dc.c 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123
  1. /*
  2. * Copyright (C) 2012 Avionic Design GmbH
  3. * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/clk.h>
  10. #include <linux/debugfs.h>
  11. #include <linux/iommu.h>
  12. #include <linux/pm_runtime.h>
  13. #include <linux/reset.h>
  14. #include <soc/tegra/pmc.h>
  15. #include "dc.h"
  16. #include "drm.h"
  17. #include "gem.h"
  18. #include <drm/drm_atomic.h>
  19. #include <drm/drm_atomic_helper.h>
  20. #include <drm/drm_plane_helper.h>
  21. struct tegra_dc_soc_info {
  22. bool supports_border_color;
  23. bool supports_interlacing;
  24. bool supports_cursor;
  25. bool supports_block_linear;
  26. unsigned int pitch_align;
  27. bool has_powergate;
  28. };
  29. struct tegra_plane {
  30. struct drm_plane base;
  31. unsigned int index;
  32. };
  33. static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
  34. {
  35. return container_of(plane, struct tegra_plane, base);
  36. }
  37. struct tegra_dc_state {
  38. struct drm_crtc_state base;
  39. struct clk *clk;
  40. unsigned long pclk;
  41. unsigned int div;
  42. u32 planes;
  43. };
  44. static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
  45. {
  46. if (state)
  47. return container_of(state, struct tegra_dc_state, base);
  48. return NULL;
  49. }
  50. struct tegra_plane_state {
  51. struct drm_plane_state base;
  52. struct tegra_bo_tiling tiling;
  53. u32 format;
  54. u32 swap;
  55. };
  56. static inline struct tegra_plane_state *
  57. to_tegra_plane_state(struct drm_plane_state *state)
  58. {
  59. if (state)
  60. return container_of(state, struct tegra_plane_state, base);
  61. return NULL;
  62. }
  63. static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  64. {
  65. stats->frames = 0;
  66. stats->vblank = 0;
  67. stats->underflow = 0;
  68. stats->overflow = 0;
  69. }
  70. /*
  71. * Reads the active copy of a register. This takes the dc->lock spinlock to
  72. * prevent races with the VBLANK processing which also needs access to the
  73. * active copy of some registers.
  74. */
  75. static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  76. {
  77. unsigned long flags;
  78. u32 value;
  79. spin_lock_irqsave(&dc->lock, flags);
  80. tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  81. value = tegra_dc_readl(dc, offset);
  82. tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  83. spin_unlock_irqrestore(&dc->lock, flags);
  84. return value;
  85. }
  86. /*
  87. * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
  88. * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
  89. * Latching happens mmediately if the display controller is in STOP mode or
  90. * on the next frame boundary otherwise.
  91. *
  92. * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
  93. * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
  94. * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
  95. * into the ACTIVE copy, either immediately if the display controller is in
  96. * STOP mode, or at the next frame boundary otherwise.
  97. */
  98. void tegra_dc_commit(struct tegra_dc *dc)
  99. {
  100. tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
  101. tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
  102. }
  103. static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
  104. {
  105. /* assume no swapping of fetched data */
  106. if (swap)
  107. *swap = BYTE_SWAP_NOSWAP;
  108. switch (fourcc) {
  109. case DRM_FORMAT_XBGR8888:
  110. *format = WIN_COLOR_DEPTH_R8G8B8A8;
  111. break;
  112. case DRM_FORMAT_XRGB8888:
  113. *format = WIN_COLOR_DEPTH_B8G8R8A8;
  114. break;
  115. case DRM_FORMAT_RGB565:
  116. *format = WIN_COLOR_DEPTH_B5G6R5;
  117. break;
  118. case DRM_FORMAT_UYVY:
  119. *format = WIN_COLOR_DEPTH_YCbCr422;
  120. break;
  121. case DRM_FORMAT_YUYV:
  122. if (swap)
  123. *swap = BYTE_SWAP_SWAP2;
  124. *format = WIN_COLOR_DEPTH_YCbCr422;
  125. break;
  126. case DRM_FORMAT_YUV420:
  127. *format = WIN_COLOR_DEPTH_YCbCr420P;
  128. break;
  129. case DRM_FORMAT_YUV422:
  130. *format = WIN_COLOR_DEPTH_YCbCr422P;
  131. break;
  132. default:
  133. return -EINVAL;
  134. }
  135. return 0;
  136. }
  137. static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
  138. {
  139. switch (format) {
  140. case WIN_COLOR_DEPTH_YCbCr422:
  141. case WIN_COLOR_DEPTH_YUV422:
  142. if (planar)
  143. *planar = false;
  144. return true;
  145. case WIN_COLOR_DEPTH_YCbCr420P:
  146. case WIN_COLOR_DEPTH_YUV420P:
  147. case WIN_COLOR_DEPTH_YCbCr422P:
  148. case WIN_COLOR_DEPTH_YUV422P:
  149. case WIN_COLOR_DEPTH_YCbCr422R:
  150. case WIN_COLOR_DEPTH_YUV422R:
  151. case WIN_COLOR_DEPTH_YCbCr422RA:
  152. case WIN_COLOR_DEPTH_YUV422RA:
  153. if (planar)
  154. *planar = true;
  155. return true;
  156. }
  157. if (planar)
  158. *planar = false;
  159. return false;
  160. }
  161. static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
  162. unsigned int bpp)
  163. {
  164. fixed20_12 outf = dfixed_init(out);
  165. fixed20_12 inf = dfixed_init(in);
  166. u32 dda_inc;
  167. int max;
  168. if (v)
  169. max = 15;
  170. else {
  171. switch (bpp) {
  172. case 2:
  173. max = 8;
  174. break;
  175. default:
  176. WARN_ON_ONCE(1);
  177. /* fallthrough */
  178. case 4:
  179. max = 4;
  180. break;
  181. }
  182. }
  183. outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
  184. inf.full -= dfixed_const(1);
  185. dda_inc = dfixed_div(inf, outf);
  186. dda_inc = min_t(u32, dda_inc, dfixed_const(max));
  187. return dda_inc;
  188. }
  189. static inline u32 compute_initial_dda(unsigned int in)
  190. {
  191. fixed20_12 inf = dfixed_init(in);
  192. return dfixed_frac(inf);
  193. }
  194. static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
  195. const struct tegra_dc_window *window)
  196. {
  197. unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
  198. unsigned long value, flags;
  199. bool yuv, planar;
  200. /*
  201. * For YUV planar modes, the number of bytes per pixel takes into
  202. * account only the luma component and therefore is 1.
  203. */
  204. yuv = tegra_dc_format_is_yuv(window->format, &planar);
  205. if (!yuv)
  206. bpp = window->bits_per_pixel / 8;
  207. else
  208. bpp = planar ? 1 : 2;
  209. spin_lock_irqsave(&dc->lock, flags);
  210. value = WINDOW_A_SELECT << index;
  211. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
  212. tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
  213. tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
  214. value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
  215. tegra_dc_writel(dc, value, DC_WIN_POSITION);
  216. value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
  217. tegra_dc_writel(dc, value, DC_WIN_SIZE);
  218. h_offset = window->src.x * bpp;
  219. v_offset = window->src.y;
  220. h_size = window->src.w * bpp;
  221. v_size = window->src.h;
  222. value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
  223. tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
  224. /*
  225. * For DDA computations the number of bytes per pixel for YUV planar
  226. * modes needs to take into account all Y, U and V components.
  227. */
  228. if (yuv && planar)
  229. bpp = 2;
  230. h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
  231. v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
  232. value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
  233. tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
  234. h_dda = compute_initial_dda(window->src.x);
  235. v_dda = compute_initial_dda(window->src.y);
  236. tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
  237. tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
  238. tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
  239. tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
  240. tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
  241. if (yuv && planar) {
  242. tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
  243. tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
  244. value = window->stride[1] << 16 | window->stride[0];
  245. tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
  246. } else {
  247. tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
  248. }
  249. if (window->bottom_up)
  250. v_offset += window->src.h - 1;
  251. tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
  252. tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
  253. if (dc->soc->supports_block_linear) {
  254. unsigned long height = window->tiling.value;
  255. switch (window->tiling.mode) {
  256. case TEGRA_BO_TILING_MODE_PITCH:
  257. value = DC_WINBUF_SURFACE_KIND_PITCH;
  258. break;
  259. case TEGRA_BO_TILING_MODE_TILED:
  260. value = DC_WINBUF_SURFACE_KIND_TILED;
  261. break;
  262. case TEGRA_BO_TILING_MODE_BLOCK:
  263. value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
  264. DC_WINBUF_SURFACE_KIND_BLOCK;
  265. break;
  266. }
  267. tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
  268. } else {
  269. switch (window->tiling.mode) {
  270. case TEGRA_BO_TILING_MODE_PITCH:
  271. value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
  272. DC_WIN_BUFFER_ADDR_MODE_LINEAR;
  273. break;
  274. case TEGRA_BO_TILING_MODE_TILED:
  275. value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
  276. DC_WIN_BUFFER_ADDR_MODE_TILE;
  277. break;
  278. case TEGRA_BO_TILING_MODE_BLOCK:
  279. /*
  280. * No need to handle this here because ->atomic_check
  281. * will already have filtered it out.
  282. */
  283. break;
  284. }
  285. tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
  286. }
  287. value = WIN_ENABLE;
  288. if (yuv) {
  289. /* setup default colorspace conversion coefficients */
  290. tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
  291. tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
  292. tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
  293. tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
  294. tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
  295. tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
  296. tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
  297. tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
  298. value |= CSC_ENABLE;
  299. } else if (window->bits_per_pixel < 24) {
  300. value |= COLOR_EXPAND;
  301. }
  302. if (window->bottom_up)
  303. value |= V_DIRECTION;
  304. tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
  305. /*
  306. * Disable blending and assume Window A is the bottom-most window,
  307. * Window C is the top-most window and Window B is in the middle.
  308. */
  309. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
  310. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
  311. switch (index) {
  312. case 0:
  313. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
  314. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
  315. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
  316. break;
  317. case 1:
  318. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
  319. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
  320. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
  321. break;
  322. case 2:
  323. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
  324. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
  325. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
  326. break;
  327. }
  328. spin_unlock_irqrestore(&dc->lock, flags);
  329. }
  330. static void tegra_plane_destroy(struct drm_plane *plane)
  331. {
  332. struct tegra_plane *p = to_tegra_plane(plane);
  333. drm_plane_cleanup(plane);
  334. kfree(p);
  335. }
  336. static const u32 tegra_primary_plane_formats[] = {
  337. DRM_FORMAT_XBGR8888,
  338. DRM_FORMAT_XRGB8888,
  339. DRM_FORMAT_RGB565,
  340. };
  341. static void tegra_primary_plane_destroy(struct drm_plane *plane)
  342. {
  343. tegra_plane_destroy(plane);
  344. }
  345. static void tegra_plane_reset(struct drm_plane *plane)
  346. {
  347. struct tegra_plane_state *state;
  348. if (plane->state)
  349. __drm_atomic_helper_plane_destroy_state(plane->state);
  350. kfree(plane->state);
  351. plane->state = NULL;
  352. state = kzalloc(sizeof(*state), GFP_KERNEL);
  353. if (state) {
  354. plane->state = &state->base;
  355. plane->state->plane = plane;
  356. }
  357. }
  358. static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
  359. {
  360. struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
  361. struct tegra_plane_state *copy;
  362. copy = kmalloc(sizeof(*copy), GFP_KERNEL);
  363. if (!copy)
  364. return NULL;
  365. __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
  366. copy->tiling = state->tiling;
  367. copy->format = state->format;
  368. copy->swap = state->swap;
  369. return &copy->base;
  370. }
  371. static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
  372. struct drm_plane_state *state)
  373. {
  374. __drm_atomic_helper_plane_destroy_state(state);
  375. kfree(state);
  376. }
  377. static const struct drm_plane_funcs tegra_primary_plane_funcs = {
  378. .update_plane = drm_atomic_helper_update_plane,
  379. .disable_plane = drm_atomic_helper_disable_plane,
  380. .destroy = tegra_primary_plane_destroy,
  381. .reset = tegra_plane_reset,
  382. .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
  383. .atomic_destroy_state = tegra_plane_atomic_destroy_state,
  384. };
  385. static int tegra_plane_prepare_fb(struct drm_plane *plane,
  386. const struct drm_plane_state *new_state)
  387. {
  388. return 0;
  389. }
  390. static void tegra_plane_cleanup_fb(struct drm_plane *plane,
  391. const struct drm_plane_state *old_fb)
  392. {
  393. }
  394. static int tegra_plane_state_add(struct tegra_plane *plane,
  395. struct drm_plane_state *state)
  396. {
  397. struct drm_crtc_state *crtc_state;
  398. struct tegra_dc_state *tegra;
  399. /* Propagate errors from allocation or locking failures. */
  400. crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
  401. if (IS_ERR(crtc_state))
  402. return PTR_ERR(crtc_state);
  403. tegra = to_dc_state(crtc_state);
  404. tegra->planes |= WIN_A_ACT_REQ << plane->index;
  405. return 0;
  406. }
  407. static int tegra_plane_atomic_check(struct drm_plane *plane,
  408. struct drm_plane_state *state)
  409. {
  410. struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
  411. struct tegra_bo_tiling *tiling = &plane_state->tiling;
  412. struct tegra_plane *tegra = to_tegra_plane(plane);
  413. struct tegra_dc *dc = to_tegra_dc(state->crtc);
  414. int err;
  415. /* no need for further checks if the plane is being disabled */
  416. if (!state->crtc)
  417. return 0;
  418. err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
  419. &plane_state->swap);
  420. if (err < 0)
  421. return err;
  422. err = tegra_fb_get_tiling(state->fb, tiling);
  423. if (err < 0)
  424. return err;
  425. if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
  426. !dc->soc->supports_block_linear) {
  427. DRM_ERROR("hardware doesn't support block linear mode\n");
  428. return -EINVAL;
  429. }
  430. /*
  431. * Tegra doesn't support different strides for U and V planes so we
  432. * error out if the user tries to display a framebuffer with such a
  433. * configuration.
  434. */
  435. if (drm_format_num_planes(state->fb->pixel_format) > 2) {
  436. if (state->fb->pitches[2] != state->fb->pitches[1]) {
  437. DRM_ERROR("unsupported UV-plane configuration\n");
  438. return -EINVAL;
  439. }
  440. }
  441. err = tegra_plane_state_add(tegra, state);
  442. if (err < 0)
  443. return err;
  444. return 0;
  445. }
  446. static void tegra_plane_atomic_update(struct drm_plane *plane,
  447. struct drm_plane_state *old_state)
  448. {
  449. struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
  450. struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
  451. struct drm_framebuffer *fb = plane->state->fb;
  452. struct tegra_plane *p = to_tegra_plane(plane);
  453. struct tegra_dc_window window;
  454. unsigned int i;
  455. /* rien ne va plus */
  456. if (!plane->state->crtc || !plane->state->fb)
  457. return;
  458. memset(&window, 0, sizeof(window));
  459. window.src.x = plane->state->src_x >> 16;
  460. window.src.y = plane->state->src_y >> 16;
  461. window.src.w = plane->state->src_w >> 16;
  462. window.src.h = plane->state->src_h >> 16;
  463. window.dst.x = plane->state->crtc_x;
  464. window.dst.y = plane->state->crtc_y;
  465. window.dst.w = plane->state->crtc_w;
  466. window.dst.h = plane->state->crtc_h;
  467. window.bits_per_pixel = fb->bits_per_pixel;
  468. window.bottom_up = tegra_fb_is_bottom_up(fb);
  469. /* copy from state */
  470. window.tiling = state->tiling;
  471. window.format = state->format;
  472. window.swap = state->swap;
  473. for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
  474. struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
  475. window.base[i] = bo->paddr + fb->offsets[i];
  476. window.stride[i] = fb->pitches[i];
  477. }
  478. tegra_dc_setup_window(dc, p->index, &window);
  479. }
  480. static void tegra_plane_atomic_disable(struct drm_plane *plane,
  481. struct drm_plane_state *old_state)
  482. {
  483. struct tegra_plane *p = to_tegra_plane(plane);
  484. struct tegra_dc *dc;
  485. unsigned long flags;
  486. u32 value;
  487. /* rien ne va plus */
  488. if (!old_state || !old_state->crtc)
  489. return;
  490. dc = to_tegra_dc(old_state->crtc);
  491. spin_lock_irqsave(&dc->lock, flags);
  492. value = WINDOW_A_SELECT << p->index;
  493. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
  494. value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
  495. value &= ~WIN_ENABLE;
  496. tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
  497. spin_unlock_irqrestore(&dc->lock, flags);
  498. }
  499. static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
  500. .prepare_fb = tegra_plane_prepare_fb,
  501. .cleanup_fb = tegra_plane_cleanup_fb,
  502. .atomic_check = tegra_plane_atomic_check,
  503. .atomic_update = tegra_plane_atomic_update,
  504. .atomic_disable = tegra_plane_atomic_disable,
  505. };
  506. static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
  507. struct tegra_dc *dc)
  508. {
  509. /*
  510. * Ideally this would use drm_crtc_mask(), but that would require the
  511. * CRTC to already be in the mode_config's list of CRTCs. However, it
  512. * will only be added to that list in the drm_crtc_init_with_planes()
  513. * (in tegra_dc_init()), which in turn requires registration of these
  514. * planes. So we have ourselves a nice little chicken and egg problem
  515. * here.
  516. *
  517. * We work around this by manually creating the mask from the number
  518. * of CRTCs that have been registered, and should therefore always be
  519. * the same as drm_crtc_index() after registration.
  520. */
  521. unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
  522. struct tegra_plane *plane;
  523. unsigned int num_formats;
  524. const u32 *formats;
  525. int err;
  526. plane = kzalloc(sizeof(*plane), GFP_KERNEL);
  527. if (!plane)
  528. return ERR_PTR(-ENOMEM);
  529. num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
  530. formats = tegra_primary_plane_formats;
  531. err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
  532. &tegra_primary_plane_funcs, formats,
  533. num_formats, DRM_PLANE_TYPE_PRIMARY,
  534. NULL);
  535. if (err < 0) {
  536. kfree(plane);
  537. return ERR_PTR(err);
  538. }
  539. drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
  540. return &plane->base;
  541. }
  542. static const u32 tegra_cursor_plane_formats[] = {
  543. DRM_FORMAT_RGBA8888,
  544. };
  545. static int tegra_cursor_atomic_check(struct drm_plane *plane,
  546. struct drm_plane_state *state)
  547. {
  548. struct tegra_plane *tegra = to_tegra_plane(plane);
  549. int err;
  550. /* no need for further checks if the plane is being disabled */
  551. if (!state->crtc)
  552. return 0;
  553. /* scaling not supported for cursor */
  554. if ((state->src_w >> 16 != state->crtc_w) ||
  555. (state->src_h >> 16 != state->crtc_h))
  556. return -EINVAL;
  557. /* only square cursors supported */
  558. if (state->src_w != state->src_h)
  559. return -EINVAL;
  560. if (state->crtc_w != 32 && state->crtc_w != 64 &&
  561. state->crtc_w != 128 && state->crtc_w != 256)
  562. return -EINVAL;
  563. err = tegra_plane_state_add(tegra, state);
  564. if (err < 0)
  565. return err;
  566. return 0;
  567. }
  568. static void tegra_cursor_atomic_update(struct drm_plane *plane,
  569. struct drm_plane_state *old_state)
  570. {
  571. struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
  572. struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
  573. struct drm_plane_state *state = plane->state;
  574. u32 value = CURSOR_CLIP_DISPLAY;
  575. /* rien ne va plus */
  576. if (!plane->state->crtc || !plane->state->fb)
  577. return;
  578. switch (state->crtc_w) {
  579. case 32:
  580. value |= CURSOR_SIZE_32x32;
  581. break;
  582. case 64:
  583. value |= CURSOR_SIZE_64x64;
  584. break;
  585. case 128:
  586. value |= CURSOR_SIZE_128x128;
  587. break;
  588. case 256:
  589. value |= CURSOR_SIZE_256x256;
  590. break;
  591. default:
  592. WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
  593. state->crtc_h);
  594. return;
  595. }
  596. value |= (bo->paddr >> 10) & 0x3fffff;
  597. tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
  598. #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
  599. value = (bo->paddr >> 32) & 0x3;
  600. tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
  601. #endif
  602. /* enable cursor and set blend mode */
  603. value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
  604. value |= CURSOR_ENABLE;
  605. tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
  606. value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
  607. value &= ~CURSOR_DST_BLEND_MASK;
  608. value &= ~CURSOR_SRC_BLEND_MASK;
  609. value |= CURSOR_MODE_NORMAL;
  610. value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
  611. value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
  612. value |= CURSOR_ALPHA;
  613. tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
  614. /* position the cursor */
  615. value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
  616. tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
  617. }
  618. static void tegra_cursor_atomic_disable(struct drm_plane *plane,
  619. struct drm_plane_state *old_state)
  620. {
  621. struct tegra_dc *dc;
  622. u32 value;
  623. /* rien ne va plus */
  624. if (!old_state || !old_state->crtc)
  625. return;
  626. dc = to_tegra_dc(old_state->crtc);
  627. value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
  628. value &= ~CURSOR_ENABLE;
  629. tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
  630. }
  631. static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
  632. .update_plane = drm_atomic_helper_update_plane,
  633. .disable_plane = drm_atomic_helper_disable_plane,
  634. .destroy = tegra_plane_destroy,
  635. .reset = tegra_plane_reset,
  636. .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
  637. .atomic_destroy_state = tegra_plane_atomic_destroy_state,
  638. };
  639. static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
  640. .prepare_fb = tegra_plane_prepare_fb,
  641. .cleanup_fb = tegra_plane_cleanup_fb,
  642. .atomic_check = tegra_cursor_atomic_check,
  643. .atomic_update = tegra_cursor_atomic_update,
  644. .atomic_disable = tegra_cursor_atomic_disable,
  645. };
  646. static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
  647. struct tegra_dc *dc)
  648. {
  649. struct tegra_plane *plane;
  650. unsigned int num_formats;
  651. const u32 *formats;
  652. int err;
  653. plane = kzalloc(sizeof(*plane), GFP_KERNEL);
  654. if (!plane)
  655. return ERR_PTR(-ENOMEM);
  656. /*
  657. * This index is kind of fake. The cursor isn't a regular plane, but
  658. * its update and activation request bits in DC_CMD_STATE_CONTROL do
  659. * use the same programming. Setting this fake index here allows the
  660. * code in tegra_add_plane_state() to do the right thing without the
  661. * need to special-casing the cursor plane.
  662. */
  663. plane->index = 6;
  664. num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
  665. formats = tegra_cursor_plane_formats;
  666. err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
  667. &tegra_cursor_plane_funcs, formats,
  668. num_formats, DRM_PLANE_TYPE_CURSOR,
  669. NULL);
  670. if (err < 0) {
  671. kfree(plane);
  672. return ERR_PTR(err);
  673. }
  674. drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
  675. return &plane->base;
  676. }
  677. static void tegra_overlay_plane_destroy(struct drm_plane *plane)
  678. {
  679. tegra_plane_destroy(plane);
  680. }
  681. static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
  682. .update_plane = drm_atomic_helper_update_plane,
  683. .disable_plane = drm_atomic_helper_disable_plane,
  684. .destroy = tegra_overlay_plane_destroy,
  685. .reset = tegra_plane_reset,
  686. .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
  687. .atomic_destroy_state = tegra_plane_atomic_destroy_state,
  688. };
  689. static const uint32_t tegra_overlay_plane_formats[] = {
  690. DRM_FORMAT_XBGR8888,
  691. DRM_FORMAT_XRGB8888,
  692. DRM_FORMAT_RGB565,
  693. DRM_FORMAT_UYVY,
  694. DRM_FORMAT_YUYV,
  695. DRM_FORMAT_YUV420,
  696. DRM_FORMAT_YUV422,
  697. };
  698. static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
  699. .prepare_fb = tegra_plane_prepare_fb,
  700. .cleanup_fb = tegra_plane_cleanup_fb,
  701. .atomic_check = tegra_plane_atomic_check,
  702. .atomic_update = tegra_plane_atomic_update,
  703. .atomic_disable = tegra_plane_atomic_disable,
  704. };
  705. static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
  706. struct tegra_dc *dc,
  707. unsigned int index)
  708. {
  709. struct tegra_plane *plane;
  710. unsigned int num_formats;
  711. const u32 *formats;
  712. int err;
  713. plane = kzalloc(sizeof(*plane), GFP_KERNEL);
  714. if (!plane)
  715. return ERR_PTR(-ENOMEM);
  716. plane->index = index;
  717. num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
  718. formats = tegra_overlay_plane_formats;
  719. err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
  720. &tegra_overlay_plane_funcs, formats,
  721. num_formats, DRM_PLANE_TYPE_OVERLAY,
  722. NULL);
  723. if (err < 0) {
  724. kfree(plane);
  725. return ERR_PTR(err);
  726. }
  727. drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
  728. return &plane->base;
  729. }
  730. static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
  731. {
  732. struct drm_plane *plane;
  733. unsigned int i;
  734. for (i = 0; i < 2; i++) {
  735. plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
  736. if (IS_ERR(plane))
  737. return PTR_ERR(plane);
  738. }
  739. return 0;
  740. }
  741. u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
  742. {
  743. if (dc->syncpt)
  744. return host1x_syncpt_read(dc->syncpt);
  745. /* fallback to software emulated VBLANK counter */
  746. return drm_crtc_vblank_count(&dc->base);
  747. }
  748. void tegra_dc_enable_vblank(struct tegra_dc *dc)
  749. {
  750. unsigned long value, flags;
  751. spin_lock_irqsave(&dc->lock, flags);
  752. value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
  753. value |= VBLANK_INT;
  754. tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
  755. spin_unlock_irqrestore(&dc->lock, flags);
  756. }
  757. void tegra_dc_disable_vblank(struct tegra_dc *dc)
  758. {
  759. unsigned long value, flags;
  760. spin_lock_irqsave(&dc->lock, flags);
  761. value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
  762. value &= ~VBLANK_INT;
  763. tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
  764. spin_unlock_irqrestore(&dc->lock, flags);
  765. }
  766. static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
  767. {
  768. struct drm_device *drm = dc->base.dev;
  769. struct drm_crtc *crtc = &dc->base;
  770. unsigned long flags, base;
  771. struct tegra_bo *bo;
  772. spin_lock_irqsave(&drm->event_lock, flags);
  773. if (!dc->event) {
  774. spin_unlock_irqrestore(&drm->event_lock, flags);
  775. return;
  776. }
  777. bo = tegra_fb_get_plane(crtc->primary->fb, 0);
  778. spin_lock(&dc->lock);
  779. /* check if new start address has been latched */
  780. tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
  781. tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  782. base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
  783. tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  784. spin_unlock(&dc->lock);
  785. if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
  786. drm_crtc_send_vblank_event(crtc, dc->event);
  787. drm_crtc_vblank_put(crtc);
  788. dc->event = NULL;
  789. }
  790. spin_unlock_irqrestore(&drm->event_lock, flags);
  791. }
  792. static void tegra_dc_destroy(struct drm_crtc *crtc)
  793. {
  794. drm_crtc_cleanup(crtc);
  795. }
  796. static void tegra_crtc_reset(struct drm_crtc *crtc)
  797. {
  798. struct tegra_dc_state *state;
  799. if (crtc->state)
  800. __drm_atomic_helper_crtc_destroy_state(crtc->state);
  801. kfree(crtc->state);
  802. crtc->state = NULL;
  803. state = kzalloc(sizeof(*state), GFP_KERNEL);
  804. if (state) {
  805. crtc->state = &state->base;
  806. crtc->state->crtc = crtc;
  807. }
  808. drm_crtc_vblank_reset(crtc);
  809. }
  810. static struct drm_crtc_state *
  811. tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
  812. {
  813. struct tegra_dc_state *state = to_dc_state(crtc->state);
  814. struct tegra_dc_state *copy;
  815. copy = kmalloc(sizeof(*copy), GFP_KERNEL);
  816. if (!copy)
  817. return NULL;
  818. __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
  819. copy->clk = state->clk;
  820. copy->pclk = state->pclk;
  821. copy->div = state->div;
  822. copy->planes = state->planes;
  823. return &copy->base;
  824. }
  825. static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
  826. struct drm_crtc_state *state)
  827. {
  828. __drm_atomic_helper_crtc_destroy_state(state);
  829. kfree(state);
  830. }
  831. static const struct drm_crtc_funcs tegra_crtc_funcs = {
  832. .page_flip = drm_atomic_helper_page_flip,
  833. .set_config = drm_atomic_helper_set_config,
  834. .destroy = tegra_dc_destroy,
  835. .reset = tegra_crtc_reset,
  836. .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
  837. .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
  838. };
  839. static int tegra_dc_set_timings(struct tegra_dc *dc,
  840. struct drm_display_mode *mode)
  841. {
  842. unsigned int h_ref_to_sync = 1;
  843. unsigned int v_ref_to_sync = 1;
  844. unsigned long value;
  845. tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
  846. value = (v_ref_to_sync << 16) | h_ref_to_sync;
  847. tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
  848. value = ((mode->vsync_end - mode->vsync_start) << 16) |
  849. ((mode->hsync_end - mode->hsync_start) << 0);
  850. tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
  851. value = ((mode->vtotal - mode->vsync_end) << 16) |
  852. ((mode->htotal - mode->hsync_end) << 0);
  853. tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
  854. value = ((mode->vsync_start - mode->vdisplay) << 16) |
  855. ((mode->hsync_start - mode->hdisplay) << 0);
  856. tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
  857. value = (mode->vdisplay << 16) | mode->hdisplay;
  858. tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
  859. return 0;
  860. }
  861. /**
  862. * tegra_dc_state_setup_clock - check clock settings and store them in atomic
  863. * state
  864. * @dc: display controller
  865. * @crtc_state: CRTC atomic state
  866. * @clk: parent clock for display controller
  867. * @pclk: pixel clock
  868. * @div: shift clock divider
  869. *
  870. * Returns:
  871. * 0 on success or a negative error-code on failure.
  872. */
  873. int tegra_dc_state_setup_clock(struct tegra_dc *dc,
  874. struct drm_crtc_state *crtc_state,
  875. struct clk *clk, unsigned long pclk,
  876. unsigned int div)
  877. {
  878. struct tegra_dc_state *state = to_dc_state(crtc_state);
  879. if (!clk_has_parent(dc->clk, clk))
  880. return -EINVAL;
  881. state->clk = clk;
  882. state->pclk = pclk;
  883. state->div = div;
  884. return 0;
  885. }
  886. static void tegra_dc_commit_state(struct tegra_dc *dc,
  887. struct tegra_dc_state *state)
  888. {
  889. u32 value;
  890. int err;
  891. err = clk_set_parent(dc->clk, state->clk);
  892. if (err < 0)
  893. dev_err(dc->dev, "failed to set parent clock: %d\n", err);
  894. /*
  895. * Outputs may not want to change the parent clock rate. This is only
  896. * relevant to Tegra20 where only a single display PLL is available.
  897. * Since that PLL would typically be used for HDMI, an internal LVDS
  898. * panel would need to be driven by some other clock such as PLL_P
  899. * which is shared with other peripherals. Changing the clock rate
  900. * should therefore be avoided.
  901. */
  902. if (state->pclk > 0) {
  903. err = clk_set_rate(state->clk, state->pclk);
  904. if (err < 0)
  905. dev_err(dc->dev,
  906. "failed to set clock rate to %lu Hz\n",
  907. state->pclk);
  908. }
  909. DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
  910. state->div);
  911. DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
  912. value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
  913. tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
  914. }
  915. static void tegra_dc_stop(struct tegra_dc *dc)
  916. {
  917. u32 value;
  918. /* stop the display controller */
  919. value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
  920. value &= ~DISP_CTRL_MODE_MASK;
  921. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
  922. tegra_dc_commit(dc);
  923. }
  924. static bool tegra_dc_idle(struct tegra_dc *dc)
  925. {
  926. u32 value;
  927. value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
  928. return (value & DISP_CTRL_MODE_MASK) == 0;
  929. }
  930. static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
  931. {
  932. timeout = jiffies + msecs_to_jiffies(timeout);
  933. while (time_before(jiffies, timeout)) {
  934. if (tegra_dc_idle(dc))
  935. return 0;
  936. usleep_range(1000, 2000);
  937. }
  938. dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
  939. return -ETIMEDOUT;
  940. }
  941. static void tegra_crtc_disable(struct drm_crtc *crtc)
  942. {
  943. struct tegra_dc *dc = to_tegra_dc(crtc);
  944. u32 value;
  945. if (!tegra_dc_idle(dc)) {
  946. tegra_dc_stop(dc);
  947. /*
  948. * Ignore the return value, there isn't anything useful to do
  949. * in case this fails.
  950. */
  951. tegra_dc_wait_idle(dc, 100);
  952. }
  953. /*
  954. * This should really be part of the RGB encoder driver, but clearing
  955. * these bits has the side-effect of stopping the display controller.
  956. * When that happens no VBLANK interrupts will be raised. At the same
  957. * time the encoder is disabled before the display controller, so the
  958. * above code is always going to timeout waiting for the controller
  959. * to go idle.
  960. *
  961. * Given the close coupling between the RGB encoder and the display
  962. * controller doing it here is still kind of okay. None of the other
  963. * encoder drivers require these bits to be cleared.
  964. *
  965. * XXX: Perhaps given that the display controller is switched off at
  966. * this point anyway maybe clearing these bits isn't even useful for
  967. * the RGB encoder?
  968. */
  969. if (dc->rgb) {
  970. value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
  971. value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
  972. PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
  973. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
  974. }
  975. tegra_dc_stats_reset(&dc->stats);
  976. drm_crtc_vblank_off(crtc);
  977. pm_runtime_put_sync(dc->dev);
  978. }
  979. static void tegra_crtc_enable(struct drm_crtc *crtc)
  980. {
  981. struct drm_display_mode *mode = &crtc->state->adjusted_mode;
  982. struct tegra_dc_state *state = to_dc_state(crtc->state);
  983. struct tegra_dc *dc = to_tegra_dc(crtc);
  984. u32 value;
  985. pm_runtime_get_sync(dc->dev);
  986. /* initialize display controller */
  987. if (dc->syncpt) {
  988. u32 syncpt = host1x_syncpt_id(dc->syncpt);
  989. value = SYNCPT_CNTRL_NO_STALL;
  990. tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
  991. value = SYNCPT_VSYNC_ENABLE | syncpt;
  992. tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
  993. }
  994. value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
  995. WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
  996. tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
  997. value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
  998. WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
  999. tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
  1000. /* initialize timer */
  1001. value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
  1002. WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
  1003. tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
  1004. value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
  1005. WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
  1006. tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
  1007. value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
  1008. WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
  1009. tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
  1010. value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
  1011. WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
  1012. tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
  1013. if (dc->soc->supports_border_color)
  1014. tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
  1015. /* apply PLL and pixel clock changes */
  1016. tegra_dc_commit_state(dc, state);
  1017. /* program display mode */
  1018. tegra_dc_set_timings(dc, mode);
  1019. /* interlacing isn't supported yet, so disable it */
  1020. if (dc->soc->supports_interlacing) {
  1021. value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
  1022. value &= ~INTERLACE_ENABLE;
  1023. tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
  1024. }
  1025. value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
  1026. value &= ~DISP_CTRL_MODE_MASK;
  1027. value |= DISP_CTRL_MODE_C_DISPLAY;
  1028. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
  1029. value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
  1030. value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
  1031. PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
  1032. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
  1033. tegra_dc_commit(dc);
  1034. drm_crtc_vblank_on(crtc);
  1035. }
  1036. static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
  1037. struct drm_crtc_state *state)
  1038. {
  1039. return 0;
  1040. }
  1041. static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
  1042. struct drm_crtc_state *old_crtc_state)
  1043. {
  1044. struct tegra_dc *dc = to_tegra_dc(crtc);
  1045. if (crtc->state->event) {
  1046. crtc->state->event->pipe = drm_crtc_index(crtc);
  1047. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  1048. dc->event = crtc->state->event;
  1049. crtc->state->event = NULL;
  1050. }
  1051. }
  1052. static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
  1053. struct drm_crtc_state *old_crtc_state)
  1054. {
  1055. struct tegra_dc_state *state = to_dc_state(crtc->state);
  1056. struct tegra_dc *dc = to_tegra_dc(crtc);
  1057. tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
  1058. tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
  1059. }
  1060. static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
  1061. .disable = tegra_crtc_disable,
  1062. .enable = tegra_crtc_enable,
  1063. .atomic_check = tegra_crtc_atomic_check,
  1064. .atomic_begin = tegra_crtc_atomic_begin,
  1065. .atomic_flush = tegra_crtc_atomic_flush,
  1066. };
  1067. static irqreturn_t tegra_dc_irq(int irq, void *data)
  1068. {
  1069. struct tegra_dc *dc = data;
  1070. unsigned long status;
  1071. status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
  1072. tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
  1073. if (status & FRAME_END_INT) {
  1074. /*
  1075. dev_dbg(dc->dev, "%s(): frame end\n", __func__);
  1076. */
  1077. dc->stats.frames++;
  1078. }
  1079. if (status & VBLANK_INT) {
  1080. /*
  1081. dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
  1082. */
  1083. drm_crtc_handle_vblank(&dc->base);
  1084. tegra_dc_finish_page_flip(dc);
  1085. dc->stats.vblank++;
  1086. }
  1087. if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
  1088. /*
  1089. dev_dbg(dc->dev, "%s(): underflow\n", __func__);
  1090. */
  1091. dc->stats.underflow++;
  1092. }
  1093. if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
  1094. /*
  1095. dev_dbg(dc->dev, "%s(): overflow\n", __func__);
  1096. */
  1097. dc->stats.overflow++;
  1098. }
  1099. return IRQ_HANDLED;
  1100. }
  1101. static int tegra_dc_show_regs(struct seq_file *s, void *data)
  1102. {
  1103. struct drm_info_node *node = s->private;
  1104. struct tegra_dc *dc = node->info_ent->data;
  1105. int err = 0;
  1106. drm_modeset_lock_crtc(&dc->base, NULL);
  1107. if (!dc->base.state->active) {
  1108. err = -EBUSY;
  1109. goto unlock;
  1110. }
  1111. #define DUMP_REG(name) \
  1112. seq_printf(s, "%-40s %#05x %08x\n", #name, name, \
  1113. tegra_dc_readl(dc, name))
  1114. DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
  1115. DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
  1116. DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
  1117. DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
  1118. DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
  1119. DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
  1120. DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
  1121. DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
  1122. DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
  1123. DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
  1124. DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
  1125. DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
  1126. DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
  1127. DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
  1128. DUMP_REG(DC_CMD_DISPLAY_COMMAND);
  1129. DUMP_REG(DC_CMD_SIGNAL_RAISE);
  1130. DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
  1131. DUMP_REG(DC_CMD_INT_STATUS);
  1132. DUMP_REG(DC_CMD_INT_MASK);
  1133. DUMP_REG(DC_CMD_INT_ENABLE);
  1134. DUMP_REG(DC_CMD_INT_TYPE);
  1135. DUMP_REG(DC_CMD_INT_POLARITY);
  1136. DUMP_REG(DC_CMD_SIGNAL_RAISE1);
  1137. DUMP_REG(DC_CMD_SIGNAL_RAISE2);
  1138. DUMP_REG(DC_CMD_SIGNAL_RAISE3);
  1139. DUMP_REG(DC_CMD_STATE_ACCESS);
  1140. DUMP_REG(DC_CMD_STATE_CONTROL);
  1141. DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
  1142. DUMP_REG(DC_CMD_REG_ACT_CONTROL);
  1143. DUMP_REG(DC_COM_CRC_CONTROL);
  1144. DUMP_REG(DC_COM_CRC_CHECKSUM);
  1145. DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
  1146. DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
  1147. DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
  1148. DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
  1149. DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
  1150. DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
  1151. DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
  1152. DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
  1153. DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
  1154. DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
  1155. DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
  1156. DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
  1157. DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
  1158. DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
  1159. DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
  1160. DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
  1161. DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
  1162. DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
  1163. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
  1164. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
  1165. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
  1166. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
  1167. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
  1168. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
  1169. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
  1170. DUMP_REG(DC_COM_PIN_MISC_CONTROL);
  1171. DUMP_REG(DC_COM_PIN_PM0_CONTROL);
  1172. DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
  1173. DUMP_REG(DC_COM_PIN_PM1_CONTROL);
  1174. DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
  1175. DUMP_REG(DC_COM_SPI_CONTROL);
  1176. DUMP_REG(DC_COM_SPI_START_BYTE);
  1177. DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
  1178. DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
  1179. DUMP_REG(DC_COM_HSPI_CS_DC);
  1180. DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
  1181. DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
  1182. DUMP_REG(DC_COM_GPIO_CTRL);
  1183. DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
  1184. DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
  1185. DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
  1186. DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
  1187. DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
  1188. DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
  1189. DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
  1190. DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
  1191. DUMP_REG(DC_DISP_REF_TO_SYNC);
  1192. DUMP_REG(DC_DISP_SYNC_WIDTH);
  1193. DUMP_REG(DC_DISP_BACK_PORCH);
  1194. DUMP_REG(DC_DISP_ACTIVE);
  1195. DUMP_REG(DC_DISP_FRONT_PORCH);
  1196. DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
  1197. DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
  1198. DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
  1199. DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
  1200. DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
  1201. DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
  1202. DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
  1203. DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
  1204. DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
  1205. DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
  1206. DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
  1207. DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
  1208. DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
  1209. DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
  1210. DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
  1211. DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
  1212. DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
  1213. DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
  1214. DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
  1215. DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
  1216. DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
  1217. DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
  1218. DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
  1219. DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
  1220. DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
  1221. DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
  1222. DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
  1223. DUMP_REG(DC_DISP_M0_CONTROL);
  1224. DUMP_REG(DC_DISP_M1_CONTROL);
  1225. DUMP_REG(DC_DISP_DI_CONTROL);
  1226. DUMP_REG(DC_DISP_PP_CONTROL);
  1227. DUMP_REG(DC_DISP_PP_SELECT_A);
  1228. DUMP_REG(DC_DISP_PP_SELECT_B);
  1229. DUMP_REG(DC_DISP_PP_SELECT_C);
  1230. DUMP_REG(DC_DISP_PP_SELECT_D);
  1231. DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
  1232. DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
  1233. DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
  1234. DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
  1235. DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
  1236. DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
  1237. DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
  1238. DUMP_REG(DC_DISP_BORDER_COLOR);
  1239. DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
  1240. DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
  1241. DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
  1242. DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
  1243. DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
  1244. DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
  1245. DUMP_REG(DC_DISP_CURSOR_START_ADDR);
  1246. DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
  1247. DUMP_REG(DC_DISP_CURSOR_POSITION);
  1248. DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
  1249. DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
  1250. DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
  1251. DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
  1252. DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
  1253. DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
  1254. DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
  1255. DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
  1256. DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
  1257. DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
  1258. DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
  1259. DUMP_REG(DC_DISP_DAC_CRT_CTRL);
  1260. DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
  1261. DUMP_REG(DC_DISP_SD_CONTROL);
  1262. DUMP_REG(DC_DISP_SD_CSC_COEFF);
  1263. DUMP_REG(DC_DISP_SD_LUT(0));
  1264. DUMP_REG(DC_DISP_SD_LUT(1));
  1265. DUMP_REG(DC_DISP_SD_LUT(2));
  1266. DUMP_REG(DC_DISP_SD_LUT(3));
  1267. DUMP_REG(DC_DISP_SD_LUT(4));
  1268. DUMP_REG(DC_DISP_SD_LUT(5));
  1269. DUMP_REG(DC_DISP_SD_LUT(6));
  1270. DUMP_REG(DC_DISP_SD_LUT(7));
  1271. DUMP_REG(DC_DISP_SD_LUT(8));
  1272. DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
  1273. DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
  1274. DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
  1275. DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
  1276. DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
  1277. DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
  1278. DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
  1279. DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
  1280. DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
  1281. DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
  1282. DUMP_REG(DC_DISP_SD_BL_TF(0));
  1283. DUMP_REG(DC_DISP_SD_BL_TF(1));
  1284. DUMP_REG(DC_DISP_SD_BL_TF(2));
  1285. DUMP_REG(DC_DISP_SD_BL_TF(3));
  1286. DUMP_REG(DC_DISP_SD_BL_CONTROL);
  1287. DUMP_REG(DC_DISP_SD_HW_K_VALUES);
  1288. DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
  1289. DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
  1290. DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
  1291. DUMP_REG(DC_WIN_WIN_OPTIONS);
  1292. DUMP_REG(DC_WIN_BYTE_SWAP);
  1293. DUMP_REG(DC_WIN_BUFFER_CONTROL);
  1294. DUMP_REG(DC_WIN_COLOR_DEPTH);
  1295. DUMP_REG(DC_WIN_POSITION);
  1296. DUMP_REG(DC_WIN_SIZE);
  1297. DUMP_REG(DC_WIN_PRESCALED_SIZE);
  1298. DUMP_REG(DC_WIN_H_INITIAL_DDA);
  1299. DUMP_REG(DC_WIN_V_INITIAL_DDA);
  1300. DUMP_REG(DC_WIN_DDA_INC);
  1301. DUMP_REG(DC_WIN_LINE_STRIDE);
  1302. DUMP_REG(DC_WIN_BUF_STRIDE);
  1303. DUMP_REG(DC_WIN_UV_BUF_STRIDE);
  1304. DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
  1305. DUMP_REG(DC_WIN_DV_CONTROL);
  1306. DUMP_REG(DC_WIN_BLEND_NOKEY);
  1307. DUMP_REG(DC_WIN_BLEND_1WIN);
  1308. DUMP_REG(DC_WIN_BLEND_2WIN_X);
  1309. DUMP_REG(DC_WIN_BLEND_2WIN_Y);
  1310. DUMP_REG(DC_WIN_BLEND_3WIN_XY);
  1311. DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
  1312. DUMP_REG(DC_WINBUF_START_ADDR);
  1313. DUMP_REG(DC_WINBUF_START_ADDR_NS);
  1314. DUMP_REG(DC_WINBUF_START_ADDR_U);
  1315. DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
  1316. DUMP_REG(DC_WINBUF_START_ADDR_V);
  1317. DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
  1318. DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
  1319. DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
  1320. DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
  1321. DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
  1322. DUMP_REG(DC_WINBUF_UFLOW_STATUS);
  1323. DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
  1324. DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
  1325. DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
  1326. #undef DUMP_REG
  1327. unlock:
  1328. drm_modeset_unlock_crtc(&dc->base);
  1329. return err;
  1330. }
  1331. static int tegra_dc_show_crc(struct seq_file *s, void *data)
  1332. {
  1333. struct drm_info_node *node = s->private;
  1334. struct tegra_dc *dc = node->info_ent->data;
  1335. int err = 0;
  1336. u32 value;
  1337. drm_modeset_lock_crtc(&dc->base, NULL);
  1338. if (!dc->base.state->active) {
  1339. err = -EBUSY;
  1340. goto unlock;
  1341. }
  1342. value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
  1343. tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
  1344. tegra_dc_commit(dc);
  1345. drm_crtc_wait_one_vblank(&dc->base);
  1346. drm_crtc_wait_one_vblank(&dc->base);
  1347. value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
  1348. seq_printf(s, "%08x\n", value);
  1349. tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
  1350. unlock:
  1351. drm_modeset_unlock_crtc(&dc->base);
  1352. return err;
  1353. }
  1354. static int tegra_dc_show_stats(struct seq_file *s, void *data)
  1355. {
  1356. struct drm_info_node *node = s->private;
  1357. struct tegra_dc *dc = node->info_ent->data;
  1358. seq_printf(s, "frames: %lu\n", dc->stats.frames);
  1359. seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
  1360. seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
  1361. seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
  1362. return 0;
  1363. }
  1364. static struct drm_info_list debugfs_files[] = {
  1365. { "regs", tegra_dc_show_regs, 0, NULL },
  1366. { "crc", tegra_dc_show_crc, 0, NULL },
  1367. { "stats", tegra_dc_show_stats, 0, NULL },
  1368. };
  1369. static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
  1370. {
  1371. unsigned int i;
  1372. char *name;
  1373. int err;
  1374. name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
  1375. dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
  1376. kfree(name);
  1377. if (!dc->debugfs)
  1378. return -ENOMEM;
  1379. dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
  1380. GFP_KERNEL);
  1381. if (!dc->debugfs_files) {
  1382. err = -ENOMEM;
  1383. goto remove;
  1384. }
  1385. for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
  1386. dc->debugfs_files[i].data = dc;
  1387. err = drm_debugfs_create_files(dc->debugfs_files,
  1388. ARRAY_SIZE(debugfs_files),
  1389. dc->debugfs, minor);
  1390. if (err < 0)
  1391. goto free;
  1392. dc->minor = minor;
  1393. return 0;
  1394. free:
  1395. kfree(dc->debugfs_files);
  1396. dc->debugfs_files = NULL;
  1397. remove:
  1398. debugfs_remove(dc->debugfs);
  1399. dc->debugfs = NULL;
  1400. return err;
  1401. }
  1402. static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
  1403. {
  1404. drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
  1405. dc->minor);
  1406. dc->minor = NULL;
  1407. kfree(dc->debugfs_files);
  1408. dc->debugfs_files = NULL;
  1409. debugfs_remove(dc->debugfs);
  1410. dc->debugfs = NULL;
  1411. return 0;
  1412. }
  1413. static int tegra_dc_init(struct host1x_client *client)
  1414. {
  1415. struct drm_device *drm = dev_get_drvdata(client->parent);
  1416. unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
  1417. struct tegra_dc *dc = host1x_client_to_dc(client);
  1418. struct tegra_drm *tegra = drm->dev_private;
  1419. struct drm_plane *primary = NULL;
  1420. struct drm_plane *cursor = NULL;
  1421. int err;
  1422. dc->syncpt = host1x_syncpt_request(dc->dev, flags);
  1423. if (!dc->syncpt)
  1424. dev_warn(dc->dev, "failed to allocate syncpoint\n");
  1425. if (tegra->domain) {
  1426. err = iommu_attach_device(tegra->domain, dc->dev);
  1427. if (err < 0) {
  1428. dev_err(dc->dev, "failed to attach to domain: %d\n",
  1429. err);
  1430. return err;
  1431. }
  1432. dc->domain = tegra->domain;
  1433. }
  1434. primary = tegra_dc_primary_plane_create(drm, dc);
  1435. if (IS_ERR(primary)) {
  1436. err = PTR_ERR(primary);
  1437. goto cleanup;
  1438. }
  1439. if (dc->soc->supports_cursor) {
  1440. cursor = tegra_dc_cursor_plane_create(drm, dc);
  1441. if (IS_ERR(cursor)) {
  1442. err = PTR_ERR(cursor);
  1443. goto cleanup;
  1444. }
  1445. }
  1446. err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
  1447. &tegra_crtc_funcs, NULL);
  1448. if (err < 0)
  1449. goto cleanup;
  1450. drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
  1451. /*
  1452. * Keep track of the minimum pitch alignment across all display
  1453. * controllers.
  1454. */
  1455. if (dc->soc->pitch_align > tegra->pitch_align)
  1456. tegra->pitch_align = dc->soc->pitch_align;
  1457. err = tegra_dc_rgb_init(drm, dc);
  1458. if (err < 0 && err != -ENODEV) {
  1459. dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
  1460. goto cleanup;
  1461. }
  1462. err = tegra_dc_add_planes(drm, dc);
  1463. if (err < 0)
  1464. goto cleanup;
  1465. if (IS_ENABLED(CONFIG_DEBUG_FS)) {
  1466. err = tegra_dc_debugfs_init(dc, drm->primary);
  1467. if (err < 0)
  1468. dev_err(dc->dev, "debugfs setup failed: %d\n", err);
  1469. }
  1470. err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
  1471. dev_name(dc->dev), dc);
  1472. if (err < 0) {
  1473. dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
  1474. err);
  1475. goto cleanup;
  1476. }
  1477. return 0;
  1478. cleanup:
  1479. if (cursor)
  1480. drm_plane_cleanup(cursor);
  1481. if (primary)
  1482. drm_plane_cleanup(primary);
  1483. if (tegra->domain) {
  1484. iommu_detach_device(tegra->domain, dc->dev);
  1485. dc->domain = NULL;
  1486. }
  1487. return err;
  1488. }
  1489. static int tegra_dc_exit(struct host1x_client *client)
  1490. {
  1491. struct tegra_dc *dc = host1x_client_to_dc(client);
  1492. int err;
  1493. devm_free_irq(dc->dev, dc->irq, dc);
  1494. if (IS_ENABLED(CONFIG_DEBUG_FS)) {
  1495. err = tegra_dc_debugfs_exit(dc);
  1496. if (err < 0)
  1497. dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
  1498. }
  1499. err = tegra_dc_rgb_exit(dc);
  1500. if (err) {
  1501. dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
  1502. return err;
  1503. }
  1504. if (dc->domain) {
  1505. iommu_detach_device(dc->domain, dc->dev);
  1506. dc->domain = NULL;
  1507. }
  1508. host1x_syncpt_free(dc->syncpt);
  1509. return 0;
  1510. }
  1511. static const struct host1x_client_ops dc_client_ops = {
  1512. .init = tegra_dc_init,
  1513. .exit = tegra_dc_exit,
  1514. };
  1515. static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
  1516. .supports_border_color = true,
  1517. .supports_interlacing = false,
  1518. .supports_cursor = false,
  1519. .supports_block_linear = false,
  1520. .pitch_align = 8,
  1521. .has_powergate = false,
  1522. };
  1523. static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
  1524. .supports_border_color = true,
  1525. .supports_interlacing = false,
  1526. .supports_cursor = false,
  1527. .supports_block_linear = false,
  1528. .pitch_align = 8,
  1529. .has_powergate = false,
  1530. };
  1531. static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
  1532. .supports_border_color = true,
  1533. .supports_interlacing = false,
  1534. .supports_cursor = false,
  1535. .supports_block_linear = false,
  1536. .pitch_align = 64,
  1537. .has_powergate = true,
  1538. };
  1539. static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
  1540. .supports_border_color = false,
  1541. .supports_interlacing = true,
  1542. .supports_cursor = true,
  1543. .supports_block_linear = true,
  1544. .pitch_align = 64,
  1545. .has_powergate = true,
  1546. };
  1547. static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
  1548. .supports_border_color = false,
  1549. .supports_interlacing = true,
  1550. .supports_cursor = true,
  1551. .supports_block_linear = true,
  1552. .pitch_align = 64,
  1553. .has_powergate = true,
  1554. };
  1555. static const struct of_device_id tegra_dc_of_match[] = {
  1556. {
  1557. .compatible = "nvidia,tegra210-dc",
  1558. .data = &tegra210_dc_soc_info,
  1559. }, {
  1560. .compatible = "nvidia,tegra124-dc",
  1561. .data = &tegra124_dc_soc_info,
  1562. }, {
  1563. .compatible = "nvidia,tegra114-dc",
  1564. .data = &tegra114_dc_soc_info,
  1565. }, {
  1566. .compatible = "nvidia,tegra30-dc",
  1567. .data = &tegra30_dc_soc_info,
  1568. }, {
  1569. .compatible = "nvidia,tegra20-dc",
  1570. .data = &tegra20_dc_soc_info,
  1571. }, {
  1572. /* sentinel */
  1573. }
  1574. };
  1575. MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
  1576. static int tegra_dc_parse_dt(struct tegra_dc *dc)
  1577. {
  1578. struct device_node *np;
  1579. u32 value = 0;
  1580. int err;
  1581. err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
  1582. if (err < 0) {
  1583. dev_err(dc->dev, "missing \"nvidia,head\" property\n");
  1584. /*
  1585. * If the nvidia,head property isn't present, try to find the
  1586. * correct head number by looking up the position of this
  1587. * display controller's node within the device tree. Assuming
  1588. * that the nodes are ordered properly in the DTS file and
  1589. * that the translation into a flattened device tree blob
  1590. * preserves that ordering this will actually yield the right
  1591. * head number.
  1592. *
  1593. * If those assumptions don't hold, this will still work for
  1594. * cases where only a single display controller is used.
  1595. */
  1596. for_each_matching_node(np, tegra_dc_of_match) {
  1597. if (np == dc->dev->of_node) {
  1598. of_node_put(np);
  1599. break;
  1600. }
  1601. value++;
  1602. }
  1603. }
  1604. dc->pipe = value;
  1605. return 0;
  1606. }
  1607. static int tegra_dc_probe(struct platform_device *pdev)
  1608. {
  1609. const struct of_device_id *id;
  1610. struct resource *regs;
  1611. struct tegra_dc *dc;
  1612. int err;
  1613. dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
  1614. if (!dc)
  1615. return -ENOMEM;
  1616. id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
  1617. if (!id)
  1618. return -ENODEV;
  1619. spin_lock_init(&dc->lock);
  1620. INIT_LIST_HEAD(&dc->list);
  1621. dc->dev = &pdev->dev;
  1622. dc->soc = id->data;
  1623. err = tegra_dc_parse_dt(dc);
  1624. if (err < 0)
  1625. return err;
  1626. dc->clk = devm_clk_get(&pdev->dev, NULL);
  1627. if (IS_ERR(dc->clk)) {
  1628. dev_err(&pdev->dev, "failed to get clock\n");
  1629. return PTR_ERR(dc->clk);
  1630. }
  1631. dc->rst = devm_reset_control_get(&pdev->dev, "dc");
  1632. if (IS_ERR(dc->rst)) {
  1633. dev_err(&pdev->dev, "failed to get reset\n");
  1634. return PTR_ERR(dc->rst);
  1635. }
  1636. reset_control_assert(dc->rst);
  1637. if (dc->soc->has_powergate) {
  1638. if (dc->pipe == 0)
  1639. dc->powergate = TEGRA_POWERGATE_DIS;
  1640. else
  1641. dc->powergate = TEGRA_POWERGATE_DISB;
  1642. tegra_powergate_power_off(dc->powergate);
  1643. }
  1644. regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1645. dc->regs = devm_ioremap_resource(&pdev->dev, regs);
  1646. if (IS_ERR(dc->regs))
  1647. return PTR_ERR(dc->regs);
  1648. dc->irq = platform_get_irq(pdev, 0);
  1649. if (dc->irq < 0) {
  1650. dev_err(&pdev->dev, "failed to get IRQ\n");
  1651. return -ENXIO;
  1652. }
  1653. err = tegra_dc_rgb_probe(dc);
  1654. if (err < 0 && err != -ENODEV) {
  1655. dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
  1656. return err;
  1657. }
  1658. platform_set_drvdata(pdev, dc);
  1659. pm_runtime_enable(&pdev->dev);
  1660. INIT_LIST_HEAD(&dc->client.list);
  1661. dc->client.ops = &dc_client_ops;
  1662. dc->client.dev = &pdev->dev;
  1663. err = host1x_client_register(&dc->client);
  1664. if (err < 0) {
  1665. dev_err(&pdev->dev, "failed to register host1x client: %d\n",
  1666. err);
  1667. return err;
  1668. }
  1669. return 0;
  1670. }
  1671. static int tegra_dc_remove(struct platform_device *pdev)
  1672. {
  1673. struct tegra_dc *dc = platform_get_drvdata(pdev);
  1674. int err;
  1675. err = host1x_client_unregister(&dc->client);
  1676. if (err < 0) {
  1677. dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
  1678. err);
  1679. return err;
  1680. }
  1681. err = tegra_dc_rgb_remove(dc);
  1682. if (err < 0) {
  1683. dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
  1684. return err;
  1685. }
  1686. pm_runtime_disable(&pdev->dev);
  1687. return 0;
  1688. }
  1689. #ifdef CONFIG_PM
  1690. static int tegra_dc_suspend(struct device *dev)
  1691. {
  1692. struct tegra_dc *dc = dev_get_drvdata(dev);
  1693. int err;
  1694. err = reset_control_assert(dc->rst);
  1695. if (err < 0) {
  1696. dev_err(dev, "failed to assert reset: %d\n", err);
  1697. return err;
  1698. }
  1699. if (dc->soc->has_powergate)
  1700. tegra_powergate_power_off(dc->powergate);
  1701. clk_disable_unprepare(dc->clk);
  1702. return 0;
  1703. }
  1704. static int tegra_dc_resume(struct device *dev)
  1705. {
  1706. struct tegra_dc *dc = dev_get_drvdata(dev);
  1707. int err;
  1708. if (dc->soc->has_powergate) {
  1709. err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
  1710. dc->rst);
  1711. if (err < 0) {
  1712. dev_err(dev, "failed to power partition: %d\n", err);
  1713. return err;
  1714. }
  1715. } else {
  1716. err = clk_prepare_enable(dc->clk);
  1717. if (err < 0) {
  1718. dev_err(dev, "failed to enable clock: %d\n", err);
  1719. return err;
  1720. }
  1721. err = reset_control_deassert(dc->rst);
  1722. if (err < 0) {
  1723. dev_err(dev, "failed to deassert reset: %d\n", err);
  1724. return err;
  1725. }
  1726. }
  1727. return 0;
  1728. }
  1729. #endif
  1730. static const struct dev_pm_ops tegra_dc_pm_ops = {
  1731. SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
  1732. };
  1733. struct platform_driver tegra_dc_driver = {
  1734. .driver = {
  1735. .name = "tegra-dc",
  1736. .of_match_table = tegra_dc_of_match,
  1737. .pm = &tegra_dc_pm_ops,
  1738. },
  1739. .probe = tegra_dc_probe,
  1740. .remove = tegra_dc_remove,
  1741. };