intel_ringbuffer.c 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  47. {
  48. if (ringbuf->last_retired_head != -1) {
  49. ringbuf->head = ringbuf->last_retired_head;
  50. ringbuf->last_retired_head = -1;
  51. }
  52. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  53. ringbuf->tail, ringbuf->size);
  54. }
  55. static void __intel_ring_advance(struct intel_engine_cs *engine)
  56. {
  57. struct intel_ringbuffer *ringbuf = engine->buffer;
  58. ringbuf->tail &= ringbuf->size - 1;
  59. engine->write_tail(engine, ringbuf->tail);
  60. }
  61. static int
  62. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  63. u32 invalidate_domains,
  64. u32 flush_domains)
  65. {
  66. struct intel_engine_cs *engine = req->engine;
  67. u32 cmd;
  68. int ret;
  69. cmd = MI_FLUSH;
  70. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  71. cmd |= MI_NO_WRITE_FLUSH;
  72. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  73. cmd |= MI_READ_FLUSH;
  74. ret = intel_ring_begin(req, 2);
  75. if (ret)
  76. return ret;
  77. intel_ring_emit(engine, cmd);
  78. intel_ring_emit(engine, MI_NOOP);
  79. intel_ring_advance(engine);
  80. return 0;
  81. }
  82. static int
  83. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  84. u32 invalidate_domains,
  85. u32 flush_domains)
  86. {
  87. struct intel_engine_cs *engine = req->engine;
  88. u32 cmd;
  89. int ret;
  90. /*
  91. * read/write caches:
  92. *
  93. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  94. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  95. * also flushed at 2d versus 3d pipeline switches.
  96. *
  97. * read-only caches:
  98. *
  99. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  100. * MI_READ_FLUSH is set, and is always flushed on 965.
  101. *
  102. * I915_GEM_DOMAIN_COMMAND may not exist?
  103. *
  104. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  105. * invalidated when MI_EXE_FLUSH is set.
  106. *
  107. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  108. * invalidated with every MI_FLUSH.
  109. *
  110. * TLBs:
  111. *
  112. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  113. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  114. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  115. * are flushed at any MI_FLUSH.
  116. */
  117. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  118. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  119. cmd &= ~MI_NO_WRITE_FLUSH;
  120. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  121. cmd |= MI_EXE_FLUSH;
  122. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  123. (IS_G4X(req->i915) || IS_GEN5(req->i915)))
  124. cmd |= MI_INVALIDATE_ISP;
  125. ret = intel_ring_begin(req, 2);
  126. if (ret)
  127. return ret;
  128. intel_ring_emit(engine, cmd);
  129. intel_ring_emit(engine, MI_NOOP);
  130. intel_ring_advance(engine);
  131. return 0;
  132. }
  133. /**
  134. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  135. * implementing two workarounds on gen6. From section 1.4.7.1
  136. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  137. *
  138. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  139. * produced by non-pipelined state commands), software needs to first
  140. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  141. * 0.
  142. *
  143. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  144. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  145. *
  146. * And the workaround for these two requires this workaround first:
  147. *
  148. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  149. * BEFORE the pipe-control with a post-sync op and no write-cache
  150. * flushes.
  151. *
  152. * And this last workaround is tricky because of the requirements on
  153. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  154. * volume 2 part 1:
  155. *
  156. * "1 of the following must also be set:
  157. * - Render Target Cache Flush Enable ([12] of DW1)
  158. * - Depth Cache Flush Enable ([0] of DW1)
  159. * - Stall at Pixel Scoreboard ([1] of DW1)
  160. * - Depth Stall ([13] of DW1)
  161. * - Post-Sync Operation ([13] of DW1)
  162. * - Notify Enable ([8] of DW1)"
  163. *
  164. * The cache flushes require the workaround flush that triggered this
  165. * one, so we can't use it. Depth stall would trigger the same.
  166. * Post-sync nonzero is what triggered this second workaround, so we
  167. * can't use that one either. Notify enable is IRQs, which aren't
  168. * really our business. That leaves only stall at scoreboard.
  169. */
  170. static int
  171. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  172. {
  173. struct intel_engine_cs *engine = req->engine;
  174. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  175. int ret;
  176. ret = intel_ring_begin(req, 6);
  177. if (ret)
  178. return ret;
  179. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  180. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  181. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  182. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  183. intel_ring_emit(engine, 0); /* low dword */
  184. intel_ring_emit(engine, 0); /* high dword */
  185. intel_ring_emit(engine, MI_NOOP);
  186. intel_ring_advance(engine);
  187. ret = intel_ring_begin(req, 6);
  188. if (ret)
  189. return ret;
  190. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  191. intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
  192. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  193. intel_ring_emit(engine, 0);
  194. intel_ring_emit(engine, 0);
  195. intel_ring_emit(engine, MI_NOOP);
  196. intel_ring_advance(engine);
  197. return 0;
  198. }
  199. static int
  200. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  201. u32 invalidate_domains, u32 flush_domains)
  202. {
  203. struct intel_engine_cs *engine = req->engine;
  204. u32 flags = 0;
  205. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  206. int ret;
  207. /* Force SNB workarounds for PIPE_CONTROL flushes */
  208. ret = intel_emit_post_sync_nonzero_flush(req);
  209. if (ret)
  210. return ret;
  211. /* Just flush everything. Experiments have shown that reducing the
  212. * number of bits based on the write domains has little performance
  213. * impact.
  214. */
  215. if (flush_domains) {
  216. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  217. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  218. /*
  219. * Ensure that any following seqno writes only happen
  220. * when the render cache is indeed flushed.
  221. */
  222. flags |= PIPE_CONTROL_CS_STALL;
  223. }
  224. if (invalidate_domains) {
  225. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  226. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  227. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  228. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  229. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  230. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  231. /*
  232. * TLB invalidate requires a post-sync write.
  233. */
  234. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  235. }
  236. ret = intel_ring_begin(req, 4);
  237. if (ret)
  238. return ret;
  239. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  240. intel_ring_emit(engine, flags);
  241. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  242. intel_ring_emit(engine, 0);
  243. intel_ring_advance(engine);
  244. return 0;
  245. }
  246. static int
  247. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  248. {
  249. struct intel_engine_cs *engine = req->engine;
  250. int ret;
  251. ret = intel_ring_begin(req, 4);
  252. if (ret)
  253. return ret;
  254. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  255. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  256. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  257. intel_ring_emit(engine, 0);
  258. intel_ring_emit(engine, 0);
  259. intel_ring_advance(engine);
  260. return 0;
  261. }
  262. static int
  263. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  264. u32 invalidate_domains, u32 flush_domains)
  265. {
  266. struct intel_engine_cs *engine = req->engine;
  267. u32 flags = 0;
  268. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  269. int ret;
  270. /*
  271. * Ensure that any following seqno writes only happen when the render
  272. * cache is indeed flushed.
  273. *
  274. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  275. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  276. * don't try to be clever and just set it unconditionally.
  277. */
  278. flags |= PIPE_CONTROL_CS_STALL;
  279. /* Just flush everything. Experiments have shown that reducing the
  280. * number of bits based on the write domains has little performance
  281. * impact.
  282. */
  283. if (flush_domains) {
  284. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  285. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  286. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  287. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  288. }
  289. if (invalidate_domains) {
  290. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  291. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  292. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  293. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  294. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  295. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  296. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  297. /*
  298. * TLB invalidate requires a post-sync write.
  299. */
  300. flags |= PIPE_CONTROL_QW_WRITE;
  301. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  302. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  303. /* Workaround: we must issue a pipe_control with CS-stall bit
  304. * set before a pipe_control command that has the state cache
  305. * invalidate bit set. */
  306. gen7_render_ring_cs_stall_wa(req);
  307. }
  308. ret = intel_ring_begin(req, 4);
  309. if (ret)
  310. return ret;
  311. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  312. intel_ring_emit(engine, flags);
  313. intel_ring_emit(engine, scratch_addr);
  314. intel_ring_emit(engine, 0);
  315. intel_ring_advance(engine);
  316. return 0;
  317. }
  318. static int
  319. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  320. u32 flags, u32 scratch_addr)
  321. {
  322. struct intel_engine_cs *engine = req->engine;
  323. int ret;
  324. ret = intel_ring_begin(req, 6);
  325. if (ret)
  326. return ret;
  327. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  328. intel_ring_emit(engine, flags);
  329. intel_ring_emit(engine, scratch_addr);
  330. intel_ring_emit(engine, 0);
  331. intel_ring_emit(engine, 0);
  332. intel_ring_emit(engine, 0);
  333. intel_ring_advance(engine);
  334. return 0;
  335. }
  336. static int
  337. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  338. u32 invalidate_domains, u32 flush_domains)
  339. {
  340. u32 flags = 0;
  341. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  342. int ret;
  343. flags |= PIPE_CONTROL_CS_STALL;
  344. if (flush_domains) {
  345. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  346. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  347. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  348. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  349. }
  350. if (invalidate_domains) {
  351. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  352. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  353. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  354. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  355. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  356. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  357. flags |= PIPE_CONTROL_QW_WRITE;
  358. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  359. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  360. ret = gen8_emit_pipe_control(req,
  361. PIPE_CONTROL_CS_STALL |
  362. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  363. 0);
  364. if (ret)
  365. return ret;
  366. }
  367. return gen8_emit_pipe_control(req, flags, scratch_addr);
  368. }
  369. static void ring_write_tail(struct intel_engine_cs *engine,
  370. u32 value)
  371. {
  372. struct drm_i915_private *dev_priv = engine->i915;
  373. I915_WRITE_TAIL(engine, value);
  374. }
  375. u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
  376. {
  377. struct drm_i915_private *dev_priv = engine->i915;
  378. u64 acthd;
  379. if (INTEL_GEN(dev_priv) >= 8)
  380. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  381. RING_ACTHD_UDW(engine->mmio_base));
  382. else if (INTEL_GEN(dev_priv) >= 4)
  383. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  384. else
  385. acthd = I915_READ(ACTHD);
  386. return acthd;
  387. }
  388. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  389. {
  390. struct drm_i915_private *dev_priv = engine->i915;
  391. u32 addr;
  392. addr = dev_priv->status_page_dmah->busaddr;
  393. if (INTEL_GEN(dev_priv) >= 4)
  394. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  395. I915_WRITE(HWS_PGA, addr);
  396. }
  397. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  398. {
  399. struct drm_i915_private *dev_priv = engine->i915;
  400. i915_reg_t mmio;
  401. /* The ring status page addresses are no longer next to the rest of
  402. * the ring registers as of gen7.
  403. */
  404. if (IS_GEN7(dev_priv)) {
  405. switch (engine->id) {
  406. case RCS:
  407. mmio = RENDER_HWS_PGA_GEN7;
  408. break;
  409. case BCS:
  410. mmio = BLT_HWS_PGA_GEN7;
  411. break;
  412. /*
  413. * VCS2 actually doesn't exist on Gen7. Only shut up
  414. * gcc switch check warning
  415. */
  416. case VCS2:
  417. case VCS:
  418. mmio = BSD_HWS_PGA_GEN7;
  419. break;
  420. case VECS:
  421. mmio = VEBOX_HWS_PGA_GEN7;
  422. break;
  423. }
  424. } else if (IS_GEN6(dev_priv)) {
  425. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  426. } else {
  427. /* XXX: gen8 returns to sanity */
  428. mmio = RING_HWS_PGA(engine->mmio_base);
  429. }
  430. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  431. POSTING_READ(mmio);
  432. /*
  433. * Flush the TLB for this page
  434. *
  435. * FIXME: These two bits have disappeared on gen8, so a question
  436. * arises: do we still need this and if so how should we go about
  437. * invalidating the TLB?
  438. */
  439. if (IS_GEN(dev_priv, 6, 7)) {
  440. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  441. /* ring should be idle before issuing a sync flush*/
  442. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  443. I915_WRITE(reg,
  444. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  445. INSTPM_SYNC_FLUSH));
  446. if (intel_wait_for_register(dev_priv,
  447. reg, INSTPM_SYNC_FLUSH, 0,
  448. 1000))
  449. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  450. engine->name);
  451. }
  452. }
  453. static bool stop_ring(struct intel_engine_cs *engine)
  454. {
  455. struct drm_i915_private *dev_priv = engine->i915;
  456. if (!IS_GEN2(dev_priv)) {
  457. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  458. if (intel_wait_for_register(dev_priv,
  459. RING_MI_MODE(engine->mmio_base),
  460. MODE_IDLE,
  461. MODE_IDLE,
  462. 1000)) {
  463. DRM_ERROR("%s : timed out trying to stop ring\n",
  464. engine->name);
  465. /* Sometimes we observe that the idle flag is not
  466. * set even though the ring is empty. So double
  467. * check before giving up.
  468. */
  469. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  470. return false;
  471. }
  472. }
  473. I915_WRITE_CTL(engine, 0);
  474. I915_WRITE_HEAD(engine, 0);
  475. engine->write_tail(engine, 0);
  476. if (!IS_GEN2(dev_priv)) {
  477. (void)I915_READ_CTL(engine);
  478. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  479. }
  480. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  481. }
  482. void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
  483. {
  484. memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
  485. }
  486. static int init_ring_common(struct intel_engine_cs *engine)
  487. {
  488. struct drm_i915_private *dev_priv = engine->i915;
  489. struct intel_ringbuffer *ringbuf = engine->buffer;
  490. struct drm_i915_gem_object *obj = ringbuf->obj;
  491. int ret = 0;
  492. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  493. if (!stop_ring(engine)) {
  494. /* G45 ring initialization often fails to reset head to zero */
  495. DRM_DEBUG_KMS("%s head not reset to zero "
  496. "ctl %08x head %08x tail %08x start %08x\n",
  497. engine->name,
  498. I915_READ_CTL(engine),
  499. I915_READ_HEAD(engine),
  500. I915_READ_TAIL(engine),
  501. I915_READ_START(engine));
  502. if (!stop_ring(engine)) {
  503. DRM_ERROR("failed to set %s head to zero "
  504. "ctl %08x head %08x tail %08x start %08x\n",
  505. engine->name,
  506. I915_READ_CTL(engine),
  507. I915_READ_HEAD(engine),
  508. I915_READ_TAIL(engine),
  509. I915_READ_START(engine));
  510. ret = -EIO;
  511. goto out;
  512. }
  513. }
  514. if (I915_NEED_GFX_HWS(dev_priv))
  515. intel_ring_setup_status_page(engine);
  516. else
  517. ring_setup_phys_status_page(engine);
  518. /* Enforce ordering by reading HEAD register back */
  519. I915_READ_HEAD(engine);
  520. /* Initialize the ring. This must happen _after_ we've cleared the ring
  521. * registers with the above sequence (the readback of the HEAD registers
  522. * also enforces ordering), otherwise the hw might lose the new ring
  523. * register values. */
  524. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  525. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  526. if (I915_READ_HEAD(engine))
  527. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  528. engine->name, I915_READ_HEAD(engine));
  529. I915_WRITE_HEAD(engine, 0);
  530. (void)I915_READ_HEAD(engine);
  531. I915_WRITE_CTL(engine,
  532. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  533. | RING_VALID);
  534. /* If the head is still not zero, the ring is dead */
  535. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  536. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  537. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  538. DRM_ERROR("%s initialization failed "
  539. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  540. engine->name,
  541. I915_READ_CTL(engine),
  542. I915_READ_CTL(engine) & RING_VALID,
  543. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  544. I915_READ_START(engine),
  545. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  546. ret = -EIO;
  547. goto out;
  548. }
  549. ringbuf->last_retired_head = -1;
  550. ringbuf->head = I915_READ_HEAD(engine);
  551. ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  552. intel_ring_update_space(ringbuf);
  553. intel_engine_init_hangcheck(engine);
  554. out:
  555. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  556. return ret;
  557. }
  558. void intel_fini_pipe_control(struct intel_engine_cs *engine)
  559. {
  560. if (engine->scratch.obj == NULL)
  561. return;
  562. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  563. drm_gem_object_unreference(&engine->scratch.obj->base);
  564. engine->scratch.obj = NULL;
  565. }
  566. int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
  567. {
  568. struct drm_i915_gem_object *obj;
  569. int ret;
  570. WARN_ON(engine->scratch.obj);
  571. obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
  572. if (!obj)
  573. obj = i915_gem_object_create(&engine->i915->drm, size);
  574. if (IS_ERR(obj)) {
  575. DRM_ERROR("Failed to allocate scratch page\n");
  576. ret = PTR_ERR(obj);
  577. goto err;
  578. }
  579. ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
  580. if (ret)
  581. goto err_unref;
  582. engine->scratch.obj = obj;
  583. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  584. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  585. engine->name, engine->scratch.gtt_offset);
  586. return 0;
  587. err_unref:
  588. drm_gem_object_unreference(&engine->scratch.obj->base);
  589. err:
  590. return ret;
  591. }
  592. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  593. {
  594. struct intel_engine_cs *engine = req->engine;
  595. struct i915_workarounds *w = &req->i915->workarounds;
  596. int ret, i;
  597. if (w->count == 0)
  598. return 0;
  599. engine->gpu_caches_dirty = true;
  600. ret = intel_ring_flush_all_caches(req);
  601. if (ret)
  602. return ret;
  603. ret = intel_ring_begin(req, (w->count * 2 + 2));
  604. if (ret)
  605. return ret;
  606. intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
  607. for (i = 0; i < w->count; i++) {
  608. intel_ring_emit_reg(engine, w->reg[i].addr);
  609. intel_ring_emit(engine, w->reg[i].value);
  610. }
  611. intel_ring_emit(engine, MI_NOOP);
  612. intel_ring_advance(engine);
  613. engine->gpu_caches_dirty = true;
  614. ret = intel_ring_flush_all_caches(req);
  615. if (ret)
  616. return ret;
  617. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  618. return 0;
  619. }
  620. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  621. {
  622. int ret;
  623. ret = intel_ring_workarounds_emit(req);
  624. if (ret != 0)
  625. return ret;
  626. ret = i915_gem_render_state_init(req);
  627. if (ret)
  628. return ret;
  629. return 0;
  630. }
  631. static int wa_add(struct drm_i915_private *dev_priv,
  632. i915_reg_t addr,
  633. const u32 mask, const u32 val)
  634. {
  635. const u32 idx = dev_priv->workarounds.count;
  636. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  637. return -ENOSPC;
  638. dev_priv->workarounds.reg[idx].addr = addr;
  639. dev_priv->workarounds.reg[idx].value = val;
  640. dev_priv->workarounds.reg[idx].mask = mask;
  641. dev_priv->workarounds.count++;
  642. return 0;
  643. }
  644. #define WA_REG(addr, mask, val) do { \
  645. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  646. if (r) \
  647. return r; \
  648. } while (0)
  649. #define WA_SET_BIT_MASKED(addr, mask) \
  650. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  651. #define WA_CLR_BIT_MASKED(addr, mask) \
  652. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  653. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  654. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  655. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  656. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  657. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  658. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  659. i915_reg_t reg)
  660. {
  661. struct drm_i915_private *dev_priv = engine->i915;
  662. struct i915_workarounds *wa = &dev_priv->workarounds;
  663. const uint32_t index = wa->hw_whitelist_count[engine->id];
  664. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  665. return -EINVAL;
  666. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  667. i915_mmio_reg_offset(reg));
  668. wa->hw_whitelist_count[engine->id]++;
  669. return 0;
  670. }
  671. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  672. {
  673. struct drm_i915_private *dev_priv = engine->i915;
  674. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  675. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  676. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  677. /* WaDisablePartialInstShootdown:bdw,chv */
  678. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  679. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  680. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  681. * workaround for for a possible hang in the unlikely event a TLB
  682. * invalidation occurs during a PSD flush.
  683. */
  684. /* WaForceEnableNonCoherent:bdw,chv */
  685. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  686. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  687. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  688. HDC_FORCE_NON_COHERENT);
  689. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  690. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  691. * polygons in the same 8x4 pixel/sample area to be processed without
  692. * stalling waiting for the earlier ones to write to Hierarchical Z
  693. * buffer."
  694. *
  695. * This optimization is off by default for BDW and CHV; turn it on.
  696. */
  697. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  698. /* Wa4x4STCOptimizationDisable:bdw,chv */
  699. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  700. /*
  701. * BSpec recommends 8x4 when MSAA is used,
  702. * however in practice 16x4 seems fastest.
  703. *
  704. * Note that PS/WM thread counts depend on the WIZ hashing
  705. * disable bit, which we don't touch here, but it's good
  706. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  707. */
  708. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  709. GEN6_WIZ_HASHING_MASK,
  710. GEN6_WIZ_HASHING_16x4);
  711. return 0;
  712. }
  713. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  714. {
  715. struct drm_i915_private *dev_priv = engine->i915;
  716. int ret;
  717. ret = gen8_init_workarounds(engine);
  718. if (ret)
  719. return ret;
  720. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  721. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  722. /* WaDisableDopClockGating:bdw */
  723. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  724. DOP_CLOCK_GATING_DISABLE);
  725. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  726. GEN8_SAMPLER_POWER_BYPASS_DIS);
  727. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  728. /* WaForceContextSaveRestoreNonCoherent:bdw */
  729. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  730. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  731. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  732. return 0;
  733. }
  734. static int chv_init_workarounds(struct intel_engine_cs *engine)
  735. {
  736. struct drm_i915_private *dev_priv = engine->i915;
  737. int ret;
  738. ret = gen8_init_workarounds(engine);
  739. if (ret)
  740. return ret;
  741. /* WaDisableThreadStallDopClockGating:chv */
  742. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  743. /* Improve HiZ throughput on CHV. */
  744. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  745. return 0;
  746. }
  747. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  748. {
  749. struct drm_i915_private *dev_priv = engine->i915;
  750. int ret;
  751. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  752. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  753. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  754. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  755. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  756. /* WaDisableKillLogic:bxt,skl,kbl */
  757. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  758. ECOCHK_DIS_TLB);
  759. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  760. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  761. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  762. FLOW_CONTROL_ENABLE |
  763. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  764. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  765. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  766. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  767. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  768. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  769. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  770. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  771. GEN9_DG_MIRROR_FIX_ENABLE);
  772. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  773. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  774. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  775. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  776. GEN9_RHWO_OPTIMIZATION_DISABLE);
  777. /*
  778. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  779. * but we do that in per ctx batchbuffer as there is an issue
  780. * with this register not getting restored on ctx restore
  781. */
  782. }
  783. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
  784. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  785. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  786. GEN9_ENABLE_YV12_BUGFIX |
  787. GEN9_ENABLE_GPGPU_PREEMPTION);
  788. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  789. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  790. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  791. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  792. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  793. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  794. GEN9_CCS_TLB_PREFETCH_ENABLE);
  795. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  796. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
  797. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  798. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  799. PIXEL_MASK_CAMMING_DISABLE);
  800. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  801. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  802. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  803. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  804. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  805. * both tied to WaForceContextSaveRestoreNonCoherent
  806. * in some hsds for skl. We keep the tie for all gen9. The
  807. * documentation is a bit hazy and so we want to get common behaviour,
  808. * even though there is no clear evidence we would need both on kbl/bxt.
  809. * This area has been source of system hangs so we play it safe
  810. * and mimic the skl regardless of what bspec says.
  811. *
  812. * Use Force Non-Coherent whenever executing a 3D context. This
  813. * is a workaround for a possible hang in the unlikely event
  814. * a TLB invalidation occurs during a PSD flush.
  815. */
  816. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  817. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  818. HDC_FORCE_NON_COHERENT);
  819. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  820. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  821. BDW_DISABLE_HDC_INVALIDATION);
  822. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  823. if (IS_SKYLAKE(dev_priv) ||
  824. IS_KABYLAKE(dev_priv) ||
  825. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  826. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  827. GEN8_SAMPLER_POWER_BYPASS_DIS);
  828. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  829. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  830. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  831. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  832. GEN8_LQSC_FLUSH_COHERENT_LINES));
  833. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  834. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  835. if (ret)
  836. return ret;
  837. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  838. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  839. if (ret)
  840. return ret;
  841. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  842. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  843. if (ret)
  844. return ret;
  845. return 0;
  846. }
  847. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  848. {
  849. struct drm_i915_private *dev_priv = engine->i915;
  850. u8 vals[3] = { 0, 0, 0 };
  851. unsigned int i;
  852. for (i = 0; i < 3; i++) {
  853. u8 ss;
  854. /*
  855. * Only consider slices where one, and only one, subslice has 7
  856. * EUs
  857. */
  858. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  859. continue;
  860. /*
  861. * subslice_7eu[i] != 0 (because of the check above) and
  862. * ss_max == 4 (maximum number of subslices possible per slice)
  863. *
  864. * -> 0 <= ss <= 3;
  865. */
  866. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  867. vals[i] = 3 - ss;
  868. }
  869. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  870. return 0;
  871. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  872. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  873. GEN9_IZ_HASHING_MASK(2) |
  874. GEN9_IZ_HASHING_MASK(1) |
  875. GEN9_IZ_HASHING_MASK(0),
  876. GEN9_IZ_HASHING(2, vals[2]) |
  877. GEN9_IZ_HASHING(1, vals[1]) |
  878. GEN9_IZ_HASHING(0, vals[0]));
  879. return 0;
  880. }
  881. static int skl_init_workarounds(struct intel_engine_cs *engine)
  882. {
  883. struct drm_i915_private *dev_priv = engine->i915;
  884. int ret;
  885. ret = gen9_init_workarounds(engine);
  886. if (ret)
  887. return ret;
  888. /*
  889. * Actual WA is to disable percontext preemption granularity control
  890. * until D0 which is the default case so this is equivalent to
  891. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  892. */
  893. if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
  894. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  895. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  896. }
  897. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
  898. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  899. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  900. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  901. }
  902. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  903. * involving this register should also be added to WA batch as required.
  904. */
  905. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
  906. /* WaDisableLSQCROPERFforOCL:skl */
  907. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  908. GEN8_LQSC_RO_PERF_DIS);
  909. /* WaEnableGapsTsvCreditFix:skl */
  910. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
  911. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  912. GEN9_GAPS_TSV_CREDIT_DISABLE));
  913. }
  914. /* WaDisablePowerCompilerClockGating:skl */
  915. if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
  916. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  917. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  918. /* WaBarrierPerformanceFixDisable:skl */
  919. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
  920. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  921. HDC_FENCE_DEST_SLM_DISABLE |
  922. HDC_BARRIER_PERFORMANCE_DISABLE);
  923. /* WaDisableSbeCacheDispatchPortSharing:skl */
  924. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
  925. WA_SET_BIT_MASKED(
  926. GEN7_HALF_SLICE_CHICKEN1,
  927. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  928. /* WaDisableGafsUnitClkGating:skl */
  929. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  930. /* WaInPlaceDecompressionHang:skl */
  931. if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
  932. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  933. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  934. /* WaDisableLSQCROPERFforOCL:skl */
  935. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  936. if (ret)
  937. return ret;
  938. return skl_tune_iz_hashing(engine);
  939. }
  940. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  941. {
  942. struct drm_i915_private *dev_priv = engine->i915;
  943. int ret;
  944. ret = gen9_init_workarounds(engine);
  945. if (ret)
  946. return ret;
  947. /* WaStoreMultiplePTEenable:bxt */
  948. /* This is a requirement according to Hardware specification */
  949. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  950. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  951. /* WaSetClckGatingDisableMedia:bxt */
  952. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  953. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  954. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  955. }
  956. /* WaDisableThreadStallDopClockGating:bxt */
  957. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  958. STALL_DOP_GATING_DISABLE);
  959. /* WaDisablePooledEuLoadBalancingFix:bxt */
  960. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  961. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  962. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  963. }
  964. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  965. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  966. WA_SET_BIT_MASKED(
  967. GEN7_HALF_SLICE_CHICKEN1,
  968. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  969. }
  970. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  971. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  972. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  973. /* WaDisableLSQCROPERFforOCL:bxt */
  974. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  975. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  976. if (ret)
  977. return ret;
  978. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  979. if (ret)
  980. return ret;
  981. }
  982. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  983. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  984. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  985. L3_HIGH_PRIO_CREDITS(2));
  986. /* WaToEnableHwFixForPushConstHWBug:bxt */
  987. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  988. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  989. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  990. /* WaInPlaceDecompressionHang:bxt */
  991. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  992. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  993. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  994. return 0;
  995. }
  996. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  997. {
  998. struct drm_i915_private *dev_priv = engine->i915;
  999. int ret;
  1000. ret = gen9_init_workarounds(engine);
  1001. if (ret)
  1002. return ret;
  1003. /* WaEnableGapsTsvCreditFix:kbl */
  1004. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  1005. GEN9_GAPS_TSV_CREDIT_DISABLE));
  1006. /* WaDisableDynamicCreditSharing:kbl */
  1007. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  1008. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  1009. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  1010. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  1011. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  1012. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  1013. HDC_FENCE_DEST_SLM_DISABLE);
  1014. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  1015. * involving this register should also be added to WA batch as required.
  1016. */
  1017. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
  1018. /* WaDisableLSQCROPERFforOCL:kbl */
  1019. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  1020. GEN8_LQSC_RO_PERF_DIS);
  1021. /* WaToEnableHwFixForPushConstHWBug:kbl */
  1022. if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
  1023. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  1024. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  1025. /* WaDisableGafsUnitClkGating:kbl */
  1026. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  1027. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  1028. WA_SET_BIT_MASKED(
  1029. GEN7_HALF_SLICE_CHICKEN1,
  1030. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  1031. /* WaInPlaceDecompressionHang:kbl */
  1032. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  1033. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  1034. /* WaDisableLSQCROPERFforOCL:kbl */
  1035. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  1036. if (ret)
  1037. return ret;
  1038. return 0;
  1039. }
  1040. int init_workarounds_ring(struct intel_engine_cs *engine)
  1041. {
  1042. struct drm_i915_private *dev_priv = engine->i915;
  1043. WARN_ON(engine->id != RCS);
  1044. dev_priv->workarounds.count = 0;
  1045. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  1046. if (IS_BROADWELL(dev_priv))
  1047. return bdw_init_workarounds(engine);
  1048. if (IS_CHERRYVIEW(dev_priv))
  1049. return chv_init_workarounds(engine);
  1050. if (IS_SKYLAKE(dev_priv))
  1051. return skl_init_workarounds(engine);
  1052. if (IS_BROXTON(dev_priv))
  1053. return bxt_init_workarounds(engine);
  1054. if (IS_KABYLAKE(dev_priv))
  1055. return kbl_init_workarounds(engine);
  1056. return 0;
  1057. }
  1058. static int init_render_ring(struct intel_engine_cs *engine)
  1059. {
  1060. struct drm_i915_private *dev_priv = engine->i915;
  1061. int ret = init_ring_common(engine);
  1062. if (ret)
  1063. return ret;
  1064. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1065. if (IS_GEN(dev_priv, 4, 6))
  1066. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1067. /* We need to disable the AsyncFlip performance optimisations in order
  1068. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1069. * programmed to '1' on all products.
  1070. *
  1071. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1072. */
  1073. if (IS_GEN(dev_priv, 6, 7))
  1074. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1075. /* Required for the hardware to program scanline values for waiting */
  1076. /* WaEnableFlushTlbInvalidationMode:snb */
  1077. if (IS_GEN6(dev_priv))
  1078. I915_WRITE(GFX_MODE,
  1079. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1080. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1081. if (IS_GEN7(dev_priv))
  1082. I915_WRITE(GFX_MODE_GEN7,
  1083. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1084. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1085. if (IS_GEN6(dev_priv)) {
  1086. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1087. * "If this bit is set, STCunit will have LRA as replacement
  1088. * policy. [...] This bit must be reset. LRA replacement
  1089. * policy is not supported."
  1090. */
  1091. I915_WRITE(CACHE_MODE_0,
  1092. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1093. }
  1094. if (IS_GEN(dev_priv, 6, 7))
  1095. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1096. if (INTEL_INFO(dev_priv)->gen >= 6)
  1097. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1098. return init_workarounds_ring(engine);
  1099. }
  1100. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1101. {
  1102. struct drm_i915_private *dev_priv = engine->i915;
  1103. if (dev_priv->semaphore_obj) {
  1104. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1105. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1106. dev_priv->semaphore_obj = NULL;
  1107. }
  1108. intel_fini_pipe_control(engine);
  1109. }
  1110. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1111. unsigned int num_dwords)
  1112. {
  1113. #define MBOX_UPDATE_DWORDS 8
  1114. struct intel_engine_cs *signaller = signaller_req->engine;
  1115. struct drm_i915_private *dev_priv = signaller_req->i915;
  1116. struct intel_engine_cs *waiter;
  1117. enum intel_engine_id id;
  1118. int ret, num_rings;
  1119. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1120. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1121. #undef MBOX_UPDATE_DWORDS
  1122. ret = intel_ring_begin(signaller_req, num_dwords);
  1123. if (ret)
  1124. return ret;
  1125. for_each_engine_id(waiter, dev_priv, id) {
  1126. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1127. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1128. continue;
  1129. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1130. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1131. PIPE_CONTROL_QW_WRITE |
  1132. PIPE_CONTROL_CS_STALL);
  1133. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1134. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1135. intel_ring_emit(signaller, signaller_req->seqno);
  1136. intel_ring_emit(signaller, 0);
  1137. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1138. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1139. intel_ring_emit(signaller, 0);
  1140. }
  1141. return 0;
  1142. }
  1143. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1144. unsigned int num_dwords)
  1145. {
  1146. #define MBOX_UPDATE_DWORDS 6
  1147. struct intel_engine_cs *signaller = signaller_req->engine;
  1148. struct drm_i915_private *dev_priv = signaller_req->i915;
  1149. struct intel_engine_cs *waiter;
  1150. enum intel_engine_id id;
  1151. int ret, num_rings;
  1152. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1153. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1154. #undef MBOX_UPDATE_DWORDS
  1155. ret = intel_ring_begin(signaller_req, num_dwords);
  1156. if (ret)
  1157. return ret;
  1158. for_each_engine_id(waiter, dev_priv, id) {
  1159. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1160. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1161. continue;
  1162. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1163. MI_FLUSH_DW_OP_STOREDW);
  1164. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1165. MI_FLUSH_DW_USE_GTT);
  1166. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1167. intel_ring_emit(signaller, signaller_req->seqno);
  1168. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1169. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1170. intel_ring_emit(signaller, 0);
  1171. }
  1172. return 0;
  1173. }
  1174. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1175. unsigned int num_dwords)
  1176. {
  1177. struct intel_engine_cs *signaller = signaller_req->engine;
  1178. struct drm_i915_private *dev_priv = signaller_req->i915;
  1179. struct intel_engine_cs *useless;
  1180. enum intel_engine_id id;
  1181. int ret, num_rings;
  1182. #define MBOX_UPDATE_DWORDS 3
  1183. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1184. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1185. #undef MBOX_UPDATE_DWORDS
  1186. ret = intel_ring_begin(signaller_req, num_dwords);
  1187. if (ret)
  1188. return ret;
  1189. for_each_engine_id(useless, dev_priv, id) {
  1190. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
  1191. if (i915_mmio_reg_valid(mbox_reg)) {
  1192. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1193. intel_ring_emit_reg(signaller, mbox_reg);
  1194. intel_ring_emit(signaller, signaller_req->seqno);
  1195. }
  1196. }
  1197. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1198. if (num_rings % 2 == 0)
  1199. intel_ring_emit(signaller, MI_NOOP);
  1200. return 0;
  1201. }
  1202. /**
  1203. * gen6_add_request - Update the semaphore mailbox registers
  1204. *
  1205. * @request - request to write to the ring
  1206. *
  1207. * Update the mailbox registers in the *other* rings with the current seqno.
  1208. * This acts like a signal in the canonical semaphore.
  1209. */
  1210. static int
  1211. gen6_add_request(struct drm_i915_gem_request *req)
  1212. {
  1213. struct intel_engine_cs *engine = req->engine;
  1214. int ret;
  1215. if (engine->semaphore.signal)
  1216. ret = engine->semaphore.signal(req, 4);
  1217. else
  1218. ret = intel_ring_begin(req, 4);
  1219. if (ret)
  1220. return ret;
  1221. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1222. intel_ring_emit(engine,
  1223. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1224. intel_ring_emit(engine, req->seqno);
  1225. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1226. __intel_ring_advance(engine);
  1227. return 0;
  1228. }
  1229. static int
  1230. gen8_render_add_request(struct drm_i915_gem_request *req)
  1231. {
  1232. struct intel_engine_cs *engine = req->engine;
  1233. int ret;
  1234. if (engine->semaphore.signal)
  1235. ret = engine->semaphore.signal(req, 8);
  1236. else
  1237. ret = intel_ring_begin(req, 8);
  1238. if (ret)
  1239. return ret;
  1240. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  1241. intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1242. PIPE_CONTROL_CS_STALL |
  1243. PIPE_CONTROL_QW_WRITE));
  1244. intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
  1245. intel_ring_emit(engine, 0);
  1246. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1247. /* We're thrashing one dword of HWS. */
  1248. intel_ring_emit(engine, 0);
  1249. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1250. intel_ring_emit(engine, MI_NOOP);
  1251. __intel_ring_advance(engine);
  1252. return 0;
  1253. }
  1254. static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
  1255. u32 seqno)
  1256. {
  1257. return dev_priv->last_seqno < seqno;
  1258. }
  1259. /**
  1260. * intel_ring_sync - sync the waiter to the signaller on seqno
  1261. *
  1262. * @waiter - ring that is waiting
  1263. * @signaller - ring which has, or will signal
  1264. * @seqno - seqno which the waiter will block on
  1265. */
  1266. static int
  1267. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1268. struct intel_engine_cs *signaller,
  1269. u32 seqno)
  1270. {
  1271. struct intel_engine_cs *waiter = waiter_req->engine;
  1272. struct drm_i915_private *dev_priv = waiter_req->i915;
  1273. u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
  1274. struct i915_hw_ppgtt *ppgtt;
  1275. int ret;
  1276. ret = intel_ring_begin(waiter_req, 4);
  1277. if (ret)
  1278. return ret;
  1279. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1280. MI_SEMAPHORE_GLOBAL_GTT |
  1281. MI_SEMAPHORE_SAD_GTE_SDD);
  1282. intel_ring_emit(waiter, seqno);
  1283. intel_ring_emit(waiter, lower_32_bits(offset));
  1284. intel_ring_emit(waiter, upper_32_bits(offset));
  1285. intel_ring_advance(waiter);
  1286. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1287. * pagetables and we must reload them before executing the batch.
  1288. * We do this on the i915_switch_context() following the wait and
  1289. * before the dispatch.
  1290. */
  1291. ppgtt = waiter_req->ctx->ppgtt;
  1292. if (ppgtt && waiter_req->engine->id != RCS)
  1293. ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
  1294. return 0;
  1295. }
  1296. static int
  1297. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1298. struct intel_engine_cs *signaller,
  1299. u32 seqno)
  1300. {
  1301. struct intel_engine_cs *waiter = waiter_req->engine;
  1302. u32 dw1 = MI_SEMAPHORE_MBOX |
  1303. MI_SEMAPHORE_COMPARE |
  1304. MI_SEMAPHORE_REGISTER;
  1305. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1306. int ret;
  1307. /* Throughout all of the GEM code, seqno passed implies our current
  1308. * seqno is >= the last seqno executed. However for hardware the
  1309. * comparison is strictly greater than.
  1310. */
  1311. seqno -= 1;
  1312. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1313. ret = intel_ring_begin(waiter_req, 4);
  1314. if (ret)
  1315. return ret;
  1316. /* If seqno wrap happened, omit the wait with no-ops */
  1317. if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
  1318. intel_ring_emit(waiter, dw1 | wait_mbox);
  1319. intel_ring_emit(waiter, seqno);
  1320. intel_ring_emit(waiter, 0);
  1321. intel_ring_emit(waiter, MI_NOOP);
  1322. } else {
  1323. intel_ring_emit(waiter, MI_NOOP);
  1324. intel_ring_emit(waiter, MI_NOOP);
  1325. intel_ring_emit(waiter, MI_NOOP);
  1326. intel_ring_emit(waiter, MI_NOOP);
  1327. }
  1328. intel_ring_advance(waiter);
  1329. return 0;
  1330. }
  1331. static void
  1332. gen5_seqno_barrier(struct intel_engine_cs *ring)
  1333. {
  1334. /* MI_STORE are internally buffered by the GPU and not flushed
  1335. * either by MI_FLUSH or SyncFlush or any other combination of
  1336. * MI commands.
  1337. *
  1338. * "Only the submission of the store operation is guaranteed.
  1339. * The write result will be complete (coherent) some time later
  1340. * (this is practically a finite period but there is no guaranteed
  1341. * latency)."
  1342. *
  1343. * Empirically, we observe that we need a delay of at least 75us to
  1344. * be sure that the seqno write is visible by the CPU.
  1345. */
  1346. usleep_range(125, 250);
  1347. }
  1348. static void
  1349. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1350. {
  1351. struct drm_i915_private *dev_priv = engine->i915;
  1352. /* Workaround to force correct ordering between irq and seqno writes on
  1353. * ivb (and maybe also on snb) by reading from a CS register (like
  1354. * ACTHD) before reading the status page.
  1355. *
  1356. * Note that this effectively stalls the read by the time it takes to
  1357. * do a memory transaction, which more or less ensures that the write
  1358. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1359. * Alternatively we could delay the interrupt from the CS ring to give
  1360. * the write time to land, but that would incur a delay after every
  1361. * batch i.e. much more frequent than a delay when waiting for the
  1362. * interrupt (with the same net latency).
  1363. *
  1364. * Also note that to prevent whole machine hangs on gen7, we have to
  1365. * take the spinlock to guard against concurrent cacheline access.
  1366. */
  1367. spin_lock_irq(&dev_priv->uncore.lock);
  1368. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1369. spin_unlock_irq(&dev_priv->uncore.lock);
  1370. }
  1371. static void
  1372. gen5_irq_enable(struct intel_engine_cs *engine)
  1373. {
  1374. gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
  1375. }
  1376. static void
  1377. gen5_irq_disable(struct intel_engine_cs *engine)
  1378. {
  1379. gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
  1380. }
  1381. static void
  1382. i9xx_irq_enable(struct intel_engine_cs *engine)
  1383. {
  1384. struct drm_i915_private *dev_priv = engine->i915;
  1385. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1386. I915_WRITE(IMR, dev_priv->irq_mask);
  1387. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1388. }
  1389. static void
  1390. i9xx_irq_disable(struct intel_engine_cs *engine)
  1391. {
  1392. struct drm_i915_private *dev_priv = engine->i915;
  1393. dev_priv->irq_mask |= engine->irq_enable_mask;
  1394. I915_WRITE(IMR, dev_priv->irq_mask);
  1395. }
  1396. static void
  1397. i8xx_irq_enable(struct intel_engine_cs *engine)
  1398. {
  1399. struct drm_i915_private *dev_priv = engine->i915;
  1400. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1401. I915_WRITE16(IMR, dev_priv->irq_mask);
  1402. POSTING_READ16(RING_IMR(engine->mmio_base));
  1403. }
  1404. static void
  1405. i8xx_irq_disable(struct intel_engine_cs *engine)
  1406. {
  1407. struct drm_i915_private *dev_priv = engine->i915;
  1408. dev_priv->irq_mask |= engine->irq_enable_mask;
  1409. I915_WRITE16(IMR, dev_priv->irq_mask);
  1410. }
  1411. static int
  1412. bsd_ring_flush(struct drm_i915_gem_request *req,
  1413. u32 invalidate_domains,
  1414. u32 flush_domains)
  1415. {
  1416. struct intel_engine_cs *engine = req->engine;
  1417. int ret;
  1418. ret = intel_ring_begin(req, 2);
  1419. if (ret)
  1420. return ret;
  1421. intel_ring_emit(engine, MI_FLUSH);
  1422. intel_ring_emit(engine, MI_NOOP);
  1423. intel_ring_advance(engine);
  1424. return 0;
  1425. }
  1426. static int
  1427. i9xx_add_request(struct drm_i915_gem_request *req)
  1428. {
  1429. struct intel_engine_cs *engine = req->engine;
  1430. int ret;
  1431. ret = intel_ring_begin(req, 4);
  1432. if (ret)
  1433. return ret;
  1434. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1435. intel_ring_emit(engine,
  1436. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1437. intel_ring_emit(engine, req->seqno);
  1438. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1439. __intel_ring_advance(engine);
  1440. return 0;
  1441. }
  1442. static void
  1443. gen6_irq_enable(struct intel_engine_cs *engine)
  1444. {
  1445. struct drm_i915_private *dev_priv = engine->i915;
  1446. I915_WRITE_IMR(engine,
  1447. ~(engine->irq_enable_mask |
  1448. engine->irq_keep_mask));
  1449. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1450. }
  1451. static void
  1452. gen6_irq_disable(struct intel_engine_cs *engine)
  1453. {
  1454. struct drm_i915_private *dev_priv = engine->i915;
  1455. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1456. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1457. }
  1458. static void
  1459. hsw_vebox_irq_enable(struct intel_engine_cs *engine)
  1460. {
  1461. struct drm_i915_private *dev_priv = engine->i915;
  1462. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1463. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1464. }
  1465. static void
  1466. hsw_vebox_irq_disable(struct intel_engine_cs *engine)
  1467. {
  1468. struct drm_i915_private *dev_priv = engine->i915;
  1469. I915_WRITE_IMR(engine, ~0);
  1470. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1471. }
  1472. static void
  1473. gen8_irq_enable(struct intel_engine_cs *engine)
  1474. {
  1475. struct drm_i915_private *dev_priv = engine->i915;
  1476. I915_WRITE_IMR(engine,
  1477. ~(engine->irq_enable_mask |
  1478. engine->irq_keep_mask));
  1479. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1480. }
  1481. static void
  1482. gen8_irq_disable(struct intel_engine_cs *engine)
  1483. {
  1484. struct drm_i915_private *dev_priv = engine->i915;
  1485. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1486. }
  1487. static int
  1488. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1489. u64 offset, u32 length,
  1490. unsigned dispatch_flags)
  1491. {
  1492. struct intel_engine_cs *engine = req->engine;
  1493. int ret;
  1494. ret = intel_ring_begin(req, 2);
  1495. if (ret)
  1496. return ret;
  1497. intel_ring_emit(engine,
  1498. MI_BATCH_BUFFER_START |
  1499. MI_BATCH_GTT |
  1500. (dispatch_flags & I915_DISPATCH_SECURE ?
  1501. 0 : MI_BATCH_NON_SECURE_I965));
  1502. intel_ring_emit(engine, offset);
  1503. intel_ring_advance(engine);
  1504. return 0;
  1505. }
  1506. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1507. #define I830_BATCH_LIMIT (256*1024)
  1508. #define I830_TLB_ENTRIES (2)
  1509. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1510. static int
  1511. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1512. u64 offset, u32 len,
  1513. unsigned dispatch_flags)
  1514. {
  1515. struct intel_engine_cs *engine = req->engine;
  1516. u32 cs_offset = engine->scratch.gtt_offset;
  1517. int ret;
  1518. ret = intel_ring_begin(req, 6);
  1519. if (ret)
  1520. return ret;
  1521. /* Evict the invalid PTE TLBs */
  1522. intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1523. intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1524. intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1525. intel_ring_emit(engine, cs_offset);
  1526. intel_ring_emit(engine, 0xdeadbeef);
  1527. intel_ring_emit(engine, MI_NOOP);
  1528. intel_ring_advance(engine);
  1529. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1530. if (len > I830_BATCH_LIMIT)
  1531. return -ENOSPC;
  1532. ret = intel_ring_begin(req, 6 + 2);
  1533. if (ret)
  1534. return ret;
  1535. /* Blit the batch (which has now all relocs applied) to the
  1536. * stable batch scratch bo area (so that the CS never
  1537. * stumbles over its tlb invalidation bug) ...
  1538. */
  1539. intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1540. intel_ring_emit(engine,
  1541. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1542. intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1543. intel_ring_emit(engine, cs_offset);
  1544. intel_ring_emit(engine, 4096);
  1545. intel_ring_emit(engine, offset);
  1546. intel_ring_emit(engine, MI_FLUSH);
  1547. intel_ring_emit(engine, MI_NOOP);
  1548. intel_ring_advance(engine);
  1549. /* ... and execute it. */
  1550. offset = cs_offset;
  1551. }
  1552. ret = intel_ring_begin(req, 2);
  1553. if (ret)
  1554. return ret;
  1555. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1556. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1557. 0 : MI_BATCH_NON_SECURE));
  1558. intel_ring_advance(engine);
  1559. return 0;
  1560. }
  1561. static int
  1562. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1563. u64 offset, u32 len,
  1564. unsigned dispatch_flags)
  1565. {
  1566. struct intel_engine_cs *engine = req->engine;
  1567. int ret;
  1568. ret = intel_ring_begin(req, 2);
  1569. if (ret)
  1570. return ret;
  1571. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1572. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1573. 0 : MI_BATCH_NON_SECURE));
  1574. intel_ring_advance(engine);
  1575. return 0;
  1576. }
  1577. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1578. {
  1579. struct drm_i915_private *dev_priv = engine->i915;
  1580. if (!dev_priv->status_page_dmah)
  1581. return;
  1582. drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
  1583. engine->status_page.page_addr = NULL;
  1584. }
  1585. static void cleanup_status_page(struct intel_engine_cs *engine)
  1586. {
  1587. struct drm_i915_gem_object *obj;
  1588. obj = engine->status_page.obj;
  1589. if (obj == NULL)
  1590. return;
  1591. kunmap(sg_page(obj->pages->sgl));
  1592. i915_gem_object_ggtt_unpin(obj);
  1593. drm_gem_object_unreference(&obj->base);
  1594. engine->status_page.obj = NULL;
  1595. }
  1596. static int init_status_page(struct intel_engine_cs *engine)
  1597. {
  1598. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1599. if (obj == NULL) {
  1600. unsigned flags;
  1601. int ret;
  1602. obj = i915_gem_object_create(&engine->i915->drm, 4096);
  1603. if (IS_ERR(obj)) {
  1604. DRM_ERROR("Failed to allocate status page\n");
  1605. return PTR_ERR(obj);
  1606. }
  1607. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1608. if (ret)
  1609. goto err_unref;
  1610. flags = 0;
  1611. if (!HAS_LLC(engine->i915))
  1612. /* On g33, we cannot place HWS above 256MiB, so
  1613. * restrict its pinning to the low mappable arena.
  1614. * Though this restriction is not documented for
  1615. * gen4, gen5, or byt, they also behave similarly
  1616. * and hang if the HWS is placed at the top of the
  1617. * GTT. To generalise, it appears that all !llc
  1618. * platforms have issues with us placing the HWS
  1619. * above the mappable region (even though we never
  1620. * actualy map it).
  1621. */
  1622. flags |= PIN_MAPPABLE;
  1623. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1624. if (ret) {
  1625. err_unref:
  1626. drm_gem_object_unreference(&obj->base);
  1627. return ret;
  1628. }
  1629. engine->status_page.obj = obj;
  1630. }
  1631. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1632. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1633. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1634. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1635. engine->name, engine->status_page.gfx_addr);
  1636. return 0;
  1637. }
  1638. static int init_phys_status_page(struct intel_engine_cs *engine)
  1639. {
  1640. struct drm_i915_private *dev_priv = engine->i915;
  1641. if (!dev_priv->status_page_dmah) {
  1642. dev_priv->status_page_dmah =
  1643. drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
  1644. if (!dev_priv->status_page_dmah)
  1645. return -ENOMEM;
  1646. }
  1647. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1648. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1649. return 0;
  1650. }
  1651. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1652. {
  1653. GEM_BUG_ON(ringbuf->vma == NULL);
  1654. GEM_BUG_ON(ringbuf->virtual_start == NULL);
  1655. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1656. i915_gem_object_unpin_map(ringbuf->obj);
  1657. else
  1658. i915_vma_unpin_iomap(ringbuf->vma);
  1659. ringbuf->virtual_start = NULL;
  1660. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1661. ringbuf->vma = NULL;
  1662. }
  1663. int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
  1664. struct intel_ringbuffer *ringbuf)
  1665. {
  1666. struct drm_i915_gem_object *obj = ringbuf->obj;
  1667. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1668. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1669. void *addr;
  1670. int ret;
  1671. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1672. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1673. if (ret)
  1674. return ret;
  1675. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1676. if (ret)
  1677. goto err_unpin;
  1678. addr = i915_gem_object_pin_map(obj);
  1679. if (IS_ERR(addr)) {
  1680. ret = PTR_ERR(addr);
  1681. goto err_unpin;
  1682. }
  1683. } else {
  1684. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1685. flags | PIN_MAPPABLE);
  1686. if (ret)
  1687. return ret;
  1688. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1689. if (ret)
  1690. goto err_unpin;
  1691. /* Access through the GTT requires the device to be awake. */
  1692. assert_rpm_wakelock_held(dev_priv);
  1693. addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1694. if (IS_ERR(addr)) {
  1695. ret = PTR_ERR(addr);
  1696. goto err_unpin;
  1697. }
  1698. }
  1699. ringbuf->virtual_start = addr;
  1700. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1701. return 0;
  1702. err_unpin:
  1703. i915_gem_object_ggtt_unpin(obj);
  1704. return ret;
  1705. }
  1706. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1707. {
  1708. drm_gem_object_unreference(&ringbuf->obj->base);
  1709. ringbuf->obj = NULL;
  1710. }
  1711. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1712. struct intel_ringbuffer *ringbuf)
  1713. {
  1714. struct drm_i915_gem_object *obj;
  1715. obj = NULL;
  1716. if (!HAS_LLC(dev))
  1717. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1718. if (obj == NULL)
  1719. obj = i915_gem_object_create(dev, ringbuf->size);
  1720. if (IS_ERR(obj))
  1721. return PTR_ERR(obj);
  1722. /* mark ring buffers as read-only from GPU side by default */
  1723. obj->gt_ro = 1;
  1724. ringbuf->obj = obj;
  1725. return 0;
  1726. }
  1727. struct intel_ringbuffer *
  1728. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1729. {
  1730. struct intel_ringbuffer *ring;
  1731. int ret;
  1732. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1733. if (ring == NULL) {
  1734. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1735. engine->name);
  1736. return ERR_PTR(-ENOMEM);
  1737. }
  1738. ring->engine = engine;
  1739. list_add(&ring->link, &engine->buffers);
  1740. ring->size = size;
  1741. /* Workaround an erratum on the i830 which causes a hang if
  1742. * the TAIL pointer points to within the last 2 cachelines
  1743. * of the buffer.
  1744. */
  1745. ring->effective_size = size;
  1746. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1747. ring->effective_size -= 2 * CACHELINE_BYTES;
  1748. ring->last_retired_head = -1;
  1749. intel_ring_update_space(ring);
  1750. ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
  1751. if (ret) {
  1752. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1753. engine->name, ret);
  1754. list_del(&ring->link);
  1755. kfree(ring);
  1756. return ERR_PTR(ret);
  1757. }
  1758. return ring;
  1759. }
  1760. void
  1761. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1762. {
  1763. intel_destroy_ringbuffer_obj(ring);
  1764. list_del(&ring->link);
  1765. kfree(ring);
  1766. }
  1767. static int intel_ring_context_pin(struct i915_gem_context *ctx,
  1768. struct intel_engine_cs *engine)
  1769. {
  1770. struct intel_context *ce = &ctx->engine[engine->id];
  1771. int ret;
  1772. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1773. if (ce->pin_count++)
  1774. return 0;
  1775. if (ce->state) {
  1776. ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
  1777. if (ret)
  1778. goto error;
  1779. }
  1780. /* The kernel context is only used as a placeholder for flushing the
  1781. * active context. It is never used for submitting user rendering and
  1782. * as such never requires the golden render context, and so we can skip
  1783. * emitting it when we switch to the kernel context. This is required
  1784. * as during eviction we cannot allocate and pin the renderstate in
  1785. * order to initialise the context.
  1786. */
  1787. if (ctx == ctx->i915->kernel_context)
  1788. ce->initialised = true;
  1789. i915_gem_context_reference(ctx);
  1790. return 0;
  1791. error:
  1792. ce->pin_count = 0;
  1793. return ret;
  1794. }
  1795. static void intel_ring_context_unpin(struct i915_gem_context *ctx,
  1796. struct intel_engine_cs *engine)
  1797. {
  1798. struct intel_context *ce = &ctx->engine[engine->id];
  1799. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1800. if (--ce->pin_count)
  1801. return;
  1802. if (ce->state)
  1803. i915_gem_object_ggtt_unpin(ce->state);
  1804. i915_gem_context_unreference(ctx);
  1805. }
  1806. static int intel_init_ring_buffer(struct drm_device *dev,
  1807. struct intel_engine_cs *engine)
  1808. {
  1809. struct drm_i915_private *dev_priv = to_i915(dev);
  1810. struct intel_ringbuffer *ringbuf;
  1811. int ret;
  1812. WARN_ON(engine->buffer);
  1813. engine->i915 = dev_priv;
  1814. INIT_LIST_HEAD(&engine->active_list);
  1815. INIT_LIST_HEAD(&engine->request_list);
  1816. INIT_LIST_HEAD(&engine->execlist_queue);
  1817. INIT_LIST_HEAD(&engine->buffers);
  1818. i915_gem_batch_pool_init(dev, &engine->batch_pool);
  1819. memset(engine->semaphore.sync_seqno, 0,
  1820. sizeof(engine->semaphore.sync_seqno));
  1821. ret = intel_engine_init_breadcrumbs(engine);
  1822. if (ret)
  1823. goto error;
  1824. /* We may need to do things with the shrinker which
  1825. * require us to immediately switch back to the default
  1826. * context. This can cause a problem as pinning the
  1827. * default context also requires GTT space which may not
  1828. * be available. To avoid this we always pin the default
  1829. * context.
  1830. */
  1831. ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
  1832. if (ret)
  1833. goto error;
  1834. ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
  1835. if (IS_ERR(ringbuf)) {
  1836. ret = PTR_ERR(ringbuf);
  1837. goto error;
  1838. }
  1839. engine->buffer = ringbuf;
  1840. if (I915_NEED_GFX_HWS(dev_priv)) {
  1841. ret = init_status_page(engine);
  1842. if (ret)
  1843. goto error;
  1844. } else {
  1845. WARN_ON(engine->id != RCS);
  1846. ret = init_phys_status_page(engine);
  1847. if (ret)
  1848. goto error;
  1849. }
  1850. ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
  1851. if (ret) {
  1852. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1853. engine->name, ret);
  1854. intel_destroy_ringbuffer_obj(ringbuf);
  1855. goto error;
  1856. }
  1857. ret = i915_cmd_parser_init_ring(engine);
  1858. if (ret)
  1859. goto error;
  1860. return 0;
  1861. error:
  1862. intel_cleanup_engine(engine);
  1863. return ret;
  1864. }
  1865. void intel_cleanup_engine(struct intel_engine_cs *engine)
  1866. {
  1867. struct drm_i915_private *dev_priv;
  1868. if (!intel_engine_initialized(engine))
  1869. return;
  1870. dev_priv = engine->i915;
  1871. if (engine->buffer) {
  1872. intel_stop_engine(engine);
  1873. WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1874. intel_unpin_ringbuffer_obj(engine->buffer);
  1875. intel_ringbuffer_free(engine->buffer);
  1876. engine->buffer = NULL;
  1877. }
  1878. if (engine->cleanup)
  1879. engine->cleanup(engine);
  1880. if (I915_NEED_GFX_HWS(dev_priv)) {
  1881. cleanup_status_page(engine);
  1882. } else {
  1883. WARN_ON(engine->id != RCS);
  1884. cleanup_phys_status_page(engine);
  1885. }
  1886. i915_cmd_parser_fini_ring(engine);
  1887. i915_gem_batch_pool_fini(&engine->batch_pool);
  1888. intel_engine_fini_breadcrumbs(engine);
  1889. intel_ring_context_unpin(dev_priv->kernel_context, engine);
  1890. engine->i915 = NULL;
  1891. }
  1892. int intel_engine_idle(struct intel_engine_cs *engine)
  1893. {
  1894. struct drm_i915_gem_request *req;
  1895. /* Wait upon the last request to be completed */
  1896. if (list_empty(&engine->request_list))
  1897. return 0;
  1898. req = list_entry(engine->request_list.prev,
  1899. struct drm_i915_gem_request,
  1900. list);
  1901. /* Make sure we do not trigger any retires */
  1902. return __i915_wait_request(req,
  1903. req->i915->mm.interruptible,
  1904. NULL, NULL);
  1905. }
  1906. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1907. {
  1908. int ret;
  1909. /* Flush enough space to reduce the likelihood of waiting after
  1910. * we start building the request - in which case we will just
  1911. * have to repeat work.
  1912. */
  1913. request->reserved_space += LEGACY_REQUEST_SIZE;
  1914. request->ringbuf = request->engine->buffer;
  1915. ret = intel_ring_begin(request, 0);
  1916. if (ret)
  1917. return ret;
  1918. request->reserved_space -= LEGACY_REQUEST_SIZE;
  1919. return 0;
  1920. }
  1921. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1922. {
  1923. struct intel_ringbuffer *ringbuf = req->ringbuf;
  1924. struct intel_engine_cs *engine = req->engine;
  1925. struct drm_i915_gem_request *target;
  1926. intel_ring_update_space(ringbuf);
  1927. if (ringbuf->space >= bytes)
  1928. return 0;
  1929. /*
  1930. * Space is reserved in the ringbuffer for finalising the request,
  1931. * as that cannot be allowed to fail. During request finalisation,
  1932. * reserved_space is set to 0 to stop the overallocation and the
  1933. * assumption is that then we never need to wait (which has the
  1934. * risk of failing with EINTR).
  1935. *
  1936. * See also i915_gem_request_alloc() and i915_add_request().
  1937. */
  1938. GEM_BUG_ON(!req->reserved_space);
  1939. list_for_each_entry(target, &engine->request_list, list) {
  1940. unsigned space;
  1941. /*
  1942. * The request queue is per-engine, so can contain requests
  1943. * from multiple ringbuffers. Here, we must ignore any that
  1944. * aren't from the ringbuffer we're considering.
  1945. */
  1946. if (target->ringbuf != ringbuf)
  1947. continue;
  1948. /* Would completion of this request free enough space? */
  1949. space = __intel_ring_space(target->postfix, ringbuf->tail,
  1950. ringbuf->size);
  1951. if (space >= bytes)
  1952. break;
  1953. }
  1954. if (WARN_ON(&target->list == &engine->request_list))
  1955. return -ENOSPC;
  1956. return i915_wait_request(target);
  1957. }
  1958. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  1959. {
  1960. struct intel_ringbuffer *ringbuf = req->ringbuf;
  1961. int remain_actual = ringbuf->size - ringbuf->tail;
  1962. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1963. int bytes = num_dwords * sizeof(u32);
  1964. int total_bytes, wait_bytes;
  1965. bool need_wrap = false;
  1966. total_bytes = bytes + req->reserved_space;
  1967. if (unlikely(bytes > remain_usable)) {
  1968. /*
  1969. * Not enough space for the basic request. So need to flush
  1970. * out the remainder and then wait for base + reserved.
  1971. */
  1972. wait_bytes = remain_actual + total_bytes;
  1973. need_wrap = true;
  1974. } else if (unlikely(total_bytes > remain_usable)) {
  1975. /*
  1976. * The base request will fit but the reserved space
  1977. * falls off the end. So we don't need an immediate wrap
  1978. * and only need to effectively wait for the reserved
  1979. * size space from the start of ringbuffer.
  1980. */
  1981. wait_bytes = remain_actual + req->reserved_space;
  1982. } else {
  1983. /* No wrapping required, just waiting. */
  1984. wait_bytes = total_bytes;
  1985. }
  1986. if (wait_bytes > ringbuf->space) {
  1987. int ret = wait_for_space(req, wait_bytes);
  1988. if (unlikely(ret))
  1989. return ret;
  1990. intel_ring_update_space(ringbuf);
  1991. if (unlikely(ringbuf->space < wait_bytes))
  1992. return -EAGAIN;
  1993. }
  1994. if (unlikely(need_wrap)) {
  1995. GEM_BUG_ON(remain_actual > ringbuf->space);
  1996. GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
  1997. /* Fill the tail with MI_NOOP */
  1998. memset(ringbuf->virtual_start + ringbuf->tail,
  1999. 0, remain_actual);
  2000. ringbuf->tail = 0;
  2001. ringbuf->space -= remain_actual;
  2002. }
  2003. ringbuf->space -= bytes;
  2004. GEM_BUG_ON(ringbuf->space < 0);
  2005. return 0;
  2006. }
  2007. /* Align the ring tail to a cacheline boundary */
  2008. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2009. {
  2010. struct intel_engine_cs *engine = req->engine;
  2011. int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2012. int ret;
  2013. if (num_dwords == 0)
  2014. return 0;
  2015. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2016. ret = intel_ring_begin(req, num_dwords);
  2017. if (ret)
  2018. return ret;
  2019. while (num_dwords--)
  2020. intel_ring_emit(engine, MI_NOOP);
  2021. intel_ring_advance(engine);
  2022. return 0;
  2023. }
  2024. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2025. {
  2026. struct drm_i915_private *dev_priv = engine->i915;
  2027. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2028. * so long as the semaphore value in the register/page is greater
  2029. * than the sync value), so whenever we reset the seqno,
  2030. * so long as we reset the tracking semaphore value to 0, it will
  2031. * always be before the next request's seqno. If we don't reset
  2032. * the semaphore value, then when the seqno moves backwards all
  2033. * future waits will complete instantly (causing rendering corruption).
  2034. */
  2035. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  2036. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2037. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2038. if (HAS_VEBOX(dev_priv))
  2039. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2040. }
  2041. if (dev_priv->semaphore_obj) {
  2042. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2043. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2044. void *semaphores = kmap(page);
  2045. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2046. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2047. kunmap(page);
  2048. }
  2049. memset(engine->semaphore.sync_seqno, 0,
  2050. sizeof(engine->semaphore.sync_seqno));
  2051. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  2052. if (engine->irq_seqno_barrier)
  2053. engine->irq_seqno_barrier(engine);
  2054. engine->last_submitted_seqno = seqno;
  2055. engine->hangcheck.seqno = seqno;
  2056. /* After manually advancing the seqno, fake the interrupt in case
  2057. * there are any waiters for that seqno.
  2058. */
  2059. rcu_read_lock();
  2060. intel_engine_wakeup(engine);
  2061. rcu_read_unlock();
  2062. }
  2063. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2064. u32 value)
  2065. {
  2066. struct drm_i915_private *dev_priv = engine->i915;
  2067. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  2068. /* Every tail move must follow the sequence below */
  2069. /* Disable notification that the ring is IDLE. The GT
  2070. * will then assume that it is busy and bring it out of rc6.
  2071. */
  2072. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2073. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2074. /* Clear the context id. Here be magic! */
  2075. I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
  2076. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2077. if (intel_wait_for_register_fw(dev_priv,
  2078. GEN6_BSD_SLEEP_PSMI_CONTROL,
  2079. GEN6_BSD_SLEEP_INDICATOR,
  2080. 0,
  2081. 50))
  2082. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2083. /* Now that the ring is fully powered up, update the tail */
  2084. I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
  2085. POSTING_READ_FW(RING_TAIL(engine->mmio_base));
  2086. /* Let the ring send IDLE messages to the GT again,
  2087. * and so let it sleep to conserve power when idle.
  2088. */
  2089. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2090. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2091. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  2092. }
  2093. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2094. u32 invalidate, u32 flush)
  2095. {
  2096. struct intel_engine_cs *engine = req->engine;
  2097. uint32_t cmd;
  2098. int ret;
  2099. ret = intel_ring_begin(req, 4);
  2100. if (ret)
  2101. return ret;
  2102. cmd = MI_FLUSH_DW;
  2103. if (INTEL_GEN(req->i915) >= 8)
  2104. cmd += 1;
  2105. /* We always require a command barrier so that subsequent
  2106. * commands, such as breadcrumb interrupts, are strictly ordered
  2107. * wrt the contents of the write cache being flushed to memory
  2108. * (and thus being coherent from the CPU).
  2109. */
  2110. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2111. /*
  2112. * Bspec vol 1c.5 - video engine command streamer:
  2113. * "If ENABLED, all TLBs will be invalidated once the flush
  2114. * operation is complete. This bit is only valid when the
  2115. * Post-Sync Operation field is a value of 1h or 3h."
  2116. */
  2117. if (invalidate & I915_GEM_GPU_DOMAINS)
  2118. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2119. intel_ring_emit(engine, cmd);
  2120. intel_ring_emit(engine,
  2121. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2122. if (INTEL_GEN(req->i915) >= 8) {
  2123. intel_ring_emit(engine, 0); /* upper addr */
  2124. intel_ring_emit(engine, 0); /* value */
  2125. } else {
  2126. intel_ring_emit(engine, 0);
  2127. intel_ring_emit(engine, MI_NOOP);
  2128. }
  2129. intel_ring_advance(engine);
  2130. return 0;
  2131. }
  2132. static int
  2133. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2134. u64 offset, u32 len,
  2135. unsigned dispatch_flags)
  2136. {
  2137. struct intel_engine_cs *engine = req->engine;
  2138. bool ppgtt = USES_PPGTT(engine->dev) &&
  2139. !(dispatch_flags & I915_DISPATCH_SECURE);
  2140. int ret;
  2141. ret = intel_ring_begin(req, 4);
  2142. if (ret)
  2143. return ret;
  2144. /* FIXME(BDW): Address space and security selectors. */
  2145. intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2146. (dispatch_flags & I915_DISPATCH_RS ?
  2147. MI_BATCH_RESOURCE_STREAMER : 0));
  2148. intel_ring_emit(engine, lower_32_bits(offset));
  2149. intel_ring_emit(engine, upper_32_bits(offset));
  2150. intel_ring_emit(engine, MI_NOOP);
  2151. intel_ring_advance(engine);
  2152. return 0;
  2153. }
  2154. static int
  2155. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2156. u64 offset, u32 len,
  2157. unsigned dispatch_flags)
  2158. {
  2159. struct intel_engine_cs *engine = req->engine;
  2160. int ret;
  2161. ret = intel_ring_begin(req, 2);
  2162. if (ret)
  2163. return ret;
  2164. intel_ring_emit(engine,
  2165. MI_BATCH_BUFFER_START |
  2166. (dispatch_flags & I915_DISPATCH_SECURE ?
  2167. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2168. (dispatch_flags & I915_DISPATCH_RS ?
  2169. MI_BATCH_RESOURCE_STREAMER : 0));
  2170. /* bit0-7 is the length on GEN6+ */
  2171. intel_ring_emit(engine, offset);
  2172. intel_ring_advance(engine);
  2173. return 0;
  2174. }
  2175. static int
  2176. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2177. u64 offset, u32 len,
  2178. unsigned dispatch_flags)
  2179. {
  2180. struct intel_engine_cs *engine = req->engine;
  2181. int ret;
  2182. ret = intel_ring_begin(req, 2);
  2183. if (ret)
  2184. return ret;
  2185. intel_ring_emit(engine,
  2186. MI_BATCH_BUFFER_START |
  2187. (dispatch_flags & I915_DISPATCH_SECURE ?
  2188. 0 : MI_BATCH_NON_SECURE_I965));
  2189. /* bit0-7 is the length on GEN6+ */
  2190. intel_ring_emit(engine, offset);
  2191. intel_ring_advance(engine);
  2192. return 0;
  2193. }
  2194. /* Blitter support (SandyBridge+) */
  2195. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2196. u32 invalidate, u32 flush)
  2197. {
  2198. struct intel_engine_cs *engine = req->engine;
  2199. uint32_t cmd;
  2200. int ret;
  2201. ret = intel_ring_begin(req, 4);
  2202. if (ret)
  2203. return ret;
  2204. cmd = MI_FLUSH_DW;
  2205. if (INTEL_GEN(req->i915) >= 8)
  2206. cmd += 1;
  2207. /* We always require a command barrier so that subsequent
  2208. * commands, such as breadcrumb interrupts, are strictly ordered
  2209. * wrt the contents of the write cache being flushed to memory
  2210. * (and thus being coherent from the CPU).
  2211. */
  2212. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2213. /*
  2214. * Bspec vol 1c.3 - blitter engine command streamer:
  2215. * "If ENABLED, all TLBs will be invalidated once the flush
  2216. * operation is complete. This bit is only valid when the
  2217. * Post-Sync Operation field is a value of 1h or 3h."
  2218. */
  2219. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2220. cmd |= MI_INVALIDATE_TLB;
  2221. intel_ring_emit(engine, cmd);
  2222. intel_ring_emit(engine,
  2223. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2224. if (INTEL_GEN(req->i915) >= 8) {
  2225. intel_ring_emit(engine, 0); /* upper addr */
  2226. intel_ring_emit(engine, 0); /* value */
  2227. } else {
  2228. intel_ring_emit(engine, 0);
  2229. intel_ring_emit(engine, MI_NOOP);
  2230. }
  2231. intel_ring_advance(engine);
  2232. return 0;
  2233. }
  2234. static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
  2235. struct intel_engine_cs *engine)
  2236. {
  2237. struct drm_i915_gem_object *obj;
  2238. int ret, i;
  2239. if (!i915_semaphore_is_enabled(dev_priv))
  2240. return;
  2241. if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
  2242. obj = i915_gem_object_create(&dev_priv->drm, 4096);
  2243. if (IS_ERR(obj)) {
  2244. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2245. i915.semaphores = 0;
  2246. } else {
  2247. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2248. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2249. if (ret != 0) {
  2250. drm_gem_object_unreference(&obj->base);
  2251. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2252. i915.semaphores = 0;
  2253. } else {
  2254. dev_priv->semaphore_obj = obj;
  2255. }
  2256. }
  2257. }
  2258. if (!i915_semaphore_is_enabled(dev_priv))
  2259. return;
  2260. if (INTEL_GEN(dev_priv) >= 8) {
  2261. u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
  2262. engine->semaphore.sync_to = gen8_ring_sync;
  2263. engine->semaphore.signal = gen8_xcs_signal;
  2264. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2265. u64 ring_offset;
  2266. if (i != engine->id)
  2267. ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
  2268. else
  2269. ring_offset = MI_SEMAPHORE_SYNC_INVALID;
  2270. engine->semaphore.signal_ggtt[i] = ring_offset;
  2271. }
  2272. } else if (INTEL_GEN(dev_priv) >= 6) {
  2273. engine->semaphore.sync_to = gen6_ring_sync;
  2274. engine->semaphore.signal = gen6_signal;
  2275. /*
  2276. * The current semaphore is only applied on pre-gen8
  2277. * platform. And there is no VCS2 ring on the pre-gen8
  2278. * platform. So the semaphore between RCS and VCS2 is
  2279. * initialized as INVALID. Gen8 will initialize the
  2280. * sema between VCS2 and RCS later.
  2281. */
  2282. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2283. static const struct {
  2284. u32 wait_mbox;
  2285. i915_reg_t mbox_reg;
  2286. } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
  2287. [RCS] = {
  2288. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
  2289. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
  2290. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
  2291. },
  2292. [VCS] = {
  2293. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
  2294. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
  2295. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
  2296. },
  2297. [BCS] = {
  2298. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
  2299. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
  2300. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
  2301. },
  2302. [VECS] = {
  2303. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
  2304. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
  2305. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
  2306. },
  2307. };
  2308. u32 wait_mbox;
  2309. i915_reg_t mbox_reg;
  2310. if (i == engine->id || i == VCS2) {
  2311. wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
  2312. mbox_reg = GEN6_NOSYNC;
  2313. } else {
  2314. wait_mbox = sem_data[engine->id][i].wait_mbox;
  2315. mbox_reg = sem_data[engine->id][i].mbox_reg;
  2316. }
  2317. engine->semaphore.mbox.wait[i] = wait_mbox;
  2318. engine->semaphore.mbox.signal[i] = mbox_reg;
  2319. }
  2320. }
  2321. }
  2322. static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
  2323. struct intel_engine_cs *engine)
  2324. {
  2325. if (INTEL_GEN(dev_priv) >= 8) {
  2326. engine->irq_enable = gen8_irq_enable;
  2327. engine->irq_disable = gen8_irq_disable;
  2328. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2329. } else if (INTEL_GEN(dev_priv) >= 6) {
  2330. engine->irq_enable = gen6_irq_enable;
  2331. engine->irq_disable = gen6_irq_disable;
  2332. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2333. } else if (INTEL_GEN(dev_priv) >= 5) {
  2334. engine->irq_enable = gen5_irq_enable;
  2335. engine->irq_disable = gen5_irq_disable;
  2336. engine->irq_seqno_barrier = gen5_seqno_barrier;
  2337. } else if (INTEL_GEN(dev_priv) >= 3) {
  2338. engine->irq_enable = i9xx_irq_enable;
  2339. engine->irq_disable = i9xx_irq_disable;
  2340. } else {
  2341. engine->irq_enable = i8xx_irq_enable;
  2342. engine->irq_disable = i8xx_irq_disable;
  2343. }
  2344. }
  2345. static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
  2346. struct intel_engine_cs *engine)
  2347. {
  2348. engine->init_hw = init_ring_common;
  2349. engine->write_tail = ring_write_tail;
  2350. engine->add_request = i9xx_add_request;
  2351. if (INTEL_GEN(dev_priv) >= 6)
  2352. engine->add_request = gen6_add_request;
  2353. if (INTEL_GEN(dev_priv) >= 8)
  2354. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2355. else if (INTEL_GEN(dev_priv) >= 6)
  2356. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2357. else if (INTEL_GEN(dev_priv) >= 4)
  2358. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2359. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2360. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2361. else
  2362. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2363. intel_ring_init_irq(dev_priv, engine);
  2364. intel_ring_init_semaphores(dev_priv, engine);
  2365. }
  2366. int intel_init_render_ring_buffer(struct drm_device *dev)
  2367. {
  2368. struct drm_i915_private *dev_priv = to_i915(dev);
  2369. struct intel_engine_cs *engine = &dev_priv->engine[RCS];
  2370. int ret;
  2371. engine->name = "render ring";
  2372. engine->id = RCS;
  2373. engine->exec_id = I915_EXEC_RENDER;
  2374. engine->hw_id = 0;
  2375. engine->mmio_base = RENDER_RING_BASE;
  2376. intel_ring_default_vfuncs(dev_priv, engine);
  2377. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2378. if (HAS_L3_DPF(dev_priv))
  2379. engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  2380. if (INTEL_GEN(dev_priv) >= 8) {
  2381. engine->init_context = intel_rcs_ctx_init;
  2382. engine->add_request = gen8_render_add_request;
  2383. engine->flush = gen8_render_ring_flush;
  2384. if (i915_semaphore_is_enabled(dev_priv))
  2385. engine->semaphore.signal = gen8_rcs_signal;
  2386. } else if (INTEL_GEN(dev_priv) >= 6) {
  2387. engine->init_context = intel_rcs_ctx_init;
  2388. engine->flush = gen7_render_ring_flush;
  2389. if (IS_GEN6(dev_priv))
  2390. engine->flush = gen6_render_ring_flush;
  2391. } else if (IS_GEN5(dev_priv)) {
  2392. engine->flush = gen4_render_ring_flush;
  2393. } else {
  2394. if (INTEL_GEN(dev_priv) < 4)
  2395. engine->flush = gen2_render_ring_flush;
  2396. else
  2397. engine->flush = gen4_render_ring_flush;
  2398. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2399. }
  2400. if (IS_HASWELL(dev_priv))
  2401. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2402. engine->init_hw = init_render_ring;
  2403. engine->cleanup = render_ring_cleanup;
  2404. ret = intel_init_ring_buffer(dev, engine);
  2405. if (ret)
  2406. return ret;
  2407. if (INTEL_GEN(dev_priv) >= 6) {
  2408. ret = intel_init_pipe_control(engine, 4096);
  2409. if (ret)
  2410. return ret;
  2411. } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2412. ret = intel_init_pipe_control(engine, I830_WA_SIZE);
  2413. if (ret)
  2414. return ret;
  2415. }
  2416. return 0;
  2417. }
  2418. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2419. {
  2420. struct drm_i915_private *dev_priv = to_i915(dev);
  2421. struct intel_engine_cs *engine = &dev_priv->engine[VCS];
  2422. engine->name = "bsd ring";
  2423. engine->id = VCS;
  2424. engine->exec_id = I915_EXEC_BSD;
  2425. engine->hw_id = 1;
  2426. intel_ring_default_vfuncs(dev_priv, engine);
  2427. if (INTEL_GEN(dev_priv) >= 6) {
  2428. engine->mmio_base = GEN6_BSD_RING_BASE;
  2429. /* gen6 bsd needs a special wa for tail updates */
  2430. if (IS_GEN6(dev_priv))
  2431. engine->write_tail = gen6_bsd_ring_write_tail;
  2432. engine->flush = gen6_bsd_ring_flush;
  2433. if (INTEL_GEN(dev_priv) >= 8)
  2434. engine->irq_enable_mask =
  2435. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2436. else
  2437. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2438. } else {
  2439. engine->mmio_base = BSD_RING_BASE;
  2440. engine->flush = bsd_ring_flush;
  2441. if (IS_GEN5(dev_priv))
  2442. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2443. else
  2444. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2445. }
  2446. return intel_init_ring_buffer(dev, engine);
  2447. }
  2448. /**
  2449. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2450. */
  2451. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2452. {
  2453. struct drm_i915_private *dev_priv = to_i915(dev);
  2454. struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
  2455. engine->name = "bsd2 ring";
  2456. engine->id = VCS2;
  2457. engine->exec_id = I915_EXEC_BSD;
  2458. engine->hw_id = 4;
  2459. engine->mmio_base = GEN8_BSD2_RING_BASE;
  2460. intel_ring_default_vfuncs(dev_priv, engine);
  2461. engine->flush = gen6_bsd_ring_flush;
  2462. engine->irq_enable_mask =
  2463. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2464. return intel_init_ring_buffer(dev, engine);
  2465. }
  2466. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2467. {
  2468. struct drm_i915_private *dev_priv = to_i915(dev);
  2469. struct intel_engine_cs *engine = &dev_priv->engine[BCS];
  2470. engine->name = "blitter ring";
  2471. engine->id = BCS;
  2472. engine->exec_id = I915_EXEC_BLT;
  2473. engine->hw_id = 2;
  2474. engine->mmio_base = BLT_RING_BASE;
  2475. intel_ring_default_vfuncs(dev_priv, engine);
  2476. engine->flush = gen6_ring_flush;
  2477. if (INTEL_GEN(dev_priv) >= 8)
  2478. engine->irq_enable_mask =
  2479. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2480. else
  2481. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2482. return intel_init_ring_buffer(dev, engine);
  2483. }
  2484. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2485. {
  2486. struct drm_i915_private *dev_priv = to_i915(dev);
  2487. struct intel_engine_cs *engine = &dev_priv->engine[VECS];
  2488. engine->name = "video enhancement ring";
  2489. engine->id = VECS;
  2490. engine->exec_id = I915_EXEC_VEBOX;
  2491. engine->hw_id = 3;
  2492. engine->mmio_base = VEBOX_RING_BASE;
  2493. intel_ring_default_vfuncs(dev_priv, engine);
  2494. engine->flush = gen6_ring_flush;
  2495. if (INTEL_GEN(dev_priv) >= 8) {
  2496. engine->irq_enable_mask =
  2497. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2498. } else {
  2499. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2500. engine->irq_enable = hsw_vebox_irq_enable;
  2501. engine->irq_disable = hsw_vebox_irq_disable;
  2502. }
  2503. return intel_init_ring_buffer(dev, engine);
  2504. }
  2505. int
  2506. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2507. {
  2508. struct intel_engine_cs *engine = req->engine;
  2509. int ret;
  2510. if (!engine->gpu_caches_dirty)
  2511. return 0;
  2512. ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2513. if (ret)
  2514. return ret;
  2515. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2516. engine->gpu_caches_dirty = false;
  2517. return 0;
  2518. }
  2519. int
  2520. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2521. {
  2522. struct intel_engine_cs *engine = req->engine;
  2523. uint32_t flush_domains;
  2524. int ret;
  2525. flush_domains = 0;
  2526. if (engine->gpu_caches_dirty)
  2527. flush_domains = I915_GEM_GPU_DOMAINS;
  2528. ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2529. if (ret)
  2530. return ret;
  2531. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2532. engine->gpu_caches_dirty = false;
  2533. return 0;
  2534. }
  2535. void
  2536. intel_stop_engine(struct intel_engine_cs *engine)
  2537. {
  2538. int ret;
  2539. if (!intel_engine_initialized(engine))
  2540. return;
  2541. ret = intel_engine_idle(engine);
  2542. if (ret)
  2543. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2544. engine->name, ret);
  2545. stop_ring(engine);
  2546. }