtd._get_unmapped_area = part_get_unmapped_area;
  365. if (master->_read_oob)
  366. slave->mtd._read_oob = part_read_oob;
  367. if (master->_write_oob)
  368. slave->mtd._write_oob = part_write_oob;
  369. if (master->_read_user_prot_reg)
  370. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  371. if (master->_read_fact_prot_reg)
  372. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  373. if (master->_write_user_prot_reg)
  374. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  375. if (master->_lock_user_prot_reg)
  376. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  377. if (master->_get_user_prot_info)
  378. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  379. if (master->_get_fact_prot_info)
  380. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  381. if (master->_sync)
  382. slave->mtd._sync = part_sync;
  383. if (!partno && !master->dev.class && master->_suspend &&
  384. master->_resume) {
  385. slave->mtd._suspend = part_suspend;
  386. slave->mtd._resume = part_resume;
  387. }
  388. if (master->_writev)
  389. slave->mtd._writev = part_writev;
  390. if (master->_lock)
  391. slave->mtd._lock = part_lock;
  392. if (master->_unlock)
  393. slave->mtd._unlock = part_unlock;
  394. if (master->_is_locked)
  395. slave->mtd._is_locked = part_is_locked;
  396. if (master->_block_isreserved)
  397. slave->mtd._block_isreserved = part_block_isreserved;
  398. if (master->_block_isbad)
  399. slave->mtd._block_isbad = part_block_isbad;
  400. if (master->_block_markbad)
  401. slave->mtd._block_markbad = part_block_markbad;
  402. slave->mtd._erase = part_erase;
  403. slave->master = master;
  404. slave->offset = part->offset;
  405. if (slave->offset == MTDPART_OFS_APPEND)
  406. slave->offset = cur_offset;
  407. if (slave->offset == MTDPART_OFS_NXTBLK) {
  408. slave->offset = cur_offset;
  409. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  410. /* Round up to next erasesize */
  411. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  412. printk(KERN_NOTICE "Moving partition %d: "
  413. "0x%012llx -> 0x%012llx\n", partno,
  414. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  415. }
  416. }
  417. if (slave->offset == MTDPART_OFS_RETAIN) {
  418. slave->offset = cur_offset;
  419. if (master->size - slave->offset >= slave->mtd.size) {
  420. slave->mtd.size = master->size - slave->offset
  421. - slave->mtd.size;
  422. } else {
  423. printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  424. part->name, master->size - slave->offset,
  425. slave->mtd.size);
  426. /* register to preserve ordering */
  427. goto out_register;
  428. }
  429. }
  430. if (slave->mtd.size == MTDPART_SIZ_FULL)
  431. slave->mtd.size = master->size - slave->offset;
  432. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  433. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  434. /* let's do some sanity checks */
  435. if (slave->offset >= master->size) {
  436. /* let's register it anyway to preserve ordering */
  437. slave->offset = 0;
  438. slave->mtd.size = 0;
  439. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  440. part->name);
  441. goto out_register;
  442. }
  443. if (slave->offset + slave->mtd.size > master->size) {
  444. slave->mtd.size = master->size - slave->offset;
  445. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  446. part->name, master->name, (unsigned long long)slave->mtd.size);
  447. }
  448. if (master->numeraseregions > 1) {
  449. /* Deal with variable erase size stuff */
  450. int i, max = master->numeraseregions;
  451. u64 end = slave->offset + slave->mtd.size;
  452. struct mtd_erase_region_info *regions = master->eraseregions;
  453. /* Find the first erase regions which is part of this
  454. * partition. */
  455. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  456. ;
  457. /* The loop searched for the region _behind_ the first one */
  458. if (i > 0)
  459. i--;
  460. /* Pick biggest erasesize */
  461. for (; i < max && regions[i].offset < end; i++) {
  462. if (slave->mtd.erasesize < regions[i].erasesize) {
  463. slave->mtd.erasesize = regions[i].erasesize;
  464. }
  465. }
  466. BUG_ON(slave->mtd.erasesize == 0);
  467. } else {
  468. /* Single erase size */
  469. slave->mtd.erasesize = master->erasesize;
  470. }
  471. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  472. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  473. /* Doesn't start on a boundary of major erase size */
  474. /* FIXME: Let it be writable if it is on a boundary of
  475. * _minor_ erase size though */
  476. slave->mtd.flags &= ~MTD_WRITEABLE;
  477. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  478. part->name);
  479. }
  480. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  481. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  482. slave->mtd.flags &= ~MTD_WRITEABLE;
  483. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  484. part->name);
  485. }
  486. mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
  487. slave->mtd.ecc_step_size = master->ecc_step_size;
  488. slave->mtd.ecc_strength = master->ecc_strength;
  489. slave->mtd.bitflip_threshold = master->bitflip_threshold;
  490. if (master->_block_isbad) {
  491. uint64_t offs = 0;
  492. while (offs < slave->mtd.size) {
  493. if (mtd_block_isreserved(master, offs + slave->offset))
  494. slave->mtd.ecc_stats.bbtblocks++;
  495. else if (mtd_block_isbad(master, offs + slave->offset))
  496. slave->mtd.ecc_stats.badblocks++;
  497. offs += slave->mtd.erasesize;
  498. }
  499. }
  500. out_register:
  501. return slave;
  502. }
  503. static ssize_t mtd_partition_offset_show(struct device *dev,
  504. struct device_attribute *attr, char *buf)
  505. {
  506. struct mtd_info *mtd = dev_get_drvdata(dev);
  507. struct mtd_part *part = mtd_to_part(mtd);
  508. return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
  509. }
  510. static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
  511. static const struct attribute *mtd_partition_attrs[] = {
  512. &dev_attr_offset.attr,
  513. NULL
  514. };
  515. static int mtd_add_partition_attrs(struct mtd_part *new)
  516. {
  517. int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
  518. if (ret)
  519. printk(KERN_WARNING
  520. "mtd: failed to create partition attrs, err=%d\n", ret);
  521. return ret;
  522. }
  523. int mtd_add_partition(struct mtd_info *master, const char *name,
  524. long long offset, long long length)
  525. {
  526. struct mtd_partition part;
  527. struct mtd_part *new;
  528. int ret = 0;
  529. /* the direct offset is expected */
  530. if (offset == MTDPART_OFS_APPEND ||
  531. offset == MTDPART_OFS_NXTBLK)
  532. return -EINVAL;
  533. if (length == MTDPART_SIZ_FULL)
  534. length = master->size - offset;
  535. if (length <= 0)
  536. return -EINVAL;
  537. memset(&part, 0, sizeof(part));
  538. part.name = name;
  539. part.size = length;
  540. part.offset = offset;
  541. new = allocate_partition(master, &part, -1, offset);
  542. if (IS_ERR(new))
  543. return PTR_ERR(new);
  544. mutex_lock(&mtd_partitions_mutex);
  545. list_add(&new->list, &mtd_partitions);
  546. mutex_unlock(&mtd_partitions_mutex);
  547. add_mtd_device(&new->mtd);
  548. mtd_add_partition_attrs(new);
  549. return ret;
  550. }
  551. EXPORT_SYMBOL_GPL(mtd_add_partition);
  552. int mtd_del_partition(struct mtd_info *master, int partno)
  553. {
  554. struct mtd_part *slave, *next;
  555. int ret = -EINVAL;
  556. mutex_lock(&mtd_partitions_mutex);
  557. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  558. if ((slave->master == master) &&
  559. (slave->mtd.index == partno)) {
  560. sysfs_remove_files(&slave->mtd.dev.kobj,
  561. mtd_partition_attrs);
  562. ret = del_mtd_device(&slave->mtd);
  563. if (ret < 0)
  564. break;
  565. list_del(&slave->list);
  566. free_partition(slave);
  567. break;
  568. }
  569. mutex_unlock(&mtd_partitions_mutex);
  570. return ret;
  571. }
  572. EXPORT_SYMBOL_GPL(mtd_del_partition);
  573. /*
  574. * This function, given a master MTD object and a partition table, creates
  575. * and registers slave MTD objects which are bound to the master according to
  576. * the partition definitions.
  577. *
  578. * For historical reasons, this function's caller only registers the master
  579. * if the MTD_PARTITIONED_MASTER config option is set.
  580. */
  581. int add_mtd_partitions(struct mtd_info *master,
  582. const struct mtd_partition *parts,
  583. int nbparts)
  584. {
  585. struct mtd_part *slave;
  586. uint64_t cur_offset = 0;
  587. int i;
  588. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  589. for (i = 0; i < nbparts; i++) {
  590. slave = allocate_partition(master, parts + i, i, cur_offset);
  591. if (IS_ERR(slave)) {
  592. del_mtd_partitions(master);
  593. return PTR_ERR(slave);
  594. }
  595. mutex_lock(&mtd_partitions_mutex);
  596. list_add(&slave->list, &mtd_partitions);
  597. mutex_unlock(&mtd_partitions_mutex);
  598. add_mtd_device(&slave->mtd);
  599. mtd_add_partition_attrs(slave);
  600. cur_offset = slave->offset + slave->mtd.size;
  601. }
  602. return 0;
  603. }
  604. static DEFINE_SPINLOCK(part_parser_lock);
  605. static LIST_HEAD(part_parsers);
  606. static struct mtd_part_parser *mtd_part_parser_get(const char *name)
  607. {
  608. struct mtd_part_parser *p, *ret = NULL;
  609. spin_lock(&part_parser_lock);
  610. list_for_each_entry(p, &part_parsers, list)
  611. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  612. ret = p;
  613. break;
  614. }
  615. spin_unlock(&part_parser_lock);
  616. return ret;
  617. }
  618. static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
  619. {
  620. module_put(p->owner);
  621. }
  622. /*
  623. * Many partition parsers just expected the core to kfree() all their data in
  624. * one chunk. Do that by default.
  625. */
  626. static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
  627. int nr_parts)
  628. {
  629. kfree(pparts);
  630. }
  631. int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
  632. {
  633. p->owner = owner;
  634. if (!p->cleanup)
  635. p->cleanup = &mtd_part_parser_cleanup_default;
  636. spin_lock(&part_parser_lock);
  637. list_add(&p->list, &part_parsers);
  638. spin_unlock(&part_parser_lock);
  639. return 0;
  640. }
  641. EXPORT_SYMBOL_GPL(__register_mtd_parser);
  642. void deregister_mtd_parser(struct mtd_part_parser *p)
  643. {
  644. spin_lock(&part_parser_lock);
  645. list_del(&p->list);
  646. spin_unlock(&part_parser_lock);
  647. }
  648. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  649. /*
  650. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  651. * are changing this array!
  652. */
  653. static const char * const default_mtd_part_types[] = {
  654. "cmdlinepart",
  655. "ofpart",
  656. NULL
  657. };
  658. /**
  659. * parse_mtd_partitions - parse MTD partitions
  660. * @master: the master partition (describes whole MTD device)
  661. * @types: names of partition parsers to try or %NULL
  662. * @pparts: info about partitions found is returned here
  663. * @data: MTD partition parser-specific data
  664. *
  665. * This function tries to find partition on MTD device @master. It uses MTD
  666. * partition parsers, specified in @types. However, if @types is %NULL, then
  667. * the default list of parsers is used. The default list contains only the
  668. * "cmdlinepart" and "ofpart" parsers ATM.
  669. * Note: If there are more then one parser in @types, the kernel only takes the
  670. * partitions parsed out by the first parser.
  671. *
  672. * This function may return:
  673. * o a negative error code in case of failure
  674. * o zero otherwise, and @pparts will describe the partitions, number of
  675. * partitions, and the parser which parsed them. Caller must release
  676. * resources with mtd_part_parser_cleanup() when finished with the returned
  677. * data.
  678. */
  679. int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
  680. struct mtd_partitions *pparts,
  681. struct mtd_part_parser_data *data)
  682. {
  683. struct mtd_part_parser *parser;
  684. int ret, err = 0;
  685. if (!types)
  686. types = default_mtd_part_types;
  687. for ( ; *types; types++) {
  688. pr_debug("%s: parsing partitions %s\n", master->name, *types);
  689. parser = mtd_part_parser_get(*types);
  690. if (!parser && !request_module("%s", *types))
  691. parser = mtd_part_parser_get(*types);
  692. pr_debug("%s: got parser %s\n", master->name,
  693. parser ? parser->name : NULL);
  694. if (!parser)
  695. continue;
  696. ret = (*parser->parse_fn)(master, &pparts->parts, data);
  697. pr_debug("%s: parser %s: %i\n",
  698. master->name, parser->name, ret);
  699. if (ret > 0) {
  700. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  701. ret, parser->name, master->name);
  702. pparts->nr_parts = ret;
  703. pparts->parser = parser;
  704. return 0;
  705. }
  706. mtd_part_parser_put(parser);
  707. /*
  708. * Stash the first error we see; only report it if no parser
  709. * succeeds
  710. */
  711. if (ret < 0 && !err)
  712. err = ret;
  713. }
  714. return err;
  715. }
  716. void mtd_part_parser_cleanup(struct mtd_partitions *parts)
  717. {
  718. const struct mtd_part_parser *parser;
  719. if (!parts)
  720. return;
  721. parser = parts->parser;
  722. if (parser) {
  723. if (parser->cleanup)
  724. parser->cleanup(parts->parts, parts->nr_parts);
  725. mtd_part_parser_put(parser);
  726. }
  727. }
  728. int mtd_is_partition(const struct mtd_info *mtd)
  729. {
  730. struct mtd_part *part;
  731. int ispart = 0;
  732. mutex_lock(&mtd_partitions_mutex);
  733. list_for_each_entry(part, &mtd_partitions, list)
  734. if (&part->mtd == mtd) {
  735. ispart = 1;
  736. break;
  737. }
  738. mutex_unlock(&mtd_partitions_mutex);
  739. return ispart;
  740. }
  741. EXPORT_SYMBOL_GPL(mtd_is_partition);
  742. /* Returns the size of the entire flash chip */
  743. uint64_t mtd_get_device_size(const struct mtd_info *mtd)
  744. {
  745. if (!mtd_is_partition(mtd))
  746. return mtd->size;
  747. return mtd_to_part(mtd)->master->size;
  748. }
  749. EXPORT_SYMBOL_GPL(mtd_get_device_size);