intel_ringbuffer.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573
  1. #ifndef _INTEL_RINGBUFFER_H_
  2. #define _INTEL_RINGBUFFER_H_
  3. #include <linux/hashtable.h>
  4. #include "i915_gem_batch_pool.h"
  5. #define I915_CMD_HASH_ORDER 9
  6. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  7. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  8. * to give some inclination as to some of the magic values used in the various
  9. * workarounds!
  10. */
  11. #define CACHELINE_BYTES 64
  12. #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  13. /*
  14. * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
  15. * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
  16. * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
  17. *
  18. * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
  19. * cacheline, the Head Pointer must not be greater than the Tail
  20. * Pointer."
  21. */
  22. #define I915_RING_FREE_SPACE 64
  23. struct intel_hw_status_page {
  24. u32 *page_addr;
  25. unsigned int gfx_addr;
  26. struct drm_i915_gem_object *obj;
  27. };
  28. #define I915_READ_TAIL(ring) I915_READ(RING_TAIL((ring)->mmio_base))
  29. #define I915_WRITE_TAIL(ring, val) I915_WRITE(RING_TAIL((ring)->mmio_base), val)
  30. #define I915_READ_START(ring) I915_READ(RING_START((ring)->mmio_base))
  31. #define I915_WRITE_START(ring, val) I915_WRITE(RING_START((ring)->mmio_base), val)
  32. #define I915_READ_HEAD(ring) I915_READ(RING_HEAD((ring)->mmio_base))
  33. #define I915_WRITE_HEAD(ring, val) I915_WRITE(RING_HEAD((ring)->mmio_base), val)
  34. #define I915_READ_CTL(ring) I915_READ(RING_CTL((ring)->mmio_base))
  35. #define I915_WRITE_CTL(ring, val) I915_WRITE(RING_CTL((ring)->mmio_base), val)
  36. #define I915_READ_IMR(ring) I915_READ(RING_IMR((ring)->mmio_base))
  37. #define I915_WRITE_IMR(ring, val) I915_WRITE(RING_IMR((ring)->mmio_base), val)
  38. #define I915_READ_MODE(ring) I915_READ(RING_MI_MODE((ring)->mmio_base))
  39. #define I915_WRITE_MODE(ring, val) I915_WRITE(RING_MI_MODE((ring)->mmio_base), val)
  40. /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  41. * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  42. */
  43. #define gen8_semaphore_seqno_size sizeof(uint64_t)
  44. #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
  45. (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
  46. #define GEN8_SIGNAL_OFFSET(__ring, to) \
  47. (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
  48. GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  49. #define GEN8_WAIT_OFFSET(__ring, from) \
  50. (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
  51. GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  52. enum intel_ring_hangcheck_action {
  53. HANGCHECK_IDLE = 0,
  54. HANGCHECK_WAIT,
  55. HANGCHECK_ACTIVE,
  56. HANGCHECK_KICK,
  57. HANGCHECK_HUNG,
  58. };
  59. #define HANGCHECK_SCORE_RING_HUNG 31
  60. struct intel_ring_hangcheck {
  61. u64 acthd;
  62. unsigned long user_interrupts;
  63. u32 seqno;
  64. int score;
  65. enum intel_ring_hangcheck_action action;
  66. int deadlock;
  67. u32 instdone[I915_NUM_INSTDONE_REG];
  68. };
  69. struct intel_ringbuffer {
  70. struct drm_i915_gem_object *obj;
  71. void __iomem *virtual_start;
  72. struct i915_vma *vma;
  73. struct intel_engine_cs *engine;
  74. struct list_head link;
  75. u32 head;
  76. u32 tail;
  77. int space;
  78. int size;
  79. int effective_size;
  80. /** We track the position of the requests in the ring buffer, and
  81. * when each is retired we increment last_retired_head as the GPU
  82. * must have finished processing the request and so we know we
  83. * can advance the ringbuffer up to that position.
  84. *
  85. * last_retired_head is set to -1 after the value is consumed so
  86. * we can detect new retirements.
  87. */
  88. u32 last_retired_head;
  89. };
  90. struct i915_gem_context;
  91. struct drm_i915_reg_table;
  92. /*
  93. * we use a single page to load ctx workarounds so all of these
  94. * values are referred in terms of dwords
  95. *
  96. * struct i915_wa_ctx_bb:
  97. * offset: specifies batch starting position, also helpful in case
  98. * if we want to have multiple batches at different offsets based on
  99. * some criteria. It is not a requirement at the moment but provides
  100. * an option for future use.
  101. * size: size of the batch in DWORDS
  102. */
  103. struct i915_ctx_workarounds {
  104. struct i915_wa_ctx_bb {
  105. u32 offset;
  106. u32 size;
  107. } indirect_ctx, per_ctx;
  108. struct drm_i915_gem_object *obj;
  109. };
  110. struct drm_i915_gem_request;
  111. struct intel_engine_cs {
  112. struct drm_i915_private *i915;
  113. const char *name;
  114. enum intel_engine_id {
  115. RCS = 0,
  116. BCS,
  117. VCS,
  118. VCS2, /* Keep instances of the same type engine together. */
  119. VECS
  120. } id;
  121. #define I915_NUM_ENGINES 5
  122. #define _VCS(n) (VCS + (n))
  123. unsigned int exec_id;
  124. unsigned int hw_id;
  125. unsigned int guc_id; /* XXX same as hw_id? */
  126. u32 mmio_base;
  127. struct intel_ringbuffer *buffer;
  128. struct list_head buffers;
  129. /* Rather than have every client wait upon all user interrupts,
  130. * with the herd waking after every interrupt and each doing the
  131. * heavyweight seqno dance, we delegate the task (of being the
  132. * bottom-half of the user interrupt) to the first client. After
  133. * every interrupt, we wake up one client, who does the heavyweight
  134. * coherent seqno read and either goes back to sleep (if incomplete),
  135. * or wakes up all the completed clients in parallel, before then
  136. * transferring the bottom-half status to the next client in the queue.
  137. *
  138. * Compared to walking the entire list of waiters in a single dedicated
  139. * bottom-half, we reduce the latency of the first waiter by avoiding
  140. * a context switch, but incur additional coherent seqno reads when
  141. * following the chain of request breadcrumbs. Since it is most likely
  142. * that we have a single client waiting on each seqno, then reducing
  143. * the overhead of waking that client is much preferred.
  144. */
  145. struct intel_breadcrumbs {
  146. struct task_struct *irq_seqno_bh; /* bh for user interrupts */
  147. unsigned long irq_wakeups;
  148. bool irq_posted;
  149. spinlock_t lock; /* protects the lists of requests */
  150. struct rb_root waiters; /* sorted by retirement, priority */
  151. struct rb_root signals; /* sorted by retirement */
  152. struct intel_wait *first_wait; /* oldest waiter by retirement */
  153. struct task_struct *signaler; /* used for fence signalling */
  154. struct drm_i915_gem_request *first_signal;
  155. struct timer_list fake_irq; /* used after a missed interrupt */
  156. bool irq_enabled : 1;
  157. bool rpm_wakelock : 1;
  158. } breadcrumbs;
  159. /*
  160. * A pool of objects to use as shadow copies of client batch buffers
  161. * when the command parser is enabled. Prevents the client from
  162. * modifying the batch contents after software parsing.
  163. */
  164. struct i915_gem_batch_pool batch_pool;
  165. struct intel_hw_status_page status_page;
  166. struct i915_ctx_workarounds wa_ctx;
  167. u32 irq_keep_mask; /* always keep these interrupts */
  168. u32 irq_enable_mask; /* bitmask to enable ring interrupt */
  169. void (*irq_enable)(struct intel_engine_cs *ring);
  170. void (*irq_disable)(struct intel_engine_cs *ring);
  171. int (*init_hw)(struct intel_engine_cs *ring);
  172. int (*init_context)(struct drm_i915_gem_request *req);
  173. void (*write_tail)(struct intel_engine_cs *ring,
  174. u32 value);
  175. int __must_check (*flush)(struct drm_i915_gem_request *req,
  176. u32 invalidate_domains,
  177. u32 flush_domains);
  178. int (*add_request)(struct drm_i915_gem_request *req);
  179. /* Some chipsets are not quite as coherent as advertised and need
  180. * an expensive kick to force a true read of the up-to-date seqno.
  181. * However, the up-to-date seqno is not always required and the last
  182. * seen value is good enough. Note that the seqno will always be
  183. * monotonic, even if not coherent.
  184. */
  185. void (*irq_seqno_barrier)(struct intel_engine_cs *ring);
  186. int (*dispatch_execbuffer)(struct drm_i915_gem_request *req,
  187. u64 offset, u32 length,
  188. unsigned dispatch_flags);
  189. #define I915_DISPATCH_SECURE 0x1
  190. #define I915_DISPATCH_PINNED 0x2
  191. #define I915_DISPATCH_RS 0x4
  192. void (*cleanup)(struct intel_engine_cs *ring);
  193. /* GEN8 signal/wait table - never trust comments!
  194. * signal to signal to signal to signal to signal to
  195. * RCS VCS BCS VECS VCS2
  196. * --------------------------------------------------------------------
  197. * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
  198. * |-------------------------------------------------------------------
  199. * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
  200. * |-------------------------------------------------------------------
  201. * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
  202. * |-------------------------------------------------------------------
  203. * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
  204. * |-------------------------------------------------------------------
  205. * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
  206. * |-------------------------------------------------------------------
  207. *
  208. * Generalization:
  209. * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
  210. * ie. transpose of g(x, y)
  211. *
  212. * sync from sync from sync from sync from sync from
  213. * RCS VCS BCS VECS VCS2
  214. * --------------------------------------------------------------------
  215. * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
  216. * |-------------------------------------------------------------------
  217. * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
  218. * |-------------------------------------------------------------------
  219. * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
  220. * |-------------------------------------------------------------------
  221. * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
  222. * |-------------------------------------------------------------------
  223. * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
  224. * |-------------------------------------------------------------------
  225. *
  226. * Generalization:
  227. * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
  228. * ie. transpose of f(x, y)
  229. */
  230. struct {
  231. u32 sync_seqno[I915_NUM_ENGINES-1];
  232. union {
  233. struct {
  234. /* our mbox written by others */
  235. u32 wait[I915_NUM_ENGINES];
  236. /* mboxes this ring signals to */
  237. i915_reg_t signal[I915_NUM_ENGINES];
  238. } mbox;
  239. u64 signal_ggtt[I915_NUM_ENGINES];
  240. };
  241. /* AKA wait() */
  242. int (*sync_to)(struct drm_i915_gem_request *to_req,
  243. struct intel_engine_cs *from,
  244. u32 seqno);
  245. int (*signal)(struct drm_i915_gem_request *signaller_req,
  246. /* num_dwords needed by caller */
  247. unsigned int num_dwords);
  248. } semaphore;
  249. /* Execlists */
  250. struct tasklet_struct irq_tasklet;
  251. spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
  252. struct list_head execlist_queue;
  253. unsigned int fw_domains;
  254. unsigned int next_context_status_buffer;
  255. unsigned int idle_lite_restore_wa;
  256. bool disable_lite_restore_wa;
  257. u32 ctx_desc_template;
  258. int (*emit_request)(struct drm_i915_gem_request *request);
  259. int (*emit_flush)(struct drm_i915_gem_request *request,
  260. u32 invalidate_domains,
  261. u32 flush_domains);
  262. int (*emit_bb_start)(struct drm_i915_gem_request *req,
  263. u64 offset, unsigned dispatch_flags);
  264. /**
  265. * List of objects currently involved in rendering from the
  266. * ringbuffer.
  267. *
  268. * Includes buffers having the contents of their GPU caches
  269. * flushed, not necessarily primitives. last_read_req
  270. * represents when the rendering involved will be completed.
  271. *
  272. * A reference is held on the buffer while on this list.
  273. */
  274. struct list_head active_list;
  275. /**
  276. * List of breadcrumbs associated with GPU requests currently
  277. * outstanding.
  278. */
  279. struct list_head request_list;
  280. /**
  281. * Seqno of request most recently submitted to request_list.
  282. * Used exclusively by hang checker to avoid grabbing lock while
  283. * inspecting request list.
  284. */
  285. u32 last_submitted_seqno;
  286. bool gpu_caches_dirty;
  287. struct i915_gem_context *last_context;
  288. struct intel_ring_hangcheck hangcheck;
  289. struct {
  290. struct drm_i915_gem_object *obj;
  291. u32 gtt_offset;
  292. } scratch;
  293. bool needs_cmd_parser;
  294. /*
  295. * Table of commands the command parser needs to know about
  296. * for this ring.
  297. */
  298. DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
  299. /*
  300. * Table of registers allowed in commands that read/write registers.
  301. */
  302. const struct drm_i915_reg_table *reg_tables;
  303. int reg_table_count;
  304. /*
  305. * Returns the bitmask for the length field of the specified command.
  306. * Return 0 for an unrecognized/invalid command.
  307. *
  308. * If the command parser finds an entry for a command in the ring's
  309. * cmd_tables, it gets the command's length based on the table entry.
  310. * If not, it calls this function to determine the per-ring length field
  311. * encoding for the command (i.e. certain opcode ranges use certain bits
  312. * to encode the command length in the header).
  313. */
  314. u32 (*get_cmd_length_mask)(u32 cmd_header);
  315. };
  316. static inline bool
  317. intel_engine_initialized(const struct intel_engine_cs *engine)
  318. {
  319. return engine->i915 != NULL;
  320. }
  321. static inline unsigned
  322. intel_engine_flag(const struct intel_engine_cs *engine)
  323. {
  324. return 1 << engine->id;
  325. }
  326. static inline u32
  327. intel_ring_sync_index(struct intel_engine_cs *engine,
  328. struct intel_engine_cs *other)
  329. {
  330. int idx;
  331. /*
  332. * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
  333. * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
  334. * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
  335. * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
  336. * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
  337. */
  338. idx = (other - engine) - 1;
  339. if (idx < 0)
  340. idx += I915_NUM_ENGINES;
  341. return idx;
  342. }
  343. static inline void
  344. intel_flush_status_page(struct intel_engine_cs *engine, int reg)
  345. {
  346. mb();
  347. clflush(&engine->status_page.page_addr[reg]);
  348. mb();
  349. }
  350. static inline u32
  351. intel_read_status_page(struct intel_engine_cs *engine, int reg)
  352. {
  353. /* Ensure that the compiler doesn't optimize away the load. */
  354. return READ_ONCE(engine->status_page.page_addr[reg]);
  355. }
  356. static inline void
  357. intel_write_status_page(struct intel_engine_cs *engine,
  358. int reg, u32 value)
  359. {
  360. engine->status_page.page_addr[reg] = value;
  361. }
  362. /*
  363. * Reads a dword out of the status page, which is written to from the command
  364. * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
  365. * MI_STORE_DATA_IMM.
  366. *
  367. * The following dwords have a reserved meaning:
  368. * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
  369. * 0x04: ring 0 head pointer
  370. * 0x05: ring 1 head pointer (915-class)
  371. * 0x06: ring 2 head pointer (915-class)
  372. * 0x10-0x1b: Context status DWords (GM45)
  373. * 0x1f: Last written status offset. (GM45)
  374. * 0x20-0x2f: Reserved (Gen6+)
  375. *
  376. * The area from dword 0x30 to 0x3ff is available for driver usage.
  377. */
  378. #define I915_GEM_HWS_INDEX 0x30
  379. #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  380. #define I915_GEM_HWS_SCRATCH_INDEX 0x40
  381. #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  382. struct intel_ringbuffer *
  383. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size);
  384. int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
  385. struct intel_ringbuffer *ringbuf);
  386. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf);
  387. void intel_ringbuffer_free(struct intel_ringbuffer *ring);
  388. void intel_stop_engine(struct intel_engine_cs *engine);
  389. void intel_cleanup_engine(struct intel_engine_cs *engine);
  390. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
  391. int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
  392. int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
  393. static inline void intel_ring_emit(struct intel_engine_cs *engine,
  394. u32 data)
  395. {
  396. struct intel_ringbuffer *ringbuf = engine->buffer;
  397. iowrite32(data, ringbuf->virtual_start + ringbuf->tail);
  398. ringbuf->tail += 4;
  399. }
  400. static inline void intel_ring_emit_reg(struct intel_engine_cs *engine,
  401. i915_reg_t reg)
  402. {
  403. intel_ring_emit(engine, i915_mmio_reg_offset(reg));
  404. }
  405. static inline void intel_ring_advance(struct intel_engine_cs *engine)
  406. {
  407. struct intel_ringbuffer *ringbuf = engine->buffer;
  408. ringbuf->tail &= ringbuf->size - 1;
  409. }
  410. int __intel_ring_space(int head, int tail, int size);
  411. void intel_ring_update_space(struct intel_ringbuffer *ringbuf);
  412. int __must_check intel_engine_idle(struct intel_engine_cs *engine);
  413. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno);
  414. int intel_ring_flush_all_caches(struct drm_i915_gem_request *req);
  415. int intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req);
  416. int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
  417. void intel_fini_pipe_control(struct intel_engine_cs *engine);
  418. int intel_init_render_ring_buffer(struct drm_device *dev);
  419. int intel_init_bsd_ring_buffer(struct drm_device *dev);
  420. int intel_init_bsd2_ring_buffer(struct drm_device *dev);
  421. int intel_init_blt_ring_buffer(struct drm_device *dev);
  422. int intel_init_vebox_ring_buffer(struct drm_device *dev);
  423. u64 intel_ring_get_active_head(struct intel_engine_cs *engine);
  424. static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
  425. {
  426. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  427. }
  428. int init_workarounds_ring(struct intel_engine_cs *engine);
  429. static inline u32 intel_ring_get_tail(struct intel_ringbuffer *ringbuf)
  430. {
  431. return ringbuf->tail;
  432. }
  433. /*
  434. * Arbitrary size for largest possible 'add request' sequence. The code paths
  435. * are complex and variable. Empirical measurement shows that the worst case
  436. * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
  437. * we need to allocate double the largest single packet within that emission
  438. * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
  439. */
  440. #define MIN_SPACE_FOR_ADD_REQUEST 336
  441. static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
  442. {
  443. return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
  444. }
  445. /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
  446. struct intel_wait {
  447. struct rb_node node;
  448. struct task_struct *tsk;
  449. u32 seqno;
  450. };
  451. struct intel_signal_node {
  452. struct rb_node node;
  453. struct intel_wait wait;
  454. };
  455. int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
  456. static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
  457. {
  458. wait->tsk = current;
  459. wait->seqno = seqno;
  460. }
  461. static inline bool intel_wait_complete(const struct intel_wait *wait)
  462. {
  463. return RB_EMPTY_NODE(&wait->node);
  464. }
  465. bool intel_engine_add_wait(struct intel_engine_cs *engine,
  466. struct intel_wait *wait);
  467. void intel_engine_remove_wait(struct intel_engine_cs *engine,
  468. struct intel_wait *wait);
  469. void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
  470. static inline bool intel_engine_has_waiter(struct intel_engine_cs *engine)
  471. {
  472. return READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
  473. }
  474. static inline bool intel_engine_wakeup(struct intel_engine_cs *engine)
  475. {
  476. bool wakeup = false;
  477. struct task_struct *tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
  478. /* Note that for this not to dangerously chase a dangling pointer,
  479. * the caller is responsible for ensure that the task remain valid for
  480. * wake_up_process() i.e. that the RCU grace period cannot expire.
  481. *
  482. * Also note that tsk is likely to be in !TASK_RUNNING state so an
  483. * early test for tsk->state != TASK_RUNNING before wake_up_process()
  484. * is unlikely to be beneficial.
  485. */
  486. if (tsk)
  487. wakeup = wake_up_process(tsk);
  488. return wakeup;
  489. }
  490. void intel_engine_enable_fake_irq(struct intel_engine_cs *engine);
  491. void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
  492. unsigned int intel_kick_waiters(struct drm_i915_private *i915);
  493. unsigned int intel_kick_signalers(struct drm_i915_private *i915);
  494. #endif /* _INTEL_RINGBUFFER_H_ */