bmc150-accel-core.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760
  1. /*
  2. * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
  3. * - BMC150
  4. * - BMI055
  5. * - BMA255
  6. * - BMA250E
  7. * - BMA222E
  8. * - BMA280
  9. *
  10. * Copyright (c) 2014, Intel Corporation.
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms and conditions of the GNU General Public License,
  14. * version 2, as published by the Free Software Foundation.
  15. *
  16. * This program is distributed in the hope it will be useful, but WITHOUT
  17. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  18. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  19. * more details.
  20. */
  21. #include <linux/module.h>
  22. #include <linux/i2c.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/delay.h>
  25. #include <linux/slab.h>
  26. #include <linux/acpi.h>
  27. #include <linux/pm.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/iio/iio.h>
  30. #include <linux/iio/sysfs.h>
  31. #include <linux/iio/buffer.h>
  32. #include <linux/iio/events.h>
  33. #include <linux/iio/trigger.h>
  34. #include <linux/iio/trigger_consumer.h>
  35. #include <linux/iio/triggered_buffer.h>
  36. #include <linux/regmap.h>
  37. #include "bmc150-accel.h"
  38. #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
  39. #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
  40. #define BMC150_ACCEL_REG_CHIP_ID 0x00
  41. #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
  42. #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
  43. #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
  44. #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
  45. #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
  46. #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
  47. #define BMC150_ACCEL_REG_PMU_LPW 0x11
  48. #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
  49. #define BMC150_ACCEL_PMU_MODE_SHIFT 5
  50. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
  51. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
  52. #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
  53. #define BMC150_ACCEL_DEF_RANGE_2G 0x03
  54. #define BMC150_ACCEL_DEF_RANGE_4G 0x05
  55. #define BMC150_ACCEL_DEF_RANGE_8G 0x08
  56. #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
  57. /* Default BW: 125Hz */
  58. #define BMC150_ACCEL_REG_PMU_BW 0x10
  59. #define BMC150_ACCEL_DEF_BW 125
  60. #define BMC150_ACCEL_REG_INT_MAP_0 0x19
  61. #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
  62. #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
  63. #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
  64. #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
  65. #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
  66. #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
  67. #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
  68. #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
  69. #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
  70. #define BMC150_ACCEL_REG_INT_EN_0 0x16
  71. #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
  72. #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
  73. #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
  74. #define BMC150_ACCEL_REG_INT_EN_1 0x17
  75. #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
  76. #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
  77. #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
  78. #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
  79. #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
  80. #define BMC150_ACCEL_REG_INT_5 0x27
  81. #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
  82. #define BMC150_ACCEL_REG_INT_6 0x28
  83. #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
  84. /* Slope duration in terms of number of samples */
  85. #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
  86. /* in terms of multiples of g's/LSB, based on range */
  87. #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
  88. #define BMC150_ACCEL_REG_XOUT_L 0x02
  89. #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
  90. /* Sleep Duration values */
  91. #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
  92. #define BMC150_ACCEL_SLEEP_1_MS 0x06
  93. #define BMC150_ACCEL_SLEEP_2_MS 0x07
  94. #define BMC150_ACCEL_SLEEP_4_MS 0x08
  95. #define BMC150_ACCEL_SLEEP_6_MS 0x09
  96. #define BMC150_ACCEL_SLEEP_10_MS 0x0A
  97. #define BMC150_ACCEL_SLEEP_25_MS 0x0B
  98. #define BMC150_ACCEL_SLEEP_50_MS 0x0C
  99. #define BMC150_ACCEL_SLEEP_100_MS 0x0D
  100. #define BMC150_ACCEL_SLEEP_500_MS 0x0E
  101. #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
  102. #define BMC150_ACCEL_REG_TEMP 0x08
  103. #define BMC150_ACCEL_TEMP_CENTER_VAL 24
  104. #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
  105. #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
  106. #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
  107. #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
  108. #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
  109. #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
  110. #define BMC150_ACCEL_FIFO_LENGTH 32
  111. enum bmc150_accel_axis {
  112. AXIS_X,
  113. AXIS_Y,
  114. AXIS_Z,
  115. AXIS_MAX,
  116. };
  117. enum bmc150_power_modes {
  118. BMC150_ACCEL_SLEEP_MODE_NORMAL,
  119. BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
  120. BMC150_ACCEL_SLEEP_MODE_LPM,
  121. BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
  122. };
  123. struct bmc150_scale_info {
  124. int scale;
  125. u8 reg_range;
  126. };
  127. struct bmc150_accel_chip_info {
  128. const char *name;
  129. u8 chip_id;
  130. const struct iio_chan_spec *channels;
  131. int num_channels;
  132. const struct bmc150_scale_info scale_table[4];
  133. };
  134. struct bmc150_accel_interrupt {
  135. const struct bmc150_accel_interrupt_info *info;
  136. atomic_t users;
  137. };
  138. struct bmc150_accel_trigger {
  139. struct bmc150_accel_data *data;
  140. struct iio_trigger *indio_trig;
  141. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  142. int intr;
  143. bool enabled;
  144. };
  145. enum bmc150_accel_interrupt_id {
  146. BMC150_ACCEL_INT_DATA_READY,
  147. BMC150_ACCEL_INT_ANY_MOTION,
  148. BMC150_ACCEL_INT_WATERMARK,
  149. BMC150_ACCEL_INTERRUPTS,
  150. };
  151. enum bmc150_accel_trigger_id {
  152. BMC150_ACCEL_TRIGGER_DATA_READY,
  153. BMC150_ACCEL_TRIGGER_ANY_MOTION,
  154. BMC150_ACCEL_TRIGGERS,
  155. };
  156. struct bmc150_accel_data {
  157. struct regmap *regmap;
  158. int irq;
  159. struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
  160. atomic_t active_intr;
  161. struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
  162. struct mutex mutex;
  163. u8 fifo_mode, watermark;
  164. s16 buffer[8];
  165. u8 bw_bits;
  166. u32 slope_dur;
  167. u32 slope_thres;
  168. u32 range;
  169. int ev_enable_state;
  170. int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
  171. const struct bmc150_accel_chip_info *chip_info;
  172. };
  173. static const struct {
  174. int val;
  175. int val2;
  176. u8 bw_bits;
  177. } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
  178. {31, 260000, 0x09},
  179. {62, 500000, 0x0A},
  180. {125, 0, 0x0B},
  181. {250, 0, 0x0C},
  182. {500, 0, 0x0D},
  183. {1000, 0, 0x0E},
  184. {2000, 0, 0x0F} };
  185. static const struct {
  186. int bw_bits;
  187. int msec;
  188. } bmc150_accel_sample_upd_time[] = { {0x08, 64},
  189. {0x09, 32},
  190. {0x0A, 16},
  191. {0x0B, 8},
  192. {0x0C, 4},
  193. {0x0D, 2},
  194. {0x0E, 1},
  195. {0x0F, 1} };
  196. static const struct {
  197. int sleep_dur;
  198. u8 reg_value;
  199. } bmc150_accel_sleep_value_table[] = { {0, 0},
  200. {500, BMC150_ACCEL_SLEEP_500_MICRO},
  201. {1000, BMC150_ACCEL_SLEEP_1_MS},
  202. {2000, BMC150_ACCEL_SLEEP_2_MS},
  203. {4000, BMC150_ACCEL_SLEEP_4_MS},
  204. {6000, BMC150_ACCEL_SLEEP_6_MS},
  205. {10000, BMC150_ACCEL_SLEEP_10_MS},
  206. {25000, BMC150_ACCEL_SLEEP_25_MS},
  207. {50000, BMC150_ACCEL_SLEEP_50_MS},
  208. {100000, BMC150_ACCEL_SLEEP_100_MS},
  209. {500000, BMC150_ACCEL_SLEEP_500_MS},
  210. {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
  211. const struct regmap_config bmc150_regmap_conf = {
  212. .reg_bits = 8,
  213. .val_bits = 8,
  214. .max_register = 0x3f,
  215. };
  216. EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
  217. static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
  218. enum bmc150_power_modes mode,
  219. int dur_us)
  220. {
  221. struct device *dev = regmap_get_device(data->regmap);
  222. int i;
  223. int ret;
  224. u8 lpw_bits;
  225. int dur_val = -1;
  226. if (dur_us > 0) {
  227. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
  228. ++i) {
  229. if (bmc150_accel_sleep_value_table[i].sleep_dur ==
  230. dur_us)
  231. dur_val =
  232. bmc150_accel_sleep_value_table[i].reg_value;
  233. }
  234. } else {
  235. dur_val = 0;
  236. }
  237. if (dur_val < 0)
  238. return -EINVAL;
  239. lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
  240. lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
  241. dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
  242. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
  243. if (ret < 0) {
  244. dev_err(dev, "Error writing reg_pmu_lpw\n");
  245. return ret;
  246. }
  247. return 0;
  248. }
  249. static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
  250. int val2)
  251. {
  252. int i;
  253. int ret;
  254. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  255. if (bmc150_accel_samp_freq_table[i].val == val &&
  256. bmc150_accel_samp_freq_table[i].val2 == val2) {
  257. ret = regmap_write(data->regmap,
  258. BMC150_ACCEL_REG_PMU_BW,
  259. bmc150_accel_samp_freq_table[i].bw_bits);
  260. if (ret < 0)
  261. return ret;
  262. data->bw_bits =
  263. bmc150_accel_samp_freq_table[i].bw_bits;
  264. return 0;
  265. }
  266. }
  267. return -EINVAL;
  268. }
  269. static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
  270. {
  271. struct device *dev = regmap_get_device(data->regmap);
  272. int ret;
  273. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
  274. data->slope_thres);
  275. if (ret < 0) {
  276. dev_err(dev, "Error writing reg_int_6\n");
  277. return ret;
  278. }
  279. ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
  280. BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
  281. if (ret < 0) {
  282. dev_err(dev, "Error updating reg_int_5\n");
  283. return ret;
  284. }
  285. dev_dbg(dev, "%s: %x %x\n", __func__, data->slope_thres,
  286. data->slope_dur);
  287. return ret;
  288. }
  289. static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
  290. bool state)
  291. {
  292. if (state)
  293. return bmc150_accel_update_slope(t->data);
  294. return 0;
  295. }
  296. static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
  297. int *val2)
  298. {
  299. int i;
  300. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  301. if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
  302. *val = bmc150_accel_samp_freq_table[i].val;
  303. *val2 = bmc150_accel_samp_freq_table[i].val2;
  304. return IIO_VAL_INT_PLUS_MICRO;
  305. }
  306. }
  307. return -EINVAL;
  308. }
  309. #ifdef CONFIG_PM
  310. static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
  311. {
  312. int i;
  313. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
  314. if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
  315. return bmc150_accel_sample_upd_time[i].msec;
  316. }
  317. return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
  318. }
  319. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  320. {
  321. struct device *dev = regmap_get_device(data->regmap);
  322. int ret;
  323. if (on) {
  324. ret = pm_runtime_get_sync(dev);
  325. } else {
  326. pm_runtime_mark_last_busy(dev);
  327. ret = pm_runtime_put_autosuspend(dev);
  328. }
  329. if (ret < 0) {
  330. dev_err(dev,
  331. "Failed: bmc150_accel_set_power_state for %d\n", on);
  332. if (on)
  333. pm_runtime_put_noidle(dev);
  334. return ret;
  335. }
  336. return 0;
  337. }
  338. #else
  339. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  340. {
  341. return 0;
  342. }
  343. #endif
  344. static const struct bmc150_accel_interrupt_info {
  345. u8 map_reg;
  346. u8 map_bitmask;
  347. u8 en_reg;
  348. u8 en_bitmask;
  349. } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
  350. { /* data ready interrupt */
  351. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  352. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
  353. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  354. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
  355. },
  356. { /* motion interrupt */
  357. .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
  358. .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
  359. .en_reg = BMC150_ACCEL_REG_INT_EN_0,
  360. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
  361. BMC150_ACCEL_INT_EN_BIT_SLP_Y |
  362. BMC150_ACCEL_INT_EN_BIT_SLP_Z
  363. },
  364. { /* fifo watermark interrupt */
  365. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  366. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
  367. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  368. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
  369. },
  370. };
  371. static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
  372. struct bmc150_accel_data *data)
  373. {
  374. int i;
  375. for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
  376. data->interrupts[i].info = &bmc150_accel_interrupts[i];
  377. }
  378. static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
  379. bool state)
  380. {
  381. struct device *dev = regmap_get_device(data->regmap);
  382. struct bmc150_accel_interrupt *intr = &data->interrupts[i];
  383. const struct bmc150_accel_interrupt_info *info = intr->info;
  384. int ret;
  385. if (state) {
  386. if (atomic_inc_return(&intr->users) > 1)
  387. return 0;
  388. } else {
  389. if (atomic_dec_return(&intr->users) > 0)
  390. return 0;
  391. }
  392. /*
  393. * We will expect the enable and disable to do operation in reverse
  394. * order. This will happen here anyway, as our resume operation uses
  395. * sync mode runtime pm calls. The suspend operation will be delayed
  396. * by autosuspend delay.
  397. * So the disable operation will still happen in reverse order of
  398. * enable operation. When runtime pm is disabled the mode is always on,
  399. * so sequence doesn't matter.
  400. */
  401. ret = bmc150_accel_set_power_state(data, state);
  402. if (ret < 0)
  403. return ret;
  404. /* map the interrupt to the appropriate pins */
  405. ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
  406. (state ? info->map_bitmask : 0));
  407. if (ret < 0) {
  408. dev_err(dev, "Error updating reg_int_map\n");
  409. goto out_fix_power_state;
  410. }
  411. /* enable/disable the interrupt */
  412. ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
  413. (state ? info->en_bitmask : 0));
  414. if (ret < 0) {
  415. dev_err(dev, "Error updating reg_int_en\n");
  416. goto out_fix_power_state;
  417. }
  418. if (state)
  419. atomic_inc(&data->active_intr);
  420. else
  421. atomic_dec(&data->active_intr);
  422. return 0;
  423. out_fix_power_state:
  424. bmc150_accel_set_power_state(data, false);
  425. return ret;
  426. }
  427. static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
  428. {
  429. struct device *dev = regmap_get_device(data->regmap);
  430. int ret, i;
  431. for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
  432. if (data->chip_info->scale_table[i].scale == val) {
  433. ret = regmap_write(data->regmap,
  434. BMC150_ACCEL_REG_PMU_RANGE,
  435. data->chip_info->scale_table[i].reg_range);
  436. if (ret < 0) {
  437. dev_err(dev, "Error writing pmu_range\n");
  438. return ret;
  439. }
  440. data->range = data->chip_info->scale_table[i].reg_range;
  441. return 0;
  442. }
  443. }
  444. return -EINVAL;
  445. }
  446. static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
  447. {
  448. struct device *dev = regmap_get_device(data->regmap);
  449. int ret;
  450. unsigned int value;
  451. mutex_lock(&data->mutex);
  452. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
  453. if (ret < 0) {
  454. dev_err(dev, "Error reading reg_temp\n");
  455. mutex_unlock(&data->mutex);
  456. return ret;
  457. }
  458. *val = sign_extend32(value, 7);
  459. mutex_unlock(&data->mutex);
  460. return IIO_VAL_INT;
  461. }
  462. static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
  463. struct iio_chan_spec const *chan,
  464. int *val)
  465. {
  466. struct device *dev = regmap_get_device(data->regmap);
  467. int ret;
  468. int axis = chan->scan_index;
  469. __le16 raw_val;
  470. mutex_lock(&data->mutex);
  471. ret = bmc150_accel_set_power_state(data, true);
  472. if (ret < 0) {
  473. mutex_unlock(&data->mutex);
  474. return ret;
  475. }
  476. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
  477. &raw_val, sizeof(raw_val));
  478. if (ret < 0) {
  479. dev_err(dev, "Error reading axis %d\n", axis);
  480. bmc150_accel_set_power_state(data, false);
  481. mutex_unlock(&data->mutex);
  482. return ret;
  483. }
  484. *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
  485. chan->scan_type.realbits - 1);
  486. ret = bmc150_accel_set_power_state(data, false);
  487. mutex_unlock(&data->mutex);
  488. if (ret < 0)
  489. return ret;
  490. return IIO_VAL_INT;
  491. }
  492. static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
  493. struct iio_chan_spec const *chan,
  494. int *val, int *val2, long mask)
  495. {
  496. struct bmc150_accel_data *data = iio_priv(indio_dev);
  497. int ret;
  498. switch (mask) {
  499. case IIO_CHAN_INFO_RAW:
  500. switch (chan->type) {
  501. case IIO_TEMP:
  502. return bmc150_accel_get_temp(data, val);
  503. case IIO_ACCEL:
  504. if (iio_buffer_enabled(indio_dev))
  505. return -EBUSY;
  506. else
  507. return bmc150_accel_get_axis(data, chan, val);
  508. default:
  509. return -EINVAL;
  510. }
  511. case IIO_CHAN_INFO_OFFSET:
  512. if (chan->type == IIO_TEMP) {
  513. *val = BMC150_ACCEL_TEMP_CENTER_VAL;
  514. return IIO_VAL_INT;
  515. } else {
  516. return -EINVAL;
  517. }
  518. case IIO_CHAN_INFO_SCALE:
  519. *val = 0;
  520. switch (chan->type) {
  521. case IIO_TEMP:
  522. *val2 = 500000;
  523. return IIO_VAL_INT_PLUS_MICRO;
  524. case IIO_ACCEL:
  525. {
  526. int i;
  527. const struct bmc150_scale_info *si;
  528. int st_size = ARRAY_SIZE(data->chip_info->scale_table);
  529. for (i = 0; i < st_size; ++i) {
  530. si = &data->chip_info->scale_table[i];
  531. if (si->reg_range == data->range) {
  532. *val2 = si->scale;
  533. return IIO_VAL_INT_PLUS_MICRO;
  534. }
  535. }
  536. return -EINVAL;
  537. }
  538. default:
  539. return -EINVAL;
  540. }
  541. case IIO_CHAN_INFO_SAMP_FREQ:
  542. mutex_lock(&data->mutex);
  543. ret = bmc150_accel_get_bw(data, val, val2);
  544. mutex_unlock(&data->mutex);
  545. return ret;
  546. default:
  547. return -EINVAL;
  548. }
  549. }
  550. static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
  551. struct iio_chan_spec const *chan,
  552. int val, int val2, long mask)
  553. {
  554. struct bmc150_accel_data *data = iio_priv(indio_dev);
  555. int ret;
  556. switch (mask) {
  557. case IIO_CHAN_INFO_SAMP_FREQ:
  558. mutex_lock(&data->mutex);
  559. ret = bmc150_accel_set_bw(data, val, val2);
  560. mutex_unlock(&data->mutex);
  561. break;
  562. case IIO_CHAN_INFO_SCALE:
  563. if (val)
  564. return -EINVAL;
  565. mutex_lock(&data->mutex);
  566. ret = bmc150_accel_set_scale(data, val2);
  567. mutex_unlock(&data->mutex);
  568. return ret;
  569. default:
  570. ret = -EINVAL;
  571. }
  572. return ret;
  573. }
  574. static int bmc150_accel_read_event(struct iio_dev *indio_dev,
  575. const struct iio_chan_spec *chan,
  576. enum iio_event_type type,
  577. enum iio_event_direction dir,
  578. enum iio_event_info info,
  579. int *val, int *val2)
  580. {
  581. struct bmc150_accel_data *data = iio_priv(indio_dev);
  582. *val2 = 0;
  583. switch (info) {
  584. case IIO_EV_INFO_VALUE:
  585. *val = data->slope_thres;
  586. break;
  587. case IIO_EV_INFO_PERIOD:
  588. *val = data->slope_dur;
  589. break;
  590. default:
  591. return -EINVAL;
  592. }
  593. return IIO_VAL_INT;
  594. }
  595. static int bmc150_accel_write_event(struct iio_dev *indio_dev,
  596. const struct iio_chan_spec *chan,
  597. enum iio_event_type type,
  598. enum iio_event_direction dir,
  599. enum iio_event_info info,
  600. int val, int val2)
  601. {
  602. struct bmc150_accel_data *data = iio_priv(indio_dev);
  603. if (data->ev_enable_state)
  604. return -EBUSY;
  605. switch (info) {
  606. case IIO_EV_INFO_VALUE:
  607. data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
  608. break;
  609. case IIO_EV_INFO_PERIOD:
  610. data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
  611. break;
  612. default:
  613. return -EINVAL;
  614. }
  615. return 0;
  616. }
  617. static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
  618. const struct iio_chan_spec *chan,
  619. enum iio_event_type type,
  620. enum iio_event_direction dir)
  621. {
  622. struct bmc150_accel_data *data = iio_priv(indio_dev);
  623. return data->ev_enable_state;
  624. }
  625. static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
  626. const struct iio_chan_spec *chan,
  627. enum iio_event_type type,
  628. enum iio_event_direction dir,
  629. int state)
  630. {
  631. struct bmc150_accel_data *data = iio_priv(indio_dev);
  632. int ret;
  633. if (state == data->ev_enable_state)
  634. return 0;
  635. mutex_lock(&data->mutex);
  636. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
  637. state);
  638. if (ret < 0) {
  639. mutex_unlock(&data->mutex);
  640. return ret;
  641. }
  642. data->ev_enable_state = state;
  643. mutex_unlock(&data->mutex);
  644. return 0;
  645. }
  646. static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
  647. struct iio_trigger *trig)
  648. {
  649. struct bmc150_accel_data *data = iio_priv(indio_dev);
  650. int i;
  651. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  652. if (data->triggers[i].indio_trig == trig)
  653. return 0;
  654. }
  655. return -EINVAL;
  656. }
  657. static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
  658. struct device_attribute *attr,
  659. char *buf)
  660. {
  661. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  662. struct bmc150_accel_data *data = iio_priv(indio_dev);
  663. int wm;
  664. mutex_lock(&data->mutex);
  665. wm = data->watermark;
  666. mutex_unlock(&data->mutex);
  667. return sprintf(buf, "%d\n", wm);
  668. }
  669. static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
  670. struct device_attribute *attr,
  671. char *buf)
  672. {
  673. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  674. struct bmc150_accel_data *data = iio_priv(indio_dev);
  675. bool state;
  676. mutex_lock(&data->mutex);
  677. state = data->fifo_mode;
  678. mutex_unlock(&data->mutex);
  679. return sprintf(buf, "%d\n", state);
  680. }
  681. static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
  682. static IIO_CONST_ATTR(hwfifo_watermark_max,
  683. __stringify(BMC150_ACCEL_FIFO_LENGTH));
  684. static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
  685. bmc150_accel_get_fifo_state, NULL, 0);
  686. static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
  687. bmc150_accel_get_fifo_watermark, NULL, 0);
  688. static const struct attribute *bmc150_accel_fifo_attributes[] = {
  689. &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
  690. &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
  691. &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
  692. &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
  693. NULL,
  694. };
  695. static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
  696. {
  697. struct bmc150_accel_data *data = iio_priv(indio_dev);
  698. if (val > BMC150_ACCEL_FIFO_LENGTH)
  699. val = BMC150_ACCEL_FIFO_LENGTH;
  700. mutex_lock(&data->mutex);
  701. data->watermark = val;
  702. mutex_unlock(&data->mutex);
  703. return 0;
  704. }
  705. /*
  706. * We must read at least one full frame in one burst, otherwise the rest of the
  707. * frame data is discarded.
  708. */
  709. static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
  710. char *buffer, int samples)
  711. {
  712. struct device *dev = regmap_get_device(data->regmap);
  713. int sample_length = 3 * 2;
  714. int ret;
  715. int total_length = samples * sample_length;
  716. int i;
  717. size_t step = regmap_get_raw_read_max(data->regmap);
  718. if (!step || step > total_length)
  719. step = total_length;
  720. else if (step < total_length)
  721. step = sample_length;
  722. /*
  723. * Seems we have a bus with size limitation so we have to execute
  724. * multiple reads
  725. */
  726. for (i = 0; i < total_length; i += step) {
  727. ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
  728. &buffer[i], step);
  729. if (ret)
  730. break;
  731. }
  732. if (ret)
  733. dev_err(dev,
  734. "Error transferring data from fifo in single steps of %zu\n",
  735. step);
  736. return ret;
  737. }
  738. static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
  739. unsigned samples, bool irq)
  740. {
  741. struct bmc150_accel_data *data = iio_priv(indio_dev);
  742. struct device *dev = regmap_get_device(data->regmap);
  743. int ret, i;
  744. u8 count;
  745. u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
  746. int64_t tstamp;
  747. uint64_t sample_period;
  748. unsigned int val;
  749. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
  750. if (ret < 0) {
  751. dev_err(dev, "Error reading reg_fifo_status\n");
  752. return ret;
  753. }
  754. count = val & 0x7F;
  755. if (!count)
  756. return 0;
  757. /*
  758. * If we getting called from IRQ handler we know the stored timestamp is
  759. * fairly accurate for the last stored sample. Otherwise, if we are
  760. * called as a result of a read operation from userspace and hence
  761. * before the watermark interrupt was triggered, take a timestamp
  762. * now. We can fall anywhere in between two samples so the error in this
  763. * case is at most one sample period.
  764. */
  765. if (!irq) {
  766. data->old_timestamp = data->timestamp;
  767. data->timestamp = iio_get_time_ns(indio_dev);
  768. }
  769. /*
  770. * Approximate timestamps for each of the sample based on the sampling
  771. * frequency, timestamp for last sample and number of samples.
  772. *
  773. * Note that we can't use the current bandwidth settings to compute the
  774. * sample period because the sample rate varies with the device
  775. * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
  776. * small variation adds when we store a large number of samples and
  777. * creates significant jitter between the last and first samples in
  778. * different batches (e.g. 32ms vs 21ms).
  779. *
  780. * To avoid this issue we compute the actual sample period ourselves
  781. * based on the timestamp delta between the last two flush operations.
  782. */
  783. sample_period = (data->timestamp - data->old_timestamp);
  784. do_div(sample_period, count);
  785. tstamp = data->timestamp - (count - 1) * sample_period;
  786. if (samples && count > samples)
  787. count = samples;
  788. ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
  789. if (ret)
  790. return ret;
  791. /*
  792. * Ideally we want the IIO core to handle the demux when running in fifo
  793. * mode but not when running in triggered buffer mode. Unfortunately
  794. * this does not seem to be possible, so stick with driver demux for
  795. * now.
  796. */
  797. for (i = 0; i < count; i++) {
  798. u16 sample[8];
  799. int j, bit;
  800. j = 0;
  801. for_each_set_bit(bit, indio_dev->active_scan_mask,
  802. indio_dev->masklength)
  803. memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
  804. iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
  805. tstamp += sample_period;
  806. }
  807. return count;
  808. }
  809. static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
  810. {
  811. struct bmc150_accel_data *data = iio_priv(indio_dev);
  812. int ret;
  813. mutex_lock(&data->mutex);
  814. ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
  815. mutex_unlock(&data->mutex);
  816. return ret;
  817. }
  818. static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
  819. "15.620000 31.260000 62.50000 125 250 500 1000 2000");
  820. static struct attribute *bmc150_accel_attributes[] = {
  821. &iio_const_attr_sampling_frequency_available.dev_attr.attr,
  822. NULL,
  823. };
  824. static const struct attribute_group bmc150_accel_attrs_group = {
  825. .attrs = bmc150_accel_attributes,
  826. };
  827. static const struct iio_event_spec bmc150_accel_event = {
  828. .type = IIO_EV_TYPE_ROC,
  829. .dir = IIO_EV_DIR_EITHER,
  830. .mask_separate = BIT(IIO_EV_INFO_VALUE) |
  831. BIT(IIO_EV_INFO_ENABLE) |
  832. BIT(IIO_EV_INFO_PERIOD)
  833. };
  834. #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
  835. .type = IIO_ACCEL, \
  836. .modified = 1, \
  837. .channel2 = IIO_MOD_##_axis, \
  838. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  839. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
  840. BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  841. .scan_index = AXIS_##_axis, \
  842. .scan_type = { \
  843. .sign = 's', \
  844. .realbits = (bits), \
  845. .storagebits = 16, \
  846. .shift = 16 - (bits), \
  847. .endianness = IIO_LE, \
  848. }, \
  849. .event_spec = &bmc150_accel_event, \
  850. .num_event_specs = 1 \
  851. }
  852. #define BMC150_ACCEL_CHANNELS(bits) { \
  853. { \
  854. .type = IIO_TEMP, \
  855. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  856. BIT(IIO_CHAN_INFO_SCALE) | \
  857. BIT(IIO_CHAN_INFO_OFFSET), \
  858. .scan_index = -1, \
  859. }, \
  860. BMC150_ACCEL_CHANNEL(X, bits), \
  861. BMC150_ACCEL_CHANNEL(Y, bits), \
  862. BMC150_ACCEL_CHANNEL(Z, bits), \
  863. IIO_CHAN_SOFT_TIMESTAMP(3), \
  864. }
  865. static const struct iio_chan_spec bma222e_accel_channels[] =
  866. BMC150_ACCEL_CHANNELS(8);
  867. static const struct iio_chan_spec bma250e_accel_channels[] =
  868. BMC150_ACCEL_CHANNELS(10);
  869. static const struct iio_chan_spec bmc150_accel_channels[] =
  870. BMC150_ACCEL_CHANNELS(12);
  871. static const struct iio_chan_spec bma280_accel_channels[] =
  872. BMC150_ACCEL_CHANNELS(14);
  873. static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
  874. [bmc150] = {
  875. .name = "BMC150A",
  876. .chip_id = 0xFA,
  877. .channels = bmc150_accel_channels,
  878. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  879. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  880. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  881. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  882. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  883. },
  884. [bmi055] = {
  885. .name = "BMI055A",
  886. .chip_id = 0xFA,
  887. .channels = bmc150_accel_channels,
  888. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  889. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  890. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  891. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  892. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  893. },
  894. [bma255] = {
  895. .name = "BMA0255",
  896. .chip_id = 0xFA,
  897. .channels = bmc150_accel_channels,
  898. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  899. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  900. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  901. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  902. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  903. },
  904. [bma250e] = {
  905. .name = "BMA250E",
  906. .chip_id = 0xF9,
  907. .channels = bma250e_accel_channels,
  908. .num_channels = ARRAY_SIZE(bma250e_accel_channels),
  909. .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
  910. {76590, BMC150_ACCEL_DEF_RANGE_4G},
  911. {153277, BMC150_ACCEL_DEF_RANGE_8G},
  912. {306457, BMC150_ACCEL_DEF_RANGE_16G} },
  913. },
  914. [bma222e] = {
  915. .name = "BMA222E",
  916. .chip_id = 0xF8,
  917. .channels = bma222e_accel_channels,
  918. .num_channels = ARRAY_SIZE(bma222e_accel_channels),
  919. .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
  920. {306457, BMC150_ACCEL_DEF_RANGE_4G},
  921. {612915, BMC150_ACCEL_DEF_RANGE_8G},
  922. {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
  923. },
  924. [bma280] = {
  925. .name = "BMA0280",
  926. .chip_id = 0xFB,
  927. .channels = bma280_accel_channels,
  928. .num_channels = ARRAY_SIZE(bma280_accel_channels),
  929. .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
  930. {4785, BMC150_ACCEL_DEF_RANGE_4G},
  931. {9581, BMC150_ACCEL_DEF_RANGE_8G},
  932. {19152, BMC150_ACCEL_DEF_RANGE_16G} },
  933. },
  934. };
  935. static const struct iio_info bmc150_accel_info = {
  936. .attrs = &bmc150_accel_attrs_group,
  937. .read_raw = bmc150_accel_read_raw,
  938. .write_raw = bmc150_accel_write_raw,
  939. .read_event_value = bmc150_accel_read_event,
  940. .write_event_value = bmc150_accel_write_event,
  941. .write_event_config = bmc150_accel_write_event_config,
  942. .read_event_config = bmc150_accel_read_event_config,
  943. .driver_module = THIS_MODULE,
  944. };
  945. static const struct iio_info bmc150_accel_info_fifo = {
  946. .attrs = &bmc150_accel_attrs_group,
  947. .read_raw = bmc150_accel_read_raw,
  948. .write_raw = bmc150_accel_write_raw,
  949. .read_event_value = bmc150_accel_read_event,
  950. .write_event_value = bmc150_accel_write_event,
  951. .write_event_config = bmc150_accel_write_event_config,
  952. .read_event_config = bmc150_accel_read_event_config,
  953. .validate_trigger = bmc150_accel_validate_trigger,
  954. .hwfifo_set_watermark = bmc150_accel_set_watermark,
  955. .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
  956. .driver_module = THIS_MODULE,
  957. };
  958. static const unsigned long bmc150_accel_scan_masks[] = {
  959. BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
  960. 0};
  961. static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
  962. {
  963. struct iio_poll_func *pf = p;
  964. struct iio_dev *indio_dev = pf->indio_dev;
  965. struct bmc150_accel_data *data = iio_priv(indio_dev);
  966. int ret;
  967. mutex_lock(&data->mutex);
  968. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
  969. data->buffer, AXIS_MAX * 2);
  970. mutex_unlock(&data->mutex);
  971. if (ret < 0)
  972. goto err_read;
  973. iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
  974. pf->timestamp);
  975. err_read:
  976. iio_trigger_notify_done(indio_dev->trig);
  977. return IRQ_HANDLED;
  978. }
  979. static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
  980. {
  981. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  982. struct bmc150_accel_data *data = t->data;
  983. struct device *dev = regmap_get_device(data->regmap);
  984. int ret;
  985. /* new data interrupts don't need ack */
  986. if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
  987. return 0;
  988. mutex_lock(&data->mutex);
  989. /* clear any latched interrupt */
  990. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  991. BMC150_ACCEL_INT_MODE_LATCH_INT |
  992. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  993. mutex_unlock(&data->mutex);
  994. if (ret < 0) {
  995. dev_err(dev, "Error writing reg_int_rst_latch\n");
  996. return ret;
  997. }
  998. return 0;
  999. }
  1000. static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
  1001. bool state)
  1002. {
  1003. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  1004. struct bmc150_accel_data *data = t->data;
  1005. int ret;
  1006. mutex_lock(&data->mutex);
  1007. if (t->enabled == state) {
  1008. mutex_unlock(&data->mutex);
  1009. return 0;
  1010. }
  1011. if (t->setup) {
  1012. ret = t->setup(t, state);
  1013. if (ret < 0) {
  1014. mutex_unlock(&data->mutex);
  1015. return ret;
  1016. }
  1017. }
  1018. ret = bmc150_accel_set_interrupt(data, t->intr, state);
  1019. if (ret < 0) {
  1020. mutex_unlock(&data->mutex);
  1021. return ret;
  1022. }
  1023. t->enabled = state;
  1024. mutex_unlock(&data->mutex);
  1025. return ret;
  1026. }
  1027. static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
  1028. .set_trigger_state = bmc150_accel_trigger_set_state,
  1029. .try_reenable = bmc150_accel_trig_try_reen,
  1030. .owner = THIS_MODULE,
  1031. };
  1032. static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
  1033. {
  1034. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1035. struct device *dev = regmap_get_device(data->regmap);
  1036. int dir;
  1037. int ret;
  1038. unsigned int val;
  1039. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
  1040. if (ret < 0) {
  1041. dev_err(dev, "Error reading reg_int_status_2\n");
  1042. return ret;
  1043. }
  1044. if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
  1045. dir = IIO_EV_DIR_FALLING;
  1046. else
  1047. dir = IIO_EV_DIR_RISING;
  1048. if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
  1049. iio_push_event(indio_dev,
  1050. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1051. 0,
  1052. IIO_MOD_X,
  1053. IIO_EV_TYPE_ROC,
  1054. dir),
  1055. data->timestamp);
  1056. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
  1057. iio_push_event(indio_dev,
  1058. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1059. 0,
  1060. IIO_MOD_Y,
  1061. IIO_EV_TYPE_ROC,
  1062. dir),
  1063. data->timestamp);
  1064. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
  1065. iio_push_event(indio_dev,
  1066. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1067. 0,
  1068. IIO_MOD_Z,
  1069. IIO_EV_TYPE_ROC,
  1070. dir),
  1071. data->timestamp);
  1072. return ret;
  1073. }
  1074. static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
  1075. {
  1076. struct iio_dev *indio_dev = private;
  1077. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1078. struct device *dev = regmap_get_device(data->regmap);
  1079. bool ack = false;
  1080. int ret;
  1081. mutex_lock(&data->mutex);
  1082. if (data->fifo_mode) {
  1083. ret = __bmc150_accel_fifo_flush(indio_dev,
  1084. BMC150_ACCEL_FIFO_LENGTH, true);
  1085. if (ret > 0)
  1086. ack = true;
  1087. }
  1088. if (data->ev_enable_state) {
  1089. ret = bmc150_accel_handle_roc_event(indio_dev);
  1090. if (ret > 0)
  1091. ack = true;
  1092. }
  1093. if (ack) {
  1094. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1095. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1096. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1097. if (ret)
  1098. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1099. ret = IRQ_HANDLED;
  1100. } else {
  1101. ret = IRQ_NONE;
  1102. }
  1103. mutex_unlock(&data->mutex);
  1104. return ret;
  1105. }
  1106. static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
  1107. {
  1108. struct iio_dev *indio_dev = private;
  1109. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1110. bool ack = false;
  1111. int i;
  1112. data->old_timestamp = data->timestamp;
  1113. data->timestamp = iio_get_time_ns(indio_dev);
  1114. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1115. if (data->triggers[i].enabled) {
  1116. iio_trigger_poll(data->triggers[i].indio_trig);
  1117. ack = true;
  1118. break;
  1119. }
  1120. }
  1121. if (data->ev_enable_state || data->fifo_mode)
  1122. return IRQ_WAKE_THREAD;
  1123. if (ack)
  1124. return IRQ_HANDLED;
  1125. return IRQ_NONE;
  1126. }
  1127. static const struct {
  1128. int intr;
  1129. const char *name;
  1130. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  1131. } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
  1132. {
  1133. .intr = 0,
  1134. .name = "%s-dev%d",
  1135. },
  1136. {
  1137. .intr = 1,
  1138. .name = "%s-any-motion-dev%d",
  1139. .setup = bmc150_accel_any_motion_setup,
  1140. },
  1141. };
  1142. static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
  1143. int from)
  1144. {
  1145. int i;
  1146. for (i = from; i >= 0; i--) {
  1147. if (data->triggers[i].indio_trig) {
  1148. iio_trigger_unregister(data->triggers[i].indio_trig);
  1149. data->triggers[i].indio_trig = NULL;
  1150. }
  1151. }
  1152. }
  1153. static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
  1154. struct bmc150_accel_data *data)
  1155. {
  1156. struct device *dev = regmap_get_device(data->regmap);
  1157. int i, ret;
  1158. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1159. struct bmc150_accel_trigger *t = &data->triggers[i];
  1160. t->indio_trig = devm_iio_trigger_alloc(dev,
  1161. bmc150_accel_triggers[i].name,
  1162. indio_dev->name,
  1163. indio_dev->id);
  1164. if (!t->indio_trig) {
  1165. ret = -ENOMEM;
  1166. break;
  1167. }
  1168. t->indio_trig->dev.parent = dev;
  1169. t->indio_trig->ops = &bmc150_accel_trigger_ops;
  1170. t->intr = bmc150_accel_triggers[i].intr;
  1171. t->data = data;
  1172. t->setup = bmc150_accel_triggers[i].setup;
  1173. iio_trigger_set_drvdata(t->indio_trig, t);
  1174. ret = iio_trigger_register(t->indio_trig);
  1175. if (ret)
  1176. break;
  1177. }
  1178. if (ret)
  1179. bmc150_accel_unregister_triggers(data, i - 1);
  1180. return ret;
  1181. }
  1182. #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
  1183. #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
  1184. #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
  1185. static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
  1186. {
  1187. struct device *dev = regmap_get_device(data->regmap);
  1188. u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
  1189. int ret;
  1190. ret = regmap_write(data->regmap, reg, data->fifo_mode);
  1191. if (ret < 0) {
  1192. dev_err(dev, "Error writing reg_fifo_config1\n");
  1193. return ret;
  1194. }
  1195. if (!data->fifo_mode)
  1196. return 0;
  1197. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
  1198. data->watermark);
  1199. if (ret < 0)
  1200. dev_err(dev, "Error writing reg_fifo_config0\n");
  1201. return ret;
  1202. }
  1203. static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
  1204. {
  1205. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1206. return bmc150_accel_set_power_state(data, true);
  1207. }
  1208. static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
  1209. {
  1210. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1211. int ret = 0;
  1212. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1213. return iio_triggered_buffer_postenable(indio_dev);
  1214. mutex_lock(&data->mutex);
  1215. if (!data->watermark)
  1216. goto out;
  1217. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1218. true);
  1219. if (ret)
  1220. goto out;
  1221. data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
  1222. ret = bmc150_accel_fifo_set_mode(data);
  1223. if (ret) {
  1224. data->fifo_mode = 0;
  1225. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1226. false);
  1227. }
  1228. out:
  1229. mutex_unlock(&data->mutex);
  1230. return ret;
  1231. }
  1232. static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
  1233. {
  1234. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1235. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1236. return iio_triggered_buffer_predisable(indio_dev);
  1237. mutex_lock(&data->mutex);
  1238. if (!data->fifo_mode)
  1239. goto out;
  1240. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
  1241. __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
  1242. data->fifo_mode = 0;
  1243. bmc150_accel_fifo_set_mode(data);
  1244. out:
  1245. mutex_unlock(&data->mutex);
  1246. return 0;
  1247. }
  1248. static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
  1249. {
  1250. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1251. return bmc150_accel_set_power_state(data, false);
  1252. }
  1253. static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
  1254. .preenable = bmc150_accel_buffer_preenable,
  1255. .postenable = bmc150_accel_buffer_postenable,
  1256. .predisable = bmc150_accel_buffer_predisable,
  1257. .postdisable = bmc150_accel_buffer_postdisable,
  1258. };
  1259. static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
  1260. {
  1261. struct device *dev = regmap_get_device(data->regmap);
  1262. int ret, i;
  1263. unsigned int val;
  1264. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
  1265. if (ret < 0) {
  1266. dev_err(dev, "Error: Reading chip id\n");
  1267. return ret;
  1268. }
  1269. dev_dbg(dev, "Chip Id %x\n", val);
  1270. for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
  1271. if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
  1272. data->chip_info = &bmc150_accel_chip_info_tbl[i];
  1273. break;
  1274. }
  1275. }
  1276. if (!data->chip_info) {
  1277. dev_err(dev, "Invalid chip %x\n", val);
  1278. return -ENODEV;
  1279. }
  1280. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1281. if (ret < 0)
  1282. return ret;
  1283. /* Set Bandwidth */
  1284. ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
  1285. if (ret < 0)
  1286. return ret;
  1287. /* Set Default Range */
  1288. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
  1289. BMC150_ACCEL_DEF_RANGE_4G);
  1290. if (ret < 0) {
  1291. dev_err(dev, "Error writing reg_pmu_range\n");
  1292. return ret;
  1293. }
  1294. data->range = BMC150_ACCEL_DEF_RANGE_4G;
  1295. /* Set default slope duration and thresholds */
  1296. data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
  1297. data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
  1298. ret = bmc150_accel_update_slope(data);
  1299. if (ret < 0)
  1300. return ret;
  1301. /* Set default as latched interrupts */
  1302. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1303. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1304. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1305. if (ret < 0) {
  1306. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1307. return ret;
  1308. }
  1309. return 0;
  1310. }
  1311. int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
  1312. const char *name, bool block_supported)
  1313. {
  1314. struct bmc150_accel_data *data;
  1315. struct iio_dev *indio_dev;
  1316. int ret;
  1317. indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
  1318. if (!indio_dev)
  1319. return -ENOMEM;
  1320. data = iio_priv(indio_dev);
  1321. dev_set_drvdata(dev, indio_dev);
  1322. data->irq = irq;
  1323. data->regmap = regmap;
  1324. ret = bmc150_accel_chip_init(data);
  1325. if (ret < 0)
  1326. return ret;
  1327. mutex_init(&data->mutex);
  1328. indio_dev->dev.parent = dev;
  1329. indio_dev->channels = data->chip_info->channels;
  1330. indio_dev->num_channels = data->chip_info->num_channels;
  1331. indio_dev->name = name ? name : data->chip_info->name;
  1332. indio_dev->available_scan_masks = bmc150_accel_scan_masks;
  1333. indio_dev->modes = INDIO_DIRECT_MODE;
  1334. indio_dev->info = &bmc150_accel_info;
  1335. ret = iio_triggered_buffer_setup(indio_dev,
  1336. &iio_pollfunc_store_time,
  1337. bmc150_accel_trigger_handler,
  1338. &bmc150_accel_buffer_ops);
  1339. if (ret < 0) {
  1340. dev_err(dev, "Failed: iio triggered buffer setup\n");
  1341. return ret;
  1342. }
  1343. if (data->irq > 0) {
  1344. ret = devm_request_threaded_irq(
  1345. dev, data->irq,
  1346. bmc150_accel_irq_handler,
  1347. bmc150_accel_irq_thread_handler,
  1348. IRQF_TRIGGER_RISING,
  1349. BMC150_ACCEL_IRQ_NAME,
  1350. indio_dev);
  1351. if (ret)
  1352. goto err_buffer_cleanup;
  1353. /*
  1354. * Set latched mode interrupt. While certain interrupts are
  1355. * non-latched regardless of this settings (e.g. new data) we
  1356. * want to use latch mode when we can to prevent interrupt
  1357. * flooding.
  1358. */
  1359. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1360. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1361. if (ret < 0) {
  1362. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1363. goto err_buffer_cleanup;
  1364. }
  1365. bmc150_accel_interrupts_setup(indio_dev, data);
  1366. ret = bmc150_accel_triggers_setup(indio_dev, data);
  1367. if (ret)
  1368. goto err_buffer_cleanup;
  1369. if (block_supported) {
  1370. indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
  1371. indio_dev->info = &bmc150_accel_info_fifo;
  1372. indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
  1373. }
  1374. }
  1375. ret = pm_runtime_set_active(dev);
  1376. if (ret)
  1377. goto err_trigger_unregister;
  1378. pm_runtime_enable(dev);
  1379. pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
  1380. pm_runtime_use_autosuspend(dev);
  1381. ret = iio_device_register(indio_dev);
  1382. if (ret < 0) {
  1383. dev_err(dev, "Unable to register iio device\n");
  1384. goto err_trigger_unregister;
  1385. }
  1386. return 0;
  1387. err_trigger_unregister:
  1388. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1389. err_buffer_cleanup:
  1390. iio_triggered_buffer_cleanup(indio_dev);
  1391. return ret;
  1392. }
  1393. EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
  1394. int bmc150_accel_core_remove(struct device *dev)
  1395. {
  1396. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1397. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1398. iio_device_unregister(indio_dev);
  1399. pm_runtime_disable(dev);
  1400. pm_runtime_set_suspended(dev);
  1401. pm_runtime_put_noidle(dev);
  1402. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1403. iio_triggered_buffer_cleanup(indio_dev);
  1404. mutex_lock(&data->mutex);
  1405. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
  1406. mutex_unlock(&data->mutex);
  1407. return 0;
  1408. }
  1409. EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
  1410. #ifdef CONFIG_PM_SLEEP
  1411. static int bmc150_accel_suspend(struct device *dev)
  1412. {
  1413. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1414. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1415. mutex_lock(&data->mutex);
  1416. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1417. mutex_unlock(&data->mutex);
  1418. return 0;
  1419. }
  1420. static int bmc150_accel_resume(struct device *dev)
  1421. {
  1422. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1423. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1424. mutex_lock(&data->mutex);
  1425. if (atomic_read(&data->active_intr))
  1426. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1427. bmc150_accel_fifo_set_mode(data);
  1428. mutex_unlock(&data->mutex);
  1429. return 0;
  1430. }
  1431. #endif
  1432. #ifdef CONFIG_PM
  1433. static int bmc150_accel_runtime_suspend(struct device *dev)
  1434. {
  1435. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1436. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1437. int ret;
  1438. dev_dbg(dev, __func__);
  1439. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1440. if (ret < 0)
  1441. return -EAGAIN;
  1442. return 0;
  1443. }
  1444. static int bmc150_accel_runtime_resume(struct device *dev)
  1445. {
  1446. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1447. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1448. int ret;
  1449. int sleep_val;
  1450. dev_dbg(dev, __func__);
  1451. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1452. if (ret < 0)
  1453. return ret;
  1454. ret = bmc150_accel_fifo_set_mode(data);
  1455. if (ret < 0)
  1456. return ret;
  1457. sleep_val = bmc150_accel_get_startup_times(data);
  1458. if (sleep_val < 20)
  1459. usleep_range(sleep_val * 1000, 20000);
  1460. else
  1461. msleep_interruptible(sleep_val);
  1462. return 0;
  1463. }
  1464. #endif
  1465. const struct dev_pm_ops bmc150_accel_pm_ops = {
  1466. SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
  1467. SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
  1468. bmc150_accel_runtime_resume, NULL)
  1469. };
  1470. EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
  1471. MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
  1472. MODULE_LICENSE("GPL v2");
  1473. MODULE_DESCRIPTION("BMC150 accelerometer driver");