i915_debugfs.c 150 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. enum {
  42. ACTIVE_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  47. * allocated we need to hook into the minor for release. */
  48. static int
  49. drm_add_fake_info_node(struct drm_minor *minor,
  50. struct dentry *ent,
  51. const void *key)
  52. {
  53. struct drm_info_node *node;
  54. node = kmalloc(sizeof(*node), GFP_KERNEL);
  55. if (node == NULL) {
  56. debugfs_remove(ent);
  57. return -ENOMEM;
  58. }
  59. node->minor = minor;
  60. node->dent = ent;
  61. node->info_ent = (void *) key;
  62. mutex_lock(&minor->debugfs_lock);
  63. list_add(&node->list, &minor->debugfs_list);
  64. mutex_unlock(&minor->debugfs_lock);
  65. return 0;
  66. }
  67. static int i915_capabilities(struct seq_file *m, void *data)
  68. {
  69. struct drm_info_node *node = m->private;
  70. struct drm_device *dev = node->minor->dev;
  71. const struct intel_device_info *info = INTEL_INFO(dev);
  72. seq_printf(m, "gen: %d\n", info->gen);
  73. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  74. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  75. #define SEP_SEMICOLON ;
  76. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  77. #undef PRINT_FLAG
  78. #undef SEP_SEMICOLON
  79. return 0;
  80. }
  81. static char get_active_flag(struct drm_i915_gem_object *obj)
  82. {
  83. return obj->active ? '*' : ' ';
  84. }
  85. static char get_pin_flag(struct drm_i915_gem_object *obj)
  86. {
  87. return obj->pin_display ? 'p' : ' ';
  88. }
  89. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  90. {
  91. switch (obj->tiling_mode) {
  92. default:
  93. case I915_TILING_NONE: return ' ';
  94. case I915_TILING_X: return 'X';
  95. case I915_TILING_Y: return 'Y';
  96. }
  97. }
  98. static char get_global_flag(struct drm_i915_gem_object *obj)
  99. {
  100. return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
  101. }
  102. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  103. {
  104. return obj->mapping ? 'M' : ' ';
  105. }
  106. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  107. {
  108. u64 size = 0;
  109. struct i915_vma *vma;
  110. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  111. if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
  112. size += vma->node.size;
  113. }
  114. return size;
  115. }
  116. static void
  117. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  118. {
  119. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  120. struct intel_engine_cs *engine;
  121. struct i915_vma *vma;
  122. int pin_count = 0;
  123. enum intel_engine_id id;
  124. lockdep_assert_held(&obj->base.dev->struct_mutex);
  125. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
  126. &obj->base,
  127. get_active_flag(obj),
  128. get_pin_flag(obj),
  129. get_tiling_flag(obj),
  130. get_global_flag(obj),
  131. get_pin_mapped_flag(obj),
  132. obj->base.size / 1024,
  133. obj->base.read_domains,
  134. obj->base.write_domain);
  135. for_each_engine_id(engine, dev_priv, id)
  136. seq_printf(m, "%x ",
  137. i915_gem_request_get_seqno(obj->last_read_req[id]));
  138. seq_printf(m, "] %x %x%s%s%s",
  139. i915_gem_request_get_seqno(obj->last_write_req),
  140. i915_gem_request_get_seqno(obj->last_fenced_req),
  141. i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
  142. obj->dirty ? " dirty" : "",
  143. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  144. if (obj->base.name)
  145. seq_printf(m, " (name: %d)", obj->base.name);
  146. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  147. if (vma->pin_count > 0)
  148. pin_count++;
  149. }
  150. seq_printf(m, " (pinned x %d)", pin_count);
  151. if (obj->pin_display)
  152. seq_printf(m, " (display)");
  153. if (obj->fence_reg != I915_FENCE_REG_NONE)
  154. seq_printf(m, " (fence: %d)", obj->fence_reg);
  155. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  156. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  157. vma->is_ggtt ? "g" : "pp",
  158. vma->node.start, vma->node.size);
  159. if (vma->is_ggtt)
  160. seq_printf(m, ", type: %u", vma->ggtt_view.type);
  161. seq_puts(m, ")");
  162. }
  163. if (obj->stolen)
  164. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  165. if (obj->pin_display || obj->fault_mappable) {
  166. char s[3], *t = s;
  167. if (obj->pin_display)
  168. *t++ = 'p';
  169. if (obj->fault_mappable)
  170. *t++ = 'f';
  171. *t = '\0';
  172. seq_printf(m, " (%s mappable)", s);
  173. }
  174. if (obj->last_write_req != NULL)
  175. seq_printf(m, " (%s)",
  176. i915_gem_request_get_engine(obj->last_write_req)->name);
  177. if (obj->frontbuffer_bits)
  178. seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
  179. }
  180. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  181. {
  182. struct drm_info_node *node = m->private;
  183. uintptr_t list = (uintptr_t) node->info_ent->data;
  184. struct list_head *head;
  185. struct drm_device *dev = node->minor->dev;
  186. struct drm_i915_private *dev_priv = to_i915(dev);
  187. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  188. struct i915_vma *vma;
  189. u64 total_obj_size, total_gtt_size;
  190. int count, ret;
  191. ret = mutex_lock_interruptible(&dev->struct_mutex);
  192. if (ret)
  193. return ret;
  194. /* FIXME: the user of this interface might want more than just GGTT */
  195. switch (list) {
  196. case ACTIVE_LIST:
  197. seq_puts(m, "Active:\n");
  198. head = &ggtt->base.active_list;
  199. break;
  200. case INACTIVE_LIST:
  201. seq_puts(m, "Inactive:\n");
  202. head = &ggtt->base.inactive_list;
  203. break;
  204. default:
  205. mutex_unlock(&dev->struct_mutex);
  206. return -EINVAL;
  207. }
  208. total_obj_size = total_gtt_size = count = 0;
  209. list_for_each_entry(vma, head, vm_link) {
  210. seq_printf(m, " ");
  211. describe_obj(m, vma->obj);
  212. seq_printf(m, "\n");
  213. total_obj_size += vma->obj->base.size;
  214. total_gtt_size += vma->node.size;
  215. count++;
  216. }
  217. mutex_unlock(&dev->struct_mutex);
  218. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  219. count, total_obj_size, total_gtt_size);
  220. return 0;
  221. }
  222. static int obj_rank_by_stolen(void *priv,
  223. struct list_head *A, struct list_head *B)
  224. {
  225. struct drm_i915_gem_object *a =
  226. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  227. struct drm_i915_gem_object *b =
  228. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  229. if (a->stolen->start < b->stolen->start)
  230. return -1;
  231. if (a->stolen->start > b->stolen->start)
  232. return 1;
  233. return 0;
  234. }
  235. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  236. {
  237. struct drm_info_node *node = m->private;
  238. struct drm_device *dev = node->minor->dev;
  239. struct drm_i915_private *dev_priv = to_i915(dev);
  240. struct drm_i915_gem_object *obj;
  241. u64 total_obj_size, total_gtt_size;
  242. LIST_HEAD(stolen);
  243. int count, ret;
  244. ret = mutex_lock_interruptible(&dev->struct_mutex);
  245. if (ret)
  246. return ret;
  247. total_obj_size = total_gtt_size = count = 0;
  248. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  249. if (obj->stolen == NULL)
  250. continue;
  251. list_add(&obj->obj_exec_link, &stolen);
  252. total_obj_size += obj->base.size;
  253. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  254. count++;
  255. }
  256. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  257. if (obj->stolen == NULL)
  258. continue;
  259. list_add(&obj->obj_exec_link, &stolen);
  260. total_obj_size += obj->base.size;
  261. count++;
  262. }
  263. list_sort(NULL, &stolen, obj_rank_by_stolen);
  264. seq_puts(m, "Stolen:\n");
  265. while (!list_empty(&stolen)) {
  266. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  267. seq_puts(m, " ");
  268. describe_obj(m, obj);
  269. seq_putc(m, '\n');
  270. list_del_init(&obj->obj_exec_link);
  271. }
  272. mutex_unlock(&dev->struct_mutex);
  273. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  274. count, total_obj_size, total_gtt_size);
  275. return 0;
  276. }
  277. #define count_objects(list, member) do { \
  278. list_for_each_entry(obj, list, member) { \
  279. size += i915_gem_obj_total_ggtt_size(obj); \
  280. ++count; \
  281. if (obj->map_and_fenceable) { \
  282. mappable_size += i915_gem_obj_ggtt_size(obj); \
  283. ++mappable_count; \
  284. } \
  285. } \
  286. } while (0)
  287. struct file_stats {
  288. struct drm_i915_file_private *file_priv;
  289. unsigned long count;
  290. u64 total, unbound;
  291. u64 global, shared;
  292. u64 active, inactive;
  293. };
  294. static int per_file_stats(int id, void *ptr, void *data)
  295. {
  296. struct drm_i915_gem_object *obj = ptr;
  297. struct file_stats *stats = data;
  298. struct i915_vma *vma;
  299. stats->count++;
  300. stats->total += obj->base.size;
  301. if (obj->base.name || obj->base.dma_buf)
  302. stats->shared += obj->base.size;
  303. if (USES_FULL_PPGTT(obj->base.dev)) {
  304. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  305. struct i915_hw_ppgtt *ppgtt;
  306. if (!drm_mm_node_allocated(&vma->node))
  307. continue;
  308. if (vma->is_ggtt) {
  309. stats->global += obj->base.size;
  310. continue;
  311. }
  312. ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
  313. if (ppgtt->file_priv != stats->file_priv)
  314. continue;
  315. if (obj->active) /* XXX per-vma statistic */
  316. stats->active += obj->base.size;
  317. else
  318. stats->inactive += obj->base.size;
  319. return 0;
  320. }
  321. } else {
  322. if (i915_gem_obj_ggtt_bound(obj)) {
  323. stats->global += obj->base.size;
  324. if (obj->active)
  325. stats->active += obj->base.size;
  326. else
  327. stats->inactive += obj->base.size;
  328. return 0;
  329. }
  330. }
  331. if (!list_empty(&obj->global_list))
  332. stats->unbound += obj->base.size;
  333. return 0;
  334. }
  335. #define print_file_stats(m, name, stats) do { \
  336. if (stats.count) \
  337. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  338. name, \
  339. stats.count, \
  340. stats.total, \
  341. stats.active, \
  342. stats.inactive, \
  343. stats.global, \
  344. stats.shared, \
  345. stats.unbound); \
  346. } while (0)
  347. static void print_batch_pool_stats(struct seq_file *m,
  348. struct drm_i915_private *dev_priv)
  349. {
  350. struct drm_i915_gem_object *obj;
  351. struct file_stats stats;
  352. struct intel_engine_cs *engine;
  353. int j;
  354. memset(&stats, 0, sizeof(stats));
  355. for_each_engine(engine, dev_priv) {
  356. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  357. list_for_each_entry(obj,
  358. &engine->batch_pool.cache_list[j],
  359. batch_pool_link)
  360. per_file_stats(0, obj, &stats);
  361. }
  362. }
  363. print_file_stats(m, "[k]batch pool", stats);
  364. }
  365. static int per_file_ctx_stats(int id, void *ptr, void *data)
  366. {
  367. struct i915_gem_context *ctx = ptr;
  368. int n;
  369. for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
  370. if (ctx->engine[n].state)
  371. per_file_stats(0, ctx->engine[n].state, data);
  372. if (ctx->engine[n].ringbuf)
  373. per_file_stats(0, ctx->engine[n].ringbuf->obj, data);
  374. }
  375. return 0;
  376. }
  377. static void print_context_stats(struct seq_file *m,
  378. struct drm_i915_private *dev_priv)
  379. {
  380. struct file_stats stats;
  381. struct drm_file *file;
  382. memset(&stats, 0, sizeof(stats));
  383. mutex_lock(&dev_priv->drm.struct_mutex);
  384. if (dev_priv->kernel_context)
  385. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  386. list_for_each_entry(file, &dev_priv->drm.filelist, lhead) {
  387. struct drm_i915_file_private *fpriv = file->driver_priv;
  388. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  389. }
  390. mutex_unlock(&dev_priv->drm.struct_mutex);
  391. print_file_stats(m, "[k]contexts", stats);
  392. }
  393. #define count_vmas(list, member) do { \
  394. list_for_each_entry(vma, list, member) { \
  395. size += i915_gem_obj_total_ggtt_size(vma->obj); \
  396. ++count; \
  397. if (vma->obj->map_and_fenceable) { \
  398. mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
  399. ++mappable_count; \
  400. } \
  401. } \
  402. } while (0)
  403. static int i915_gem_object_info(struct seq_file *m, void* data)
  404. {
  405. struct drm_info_node *node = m->private;
  406. struct drm_device *dev = node->minor->dev;
  407. struct drm_i915_private *dev_priv = to_i915(dev);
  408. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  409. u32 count, mappable_count, purgeable_count;
  410. u64 size, mappable_size, purgeable_size;
  411. unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
  412. u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
  413. struct drm_i915_gem_object *obj;
  414. struct drm_file *file;
  415. struct i915_vma *vma;
  416. int ret;
  417. ret = mutex_lock_interruptible(&dev->struct_mutex);
  418. if (ret)
  419. return ret;
  420. seq_printf(m, "%u objects, %zu bytes\n",
  421. dev_priv->mm.object_count,
  422. dev_priv->mm.object_memory);
  423. size = count = mappable_size = mappable_count = 0;
  424. count_objects(&dev_priv->mm.bound_list, global_list);
  425. seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
  426. count, mappable_count, size, mappable_size);
  427. size = count = mappable_size = mappable_count = 0;
  428. count_vmas(&ggtt->base.active_list, vm_link);
  429. seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
  430. count, mappable_count, size, mappable_size);
  431. size = count = mappable_size = mappable_count = 0;
  432. count_vmas(&ggtt->base.inactive_list, vm_link);
  433. seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
  434. count, mappable_count, size, mappable_size);
  435. size = count = purgeable_size = purgeable_count = 0;
  436. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  437. size += obj->base.size, ++count;
  438. if (obj->madv == I915_MADV_DONTNEED)
  439. purgeable_size += obj->base.size, ++purgeable_count;
  440. if (obj->mapping) {
  441. pin_mapped_count++;
  442. pin_mapped_size += obj->base.size;
  443. if (obj->pages_pin_count == 0) {
  444. pin_mapped_purgeable_count++;
  445. pin_mapped_purgeable_size += obj->base.size;
  446. }
  447. }
  448. }
  449. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  450. size = count = mappable_size = mappable_count = 0;
  451. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  452. if (obj->fault_mappable) {
  453. size += i915_gem_obj_ggtt_size(obj);
  454. ++count;
  455. }
  456. if (obj->pin_display) {
  457. mappable_size += i915_gem_obj_ggtt_size(obj);
  458. ++mappable_count;
  459. }
  460. if (obj->madv == I915_MADV_DONTNEED) {
  461. purgeable_size += obj->base.size;
  462. ++purgeable_count;
  463. }
  464. if (obj->mapping) {
  465. pin_mapped_count++;
  466. pin_mapped_size += obj->base.size;
  467. if (obj->pages_pin_count == 0) {
  468. pin_mapped_purgeable_count++;
  469. pin_mapped_purgeable_size += obj->base.size;
  470. }
  471. }
  472. }
  473. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  474. purgeable_count, purgeable_size);
  475. seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
  476. mappable_count, mappable_size);
  477. seq_printf(m, "%u fault mappable objects, %llu bytes\n",
  478. count, size);
  479. seq_printf(m,
  480. "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
  481. pin_mapped_count, pin_mapped_purgeable_count,
  482. pin_mapped_size, pin_mapped_purgeable_size);
  483. seq_printf(m, "%llu [%llu] gtt total\n",
  484. ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
  485. seq_putc(m, '\n');
  486. print_batch_pool_stats(m, dev_priv);
  487. mutex_unlock(&dev->struct_mutex);
  488. mutex_lock(&dev->filelist_mutex);
  489. print_context_stats(m, dev_priv);
  490. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  491. struct file_stats stats;
  492. struct task_struct *task;
  493. memset(&stats, 0, sizeof(stats));
  494. stats.file_priv = file->driver_priv;
  495. spin_lock(&file->table_lock);
  496. idr_for_each(&file->object_idr, per_file_stats, &stats);
  497. spin_unlock(&file->table_lock);
  498. /*
  499. * Although we have a valid reference on file->pid, that does
  500. * not guarantee that the task_struct who called get_pid() is
  501. * still alive (e.g. get_pid(current) => fork() => exit()).
  502. * Therefore, we need to protect this ->comm access using RCU.
  503. */
  504. rcu_read_lock();
  505. task = pid_task(file->pid, PIDTYPE_PID);
  506. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  507. rcu_read_unlock();
  508. }
  509. mutex_unlock(&dev->filelist_mutex);
  510. return 0;
  511. }
  512. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  513. {
  514. struct drm_info_node *node = m->private;
  515. struct drm_device *dev = node->minor->dev;
  516. uintptr_t list = (uintptr_t) node->info_ent->data;
  517. struct drm_i915_private *dev_priv = to_i915(dev);
  518. struct drm_i915_gem_object *obj;
  519. u64 total_obj_size, total_gtt_size;
  520. int count, ret;
  521. ret = mutex_lock_interruptible(&dev->struct_mutex);
  522. if (ret)
  523. return ret;
  524. total_obj_size = total_gtt_size = count = 0;
  525. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  526. if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
  527. continue;
  528. seq_puts(m, " ");
  529. describe_obj(m, obj);
  530. seq_putc(m, '\n');
  531. total_obj_size += obj->base.size;
  532. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  533. count++;
  534. }
  535. mutex_unlock(&dev->struct_mutex);
  536. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  537. count, total_obj_size, total_gtt_size);
  538. return 0;
  539. }
  540. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  541. {
  542. struct drm_info_node *node = m->private;
  543. struct drm_device *dev = node->minor->dev;
  544. struct drm_i915_private *dev_priv = to_i915(dev);
  545. struct intel_crtc *crtc;
  546. int ret;
  547. ret = mutex_lock_interruptible(&dev->struct_mutex);
  548. if (ret)
  549. return ret;
  550. for_each_intel_crtc(dev, crtc) {
  551. const char pipe = pipe_name(crtc->pipe);
  552. const char plane = plane_name(crtc->plane);
  553. struct intel_flip_work *work;
  554. spin_lock_irq(&dev->event_lock);
  555. work = crtc->flip_work;
  556. if (work == NULL) {
  557. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  558. pipe, plane);
  559. } else {
  560. u32 pending;
  561. u32 addr;
  562. pending = atomic_read(&work->pending);
  563. if (pending) {
  564. seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
  565. pipe, plane);
  566. } else {
  567. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  568. pipe, plane);
  569. }
  570. if (work->flip_queued_req) {
  571. struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
  572. seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
  573. engine->name,
  574. i915_gem_request_get_seqno(work->flip_queued_req),
  575. dev_priv->next_seqno,
  576. intel_engine_get_seqno(engine),
  577. i915_gem_request_completed(work->flip_queued_req));
  578. } else
  579. seq_printf(m, "Flip not associated with any ring\n");
  580. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  581. work->flip_queued_vblank,
  582. work->flip_ready_vblank,
  583. intel_crtc_get_vblank_counter(crtc));
  584. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  585. if (INTEL_INFO(dev)->gen >= 4)
  586. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  587. else
  588. addr = I915_READ(DSPADDR(crtc->plane));
  589. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  590. if (work->pending_flip_obj) {
  591. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  592. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  593. }
  594. }
  595. spin_unlock_irq(&dev->event_lock);
  596. }
  597. mutex_unlock(&dev->struct_mutex);
  598. return 0;
  599. }
  600. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  601. {
  602. struct drm_info_node *node = m->private;
  603. struct drm_device *dev = node->minor->dev;
  604. struct drm_i915_private *dev_priv = to_i915(dev);
  605. struct drm_i915_gem_object *obj;
  606. struct intel_engine_cs *engine;
  607. int total = 0;
  608. int ret, j;
  609. ret = mutex_lock_interruptible(&dev->struct_mutex);
  610. if (ret)
  611. return ret;
  612. for_each_engine(engine, dev_priv) {
  613. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  614. int count;
  615. count = 0;
  616. list_for_each_entry(obj,
  617. &engine->batch_pool.cache_list[j],
  618. batch_pool_link)
  619. count++;
  620. seq_printf(m, "%s cache[%d]: %d objects\n",
  621. engine->name, j, count);
  622. list_for_each_entry(obj,
  623. &engine->batch_pool.cache_list[j],
  624. batch_pool_link) {
  625. seq_puts(m, " ");
  626. describe_obj(m, obj);
  627. seq_putc(m, '\n');
  628. }
  629. total += count;
  630. }
  631. }
  632. seq_printf(m, "total: %d\n", total);
  633. mutex_unlock(&dev->struct_mutex);
  634. return 0;
  635. }
  636. static int i915_gem_request_info(struct seq_file *m, void *data)
  637. {
  638. struct drm_info_node *node = m->private;
  639. struct drm_device *dev = node->minor->dev;
  640. struct drm_i915_private *dev_priv = to_i915(dev);
  641. struct intel_engine_cs *engine;
  642. struct drm_i915_gem_request *req;
  643. int ret, any;
  644. ret = mutex_lock_interruptible(&dev->struct_mutex);
  645. if (ret)
  646. return ret;
  647. any = 0;
  648. for_each_engine(engine, dev_priv) {
  649. int count;
  650. count = 0;
  651. list_for_each_entry(req, &engine->request_list, list)
  652. count++;
  653. if (count == 0)
  654. continue;
  655. seq_printf(m, "%s requests: %d\n", engine->name, count);
  656. list_for_each_entry(req, &engine->request_list, list) {
  657. struct task_struct *task;
  658. rcu_read_lock();
  659. task = NULL;
  660. if (req->pid)
  661. task = pid_task(req->pid, PIDTYPE_PID);
  662. seq_printf(m, " %x @ %d: %s [%d]\n",
  663. req->seqno,
  664. (int) (jiffies - req->emitted_jiffies),
  665. task ? task->comm : "<unknown>",
  666. task ? task->pid : -1);
  667. rcu_read_unlock();
  668. }
  669. any++;
  670. }
  671. mutex_unlock(&dev->struct_mutex);
  672. if (any == 0)
  673. seq_puts(m, "No requests\n");
  674. return 0;
  675. }
  676. static void i915_ring_seqno_info(struct seq_file *m,
  677. struct intel_engine_cs *engine)
  678. {
  679. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  680. struct rb_node *rb;
  681. seq_printf(m, "Current sequence (%s): %x\n",
  682. engine->name, intel_engine_get_seqno(engine));
  683. seq_printf(m, "Current user interrupts (%s): %lx\n",
  684. engine->name, READ_ONCE(engine->breadcrumbs.irq_wakeups));
  685. spin_lock(&b->lock);
  686. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  687. struct intel_wait *w = container_of(rb, typeof(*w), node);
  688. seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
  689. engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
  690. }
  691. spin_unlock(&b->lock);
  692. }
  693. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  694. {
  695. struct drm_info_node *node = m->private;
  696. struct drm_device *dev = node->minor->dev;
  697. struct drm_i915_private *dev_priv = to_i915(dev);
  698. struct intel_engine_cs *engine;
  699. int ret;
  700. ret = mutex_lock_interruptible(&dev->struct_mutex);
  701. if (ret)
  702. return ret;
  703. intel_runtime_pm_get(dev_priv);
  704. for_each_engine(engine, dev_priv)
  705. i915_ring_seqno_info(m, engine);
  706. intel_runtime_pm_put(dev_priv);
  707. mutex_unlock(&dev->struct_mutex);
  708. return 0;
  709. }
  710. static int i915_interrupt_info(struct seq_file *m, void *data)
  711. {
  712. struct drm_info_node *node = m->private;
  713. struct drm_device *dev = node->minor->dev;
  714. struct drm_i915_private *dev_priv = to_i915(dev);
  715. struct intel_engine_cs *engine;
  716. int ret, i, pipe;
  717. ret = mutex_lock_interruptible(&dev->struct_mutex);
  718. if (ret)
  719. return ret;
  720. intel_runtime_pm_get(dev_priv);
  721. if (IS_CHERRYVIEW(dev)) {
  722. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  723. I915_READ(GEN8_MASTER_IRQ));
  724. seq_printf(m, "Display IER:\t%08x\n",
  725. I915_READ(VLV_IER));
  726. seq_printf(m, "Display IIR:\t%08x\n",
  727. I915_READ(VLV_IIR));
  728. seq_printf(m, "Display IIR_RW:\t%08x\n",
  729. I915_READ(VLV_IIR_RW));
  730. seq_printf(m, "Display IMR:\t%08x\n",
  731. I915_READ(VLV_IMR));
  732. for_each_pipe(dev_priv, pipe)
  733. seq_printf(m, "Pipe %c stat:\t%08x\n",
  734. pipe_name(pipe),
  735. I915_READ(PIPESTAT(pipe)));
  736. seq_printf(m, "Port hotplug:\t%08x\n",
  737. I915_READ(PORT_HOTPLUG_EN));
  738. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  739. I915_READ(VLV_DPFLIPSTAT));
  740. seq_printf(m, "DPINVGTT:\t%08x\n",
  741. I915_READ(DPINVGTT));
  742. for (i = 0; i < 4; i++) {
  743. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  744. i, I915_READ(GEN8_GT_IMR(i)));
  745. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  746. i, I915_READ(GEN8_GT_IIR(i)));
  747. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  748. i, I915_READ(GEN8_GT_IER(i)));
  749. }
  750. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  751. I915_READ(GEN8_PCU_IMR));
  752. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  753. I915_READ(GEN8_PCU_IIR));
  754. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  755. I915_READ(GEN8_PCU_IER));
  756. } else if (INTEL_INFO(dev)->gen >= 8) {
  757. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  758. I915_READ(GEN8_MASTER_IRQ));
  759. for (i = 0; i < 4; i++) {
  760. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  761. i, I915_READ(GEN8_GT_IMR(i)));
  762. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  763. i, I915_READ(GEN8_GT_IIR(i)));
  764. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  765. i, I915_READ(GEN8_GT_IER(i)));
  766. }
  767. for_each_pipe(dev_priv, pipe) {
  768. enum intel_display_power_domain power_domain;
  769. power_domain = POWER_DOMAIN_PIPE(pipe);
  770. if (!intel_display_power_get_if_enabled(dev_priv,
  771. power_domain)) {
  772. seq_printf(m, "Pipe %c power disabled\n",
  773. pipe_name(pipe));
  774. continue;
  775. }
  776. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  777. pipe_name(pipe),
  778. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  779. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  780. pipe_name(pipe),
  781. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  782. seq_printf(m, "Pipe %c IER:\t%08x\n",
  783. pipe_name(pipe),
  784. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  785. intel_display_power_put(dev_priv, power_domain);
  786. }
  787. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  788. I915_READ(GEN8_DE_PORT_IMR));
  789. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  790. I915_READ(GEN8_DE_PORT_IIR));
  791. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  792. I915_READ(GEN8_DE_PORT_IER));
  793. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  794. I915_READ(GEN8_DE_MISC_IMR));
  795. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  796. I915_READ(GEN8_DE_MISC_IIR));
  797. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  798. I915_READ(GEN8_DE_MISC_IER));
  799. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  800. I915_READ(GEN8_PCU_IMR));
  801. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  802. I915_READ(GEN8_PCU_IIR));
  803. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  804. I915_READ(GEN8_PCU_IER));
  805. } else if (IS_VALLEYVIEW(dev)) {
  806. seq_printf(m, "Display IER:\t%08x\n",
  807. I915_READ(VLV_IER));
  808. seq_printf(m, "Display IIR:\t%08x\n",
  809. I915_READ(VLV_IIR));
  810. seq_printf(m, "Display IIR_RW:\t%08x\n",
  811. I915_READ(VLV_IIR_RW));
  812. seq_printf(m, "Display IMR:\t%08x\n",
  813. I915_READ(VLV_IMR));
  814. for_each_pipe(dev_priv, pipe)
  815. seq_printf(m, "Pipe %c stat:\t%08x\n",
  816. pipe_name(pipe),
  817. I915_READ(PIPESTAT(pipe)));
  818. seq_printf(m, "Master IER:\t%08x\n",
  819. I915_READ(VLV_MASTER_IER));
  820. seq_printf(m, "Render IER:\t%08x\n",
  821. I915_READ(GTIER));
  822. seq_printf(m, "Render IIR:\t%08x\n",
  823. I915_READ(GTIIR));
  824. seq_printf(m, "Render IMR:\t%08x\n",
  825. I915_READ(GTIMR));
  826. seq_printf(m, "PM IER:\t\t%08x\n",
  827. I915_READ(GEN6_PMIER));
  828. seq_printf(m, "PM IIR:\t\t%08x\n",
  829. I915_READ(GEN6_PMIIR));
  830. seq_printf(m, "PM IMR:\t\t%08x\n",
  831. I915_READ(GEN6_PMIMR));
  832. seq_printf(m, "Port hotplug:\t%08x\n",
  833. I915_READ(PORT_HOTPLUG_EN));
  834. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  835. I915_READ(VLV_DPFLIPSTAT));
  836. seq_printf(m, "DPINVGTT:\t%08x\n",
  837. I915_READ(DPINVGTT));
  838. } else if (!HAS_PCH_SPLIT(dev)) {
  839. seq_printf(m, "Interrupt enable: %08x\n",
  840. I915_READ(IER));
  841. seq_printf(m, "Interrupt identity: %08x\n",
  842. I915_READ(IIR));
  843. seq_printf(m, "Interrupt mask: %08x\n",
  844. I915_READ(IMR));
  845. for_each_pipe(dev_priv, pipe)
  846. seq_printf(m, "Pipe %c stat: %08x\n",
  847. pipe_name(pipe),
  848. I915_READ(PIPESTAT(pipe)));
  849. } else {
  850. seq_printf(m, "North Display Interrupt enable: %08x\n",
  851. I915_READ(DEIER));
  852. seq_printf(m, "North Display Interrupt identity: %08x\n",
  853. I915_READ(DEIIR));
  854. seq_printf(m, "North Display Interrupt mask: %08x\n",
  855. I915_READ(DEIMR));
  856. seq_printf(m, "South Display Interrupt enable: %08x\n",
  857. I915_READ(SDEIER));
  858. seq_printf(m, "South Display Interrupt identity: %08x\n",
  859. I915_READ(SDEIIR));
  860. seq_printf(m, "South Display Interrupt mask: %08x\n",
  861. I915_READ(SDEIMR));
  862. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  863. I915_READ(GTIER));
  864. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  865. I915_READ(GTIIR));
  866. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  867. I915_READ(GTIMR));
  868. }
  869. for_each_engine(engine, dev_priv) {
  870. if (INTEL_INFO(dev)->gen >= 6) {
  871. seq_printf(m,
  872. "Graphics Interrupt mask (%s): %08x\n",
  873. engine->name, I915_READ_IMR(engine));
  874. }
  875. i915_ring_seqno_info(m, engine);
  876. }
  877. intel_runtime_pm_put(dev_priv);
  878. mutex_unlock(&dev->struct_mutex);
  879. return 0;
  880. }
  881. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  882. {
  883. struct drm_info_node *node = m->private;
  884. struct drm_device *dev = node->minor->dev;
  885. struct drm_i915_private *dev_priv = to_i915(dev);
  886. int i, ret;
  887. ret = mutex_lock_interruptible(&dev->struct_mutex);
  888. if (ret)
  889. return ret;
  890. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  891. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  892. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  893. seq_printf(m, "Fence %d, pin count = %d, object = ",
  894. i, dev_priv->fence_regs[i].pin_count);
  895. if (obj == NULL)
  896. seq_puts(m, "unused");
  897. else
  898. describe_obj(m, obj);
  899. seq_putc(m, '\n');
  900. }
  901. mutex_unlock(&dev->struct_mutex);
  902. return 0;
  903. }
  904. static int i915_hws_info(struct seq_file *m, void *data)
  905. {
  906. struct drm_info_node *node = m->private;
  907. struct drm_device *dev = node->minor->dev;
  908. struct drm_i915_private *dev_priv = to_i915(dev);
  909. struct intel_engine_cs *engine;
  910. const u32 *hws;
  911. int i;
  912. engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
  913. hws = engine->status_page.page_addr;
  914. if (hws == NULL)
  915. return 0;
  916. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  917. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  918. i * 4,
  919. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  920. }
  921. return 0;
  922. }
  923. static ssize_t
  924. i915_error_state_write(struct file *filp,
  925. const char __user *ubuf,
  926. size_t cnt,
  927. loff_t *ppos)
  928. {
  929. struct i915_error_state_file_priv *error_priv = filp->private_data;
  930. struct drm_device *dev = error_priv->dev;
  931. int ret;
  932. DRM_DEBUG_DRIVER("Resetting error state\n");
  933. ret = mutex_lock_interruptible(&dev->struct_mutex);
  934. if (ret)
  935. return ret;
  936. i915_destroy_error_state(dev);
  937. mutex_unlock(&dev->struct_mutex);
  938. return cnt;
  939. }
  940. static int i915_error_state_open(struct inode *inode, struct file *file)
  941. {
  942. struct drm_device *dev = inode->i_private;
  943. struct i915_error_state_file_priv *error_priv;
  944. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  945. if (!error_priv)
  946. return -ENOMEM;
  947. error_priv->dev = dev;
  948. i915_error_state_get(dev, error_priv);
  949. file->private_data = error_priv;
  950. return 0;
  951. }
  952. static int i915_error_state_release(struct inode *inode, struct file *file)
  953. {
  954. struct i915_error_state_file_priv *error_priv = file->private_data;
  955. i915_error_state_put(error_priv);
  956. kfree(error_priv);
  957. return 0;
  958. }
  959. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  960. size_t count, loff_t *pos)
  961. {
  962. struct i915_error_state_file_priv *error_priv = file->private_data;
  963. struct drm_i915_error_state_buf error_str;
  964. loff_t tmp_pos = 0;
  965. ssize_t ret_count = 0;
  966. int ret;
  967. ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
  968. if (ret)
  969. return ret;
  970. ret = i915_error_state_to_str(&error_str, error_priv);
  971. if (ret)
  972. goto out;
  973. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  974. error_str.buf,
  975. error_str.bytes);
  976. if (ret_count < 0)
  977. ret = ret_count;
  978. else
  979. *pos = error_str.start + ret_count;
  980. out:
  981. i915_error_state_buf_release(&error_str);
  982. return ret ?: ret_count;
  983. }
  984. static const struct file_operations i915_error_state_fops = {
  985. .owner = THIS_MODULE,
  986. .open = i915_error_state_open,
  987. .read = i915_error_state_read,
  988. .write = i915_error_state_write,
  989. .llseek = default_llseek,
  990. .release = i915_error_state_release,
  991. };
  992. static int
  993. i915_next_seqno_get(void *data, u64 *val)
  994. {
  995. struct drm_device *dev = data;
  996. struct drm_i915_private *dev_priv = to_i915(dev);
  997. int ret;
  998. ret = mutex_lock_interruptible(&dev->struct_mutex);
  999. if (ret)
  1000. return ret;
  1001. *val = dev_priv->next_seqno;
  1002. mutex_unlock(&dev->struct_mutex);
  1003. return 0;
  1004. }
  1005. static int
  1006. i915_next_seqno_set(void *data, u64 val)
  1007. {
  1008. struct drm_device *dev = data;
  1009. int ret;
  1010. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1011. if (ret)
  1012. return ret;
  1013. ret = i915_gem_set_seqno(dev, val);
  1014. mutex_unlock(&dev->struct_mutex);
  1015. return ret;
  1016. }
  1017. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  1018. i915_next_seqno_get, i915_next_seqno_set,
  1019. "0x%llx\n");
  1020. static int i915_frequency_info(struct seq_file *m, void *unused)
  1021. {
  1022. struct drm_info_node *node = m->private;
  1023. struct drm_device *dev = node->minor->dev;
  1024. struct drm_i915_private *dev_priv = to_i915(dev);
  1025. int ret = 0;
  1026. intel_runtime_pm_get(dev_priv);
  1027. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1028. if (IS_GEN5(dev)) {
  1029. u16 rgvswctl = I915_READ16(MEMSWCTL);
  1030. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  1031. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  1032. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  1033. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  1034. MEMSTAT_VID_SHIFT);
  1035. seq_printf(m, "Current P-state: %d\n",
  1036. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  1037. } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  1038. u32 freq_sts;
  1039. mutex_lock(&dev_priv->rps.hw_lock);
  1040. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  1041. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  1042. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  1043. seq_printf(m, "actual GPU freq: %d MHz\n",
  1044. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  1045. seq_printf(m, "current GPU freq: %d MHz\n",
  1046. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1047. seq_printf(m, "max GPU freq: %d MHz\n",
  1048. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1049. seq_printf(m, "min GPU freq: %d MHz\n",
  1050. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1051. seq_printf(m, "idle GPU freq: %d MHz\n",
  1052. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1053. seq_printf(m,
  1054. "efficient (RPe) frequency: %d MHz\n",
  1055. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1056. mutex_unlock(&dev_priv->rps.hw_lock);
  1057. } else if (INTEL_INFO(dev)->gen >= 6) {
  1058. u32 rp_state_limits;
  1059. u32 gt_perf_status;
  1060. u32 rp_state_cap;
  1061. u32 rpmodectl, rpinclimit, rpdeclimit;
  1062. u32 rpstat, cagf, reqf;
  1063. u32 rpupei, rpcurup, rpprevup;
  1064. u32 rpdownei, rpcurdown, rpprevdown;
  1065. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  1066. int max_freq;
  1067. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  1068. if (IS_BROXTON(dev)) {
  1069. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  1070. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  1071. } else {
  1072. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  1073. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  1074. }
  1075. /* RPSTAT1 is in the GT power well */
  1076. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1077. if (ret)
  1078. goto out;
  1079. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1080. reqf = I915_READ(GEN6_RPNSWREQ);
  1081. if (IS_GEN9(dev))
  1082. reqf >>= 23;
  1083. else {
  1084. reqf &= ~GEN6_TURBO_DISABLE;
  1085. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1086. reqf >>= 24;
  1087. else
  1088. reqf >>= 25;
  1089. }
  1090. reqf = intel_gpu_freq(dev_priv, reqf);
  1091. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  1092. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  1093. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  1094. rpstat = I915_READ(GEN6_RPSTAT1);
  1095. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  1096. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  1097. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  1098. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  1099. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  1100. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  1101. if (IS_GEN9(dev))
  1102. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  1103. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1104. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  1105. else
  1106. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  1107. cagf = intel_gpu_freq(dev_priv, cagf);
  1108. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1109. mutex_unlock(&dev->struct_mutex);
  1110. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1111. pm_ier = I915_READ(GEN6_PMIER);
  1112. pm_imr = I915_READ(GEN6_PMIMR);
  1113. pm_isr = I915_READ(GEN6_PMISR);
  1114. pm_iir = I915_READ(GEN6_PMIIR);
  1115. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1116. } else {
  1117. pm_ier = I915_READ(GEN8_GT_IER(2));
  1118. pm_imr = I915_READ(GEN8_GT_IMR(2));
  1119. pm_isr = I915_READ(GEN8_GT_ISR(2));
  1120. pm_iir = I915_READ(GEN8_GT_IIR(2));
  1121. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1122. }
  1123. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1124. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1125. seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
  1126. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1127. seq_printf(m, "Render p-state ratio: %d\n",
  1128. (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
  1129. seq_printf(m, "Render p-state VID: %d\n",
  1130. gt_perf_status & 0xff);
  1131. seq_printf(m, "Render p-state limit: %d\n",
  1132. rp_state_limits & 0xff);
  1133. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1134. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1135. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1136. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1137. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1138. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1139. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  1140. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  1141. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  1142. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  1143. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  1144. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  1145. seq_printf(m, "Up threshold: %d%%\n",
  1146. dev_priv->rps.up_threshold);
  1147. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  1148. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  1149. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  1150. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  1151. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  1152. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  1153. seq_printf(m, "Down threshold: %d%%\n",
  1154. dev_priv->rps.down_threshold);
  1155. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
  1156. rp_state_cap >> 16) & 0xff;
  1157. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1158. GEN9_FREQ_SCALER : 1);
  1159. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1160. intel_gpu_freq(dev_priv, max_freq));
  1161. max_freq = (rp_state_cap & 0xff00) >> 8;
  1162. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1163. GEN9_FREQ_SCALER : 1);
  1164. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1165. intel_gpu_freq(dev_priv, max_freq));
  1166. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
  1167. rp_state_cap >> 0) & 0xff;
  1168. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1169. GEN9_FREQ_SCALER : 1);
  1170. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1171. intel_gpu_freq(dev_priv, max_freq));
  1172. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1173. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1174. seq_printf(m, "Current freq: %d MHz\n",
  1175. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1176. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1177. seq_printf(m, "Idle freq: %d MHz\n",
  1178. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1179. seq_printf(m, "Min freq: %d MHz\n",
  1180. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1181. seq_printf(m, "Max freq: %d MHz\n",
  1182. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1183. seq_printf(m,
  1184. "efficient (RPe) frequency: %d MHz\n",
  1185. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1186. } else {
  1187. seq_puts(m, "no P-state info available\n");
  1188. }
  1189. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
  1190. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1191. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1192. out:
  1193. intel_runtime_pm_put(dev_priv);
  1194. return ret;
  1195. }
  1196. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1197. {
  1198. struct drm_info_node *node = m->private;
  1199. struct drm_device *dev = node->minor->dev;
  1200. struct drm_i915_private *dev_priv = to_i915(dev);
  1201. struct intel_engine_cs *engine;
  1202. u64 acthd[I915_NUM_ENGINES];
  1203. u32 seqno[I915_NUM_ENGINES];
  1204. u32 instdone[I915_NUM_INSTDONE_REG];
  1205. enum intel_engine_id id;
  1206. int j;
  1207. if (!i915.enable_hangcheck) {
  1208. seq_printf(m, "Hangcheck disabled\n");
  1209. return 0;
  1210. }
  1211. intel_runtime_pm_get(dev_priv);
  1212. for_each_engine_id(engine, dev_priv, id) {
  1213. acthd[id] = intel_ring_get_active_head(engine);
  1214. seqno[id] = intel_engine_get_seqno(engine);
  1215. }
  1216. i915_get_extra_instdone(dev_priv, instdone);
  1217. intel_runtime_pm_put(dev_priv);
  1218. if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
  1219. seq_printf(m, "Hangcheck active, fires in %dms\n",
  1220. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1221. jiffies));
  1222. } else
  1223. seq_printf(m, "Hangcheck inactive\n");
  1224. for_each_engine_id(engine, dev_priv, id) {
  1225. seq_printf(m, "%s:\n", engine->name);
  1226. seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
  1227. engine->hangcheck.seqno,
  1228. seqno[id],
  1229. engine->last_submitted_seqno);
  1230. seq_printf(m, "\twaiters? %d\n",
  1231. intel_engine_has_waiter(engine));
  1232. seq_printf(m, "\tuser interrupts = %lx [current %lx]\n",
  1233. engine->hangcheck.user_interrupts,
  1234. READ_ONCE(engine->breadcrumbs.irq_wakeups));
  1235. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1236. (long long)engine->hangcheck.acthd,
  1237. (long long)acthd[id]);
  1238. seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
  1239. seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
  1240. if (engine->id == RCS) {
  1241. seq_puts(m, "\tinstdone read =");
  1242. for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
  1243. seq_printf(m, " 0x%08x", instdone[j]);
  1244. seq_puts(m, "\n\tinstdone accu =");
  1245. for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
  1246. seq_printf(m, " 0x%08x",
  1247. engine->hangcheck.instdone[j]);
  1248. seq_puts(m, "\n");
  1249. }
  1250. }
  1251. return 0;
  1252. }
  1253. static int ironlake_drpc_info(struct seq_file *m)
  1254. {
  1255. struct drm_info_node *node = m->private;
  1256. struct drm_device *dev = node->minor->dev;
  1257. struct drm_i915_private *dev_priv = to_i915(dev);
  1258. u32 rgvmodectl, rstdbyctl;
  1259. u16 crstandvid;
  1260. int ret;
  1261. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1262. if (ret)
  1263. return ret;
  1264. intel_runtime_pm_get(dev_priv);
  1265. rgvmodectl = I915_READ(MEMMODECTL);
  1266. rstdbyctl = I915_READ(RSTDBYCTL);
  1267. crstandvid = I915_READ16(CRSTANDVID);
  1268. intel_runtime_pm_put(dev_priv);
  1269. mutex_unlock(&dev->struct_mutex);
  1270. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1271. seq_printf(m, "Boost freq: %d\n",
  1272. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1273. MEMMODE_BOOST_FREQ_SHIFT);
  1274. seq_printf(m, "HW control enabled: %s\n",
  1275. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1276. seq_printf(m, "SW control enabled: %s\n",
  1277. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1278. seq_printf(m, "Gated voltage change: %s\n",
  1279. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1280. seq_printf(m, "Starting frequency: P%d\n",
  1281. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1282. seq_printf(m, "Max P-state: P%d\n",
  1283. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1284. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1285. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1286. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1287. seq_printf(m, "Render standby enabled: %s\n",
  1288. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1289. seq_puts(m, "Current RS state: ");
  1290. switch (rstdbyctl & RSX_STATUS_MASK) {
  1291. case RSX_STATUS_ON:
  1292. seq_puts(m, "on\n");
  1293. break;
  1294. case RSX_STATUS_RC1:
  1295. seq_puts(m, "RC1\n");
  1296. break;
  1297. case RSX_STATUS_RC1E:
  1298. seq_puts(m, "RC1E\n");
  1299. break;
  1300. case RSX_STATUS_RS1:
  1301. seq_puts(m, "RS1\n");
  1302. break;
  1303. case RSX_STATUS_RS2:
  1304. seq_puts(m, "RS2 (RC6)\n");
  1305. break;
  1306. case RSX_STATUS_RS3:
  1307. seq_puts(m, "RC3 (RC6+)\n");
  1308. break;
  1309. default:
  1310. seq_puts(m, "unknown\n");
  1311. break;
  1312. }
  1313. return 0;
  1314. }
  1315. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1316. {
  1317. struct drm_info_node *node = m->private;
  1318. struct drm_device *dev = node->minor->dev;
  1319. struct drm_i915_private *dev_priv = to_i915(dev);
  1320. struct intel_uncore_forcewake_domain *fw_domain;
  1321. spin_lock_irq(&dev_priv->uncore.lock);
  1322. for_each_fw_domain(fw_domain, dev_priv) {
  1323. seq_printf(m, "%s.wake_count = %u\n",
  1324. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1325. fw_domain->wake_count);
  1326. }
  1327. spin_unlock_irq(&dev_priv->uncore.lock);
  1328. return 0;
  1329. }
  1330. static int vlv_drpc_info(struct seq_file *m)
  1331. {
  1332. struct drm_info_node *node = m->private;
  1333. struct drm_device *dev = node->minor->dev;
  1334. struct drm_i915_private *dev_priv = to_i915(dev);
  1335. u32 rpmodectl1, rcctl1, pw_status;
  1336. intel_runtime_pm_get(dev_priv);
  1337. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1338. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1339. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1340. intel_runtime_pm_put(dev_priv);
  1341. seq_printf(m, "Video Turbo Mode: %s\n",
  1342. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1343. seq_printf(m, "Turbo enabled: %s\n",
  1344. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1345. seq_printf(m, "HW control enabled: %s\n",
  1346. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1347. seq_printf(m, "SW control enabled: %s\n",
  1348. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1349. GEN6_RP_MEDIA_SW_MODE));
  1350. seq_printf(m, "RC6 Enabled: %s\n",
  1351. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1352. GEN6_RC_CTL_EI_MODE(1))));
  1353. seq_printf(m, "Render Power Well: %s\n",
  1354. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1355. seq_printf(m, "Media Power Well: %s\n",
  1356. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1357. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1358. I915_READ(VLV_GT_RENDER_RC6));
  1359. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1360. I915_READ(VLV_GT_MEDIA_RC6));
  1361. return i915_forcewake_domains(m, NULL);
  1362. }
  1363. static int gen6_drpc_info(struct seq_file *m)
  1364. {
  1365. struct drm_info_node *node = m->private;
  1366. struct drm_device *dev = node->minor->dev;
  1367. struct drm_i915_private *dev_priv = to_i915(dev);
  1368. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1369. unsigned forcewake_count;
  1370. int count = 0, ret;
  1371. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1372. if (ret)
  1373. return ret;
  1374. intel_runtime_pm_get(dev_priv);
  1375. spin_lock_irq(&dev_priv->uncore.lock);
  1376. forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
  1377. spin_unlock_irq(&dev_priv->uncore.lock);
  1378. if (forcewake_count) {
  1379. seq_puts(m, "RC information inaccurate because somebody "
  1380. "holds a forcewake reference \n");
  1381. } else {
  1382. /* NB: we cannot use forcewake, else we read the wrong values */
  1383. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1384. udelay(10);
  1385. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1386. }
  1387. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1388. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1389. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1390. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1391. mutex_unlock(&dev->struct_mutex);
  1392. mutex_lock(&dev_priv->rps.hw_lock);
  1393. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1394. mutex_unlock(&dev_priv->rps.hw_lock);
  1395. intel_runtime_pm_put(dev_priv);
  1396. seq_printf(m, "Video Turbo Mode: %s\n",
  1397. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1398. seq_printf(m, "HW control enabled: %s\n",
  1399. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1400. seq_printf(m, "SW control enabled: %s\n",
  1401. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1402. GEN6_RP_MEDIA_SW_MODE));
  1403. seq_printf(m, "RC1e Enabled: %s\n",
  1404. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1405. seq_printf(m, "RC6 Enabled: %s\n",
  1406. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1407. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1408. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1409. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1410. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1411. seq_puts(m, "Current RC state: ");
  1412. switch (gt_core_status & GEN6_RCn_MASK) {
  1413. case GEN6_RC0:
  1414. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1415. seq_puts(m, "Core Power Down\n");
  1416. else
  1417. seq_puts(m, "on\n");
  1418. break;
  1419. case GEN6_RC3:
  1420. seq_puts(m, "RC3\n");
  1421. break;
  1422. case GEN6_RC6:
  1423. seq_puts(m, "RC6\n");
  1424. break;
  1425. case GEN6_RC7:
  1426. seq_puts(m, "RC7\n");
  1427. break;
  1428. default:
  1429. seq_puts(m, "Unknown\n");
  1430. break;
  1431. }
  1432. seq_printf(m, "Core Power Down: %s\n",
  1433. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1434. /* Not exactly sure what this is */
  1435. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1436. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1437. seq_printf(m, "RC6 residency since boot: %u\n",
  1438. I915_READ(GEN6_GT_GFX_RC6));
  1439. seq_printf(m, "RC6+ residency since boot: %u\n",
  1440. I915_READ(GEN6_GT_GFX_RC6p));
  1441. seq_printf(m, "RC6++ residency since boot: %u\n",
  1442. I915_READ(GEN6_GT_GFX_RC6pp));
  1443. seq_printf(m, "RC6 voltage: %dmV\n",
  1444. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1445. seq_printf(m, "RC6+ voltage: %dmV\n",
  1446. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1447. seq_printf(m, "RC6++ voltage: %dmV\n",
  1448. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1449. return 0;
  1450. }
  1451. static int i915_drpc_info(struct seq_file *m, void *unused)
  1452. {
  1453. struct drm_info_node *node = m->private;
  1454. struct drm_device *dev = node->minor->dev;
  1455. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  1456. return vlv_drpc_info(m);
  1457. else if (INTEL_INFO(dev)->gen >= 6)
  1458. return gen6_drpc_info(m);
  1459. else
  1460. return ironlake_drpc_info(m);
  1461. }
  1462. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1463. {
  1464. struct drm_info_node *node = m->private;
  1465. struct drm_device *dev = node->minor->dev;
  1466. struct drm_i915_private *dev_priv = to_i915(dev);
  1467. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1468. dev_priv->fb_tracking.busy_bits);
  1469. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1470. dev_priv->fb_tracking.flip_bits);
  1471. return 0;
  1472. }
  1473. static int i915_fbc_status(struct seq_file *m, void *unused)
  1474. {
  1475. struct drm_info_node *node = m->private;
  1476. struct drm_device *dev = node->minor->dev;
  1477. struct drm_i915_private *dev_priv = to_i915(dev);
  1478. if (!HAS_FBC(dev)) {
  1479. seq_puts(m, "FBC unsupported on this chipset\n");
  1480. return 0;
  1481. }
  1482. intel_runtime_pm_get(dev_priv);
  1483. mutex_lock(&dev_priv->fbc.lock);
  1484. if (intel_fbc_is_active(dev_priv))
  1485. seq_puts(m, "FBC enabled\n");
  1486. else
  1487. seq_printf(m, "FBC disabled: %s\n",
  1488. dev_priv->fbc.no_fbc_reason);
  1489. if (INTEL_INFO(dev_priv)->gen >= 7)
  1490. seq_printf(m, "Compressing: %s\n",
  1491. yesno(I915_READ(FBC_STATUS2) &
  1492. FBC_COMPRESSION_MASK));
  1493. mutex_unlock(&dev_priv->fbc.lock);
  1494. intel_runtime_pm_put(dev_priv);
  1495. return 0;
  1496. }
  1497. static int i915_fbc_fc_get(void *data, u64 *val)
  1498. {
  1499. struct drm_device *dev = data;
  1500. struct drm_i915_private *dev_priv = to_i915(dev);
  1501. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1502. return -ENODEV;
  1503. *val = dev_priv->fbc.false_color;
  1504. return 0;
  1505. }
  1506. static int i915_fbc_fc_set(void *data, u64 val)
  1507. {
  1508. struct drm_device *dev = data;
  1509. struct drm_i915_private *dev_priv = to_i915(dev);
  1510. u32 reg;
  1511. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1512. return -ENODEV;
  1513. mutex_lock(&dev_priv->fbc.lock);
  1514. reg = I915_READ(ILK_DPFC_CONTROL);
  1515. dev_priv->fbc.false_color = val;
  1516. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1517. (reg | FBC_CTL_FALSE_COLOR) :
  1518. (reg & ~FBC_CTL_FALSE_COLOR));
  1519. mutex_unlock(&dev_priv->fbc.lock);
  1520. return 0;
  1521. }
  1522. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1523. i915_fbc_fc_get, i915_fbc_fc_set,
  1524. "%llu\n");
  1525. static int i915_ips_status(struct seq_file *m, void *unused)
  1526. {
  1527. struct drm_info_node *node = m->private;
  1528. struct drm_device *dev = node->minor->dev;
  1529. struct drm_i915_private *dev_priv = to_i915(dev);
  1530. if (!HAS_IPS(dev)) {
  1531. seq_puts(m, "not supported\n");
  1532. return 0;
  1533. }
  1534. intel_runtime_pm_get(dev_priv);
  1535. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1536. yesno(i915.enable_ips));
  1537. if (INTEL_INFO(dev)->gen >= 8) {
  1538. seq_puts(m, "Currently: unknown\n");
  1539. } else {
  1540. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1541. seq_puts(m, "Currently: enabled\n");
  1542. else
  1543. seq_puts(m, "Currently: disabled\n");
  1544. }
  1545. intel_runtime_pm_put(dev_priv);
  1546. return 0;
  1547. }
  1548. static int i915_sr_status(struct seq_file *m, void *unused)
  1549. {
  1550. struct drm_info_node *node = m->private;
  1551. struct drm_device *dev = node->minor->dev;
  1552. struct drm_i915_private *dev_priv = to_i915(dev);
  1553. bool sr_enabled = false;
  1554. intel_runtime_pm_get(dev_priv);
  1555. if (HAS_PCH_SPLIT(dev))
  1556. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1557. else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
  1558. IS_I945G(dev) || IS_I945GM(dev))
  1559. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1560. else if (IS_I915GM(dev))
  1561. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1562. else if (IS_PINEVIEW(dev))
  1563. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1564. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  1565. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1566. intel_runtime_pm_put(dev_priv);
  1567. seq_printf(m, "self-refresh: %s\n",
  1568. sr_enabled ? "enabled" : "disabled");
  1569. return 0;
  1570. }
  1571. static int i915_emon_status(struct seq_file *m, void *unused)
  1572. {
  1573. struct drm_info_node *node = m->private;
  1574. struct drm_device *dev = node->minor->dev;
  1575. struct drm_i915_private *dev_priv = to_i915(dev);
  1576. unsigned long temp, chipset, gfx;
  1577. int ret;
  1578. if (!IS_GEN5(dev))
  1579. return -ENODEV;
  1580. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1581. if (ret)
  1582. return ret;
  1583. temp = i915_mch_val(dev_priv);
  1584. chipset = i915_chipset_val(dev_priv);
  1585. gfx = i915_gfx_val(dev_priv);
  1586. mutex_unlock(&dev->struct_mutex);
  1587. seq_printf(m, "GMCH temp: %ld\n", temp);
  1588. seq_printf(m, "Chipset power: %ld\n", chipset);
  1589. seq_printf(m, "GFX power: %ld\n", gfx);
  1590. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1591. return 0;
  1592. }
  1593. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1594. {
  1595. struct drm_info_node *node = m->private;
  1596. struct drm_device *dev = node->minor->dev;
  1597. struct drm_i915_private *dev_priv = to_i915(dev);
  1598. int ret = 0;
  1599. int gpu_freq, ia_freq;
  1600. unsigned int max_gpu_freq, min_gpu_freq;
  1601. if (!HAS_CORE_RING_FREQ(dev)) {
  1602. seq_puts(m, "unsupported on this chipset\n");
  1603. return 0;
  1604. }
  1605. intel_runtime_pm_get(dev_priv);
  1606. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1607. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1608. if (ret)
  1609. goto out;
  1610. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  1611. /* Convert GT frequency to 50 HZ units */
  1612. min_gpu_freq =
  1613. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1614. max_gpu_freq =
  1615. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1616. } else {
  1617. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1618. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1619. }
  1620. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1621. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1622. ia_freq = gpu_freq;
  1623. sandybridge_pcode_read(dev_priv,
  1624. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1625. &ia_freq);
  1626. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1627. intel_gpu_freq(dev_priv, (gpu_freq *
  1628. (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1629. GEN9_FREQ_SCALER : 1))),
  1630. ((ia_freq >> 0) & 0xff) * 100,
  1631. ((ia_freq >> 8) & 0xff) * 100);
  1632. }
  1633. mutex_unlock(&dev_priv->rps.hw_lock);
  1634. out:
  1635. intel_runtime_pm_put(dev_priv);
  1636. return ret;
  1637. }
  1638. static int i915_opregion(struct seq_file *m, void *unused)
  1639. {
  1640. struct drm_info_node *node = m->private;
  1641. struct drm_device *dev = node->minor->dev;
  1642. struct drm_i915_private *dev_priv = to_i915(dev);
  1643. struct intel_opregion *opregion = &dev_priv->opregion;
  1644. int ret;
  1645. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1646. if (ret)
  1647. goto out;
  1648. if (opregion->header)
  1649. seq_write(m, opregion->header, OPREGION_SIZE);
  1650. mutex_unlock(&dev->struct_mutex);
  1651. out:
  1652. return 0;
  1653. }
  1654. static int i915_vbt(struct seq_file *m, void *unused)
  1655. {
  1656. struct drm_info_node *node = m->private;
  1657. struct drm_device *dev = node->minor->dev;
  1658. struct drm_i915_private *dev_priv = to_i915(dev);
  1659. struct intel_opregion *opregion = &dev_priv->opregion;
  1660. if (opregion->vbt)
  1661. seq_write(m, opregion->vbt, opregion->vbt_size);
  1662. return 0;
  1663. }
  1664. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1665. {
  1666. struct drm_info_node *node = m->private;
  1667. struct drm_device *dev = node->minor->dev;
  1668. struct intel_framebuffer *fbdev_fb = NULL;
  1669. struct drm_framebuffer *drm_fb;
  1670. int ret;
  1671. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1672. if (ret)
  1673. return ret;
  1674. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1675. if (to_i915(dev)->fbdev) {
  1676. fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
  1677. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1678. fbdev_fb->base.width,
  1679. fbdev_fb->base.height,
  1680. fbdev_fb->base.depth,
  1681. fbdev_fb->base.bits_per_pixel,
  1682. fbdev_fb->base.modifier[0],
  1683. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1684. describe_obj(m, fbdev_fb->obj);
  1685. seq_putc(m, '\n');
  1686. }
  1687. #endif
  1688. mutex_lock(&dev->mode_config.fb_lock);
  1689. drm_for_each_fb(drm_fb, dev) {
  1690. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1691. if (fb == fbdev_fb)
  1692. continue;
  1693. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1694. fb->base.width,
  1695. fb->base.height,
  1696. fb->base.depth,
  1697. fb->base.bits_per_pixel,
  1698. fb->base.modifier[0],
  1699. drm_framebuffer_read_refcount(&fb->base));
  1700. describe_obj(m, fb->obj);
  1701. seq_putc(m, '\n');
  1702. }
  1703. mutex_unlock(&dev->mode_config.fb_lock);
  1704. mutex_unlock(&dev->struct_mutex);
  1705. return 0;
  1706. }
  1707. static void describe_ctx_ringbuf(struct seq_file *m,
  1708. struct intel_ringbuffer *ringbuf)
  1709. {
  1710. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1711. ringbuf->space, ringbuf->head, ringbuf->tail,
  1712. ringbuf->last_retired_head);
  1713. }
  1714. static int i915_context_status(struct seq_file *m, void *unused)
  1715. {
  1716. struct drm_info_node *node = m->private;
  1717. struct drm_device *dev = node->minor->dev;
  1718. struct drm_i915_private *dev_priv = to_i915(dev);
  1719. struct intel_engine_cs *engine;
  1720. struct i915_gem_context *ctx;
  1721. int ret;
  1722. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1723. if (ret)
  1724. return ret;
  1725. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1726. seq_printf(m, "HW context %u ", ctx->hw_id);
  1727. if (IS_ERR(ctx->file_priv)) {
  1728. seq_puts(m, "(deleted) ");
  1729. } else if (ctx->file_priv) {
  1730. struct pid *pid = ctx->file_priv->file->pid;
  1731. struct task_struct *task;
  1732. task = get_pid_task(pid, PIDTYPE_PID);
  1733. if (task) {
  1734. seq_printf(m, "(%s [%d]) ",
  1735. task->comm, task->pid);
  1736. put_task_struct(task);
  1737. }
  1738. } else {
  1739. seq_puts(m, "(kernel) ");
  1740. }
  1741. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1742. seq_putc(m, '\n');
  1743. for_each_engine(engine, dev_priv) {
  1744. struct intel_context *ce = &ctx->engine[engine->id];
  1745. seq_printf(m, "%s: ", engine->name);
  1746. seq_putc(m, ce->initialised ? 'I' : 'i');
  1747. if (ce->state)
  1748. describe_obj(m, ce->state);
  1749. if (ce->ringbuf)
  1750. describe_ctx_ringbuf(m, ce->ringbuf);
  1751. seq_putc(m, '\n');
  1752. }
  1753. seq_putc(m, '\n');
  1754. }
  1755. mutex_unlock(&dev->struct_mutex);
  1756. return 0;
  1757. }
  1758. static void i915_dump_lrc_obj(struct seq_file *m,
  1759. struct i915_gem_context *ctx,
  1760. struct intel_engine_cs *engine)
  1761. {
  1762. struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
  1763. struct page *page;
  1764. uint32_t *reg_state;
  1765. int j;
  1766. unsigned long ggtt_offset = 0;
  1767. seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
  1768. if (ctx_obj == NULL) {
  1769. seq_puts(m, "\tNot allocated\n");
  1770. return;
  1771. }
  1772. if (!i915_gem_obj_ggtt_bound(ctx_obj))
  1773. seq_puts(m, "\tNot bound in GGTT\n");
  1774. else
  1775. ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
  1776. if (i915_gem_object_get_pages(ctx_obj)) {
  1777. seq_puts(m, "\tFailed to get pages for context object\n");
  1778. return;
  1779. }
  1780. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  1781. if (!WARN_ON(page == NULL)) {
  1782. reg_state = kmap_atomic(page);
  1783. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1784. seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1785. ggtt_offset + 4096 + (j * 4),
  1786. reg_state[j], reg_state[j + 1],
  1787. reg_state[j + 2], reg_state[j + 3]);
  1788. }
  1789. kunmap_atomic(reg_state);
  1790. }
  1791. seq_putc(m, '\n');
  1792. }
  1793. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1794. {
  1795. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1796. struct drm_device *dev = node->minor->dev;
  1797. struct drm_i915_private *dev_priv = to_i915(dev);
  1798. struct intel_engine_cs *engine;
  1799. struct i915_gem_context *ctx;
  1800. int ret;
  1801. if (!i915.enable_execlists) {
  1802. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1803. return 0;
  1804. }
  1805. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1806. if (ret)
  1807. return ret;
  1808. list_for_each_entry(ctx, &dev_priv->context_list, link)
  1809. for_each_engine(engine, dev_priv)
  1810. i915_dump_lrc_obj(m, ctx, engine);
  1811. mutex_unlock(&dev->struct_mutex);
  1812. return 0;
  1813. }
  1814. static int i915_execlists(struct seq_file *m, void *data)
  1815. {
  1816. struct drm_info_node *node = (struct drm_info_node *)m->private;
  1817. struct drm_device *dev = node->minor->dev;
  1818. struct drm_i915_private *dev_priv = to_i915(dev);
  1819. struct intel_engine_cs *engine;
  1820. u32 status_pointer;
  1821. u8 read_pointer;
  1822. u8 write_pointer;
  1823. u32 status;
  1824. u32 ctx_id;
  1825. struct list_head *cursor;
  1826. int i, ret;
  1827. if (!i915.enable_execlists) {
  1828. seq_puts(m, "Logical Ring Contexts are disabled\n");
  1829. return 0;
  1830. }
  1831. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1832. if (ret)
  1833. return ret;
  1834. intel_runtime_pm_get(dev_priv);
  1835. for_each_engine(engine, dev_priv) {
  1836. struct drm_i915_gem_request *head_req = NULL;
  1837. int count = 0;
  1838. seq_printf(m, "%s\n", engine->name);
  1839. status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
  1840. ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
  1841. seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
  1842. status, ctx_id);
  1843. status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
  1844. seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
  1845. read_pointer = engine->next_context_status_buffer;
  1846. write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
  1847. if (read_pointer > write_pointer)
  1848. write_pointer += GEN8_CSB_ENTRIES;
  1849. seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
  1850. read_pointer, write_pointer);
  1851. for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
  1852. status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
  1853. ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
  1854. seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
  1855. i, status, ctx_id);
  1856. }
  1857. spin_lock_bh(&engine->execlist_lock);
  1858. list_for_each(cursor, &engine->execlist_queue)
  1859. count++;
  1860. head_req = list_first_entry_or_null(&engine->execlist_queue,
  1861. struct drm_i915_gem_request,
  1862. execlist_link);
  1863. spin_unlock_bh(&engine->execlist_lock);
  1864. seq_printf(m, "\t%d requests in queue\n", count);
  1865. if (head_req) {
  1866. seq_printf(m, "\tHead request context: %u\n",
  1867. head_req->ctx->hw_id);
  1868. seq_printf(m, "\tHead request tail: %u\n",
  1869. head_req->tail);
  1870. }
  1871. seq_putc(m, '\n');
  1872. }
  1873. intel_runtime_pm_put(dev_priv);
  1874. mutex_unlock(&dev->struct_mutex);
  1875. return 0;
  1876. }
  1877. static const char *swizzle_string(unsigned swizzle)
  1878. {
  1879. switch (swizzle) {
  1880. case I915_BIT_6_SWIZZLE_NONE:
  1881. return "none";
  1882. case I915_BIT_6_SWIZZLE_9:
  1883. return "bit9";
  1884. case I915_BIT_6_SWIZZLE_9_10:
  1885. return "bit9/bit10";
  1886. case I915_BIT_6_SWIZZLE_9_11:
  1887. return "bit9/bit11";
  1888. case I915_BIT_6_SWIZZLE_9_10_11:
  1889. return "bit9/bit10/bit11";
  1890. case I915_BIT_6_SWIZZLE_9_17:
  1891. return "bit9/bit17";
  1892. case I915_BIT_6_SWIZZLE_9_10_17:
  1893. return "bit9/bit10/bit17";
  1894. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1895. return "unknown";
  1896. }
  1897. return "bug";
  1898. }
  1899. static int i915_swizzle_info(struct seq_file *m, void *data)
  1900. {
  1901. struct drm_info_node *node = m->private;
  1902. struct drm_device *dev = node->minor->dev;
  1903. struct drm_i915_private *dev_priv = to_i915(dev);
  1904. int ret;
  1905. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1906. if (ret)
  1907. return ret;
  1908. intel_runtime_pm_get(dev_priv);
  1909. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1910. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1911. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1912. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1913. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1914. seq_printf(m, "DDC = 0x%08x\n",
  1915. I915_READ(DCC));
  1916. seq_printf(m, "DDC2 = 0x%08x\n",
  1917. I915_READ(DCC2));
  1918. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1919. I915_READ16(C0DRB3));
  1920. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1921. I915_READ16(C1DRB3));
  1922. } else if (INTEL_INFO(dev)->gen >= 6) {
  1923. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1924. I915_READ(MAD_DIMM_C0));
  1925. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1926. I915_READ(MAD_DIMM_C1));
  1927. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1928. I915_READ(MAD_DIMM_C2));
  1929. seq_printf(m, "TILECTL = 0x%08x\n",
  1930. I915_READ(TILECTL));
  1931. if (INTEL_INFO(dev)->gen >= 8)
  1932. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1933. I915_READ(GAMTARBMODE));
  1934. else
  1935. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1936. I915_READ(ARB_MODE));
  1937. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1938. I915_READ(DISP_ARB_CTL));
  1939. }
  1940. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1941. seq_puts(m, "L-shaped memory detected\n");
  1942. intel_runtime_pm_put(dev_priv);
  1943. mutex_unlock(&dev->struct_mutex);
  1944. return 0;
  1945. }
  1946. static int per_file_ctx(int id, void *ptr, void *data)
  1947. {
  1948. struct i915_gem_context *ctx = ptr;
  1949. struct seq_file *m = data;
  1950. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1951. if (!ppgtt) {
  1952. seq_printf(m, " no ppgtt for context %d\n",
  1953. ctx->user_handle);
  1954. return 0;
  1955. }
  1956. if (i915_gem_context_is_default(ctx))
  1957. seq_puts(m, " default context:\n");
  1958. else
  1959. seq_printf(m, " context %d:\n", ctx->user_handle);
  1960. ppgtt->debug_dump(ppgtt, m);
  1961. return 0;
  1962. }
  1963. static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1964. {
  1965. struct drm_i915_private *dev_priv = to_i915(dev);
  1966. struct intel_engine_cs *engine;
  1967. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1968. int i;
  1969. if (!ppgtt)
  1970. return;
  1971. for_each_engine(engine, dev_priv) {
  1972. seq_printf(m, "%s\n", engine->name);
  1973. for (i = 0; i < 4; i++) {
  1974. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1975. pdp <<= 32;
  1976. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1977. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1978. }
  1979. }
  1980. }
  1981. static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1982. {
  1983. struct drm_i915_private *dev_priv = to_i915(dev);
  1984. struct intel_engine_cs *engine;
  1985. if (IS_GEN6(dev_priv))
  1986. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1987. for_each_engine(engine, dev_priv) {
  1988. seq_printf(m, "%s\n", engine->name);
  1989. if (IS_GEN7(dev_priv))
  1990. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1991. I915_READ(RING_MODE_GEN7(engine)));
  1992. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1993. I915_READ(RING_PP_DIR_BASE(engine)));
  1994. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1995. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1996. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1997. I915_READ(RING_PP_DIR_DCLV(engine)));
  1998. }
  1999. if (dev_priv->mm.aliasing_ppgtt) {
  2000. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  2001. seq_puts(m, "aliasing PPGTT:\n");
  2002. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  2003. ppgtt->debug_dump(ppgtt, m);
  2004. }
  2005. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  2006. }
  2007. static int i915_ppgtt_info(struct seq_file *m, void *data)
  2008. {
  2009. struct drm_info_node *node = m->private;
  2010. struct drm_device *dev = node->minor->dev;
  2011. struct drm_i915_private *dev_priv = to_i915(dev);
  2012. struct drm_file *file;
  2013. int ret = mutex_lock_interruptible(&dev->struct_mutex);
  2014. if (ret)
  2015. return ret;
  2016. intel_runtime_pm_get(dev_priv);
  2017. if (INTEL_INFO(dev)->gen >= 8)
  2018. gen8_ppgtt_info(m, dev);
  2019. else if (INTEL_INFO(dev)->gen >= 6)
  2020. gen6_ppgtt_info(m, dev);
  2021. mutex_lock(&dev->filelist_mutex);
  2022. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  2023. struct drm_i915_file_private *file_priv = file->driver_priv;
  2024. struct task_struct *task;
  2025. task = get_pid_task(file->pid, PIDTYPE_PID);
  2026. if (!task) {
  2027. ret = -ESRCH;
  2028. goto out_unlock;
  2029. }
  2030. seq_printf(m, "\nproc: %s\n", task->comm);
  2031. put_task_struct(task);
  2032. idr_for_each(&file_priv->context_idr, per_file_ctx,
  2033. (void *)(unsigned long)m);
  2034. }
  2035. out_unlock:
  2036. mutex_unlock(&dev->filelist_mutex);
  2037. intel_runtime_pm_put(dev_priv);
  2038. mutex_unlock(&dev->struct_mutex);
  2039. return ret;
  2040. }
  2041. static int count_irq_waiters(struct drm_i915_private *i915)
  2042. {
  2043. struct intel_engine_cs *engine;
  2044. int count = 0;
  2045. for_each_engine(engine, i915)
  2046. count += intel_engine_has_waiter(engine);
  2047. return count;
  2048. }
  2049. static int i915_rps_boost_info(struct seq_file *m, void *data)
  2050. {
  2051. struct drm_info_node *node = m->private;
  2052. struct drm_device *dev = node->minor->dev;
  2053. struct drm_i915_private *dev_priv = to_i915(dev);
  2054. struct drm_file *file;
  2055. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  2056. seq_printf(m, "GPU busy? %s [%x]\n",
  2057. yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
  2058. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  2059. seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  2060. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  2061. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  2062. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  2063. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  2064. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  2065. mutex_lock(&dev->filelist_mutex);
  2066. spin_lock(&dev_priv->rps.client_lock);
  2067. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  2068. struct drm_i915_file_private *file_priv = file->driver_priv;
  2069. struct task_struct *task;
  2070. rcu_read_lock();
  2071. task = pid_task(file->pid, PIDTYPE_PID);
  2072. seq_printf(m, "%s [%d]: %d boosts%s\n",
  2073. task ? task->comm : "<unknown>",
  2074. task ? task->pid : -1,
  2075. file_priv->rps.boosts,
  2076. list_empty(&file_priv->rps.link) ? "" : ", active");
  2077. rcu_read_unlock();
  2078. }
  2079. seq_printf(m, "Semaphore boosts: %d%s\n",
  2080. dev_priv->rps.semaphores.boosts,
  2081. list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
  2082. seq_printf(m, "MMIO flip boosts: %d%s\n",
  2083. dev_priv->rps.mmioflips.boosts,
  2084. list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
  2085. seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
  2086. spin_unlock(&dev_priv->rps.client_lock);
  2087. mutex_unlock(&dev->filelist_mutex);
  2088. return 0;
  2089. }
  2090. static int i915_llc(struct seq_file *m, void *data)
  2091. {
  2092. struct drm_info_node *node = m->private;
  2093. struct drm_device *dev = node->minor->dev;
  2094. struct drm_i915_private *dev_priv = to_i915(dev);
  2095. const bool edram = INTEL_GEN(dev_priv) > 8;
  2096. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
  2097. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  2098. intel_uncore_edram_size(dev_priv)/1024/1024);
  2099. return 0;
  2100. }
  2101. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  2102. {
  2103. struct drm_info_node *node = m->private;
  2104. struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
  2105. struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
  2106. u32 tmp, i;
  2107. if (!HAS_GUC_UCODE(dev_priv))
  2108. return 0;
  2109. seq_printf(m, "GuC firmware status:\n");
  2110. seq_printf(m, "\tpath: %s\n",
  2111. guc_fw->guc_fw_path);
  2112. seq_printf(m, "\tfetch: %s\n",
  2113. intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
  2114. seq_printf(m, "\tload: %s\n",
  2115. intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
  2116. seq_printf(m, "\tversion wanted: %d.%d\n",
  2117. guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
  2118. seq_printf(m, "\tversion found: %d.%d\n",
  2119. guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
  2120. seq_printf(m, "\theader: offset is %d; size = %d\n",
  2121. guc_fw->header_offset, guc_fw->header_size);
  2122. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  2123. guc_fw->ucode_offset, guc_fw->ucode_size);
  2124. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  2125. guc_fw->rsa_offset, guc_fw->rsa_size);
  2126. tmp = I915_READ(GUC_STATUS);
  2127. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  2128. seq_printf(m, "\tBootrom status = 0x%x\n",
  2129. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2130. seq_printf(m, "\tuKernel status = 0x%x\n",
  2131. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2132. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2133. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2134. seq_puts(m, "\nScratch registers:\n");
  2135. for (i = 0; i < 16; i++)
  2136. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2137. return 0;
  2138. }
  2139. static void i915_guc_client_info(struct seq_file *m,
  2140. struct drm_i915_private *dev_priv,
  2141. struct i915_guc_client *client)
  2142. {
  2143. struct intel_engine_cs *engine;
  2144. uint64_t tot = 0;
  2145. seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
  2146. client->priority, client->ctx_index, client->proc_desc_offset);
  2147. seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
  2148. client->doorbell_id, client->doorbell_offset, client->cookie);
  2149. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2150. client->wq_size, client->wq_offset, client->wq_tail);
  2151. seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
  2152. seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
  2153. seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
  2154. seq_printf(m, "\tLast submission result: %d\n", client->retcode);
  2155. for_each_engine(engine, dev_priv) {
  2156. seq_printf(m, "\tSubmissions: %llu %s\n",
  2157. client->submissions[engine->id],
  2158. engine->name);
  2159. tot += client->submissions[engine->id];
  2160. }
  2161. seq_printf(m, "\tTotal: %llu\n", tot);
  2162. }
  2163. static int i915_guc_info(struct seq_file *m, void *data)
  2164. {
  2165. struct drm_info_node *node = m->private;
  2166. struct drm_device *dev = node->minor->dev;
  2167. struct drm_i915_private *dev_priv = to_i915(dev);
  2168. struct intel_guc guc;
  2169. struct i915_guc_client client = {};
  2170. struct intel_engine_cs *engine;
  2171. u64 total = 0;
  2172. if (!HAS_GUC_SCHED(dev_priv))
  2173. return 0;
  2174. if (mutex_lock_interruptible(&dev->struct_mutex))
  2175. return 0;
  2176. /* Take a local copy of the GuC data, so we can dump it at leisure */
  2177. guc = dev_priv->guc;
  2178. if (guc.execbuf_client)
  2179. client = *guc.execbuf_client;
  2180. mutex_unlock(&dev->struct_mutex);
  2181. seq_printf(m, "Doorbell map:\n");
  2182. seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
  2183. seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
  2184. seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
  2185. seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
  2186. seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
  2187. seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
  2188. seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
  2189. seq_printf(m, "\nGuC submissions:\n");
  2190. for_each_engine(engine, dev_priv) {
  2191. seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
  2192. engine->name, guc.submissions[engine->id],
  2193. guc.last_seqno[engine->id]);
  2194. total += guc.submissions[engine->id];
  2195. }
  2196. seq_printf(m, "\t%s: %llu\n", "Total", total);
  2197. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
  2198. i915_guc_client_info(m, dev_priv, &client);
  2199. /* Add more as required ... */
  2200. return 0;
  2201. }
  2202. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2203. {
  2204. struct drm_info_node *node = m->private;
  2205. struct drm_device *dev = node->minor->dev;
  2206. struct drm_i915_private *dev_priv = to_i915(dev);
  2207. struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
  2208. u32 *log;
  2209. int i = 0, pg;
  2210. if (!log_obj)
  2211. return 0;
  2212. for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
  2213. log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
  2214. for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
  2215. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2216. *(log + i), *(log + i + 1),
  2217. *(log + i + 2), *(log + i + 3));
  2218. kunmap_atomic(log);
  2219. }
  2220. seq_putc(m, '\n');
  2221. return 0;
  2222. }
  2223. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2224. {
  2225. struct drm_info_node *node = m->private;
  2226. struct drm_device *dev = node->minor->dev;
  2227. struct drm_i915_private *dev_priv = to_i915(dev);
  2228. u32 psrperf = 0;
  2229. u32 stat[3];
  2230. enum pipe pipe;
  2231. bool enabled = false;
  2232. if (!HAS_PSR(dev)) {
  2233. seq_puts(m, "PSR not supported\n");
  2234. return 0;
  2235. }
  2236. intel_runtime_pm_get(dev_priv);
  2237. mutex_lock(&dev_priv->psr.lock);
  2238. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2239. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2240. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2241. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2242. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2243. dev_priv->psr.busy_frontbuffer_bits);
  2244. seq_printf(m, "Re-enable work scheduled: %s\n",
  2245. yesno(work_busy(&dev_priv->psr.work.work)));
  2246. if (HAS_DDI(dev))
  2247. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2248. else {
  2249. for_each_pipe(dev_priv, pipe) {
  2250. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2251. VLV_EDP_PSR_CURR_STATE_MASK;
  2252. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2253. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2254. enabled = true;
  2255. }
  2256. }
  2257. seq_printf(m, "Main link in standby mode: %s\n",
  2258. yesno(dev_priv->psr.link_standby));
  2259. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2260. if (!HAS_DDI(dev))
  2261. for_each_pipe(dev_priv, pipe) {
  2262. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2263. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2264. seq_printf(m, " pipe %c", pipe_name(pipe));
  2265. }
  2266. seq_puts(m, "\n");
  2267. /*
  2268. * VLV/CHV PSR has no kind of performance counter
  2269. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2270. */
  2271. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2272. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2273. EDP_PSR_PERF_CNT_MASK;
  2274. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2275. }
  2276. mutex_unlock(&dev_priv->psr.lock);
  2277. intel_runtime_pm_put(dev_priv);
  2278. return 0;
  2279. }
  2280. static int i915_sink_crc(struct seq_file *m, void *data)
  2281. {
  2282. struct drm_info_node *node = m->private;
  2283. struct drm_device *dev = node->minor->dev;
  2284. struct intel_connector *connector;
  2285. struct intel_dp *intel_dp = NULL;
  2286. int ret;
  2287. u8 crc[6];
  2288. drm_modeset_lock_all(dev);
  2289. for_each_intel_connector(dev, connector) {
  2290. struct drm_crtc *crtc;
  2291. if (!connector->base.state->best_encoder)
  2292. continue;
  2293. crtc = connector->base.state->crtc;
  2294. if (!crtc->state->active)
  2295. continue;
  2296. if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
  2297. continue;
  2298. intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
  2299. ret = intel_dp_sink_crc(intel_dp, crc);
  2300. if (ret)
  2301. goto out;
  2302. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2303. crc[0], crc[1], crc[2],
  2304. crc[3], crc[4], crc[5]);
  2305. goto out;
  2306. }
  2307. ret = -ENODEV;
  2308. out:
  2309. drm_modeset_unlock_all(dev);
  2310. return ret;
  2311. }
  2312. static int i915_energy_uJ(struct seq_file *m, void *data)
  2313. {
  2314. struct drm_info_node *node = m->private;
  2315. struct drm_device *dev = node->minor->dev;
  2316. struct drm_i915_private *dev_priv = to_i915(dev);
  2317. u64 power;
  2318. u32 units;
  2319. if (INTEL_INFO(dev)->gen < 6)
  2320. return -ENODEV;
  2321. intel_runtime_pm_get(dev_priv);
  2322. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  2323. power = (power & 0x1f00) >> 8;
  2324. units = 1000000 / (1 << power); /* convert to uJ */
  2325. power = I915_READ(MCH_SECP_NRG_STTS);
  2326. power *= units;
  2327. intel_runtime_pm_put(dev_priv);
  2328. seq_printf(m, "%llu", (long long unsigned)power);
  2329. return 0;
  2330. }
  2331. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2332. {
  2333. struct drm_info_node *node = m->private;
  2334. struct drm_device *dev = node->minor->dev;
  2335. struct drm_i915_private *dev_priv = to_i915(dev);
  2336. if (!HAS_RUNTIME_PM(dev_priv))
  2337. seq_puts(m, "Runtime power management not supported\n");
  2338. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
  2339. seq_printf(m, "IRQs disabled: %s\n",
  2340. yesno(!intel_irqs_enabled(dev_priv)));
  2341. #ifdef CONFIG_PM
  2342. seq_printf(m, "Usage count: %d\n",
  2343. atomic_read(&dev->dev->power.usage_count));
  2344. #else
  2345. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2346. #endif
  2347. seq_printf(m, "PCI device power state: %s [%d]\n",
  2348. pci_power_name(dev_priv->drm.pdev->current_state),
  2349. dev_priv->drm.pdev->current_state);
  2350. return 0;
  2351. }
  2352. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2353. {
  2354. struct drm_info_node *node = m->private;
  2355. struct drm_device *dev = node->minor->dev;
  2356. struct drm_i915_private *dev_priv = to_i915(dev);
  2357. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2358. int i;
  2359. mutex_lock(&power_domains->lock);
  2360. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2361. for (i = 0; i < power_domains->power_well_count; i++) {
  2362. struct i915_power_well *power_well;
  2363. enum intel_display_power_domain power_domain;
  2364. power_well = &power_domains->power_wells[i];
  2365. seq_printf(m, "%-25s %d\n", power_well->name,
  2366. power_well->count);
  2367. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  2368. power_domain++) {
  2369. if (!(BIT(power_domain) & power_well->domains))
  2370. continue;
  2371. seq_printf(m, " %-23s %d\n",
  2372. intel_display_power_domain_str(power_domain),
  2373. power_domains->domain_use_count[power_domain]);
  2374. }
  2375. }
  2376. mutex_unlock(&power_domains->lock);
  2377. return 0;
  2378. }
  2379. static int i915_dmc_info(struct seq_file *m, void *unused)
  2380. {
  2381. struct drm_info_node *node = m->private;
  2382. struct drm_device *dev = node->minor->dev;
  2383. struct drm_i915_private *dev_priv = to_i915(dev);
  2384. struct intel_csr *csr;
  2385. if (!HAS_CSR(dev)) {
  2386. seq_puts(m, "not supported\n");
  2387. return 0;
  2388. }
  2389. csr = &dev_priv->csr;
  2390. intel_runtime_pm_get(dev_priv);
  2391. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2392. seq_printf(m, "path: %s\n", csr->fw_path);
  2393. if (!csr->dmc_payload)
  2394. goto out;
  2395. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2396. CSR_VERSION_MINOR(csr->version));
  2397. if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
  2398. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2399. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2400. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2401. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2402. } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
  2403. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2404. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2405. }
  2406. out:
  2407. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2408. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2409. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2410. intel_runtime_pm_put(dev_priv);
  2411. return 0;
  2412. }
  2413. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2414. struct drm_display_mode *mode)
  2415. {
  2416. int i;
  2417. for (i = 0; i < tabs; i++)
  2418. seq_putc(m, '\t');
  2419. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2420. mode->base.id, mode->name,
  2421. mode->vrefresh, mode->clock,
  2422. mode->hdisplay, mode->hsync_start,
  2423. mode->hsync_end, mode->htotal,
  2424. mode->vdisplay, mode->vsync_start,
  2425. mode->vsync_end, mode->vtotal,
  2426. mode->type, mode->flags);
  2427. }
  2428. static void intel_encoder_info(struct seq_file *m,
  2429. struct intel_crtc *intel_crtc,
  2430. struct intel_encoder *intel_encoder)
  2431. {
  2432. struct drm_info_node *node = m->private;
  2433. struct drm_device *dev = node->minor->dev;
  2434. struct drm_crtc *crtc = &intel_crtc->base;
  2435. struct intel_connector *intel_connector;
  2436. struct drm_encoder *encoder;
  2437. encoder = &intel_encoder->base;
  2438. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2439. encoder->base.id, encoder->name);
  2440. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2441. struct drm_connector *connector = &intel_connector->base;
  2442. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2443. connector->base.id,
  2444. connector->name,
  2445. drm_get_connector_status_name(connector->status));
  2446. if (connector->status == connector_status_connected) {
  2447. struct drm_display_mode *mode = &crtc->mode;
  2448. seq_printf(m, ", mode:\n");
  2449. intel_seq_print_mode(m, 2, mode);
  2450. } else {
  2451. seq_putc(m, '\n');
  2452. }
  2453. }
  2454. }
  2455. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2456. {
  2457. struct drm_info_node *node = m->private;
  2458. struct drm_device *dev = node->minor->dev;
  2459. struct drm_crtc *crtc = &intel_crtc->base;
  2460. struct intel_encoder *intel_encoder;
  2461. struct drm_plane_state *plane_state = crtc->primary->state;
  2462. struct drm_framebuffer *fb = plane_state->fb;
  2463. if (fb)
  2464. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2465. fb->base.id, plane_state->src_x >> 16,
  2466. plane_state->src_y >> 16, fb->width, fb->height);
  2467. else
  2468. seq_puts(m, "\tprimary plane disabled\n");
  2469. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2470. intel_encoder_info(m, intel_crtc, intel_encoder);
  2471. }
  2472. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2473. {
  2474. struct drm_display_mode *mode = panel->fixed_mode;
  2475. seq_printf(m, "\tfixed mode:\n");
  2476. intel_seq_print_mode(m, 2, mode);
  2477. }
  2478. static void intel_dp_info(struct seq_file *m,
  2479. struct intel_connector *intel_connector)
  2480. {
  2481. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2482. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2483. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2484. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2485. if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
  2486. intel_panel_info(m, &intel_connector->panel);
  2487. }
  2488. static void intel_hdmi_info(struct seq_file *m,
  2489. struct intel_connector *intel_connector)
  2490. {
  2491. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2492. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2493. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2494. }
  2495. static void intel_lvds_info(struct seq_file *m,
  2496. struct intel_connector *intel_connector)
  2497. {
  2498. intel_panel_info(m, &intel_connector->panel);
  2499. }
  2500. static void intel_connector_info(struct seq_file *m,
  2501. struct drm_connector *connector)
  2502. {
  2503. struct intel_connector *intel_connector = to_intel_connector(connector);
  2504. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2505. struct drm_display_mode *mode;
  2506. seq_printf(m, "connector %d: type %s, status: %s\n",
  2507. connector->base.id, connector->name,
  2508. drm_get_connector_status_name(connector->status));
  2509. if (connector->status == connector_status_connected) {
  2510. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2511. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2512. connector->display_info.width_mm,
  2513. connector->display_info.height_mm);
  2514. seq_printf(m, "\tsubpixel order: %s\n",
  2515. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2516. seq_printf(m, "\tCEA rev: %d\n",
  2517. connector->display_info.cea_rev);
  2518. }
  2519. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2520. return;
  2521. switch (connector->connector_type) {
  2522. case DRM_MODE_CONNECTOR_DisplayPort:
  2523. case DRM_MODE_CONNECTOR_eDP:
  2524. intel_dp_info(m, intel_connector);
  2525. break;
  2526. case DRM_MODE_CONNECTOR_LVDS:
  2527. if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2528. intel_lvds_info(m, intel_connector);
  2529. break;
  2530. case DRM_MODE_CONNECTOR_HDMIA:
  2531. if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
  2532. intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
  2533. intel_hdmi_info(m, intel_connector);
  2534. break;
  2535. default:
  2536. break;
  2537. }
  2538. seq_printf(m, "\tmodes:\n");
  2539. list_for_each_entry(mode, &connector->modes, head)
  2540. intel_seq_print_mode(m, 2, mode);
  2541. }
  2542. static bool cursor_active(struct drm_device *dev, int pipe)
  2543. {
  2544. struct drm_i915_private *dev_priv = to_i915(dev);
  2545. u32 state;
  2546. if (IS_845G(dev) || IS_I865G(dev))
  2547. state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  2548. else
  2549. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2550. return state;
  2551. }
  2552. static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
  2553. {
  2554. struct drm_i915_private *dev_priv = to_i915(dev);
  2555. u32 pos;
  2556. pos = I915_READ(CURPOS(pipe));
  2557. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2558. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2559. *x = -*x;
  2560. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2561. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2562. *y = -*y;
  2563. return cursor_active(dev, pipe);
  2564. }
  2565. static const char *plane_type(enum drm_plane_type type)
  2566. {
  2567. switch (type) {
  2568. case DRM_PLANE_TYPE_OVERLAY:
  2569. return "OVL";
  2570. case DRM_PLANE_TYPE_PRIMARY:
  2571. return "PRI";
  2572. case DRM_PLANE_TYPE_CURSOR:
  2573. return "CUR";
  2574. /*
  2575. * Deliberately omitting default: to generate compiler warnings
  2576. * when a new drm_plane_type gets added.
  2577. */
  2578. }
  2579. return "unknown";
  2580. }
  2581. static const char *plane_rotation(unsigned int rotation)
  2582. {
  2583. static char buf[48];
  2584. /*
  2585. * According to doc only one DRM_ROTATE_ is allowed but this
  2586. * will print them all to visualize if the values are misused
  2587. */
  2588. snprintf(buf, sizeof(buf),
  2589. "%s%s%s%s%s%s(0x%08x)",
  2590. (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
  2591. (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
  2592. (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
  2593. (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
  2594. (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
  2595. (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
  2596. rotation);
  2597. return buf;
  2598. }
  2599. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2600. {
  2601. struct drm_info_node *node = m->private;
  2602. struct drm_device *dev = node->minor->dev;
  2603. struct intel_plane *intel_plane;
  2604. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2605. struct drm_plane_state *state;
  2606. struct drm_plane *plane = &intel_plane->base;
  2607. if (!plane->state) {
  2608. seq_puts(m, "plane->state is NULL!\n");
  2609. continue;
  2610. }
  2611. state = plane->state;
  2612. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2613. plane->base.id,
  2614. plane_type(intel_plane->base.type),
  2615. state->crtc_x, state->crtc_y,
  2616. state->crtc_w, state->crtc_h,
  2617. (state->src_x >> 16),
  2618. ((state->src_x & 0xffff) * 15625) >> 10,
  2619. (state->src_y >> 16),
  2620. ((state->src_y & 0xffff) * 15625) >> 10,
  2621. (state->src_w >> 16),
  2622. ((state->src_w & 0xffff) * 15625) >> 10,
  2623. (state->src_h >> 16),
  2624. ((state->src_h & 0xffff) * 15625) >> 10,
  2625. state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
  2626. plane_rotation(state->rotation));
  2627. }
  2628. }
  2629. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2630. {
  2631. struct intel_crtc_state *pipe_config;
  2632. int num_scalers = intel_crtc->num_scalers;
  2633. int i;
  2634. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2635. /* Not all platformas have a scaler */
  2636. if (num_scalers) {
  2637. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2638. num_scalers,
  2639. pipe_config->scaler_state.scaler_users,
  2640. pipe_config->scaler_state.scaler_id);
  2641. for (i = 0; i < SKL_NUM_SCALERS; i++) {
  2642. struct intel_scaler *sc =
  2643. &pipe_config->scaler_state.scalers[i];
  2644. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2645. i, yesno(sc->in_use), sc->mode);
  2646. }
  2647. seq_puts(m, "\n");
  2648. } else {
  2649. seq_puts(m, "\tNo scalers available on this platform\n");
  2650. }
  2651. }
  2652. static int i915_display_info(struct seq_file *m, void *unused)
  2653. {
  2654. struct drm_info_node *node = m->private;
  2655. struct drm_device *dev = node->minor->dev;
  2656. struct drm_i915_private *dev_priv = to_i915(dev);
  2657. struct intel_crtc *crtc;
  2658. struct drm_connector *connector;
  2659. intel_runtime_pm_get(dev_priv);
  2660. drm_modeset_lock_all(dev);
  2661. seq_printf(m, "CRTC info\n");
  2662. seq_printf(m, "---------\n");
  2663. for_each_intel_crtc(dev, crtc) {
  2664. bool active;
  2665. struct intel_crtc_state *pipe_config;
  2666. int x, y;
  2667. pipe_config = to_intel_crtc_state(crtc->base.state);
  2668. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2669. crtc->base.base.id, pipe_name(crtc->pipe),
  2670. yesno(pipe_config->base.active),
  2671. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2672. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2673. if (pipe_config->base.active) {
  2674. intel_crtc_info(m, crtc);
  2675. active = cursor_position(dev, crtc->pipe, &x, &y);
  2676. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2677. yesno(crtc->cursor_base),
  2678. x, y, crtc->base.cursor->state->crtc_w,
  2679. crtc->base.cursor->state->crtc_h,
  2680. crtc->cursor_addr, yesno(active));
  2681. intel_scaler_info(m, crtc);
  2682. intel_plane_info(m, crtc);
  2683. }
  2684. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2685. yesno(!crtc->cpu_fifo_underrun_disabled),
  2686. yesno(!crtc->pch_fifo_underrun_disabled));
  2687. }
  2688. seq_printf(m, "\n");
  2689. seq_printf(m, "Connector info\n");
  2690. seq_printf(m, "--------------\n");
  2691. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2692. intel_connector_info(m, connector);
  2693. }
  2694. drm_modeset_unlock_all(dev);
  2695. intel_runtime_pm_put(dev_priv);
  2696. return 0;
  2697. }
  2698. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2699. {
  2700. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2701. struct drm_device *dev = node->minor->dev;
  2702. struct drm_i915_private *dev_priv = to_i915(dev);
  2703. struct intel_engine_cs *engine;
  2704. int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  2705. enum intel_engine_id id;
  2706. int j, ret;
  2707. if (!i915_semaphore_is_enabled(dev_priv)) {
  2708. seq_puts(m, "Semaphores are disabled\n");
  2709. return 0;
  2710. }
  2711. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2712. if (ret)
  2713. return ret;
  2714. intel_runtime_pm_get(dev_priv);
  2715. if (IS_BROADWELL(dev)) {
  2716. struct page *page;
  2717. uint64_t *seqno;
  2718. page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
  2719. seqno = (uint64_t *)kmap_atomic(page);
  2720. for_each_engine_id(engine, dev_priv, id) {
  2721. uint64_t offset;
  2722. seq_printf(m, "%s\n", engine->name);
  2723. seq_puts(m, " Last signal:");
  2724. for (j = 0; j < num_rings; j++) {
  2725. offset = id * I915_NUM_ENGINES + j;
  2726. seq_printf(m, "0x%08llx (0x%02llx) ",
  2727. seqno[offset], offset * 8);
  2728. }
  2729. seq_putc(m, '\n');
  2730. seq_puts(m, " Last wait: ");
  2731. for (j = 0; j < num_rings; j++) {
  2732. offset = id + (j * I915_NUM_ENGINES);
  2733. seq_printf(m, "0x%08llx (0x%02llx) ",
  2734. seqno[offset], offset * 8);
  2735. }
  2736. seq_putc(m, '\n');
  2737. }
  2738. kunmap_atomic(seqno);
  2739. } else {
  2740. seq_puts(m, " Last signal:");
  2741. for_each_engine(engine, dev_priv)
  2742. for (j = 0; j < num_rings; j++)
  2743. seq_printf(m, "0x%08x\n",
  2744. I915_READ(engine->semaphore.mbox.signal[j]));
  2745. seq_putc(m, '\n');
  2746. }
  2747. seq_puts(m, "\nSync seqno:\n");
  2748. for_each_engine(engine, dev_priv) {
  2749. for (j = 0; j < num_rings; j++)
  2750. seq_printf(m, " 0x%08x ",
  2751. engine->semaphore.sync_seqno[j]);
  2752. seq_putc(m, '\n');
  2753. }
  2754. seq_putc(m, '\n');
  2755. intel_runtime_pm_put(dev_priv);
  2756. mutex_unlock(&dev->struct_mutex);
  2757. return 0;
  2758. }
  2759. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2760. {
  2761. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2762. struct drm_device *dev = node->minor->dev;
  2763. struct drm_i915_private *dev_priv = to_i915(dev);
  2764. int i;
  2765. drm_modeset_lock_all(dev);
  2766. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2767. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2768. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2769. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2770. pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
  2771. seq_printf(m, " tracked hardware state:\n");
  2772. seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
  2773. seq_printf(m, " dpll_md: 0x%08x\n",
  2774. pll->config.hw_state.dpll_md);
  2775. seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
  2776. seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
  2777. seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
  2778. }
  2779. drm_modeset_unlock_all(dev);
  2780. return 0;
  2781. }
  2782. static int i915_wa_registers(struct seq_file *m, void *unused)
  2783. {
  2784. int i;
  2785. int ret;
  2786. struct intel_engine_cs *engine;
  2787. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2788. struct drm_device *dev = node->minor->dev;
  2789. struct drm_i915_private *dev_priv = to_i915(dev);
  2790. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2791. enum intel_engine_id id;
  2792. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2793. if (ret)
  2794. return ret;
  2795. intel_runtime_pm_get(dev_priv);
  2796. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2797. for_each_engine_id(engine, dev_priv, id)
  2798. seq_printf(m, "HW whitelist count for %s: %d\n",
  2799. engine->name, workarounds->hw_whitelist_count[id]);
  2800. for (i = 0; i < workarounds->count; ++i) {
  2801. i915_reg_t addr;
  2802. u32 mask, value, read;
  2803. bool ok;
  2804. addr = workarounds->reg[i].addr;
  2805. mask = workarounds->reg[i].mask;
  2806. value = workarounds->reg[i].value;
  2807. read = I915_READ(addr);
  2808. ok = (value & mask) == (read & mask);
  2809. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2810. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2811. }
  2812. intel_runtime_pm_put(dev_priv);
  2813. mutex_unlock(&dev->struct_mutex);
  2814. return 0;
  2815. }
  2816. static int i915_ddb_info(struct seq_file *m, void *unused)
  2817. {
  2818. struct drm_info_node *node = m->private;
  2819. struct drm_device *dev = node->minor->dev;
  2820. struct drm_i915_private *dev_priv = to_i915(dev);
  2821. struct skl_ddb_allocation *ddb;
  2822. struct skl_ddb_entry *entry;
  2823. enum pipe pipe;
  2824. int plane;
  2825. if (INTEL_INFO(dev)->gen < 9)
  2826. return 0;
  2827. drm_modeset_lock_all(dev);
  2828. ddb = &dev_priv->wm.skl_hw.ddb;
  2829. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2830. for_each_pipe(dev_priv, pipe) {
  2831. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2832. for_each_plane(dev_priv, pipe, plane) {
  2833. entry = &ddb->plane[pipe][plane];
  2834. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2835. entry->start, entry->end,
  2836. skl_ddb_entry_size(entry));
  2837. }
  2838. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2839. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2840. entry->end, skl_ddb_entry_size(entry));
  2841. }
  2842. drm_modeset_unlock_all(dev);
  2843. return 0;
  2844. }
  2845. static void drrs_status_per_crtc(struct seq_file *m,
  2846. struct drm_device *dev, struct intel_crtc *intel_crtc)
  2847. {
  2848. struct drm_i915_private *dev_priv = to_i915(dev);
  2849. struct i915_drrs *drrs = &dev_priv->drrs;
  2850. int vrefresh = 0;
  2851. struct drm_connector *connector;
  2852. drm_for_each_connector(connector, dev) {
  2853. if (connector->state->crtc != &intel_crtc->base)
  2854. continue;
  2855. seq_printf(m, "%s:\n", connector->name);
  2856. }
  2857. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2858. seq_puts(m, "\tVBT: DRRS_type: Static");
  2859. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2860. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2861. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2862. seq_puts(m, "\tVBT: DRRS_type: None");
  2863. else
  2864. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2865. seq_puts(m, "\n\n");
  2866. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2867. struct intel_panel *panel;
  2868. mutex_lock(&drrs->mutex);
  2869. /* DRRS Supported */
  2870. seq_puts(m, "\tDRRS Supported: Yes\n");
  2871. /* disable_drrs() will make drrs->dp NULL */
  2872. if (!drrs->dp) {
  2873. seq_puts(m, "Idleness DRRS: Disabled");
  2874. mutex_unlock(&drrs->mutex);
  2875. return;
  2876. }
  2877. panel = &drrs->dp->attached_connector->panel;
  2878. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2879. drrs->busy_frontbuffer_bits);
  2880. seq_puts(m, "\n\t\t");
  2881. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2882. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2883. vrefresh = panel->fixed_mode->vrefresh;
  2884. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2885. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2886. vrefresh = panel->downclock_mode->vrefresh;
  2887. } else {
  2888. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2889. drrs->refresh_rate_type);
  2890. mutex_unlock(&drrs->mutex);
  2891. return;
  2892. }
  2893. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2894. seq_puts(m, "\n\t\t");
  2895. mutex_unlock(&drrs->mutex);
  2896. } else {
  2897. /* DRRS not supported. Print the VBT parameter*/
  2898. seq_puts(m, "\tDRRS Supported : No");
  2899. }
  2900. seq_puts(m, "\n");
  2901. }
  2902. static int i915_drrs_status(struct seq_file *m, void *unused)
  2903. {
  2904. struct drm_info_node *node = m->private;
  2905. struct drm_device *dev = node->minor->dev;
  2906. struct intel_crtc *intel_crtc;
  2907. int active_crtc_cnt = 0;
  2908. drm_modeset_lock_all(dev);
  2909. for_each_intel_crtc(dev, intel_crtc) {
  2910. if (intel_crtc->base.state->active) {
  2911. active_crtc_cnt++;
  2912. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2913. drrs_status_per_crtc(m, dev, intel_crtc);
  2914. }
  2915. }
  2916. drm_modeset_unlock_all(dev);
  2917. if (!active_crtc_cnt)
  2918. seq_puts(m, "No active crtc found\n");
  2919. return 0;
  2920. }
  2921. struct pipe_crc_info {
  2922. const char *name;
  2923. struct drm_device *dev;
  2924. enum pipe pipe;
  2925. };
  2926. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2927. {
  2928. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2929. struct drm_device *dev = node->minor->dev;
  2930. struct intel_encoder *intel_encoder;
  2931. struct intel_digital_port *intel_dig_port;
  2932. struct drm_connector *connector;
  2933. drm_modeset_lock_all(dev);
  2934. drm_for_each_connector(connector, dev) {
  2935. if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
  2936. continue;
  2937. intel_encoder = intel_attached_encoder(connector);
  2938. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2939. continue;
  2940. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  2941. if (!intel_dig_port->dp.can_mst)
  2942. continue;
  2943. seq_printf(m, "MST Source Port %c\n",
  2944. port_name(intel_dig_port->port));
  2945. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2946. }
  2947. drm_modeset_unlock_all(dev);
  2948. return 0;
  2949. }
  2950. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2951. {
  2952. struct pipe_crc_info *info = inode->i_private;
  2953. struct drm_i915_private *dev_priv = to_i915(info->dev);
  2954. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2955. if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
  2956. return -ENODEV;
  2957. spin_lock_irq(&pipe_crc->lock);
  2958. if (pipe_crc->opened) {
  2959. spin_unlock_irq(&pipe_crc->lock);
  2960. return -EBUSY; /* already open */
  2961. }
  2962. pipe_crc->opened = true;
  2963. filep->private_data = inode->i_private;
  2964. spin_unlock_irq(&pipe_crc->lock);
  2965. return 0;
  2966. }
  2967. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2968. {
  2969. struct pipe_crc_info *info = inode->i_private;
  2970. struct drm_i915_private *dev_priv = to_i915(info->dev);
  2971. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2972. spin_lock_irq(&pipe_crc->lock);
  2973. pipe_crc->opened = false;
  2974. spin_unlock_irq(&pipe_crc->lock);
  2975. return 0;
  2976. }
  2977. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2978. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2979. /* account for \'0' */
  2980. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2981. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2982. {
  2983. assert_spin_locked(&pipe_crc->lock);
  2984. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2985. INTEL_PIPE_CRC_ENTRIES_NR);
  2986. }
  2987. static ssize_t
  2988. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2989. loff_t *pos)
  2990. {
  2991. struct pipe_crc_info *info = filep->private_data;
  2992. struct drm_device *dev = info->dev;
  2993. struct drm_i915_private *dev_priv = to_i915(dev);
  2994. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2995. char buf[PIPE_CRC_BUFFER_LEN];
  2996. int n_entries;
  2997. ssize_t bytes_read;
  2998. /*
  2999. * Don't allow user space to provide buffers not big enough to hold
  3000. * a line of data.
  3001. */
  3002. if (count < PIPE_CRC_LINE_LEN)
  3003. return -EINVAL;
  3004. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  3005. return 0;
  3006. /* nothing to read */
  3007. spin_lock_irq(&pipe_crc->lock);
  3008. while (pipe_crc_data_count(pipe_crc) == 0) {
  3009. int ret;
  3010. if (filep->f_flags & O_NONBLOCK) {
  3011. spin_unlock_irq(&pipe_crc->lock);
  3012. return -EAGAIN;
  3013. }
  3014. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  3015. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  3016. if (ret) {
  3017. spin_unlock_irq(&pipe_crc->lock);
  3018. return ret;
  3019. }
  3020. }
  3021. /* We now have one or more entries to read */
  3022. n_entries = count / PIPE_CRC_LINE_LEN;
  3023. bytes_read = 0;
  3024. while (n_entries > 0) {
  3025. struct intel_pipe_crc_entry *entry =
  3026. &pipe_crc->entries[pipe_crc->tail];
  3027. int ret;
  3028. if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  3029. INTEL_PIPE_CRC_ENTRIES_NR) < 1)
  3030. break;
  3031. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  3032. pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  3033. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  3034. "%8u %8x %8x %8x %8x %8x\n",
  3035. entry->frame, entry->crc[0],
  3036. entry->crc[1], entry->crc[2],
  3037. entry->crc[3], entry->crc[4]);
  3038. spin_unlock_irq(&pipe_crc->lock);
  3039. ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
  3040. if (ret == PIPE_CRC_LINE_LEN)
  3041. return -EFAULT;
  3042. user_buf += PIPE_CRC_LINE_LEN;
  3043. n_entries--;
  3044. spin_lock_irq(&pipe_crc->lock);
  3045. }
  3046. spin_unlock_irq(&pipe_crc->lock);
  3047. return bytes_read;
  3048. }
  3049. static const struct file_operations i915_pipe_crc_fops = {
  3050. .owner = THIS_MODULE,
  3051. .open = i915_pipe_crc_open,
  3052. .read = i915_pipe_crc_read,
  3053. .release = i915_pipe_crc_release,
  3054. };
  3055. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  3056. {
  3057. .name = "i915_pipe_A_crc",
  3058. .pipe = PIPE_A,
  3059. },
  3060. {
  3061. .name = "i915_pipe_B_crc",
  3062. .pipe = PIPE_B,
  3063. },
  3064. {
  3065. .name = "i915_pipe_C_crc",
  3066. .pipe = PIPE_C,
  3067. },
  3068. };
  3069. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  3070. enum pipe pipe)
  3071. {
  3072. struct drm_device *dev = minor->dev;
  3073. struct dentry *ent;
  3074. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  3075. info->dev = dev;
  3076. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  3077. &i915_pipe_crc_fops);
  3078. if (!ent)
  3079. return -ENOMEM;
  3080. return drm_add_fake_info_node(minor, ent, info);
  3081. }
  3082. static const char * const pipe_crc_sources[] = {
  3083. "none",
  3084. "plane1",
  3085. "plane2",
  3086. "pf",
  3087. "pipe",
  3088. "TV",
  3089. "DP-B",
  3090. "DP-C",
  3091. "DP-D",
  3092. "auto",
  3093. };
  3094. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  3095. {
  3096. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  3097. return pipe_crc_sources[source];
  3098. }
  3099. static int display_crc_ctl_show(struct seq_file *m, void *data)
  3100. {
  3101. struct drm_device *dev = m->private;
  3102. struct drm_i915_private *dev_priv = to_i915(dev);
  3103. int i;
  3104. for (i = 0; i < I915_MAX_PIPES; i++)
  3105. seq_printf(m, "%c %s\n", pipe_name(i),
  3106. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  3107. return 0;
  3108. }
  3109. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  3110. {
  3111. struct drm_device *dev = inode->i_private;
  3112. return single_open(file, display_crc_ctl_show, dev);
  3113. }
  3114. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3115. uint32_t *val)
  3116. {
  3117. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3118. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3119. switch (*source) {
  3120. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3121. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  3122. break;
  3123. case INTEL_PIPE_CRC_SOURCE_NONE:
  3124. *val = 0;
  3125. break;
  3126. default:
  3127. return -EINVAL;
  3128. }
  3129. return 0;
  3130. }
  3131. static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
  3132. enum intel_pipe_crc_source *source)
  3133. {
  3134. struct intel_encoder *encoder;
  3135. struct intel_crtc *crtc;
  3136. struct intel_digital_port *dig_port;
  3137. int ret = 0;
  3138. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3139. drm_modeset_lock_all(dev);
  3140. for_each_intel_encoder(dev, encoder) {
  3141. if (!encoder->base.crtc)
  3142. continue;
  3143. crtc = to_intel_crtc(encoder->base.crtc);
  3144. if (crtc->pipe != pipe)
  3145. continue;
  3146. switch (encoder->type) {
  3147. case INTEL_OUTPUT_TVOUT:
  3148. *source = INTEL_PIPE_CRC_SOURCE_TV;
  3149. break;
  3150. case INTEL_OUTPUT_DP:
  3151. case INTEL_OUTPUT_EDP:
  3152. dig_port = enc_to_dig_port(&encoder->base);
  3153. switch (dig_port->port) {
  3154. case PORT_B:
  3155. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  3156. break;
  3157. case PORT_C:
  3158. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  3159. break;
  3160. case PORT_D:
  3161. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  3162. break;
  3163. default:
  3164. WARN(1, "nonexisting DP port %c\n",
  3165. port_name(dig_port->port));
  3166. break;
  3167. }
  3168. break;
  3169. default:
  3170. break;
  3171. }
  3172. }
  3173. drm_modeset_unlock_all(dev);
  3174. return ret;
  3175. }
  3176. static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
  3177. enum pipe pipe,
  3178. enum intel_pipe_crc_source *source,
  3179. uint32_t *val)
  3180. {
  3181. struct drm_i915_private *dev_priv = to_i915(dev);
  3182. bool need_stable_symbols = false;
  3183. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3184. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3185. if (ret)
  3186. return ret;
  3187. }
  3188. switch (*source) {
  3189. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3190. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  3191. break;
  3192. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3193. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  3194. need_stable_symbols = true;
  3195. break;
  3196. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3197. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  3198. need_stable_symbols = true;
  3199. break;
  3200. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3201. if (!IS_CHERRYVIEW(dev))
  3202. return -EINVAL;
  3203. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
  3204. need_stable_symbols = true;
  3205. break;
  3206. case INTEL_PIPE_CRC_SOURCE_NONE:
  3207. *val = 0;
  3208. break;
  3209. default:
  3210. return -EINVAL;
  3211. }
  3212. /*
  3213. * When the pipe CRC tap point is after the transcoders we need
  3214. * to tweak symbol-level features to produce a deterministic series of
  3215. * symbols for a given frame. We need to reset those features only once
  3216. * a frame (instead of every nth symbol):
  3217. * - DC-balance: used to ensure a better clock recovery from the data
  3218. * link (SDVO)
  3219. * - DisplayPort scrambling: used for EMI reduction
  3220. */
  3221. if (need_stable_symbols) {
  3222. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3223. tmp |= DC_BALANCE_RESET_VLV;
  3224. switch (pipe) {
  3225. case PIPE_A:
  3226. tmp |= PIPE_A_SCRAMBLE_RESET;
  3227. break;
  3228. case PIPE_B:
  3229. tmp |= PIPE_B_SCRAMBLE_RESET;
  3230. break;
  3231. case PIPE_C:
  3232. tmp |= PIPE_C_SCRAMBLE_RESET;
  3233. break;
  3234. default:
  3235. return -EINVAL;
  3236. }
  3237. I915_WRITE(PORT_DFT2_G4X, tmp);
  3238. }
  3239. return 0;
  3240. }
  3241. static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
  3242. enum pipe pipe,
  3243. enum intel_pipe_crc_source *source,
  3244. uint32_t *val)
  3245. {
  3246. struct drm_i915_private *dev_priv = to_i915(dev);
  3247. bool need_stable_symbols = false;
  3248. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3249. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3250. if (ret)
  3251. return ret;
  3252. }
  3253. switch (*source) {
  3254. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3255. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  3256. break;
  3257. case INTEL_PIPE_CRC_SOURCE_TV:
  3258. if (!SUPPORTS_TV(dev))
  3259. return -EINVAL;
  3260. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  3261. break;
  3262. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3263. if (!IS_G4X(dev))
  3264. return -EINVAL;
  3265. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  3266. need_stable_symbols = true;
  3267. break;
  3268. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3269. if (!IS_G4X(dev))
  3270. return -EINVAL;
  3271. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  3272. need_stable_symbols = true;
  3273. break;
  3274. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3275. if (!IS_G4X(dev))
  3276. return -EINVAL;
  3277. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  3278. need_stable_symbols = true;
  3279. break;
  3280. case INTEL_PIPE_CRC_SOURCE_NONE:
  3281. *val = 0;
  3282. break;
  3283. default:
  3284. return -EINVAL;
  3285. }
  3286. /*
  3287. * When the pipe CRC tap point is after the transcoders we need
  3288. * to tweak symbol-level features to produce a deterministic series of
  3289. * symbols for a given frame. We need to reset those features only once
  3290. * a frame (instead of every nth symbol):
  3291. * - DC-balance: used to ensure a better clock recovery from the data
  3292. * link (SDVO)
  3293. * - DisplayPort scrambling: used for EMI reduction
  3294. */
  3295. if (need_stable_symbols) {
  3296. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3297. WARN_ON(!IS_G4X(dev));
  3298. I915_WRITE(PORT_DFT_I9XX,
  3299. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  3300. if (pipe == PIPE_A)
  3301. tmp |= PIPE_A_SCRAMBLE_RESET;
  3302. else
  3303. tmp |= PIPE_B_SCRAMBLE_RESET;
  3304. I915_WRITE(PORT_DFT2_G4X, tmp);
  3305. }
  3306. return 0;
  3307. }
  3308. static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
  3309. enum pipe pipe)
  3310. {
  3311. struct drm_i915_private *dev_priv = to_i915(dev);
  3312. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3313. switch (pipe) {
  3314. case PIPE_A:
  3315. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3316. break;
  3317. case PIPE_B:
  3318. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3319. break;
  3320. case PIPE_C:
  3321. tmp &= ~PIPE_C_SCRAMBLE_RESET;
  3322. break;
  3323. default:
  3324. return;
  3325. }
  3326. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  3327. tmp &= ~DC_BALANCE_RESET_VLV;
  3328. I915_WRITE(PORT_DFT2_G4X, tmp);
  3329. }
  3330. static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
  3331. enum pipe pipe)
  3332. {
  3333. struct drm_i915_private *dev_priv = to_i915(dev);
  3334. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3335. if (pipe == PIPE_A)
  3336. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3337. else
  3338. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3339. I915_WRITE(PORT_DFT2_G4X, tmp);
  3340. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  3341. I915_WRITE(PORT_DFT_I9XX,
  3342. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  3343. }
  3344. }
  3345. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3346. uint32_t *val)
  3347. {
  3348. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3349. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3350. switch (*source) {
  3351. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3352. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  3353. break;
  3354. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3355. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  3356. break;
  3357. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3358. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  3359. break;
  3360. case INTEL_PIPE_CRC_SOURCE_NONE:
  3361. *val = 0;
  3362. break;
  3363. default:
  3364. return -EINVAL;
  3365. }
  3366. return 0;
  3367. }
  3368. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
  3369. {
  3370. struct drm_i915_private *dev_priv = to_i915(dev);
  3371. struct intel_crtc *crtc =
  3372. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  3373. struct intel_crtc_state *pipe_config;
  3374. struct drm_atomic_state *state;
  3375. int ret = 0;
  3376. drm_modeset_lock_all(dev);
  3377. state = drm_atomic_state_alloc(dev);
  3378. if (!state) {
  3379. ret = -ENOMEM;
  3380. goto out;
  3381. }
  3382. state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
  3383. pipe_config = intel_atomic_get_crtc_state(state, crtc);
  3384. if (IS_ERR(pipe_config)) {
  3385. ret = PTR_ERR(pipe_config);
  3386. goto out;
  3387. }
  3388. pipe_config->pch_pfit.force_thru = enable;
  3389. if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
  3390. pipe_config->pch_pfit.enabled != enable)
  3391. pipe_config->base.connectors_changed = true;
  3392. ret = drm_atomic_commit(state);
  3393. out:
  3394. drm_modeset_unlock_all(dev);
  3395. WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
  3396. if (ret)
  3397. drm_atomic_state_free(state);
  3398. }
  3399. static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
  3400. enum pipe pipe,
  3401. enum intel_pipe_crc_source *source,
  3402. uint32_t *val)
  3403. {
  3404. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3405. *source = INTEL_PIPE_CRC_SOURCE_PF;
  3406. switch (*source) {
  3407. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3408. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  3409. break;
  3410. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3411. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  3412. break;
  3413. case INTEL_PIPE_CRC_SOURCE_PF:
  3414. if (IS_HASWELL(dev) && pipe == PIPE_A)
  3415. hsw_trans_edp_pipe_A_crc_wa(dev, true);
  3416. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  3417. break;
  3418. case INTEL_PIPE_CRC_SOURCE_NONE:
  3419. *val = 0;
  3420. break;
  3421. default:
  3422. return -EINVAL;
  3423. }
  3424. return 0;
  3425. }
  3426. static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
  3427. enum intel_pipe_crc_source source)
  3428. {
  3429. struct drm_i915_private *dev_priv = to_i915(dev);
  3430. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3431. struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
  3432. pipe));
  3433. enum intel_display_power_domain power_domain;
  3434. u32 val = 0; /* shut up gcc */
  3435. int ret;
  3436. if (pipe_crc->source == source)
  3437. return 0;
  3438. /* forbid changing the source without going back to 'none' */
  3439. if (pipe_crc->source && source)
  3440. return -EINVAL;
  3441. power_domain = POWER_DOMAIN_PIPE(pipe);
  3442. if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
  3443. DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
  3444. return -EIO;
  3445. }
  3446. if (IS_GEN2(dev))
  3447. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  3448. else if (INTEL_INFO(dev)->gen < 5)
  3449. ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3450. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3451. ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3452. else if (IS_GEN5(dev) || IS_GEN6(dev))
  3453. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  3454. else
  3455. ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3456. if (ret != 0)
  3457. goto out;
  3458. /* none -> real source transition */
  3459. if (source) {
  3460. struct intel_pipe_crc_entry *entries;
  3461. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  3462. pipe_name(pipe), pipe_crc_source_name(source));
  3463. entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
  3464. sizeof(pipe_crc->entries[0]),
  3465. GFP_KERNEL);
  3466. if (!entries) {
  3467. ret = -ENOMEM;
  3468. goto out;
  3469. }
  3470. /*
  3471. * When IPS gets enabled, the pipe CRC changes. Since IPS gets
  3472. * enabled and disabled dynamically based on package C states,
  3473. * user space can't make reliable use of the CRCs, so let's just
  3474. * completely disable it.
  3475. */
  3476. hsw_disable_ips(crtc);
  3477. spin_lock_irq(&pipe_crc->lock);
  3478. kfree(pipe_crc->entries);
  3479. pipe_crc->entries = entries;
  3480. pipe_crc->head = 0;
  3481. pipe_crc->tail = 0;
  3482. spin_unlock_irq(&pipe_crc->lock);
  3483. }
  3484. pipe_crc->source = source;
  3485. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  3486. POSTING_READ(PIPE_CRC_CTL(pipe));
  3487. /* real source -> none transition */
  3488. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  3489. struct intel_pipe_crc_entry *entries;
  3490. struct intel_crtc *crtc =
  3491. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  3492. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  3493. pipe_name(pipe));
  3494. drm_modeset_lock(&crtc->base.mutex, NULL);
  3495. if (crtc->base.state->active)
  3496. intel_wait_for_vblank(dev, pipe);
  3497. drm_modeset_unlock(&crtc->base.mutex);
  3498. spin_lock_irq(&pipe_crc->lock);
  3499. entries = pipe_crc->entries;
  3500. pipe_crc->entries = NULL;
  3501. pipe_crc->head = 0;
  3502. pipe_crc->tail = 0;
  3503. spin_unlock_irq(&pipe_crc->lock);
  3504. kfree(entries);
  3505. if (IS_G4X(dev))
  3506. g4x_undo_pipe_scramble_reset(dev, pipe);
  3507. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3508. vlv_undo_pipe_scramble_reset(dev, pipe);
  3509. else if (IS_HASWELL(dev) && pipe == PIPE_A)
  3510. hsw_trans_edp_pipe_A_crc_wa(dev, false);
  3511. hsw_enable_ips(crtc);
  3512. }
  3513. ret = 0;
  3514. out:
  3515. intel_display_power_put(dev_priv, power_domain);
  3516. return ret;
  3517. }
  3518. /*
  3519. * Parse pipe CRC command strings:
  3520. * command: wsp* object wsp+ name wsp+ source wsp*
  3521. * object: 'pipe'
  3522. * name: (A | B | C)
  3523. * source: (none | plane1 | plane2 | pf)
  3524. * wsp: (#0x20 | #0x9 | #0xA)+
  3525. *
  3526. * eg.:
  3527. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  3528. * "pipe A none" -> Stop CRC
  3529. */
  3530. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  3531. {
  3532. int n_words = 0;
  3533. while (*buf) {
  3534. char *end;
  3535. /* skip leading white space */
  3536. buf = skip_spaces(buf);
  3537. if (!*buf)
  3538. break; /* end of buffer */
  3539. /* find end of word */
  3540. for (end = buf; *end && !isspace(*end); end++)
  3541. ;
  3542. if (n_words == max_words) {
  3543. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  3544. max_words);
  3545. return -EINVAL; /* ran out of words[] before bytes */
  3546. }
  3547. if (*end)
  3548. *end++ = '\0';
  3549. words[n_words++] = buf;
  3550. buf = end;
  3551. }
  3552. return n_words;
  3553. }
  3554. enum intel_pipe_crc_object {
  3555. PIPE_CRC_OBJECT_PIPE,
  3556. };
  3557. static const char * const pipe_crc_objects[] = {
  3558. "pipe",
  3559. };
  3560. static int
  3561. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  3562. {
  3563. int i;
  3564. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  3565. if (!strcmp(buf, pipe_crc_objects[i])) {
  3566. *o = i;
  3567. return 0;
  3568. }
  3569. return -EINVAL;
  3570. }
  3571. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  3572. {
  3573. const char name = buf[0];
  3574. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  3575. return -EINVAL;
  3576. *pipe = name - 'A';
  3577. return 0;
  3578. }
  3579. static int
  3580. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  3581. {
  3582. int i;
  3583. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  3584. if (!strcmp(buf, pipe_crc_sources[i])) {
  3585. *s = i;
  3586. return 0;
  3587. }
  3588. return -EINVAL;
  3589. }
  3590. static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
  3591. {
  3592. #define N_WORDS 3
  3593. int n_words;
  3594. char *words[N_WORDS];
  3595. enum pipe pipe;
  3596. enum intel_pipe_crc_object object;
  3597. enum intel_pipe_crc_source source;
  3598. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  3599. if (n_words != N_WORDS) {
  3600. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  3601. N_WORDS);
  3602. return -EINVAL;
  3603. }
  3604. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  3605. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  3606. return -EINVAL;
  3607. }
  3608. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  3609. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  3610. return -EINVAL;
  3611. }
  3612. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  3613. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  3614. return -EINVAL;
  3615. }
  3616. return pipe_crc_set_source(dev, pipe, source);
  3617. }
  3618. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  3619. size_t len, loff_t *offp)
  3620. {
  3621. struct seq_file *m = file->private_data;
  3622. struct drm_device *dev = m->private;
  3623. char *tmpbuf;
  3624. int ret;
  3625. if (len == 0)
  3626. return 0;
  3627. if (len > PAGE_SIZE - 1) {
  3628. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  3629. PAGE_SIZE);
  3630. return -E2BIG;
  3631. }
  3632. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  3633. if (!tmpbuf)
  3634. return -ENOMEM;
  3635. if (copy_from_user(tmpbuf, ubuf, len)) {
  3636. ret = -EFAULT;
  3637. goto out;
  3638. }
  3639. tmpbuf[len] = '\0';
  3640. ret = display_crc_ctl_parse(dev, tmpbuf, len);
  3641. out:
  3642. kfree(tmpbuf);
  3643. if (ret < 0)
  3644. return ret;
  3645. *offp += len;
  3646. return len;
  3647. }
  3648. static const struct file_operations i915_display_crc_ctl_fops = {
  3649. .owner = THIS_MODULE,
  3650. .open = display_crc_ctl_open,
  3651. .read = seq_read,
  3652. .llseek = seq_lseek,
  3653. .release = single_release,
  3654. .write = display_crc_ctl_write
  3655. };
  3656. static ssize_t i915_displayport_test_active_write(struct file *file,
  3657. const char __user *ubuf,
  3658. size_t len, loff_t *offp)
  3659. {
  3660. char *input_buffer;
  3661. int status = 0;
  3662. struct drm_device *dev;
  3663. struct drm_connector *connector;
  3664. struct list_head *connector_list;
  3665. struct intel_dp *intel_dp;
  3666. int val = 0;
  3667. dev = ((struct seq_file *)file->private_data)->private;
  3668. connector_list = &dev->mode_config.connector_list;
  3669. if (len == 0)
  3670. return 0;
  3671. input_buffer = kmalloc(len + 1, GFP_KERNEL);
  3672. if (!input_buffer)
  3673. return -ENOMEM;
  3674. if (copy_from_user(input_buffer, ubuf, len)) {
  3675. status = -EFAULT;
  3676. goto out;
  3677. }
  3678. input_buffer[len] = '\0';
  3679. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3680. list_for_each_entry(connector, connector_list, head) {
  3681. if (connector->connector_type !=
  3682. DRM_MODE_CONNECTOR_DisplayPort)
  3683. continue;
  3684. if (connector->status == connector_status_connected &&
  3685. connector->encoder != NULL) {
  3686. intel_dp = enc_to_intel_dp(connector->encoder);
  3687. status = kstrtoint(input_buffer, 10, &val);
  3688. if (status < 0)
  3689. goto out;
  3690. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3691. /* To prevent erroneous activation of the compliance
  3692. * testing code, only accept an actual value of 1 here
  3693. */
  3694. if (val == 1)
  3695. intel_dp->compliance_test_active = 1;
  3696. else
  3697. intel_dp->compliance_test_active = 0;
  3698. }
  3699. }
  3700. out:
  3701. kfree(input_buffer);
  3702. if (status < 0)
  3703. return status;
  3704. *offp += len;
  3705. return len;
  3706. }
  3707. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3708. {
  3709. struct drm_device *dev = m->private;
  3710. struct drm_connector *connector;
  3711. struct list_head *connector_list = &dev->mode_config.connector_list;
  3712. struct intel_dp *intel_dp;
  3713. list_for_each_entry(connector, connector_list, head) {
  3714. if (connector->connector_type !=
  3715. DRM_MODE_CONNECTOR_DisplayPort)
  3716. continue;
  3717. if (connector->status == connector_status_connected &&
  3718. connector->encoder != NULL) {
  3719. intel_dp = enc_to_intel_dp(connector->encoder);
  3720. if (intel_dp->compliance_test_active)
  3721. seq_puts(m, "1");
  3722. else
  3723. seq_puts(m, "0");
  3724. } else
  3725. seq_puts(m, "0");
  3726. }
  3727. return 0;
  3728. }
  3729. static int i915_displayport_test_active_open(struct inode *inode,
  3730. struct file *file)
  3731. {
  3732. struct drm_device *dev = inode->i_private;
  3733. return single_open(file, i915_displayport_test_active_show, dev);
  3734. }
  3735. static const struct file_operations i915_displayport_test_active_fops = {
  3736. .owner = THIS_MODULE,
  3737. .open = i915_displayport_test_active_open,
  3738. .read = seq_read,
  3739. .llseek = seq_lseek,
  3740. .release = single_release,
  3741. .write = i915_displayport_test_active_write
  3742. };
  3743. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3744. {
  3745. struct drm_device *dev = m->private;
  3746. struct drm_connector *connector;
  3747. struct list_head *connector_list = &dev->mode_config.connector_list;
  3748. struct intel_dp *intel_dp;
  3749. list_for_each_entry(connector, connector_list, head) {
  3750. if (connector->connector_type !=
  3751. DRM_MODE_CONNECTOR_DisplayPort)
  3752. continue;
  3753. if (connector->status == connector_status_connected &&
  3754. connector->encoder != NULL) {
  3755. intel_dp = enc_to_intel_dp(connector->encoder);
  3756. seq_printf(m, "%lx", intel_dp->compliance_test_data);
  3757. } else
  3758. seq_puts(m, "0");
  3759. }
  3760. return 0;
  3761. }
  3762. static int i915_displayport_test_data_open(struct inode *inode,
  3763. struct file *file)
  3764. {
  3765. struct drm_device *dev = inode->i_private;
  3766. return single_open(file, i915_displayport_test_data_show, dev);
  3767. }
  3768. static const struct file_operations i915_displayport_test_data_fops = {
  3769. .owner = THIS_MODULE,
  3770. .open = i915_displayport_test_data_open,
  3771. .read = seq_read,
  3772. .llseek = seq_lseek,
  3773. .release = single_release
  3774. };
  3775. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3776. {
  3777. struct drm_device *dev = m->private;
  3778. struct drm_connector *connector;
  3779. struct list_head *connector_list = &dev->mode_config.connector_list;
  3780. struct intel_dp *intel_dp;
  3781. list_for_each_entry(connector, connector_list, head) {
  3782. if (connector->connector_type !=
  3783. DRM_MODE_CONNECTOR_DisplayPort)
  3784. continue;
  3785. if (connector->status == connector_status_connected &&
  3786. connector->encoder != NULL) {
  3787. intel_dp = enc_to_intel_dp(connector->encoder);
  3788. seq_printf(m, "%02lx", intel_dp->compliance_test_type);
  3789. } else
  3790. seq_puts(m, "0");
  3791. }
  3792. return 0;
  3793. }
  3794. static int i915_displayport_test_type_open(struct inode *inode,
  3795. struct file *file)
  3796. {
  3797. struct drm_device *dev = inode->i_private;
  3798. return single_open(file, i915_displayport_test_type_show, dev);
  3799. }
  3800. static const struct file_operations i915_displayport_test_type_fops = {
  3801. .owner = THIS_MODULE,
  3802. .open = i915_displayport_test_type_open,
  3803. .read = seq_read,
  3804. .llseek = seq_lseek,
  3805. .release = single_release
  3806. };
  3807. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3808. {
  3809. struct drm_device *dev = m->private;
  3810. int level;
  3811. int num_levels;
  3812. if (IS_CHERRYVIEW(dev))
  3813. num_levels = 3;
  3814. else if (IS_VALLEYVIEW(dev))
  3815. num_levels = 1;
  3816. else
  3817. num_levels = ilk_wm_max_level(dev) + 1;
  3818. drm_modeset_lock_all(dev);
  3819. for (level = 0; level < num_levels; level++) {
  3820. unsigned int latency = wm[level];
  3821. /*
  3822. * - WM1+ latency values in 0.5us units
  3823. * - latencies are in us on gen9/vlv/chv
  3824. */
  3825. if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
  3826. IS_CHERRYVIEW(dev))
  3827. latency *= 10;
  3828. else if (level > 0)
  3829. latency *= 5;
  3830. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3831. level, wm[level], latency / 10, latency % 10);
  3832. }
  3833. drm_modeset_unlock_all(dev);
  3834. }
  3835. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3836. {
  3837. struct drm_device *dev = m->private;
  3838. struct drm_i915_private *dev_priv = to_i915(dev);
  3839. const uint16_t *latencies;
  3840. if (INTEL_INFO(dev)->gen >= 9)
  3841. latencies = dev_priv->wm.skl_latency;
  3842. else
  3843. latencies = to_i915(dev)->wm.pri_latency;
  3844. wm_latency_show(m, latencies);
  3845. return 0;
  3846. }
  3847. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3848. {
  3849. struct drm_device *dev = m->private;
  3850. struct drm_i915_private *dev_priv = to_i915(dev);
  3851. const uint16_t *latencies;
  3852. if (INTEL_INFO(dev)->gen >= 9)
  3853. latencies = dev_priv->wm.skl_latency;
  3854. else
  3855. latencies = to_i915(dev)->wm.spr_latency;
  3856. wm_latency_show(m, latencies);
  3857. return 0;
  3858. }
  3859. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3860. {
  3861. struct drm_device *dev = m->private;
  3862. struct drm_i915_private *dev_priv = to_i915(dev);
  3863. const uint16_t *latencies;
  3864. if (INTEL_INFO(dev)->gen >= 9)
  3865. latencies = dev_priv->wm.skl_latency;
  3866. else
  3867. latencies = to_i915(dev)->wm.cur_latency;
  3868. wm_latency_show(m, latencies);
  3869. return 0;
  3870. }
  3871. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3872. {
  3873. struct drm_device *dev = inode->i_private;
  3874. if (INTEL_INFO(dev)->gen < 5)
  3875. return -ENODEV;
  3876. return single_open(file, pri_wm_latency_show, dev);
  3877. }
  3878. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3879. {
  3880. struct drm_device *dev = inode->i_private;
  3881. if (HAS_GMCH_DISPLAY(dev))
  3882. return -ENODEV;
  3883. return single_open(file, spr_wm_latency_show, dev);
  3884. }
  3885. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3886. {
  3887. struct drm_device *dev = inode->i_private;
  3888. if (HAS_GMCH_DISPLAY(dev))
  3889. return -ENODEV;
  3890. return single_open(file, cur_wm_latency_show, dev);
  3891. }
  3892. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3893. size_t len, loff_t *offp, uint16_t wm[8])
  3894. {
  3895. struct seq_file *m = file->private_data;
  3896. struct drm_device *dev = m->private;
  3897. uint16_t new[8] = { 0 };
  3898. int num_levels;
  3899. int level;
  3900. int ret;
  3901. char tmp[32];
  3902. if (IS_CHERRYVIEW(dev))
  3903. num_levels = 3;
  3904. else if (IS_VALLEYVIEW(dev))
  3905. num_levels = 1;
  3906. else
  3907. num_levels = ilk_wm_max_level(dev) + 1;
  3908. if (len >= sizeof(tmp))
  3909. return -EINVAL;
  3910. if (copy_from_user(tmp, ubuf, len))
  3911. return -EFAULT;
  3912. tmp[len] = '\0';
  3913. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3914. &new[0], &new[1], &new[2], &new[3],
  3915. &new[4], &new[5], &new[6], &new[7]);
  3916. if (ret != num_levels)
  3917. return -EINVAL;
  3918. drm_modeset_lock_all(dev);
  3919. for (level = 0; level < num_levels; level++)
  3920. wm[level] = new[level];
  3921. drm_modeset_unlock_all(dev);
  3922. return len;
  3923. }
  3924. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3925. size_t len, loff_t *offp)
  3926. {
  3927. struct seq_file *m = file->private_data;
  3928. struct drm_device *dev = m->private;
  3929. struct drm_i915_private *dev_priv = to_i915(dev);
  3930. uint16_t *latencies;
  3931. if (INTEL_INFO(dev)->gen >= 9)
  3932. latencies = dev_priv->wm.skl_latency;
  3933. else
  3934. latencies = to_i915(dev)->wm.pri_latency;
  3935. return wm_latency_write(file, ubuf, len, offp, latencies);
  3936. }
  3937. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3938. size_t len, loff_t *offp)
  3939. {
  3940. struct seq_file *m = file->private_data;
  3941. struct drm_device *dev = m->private;
  3942. struct drm_i915_private *dev_priv = to_i915(dev);
  3943. uint16_t *latencies;
  3944. if (INTEL_INFO(dev)->gen >= 9)
  3945. latencies = dev_priv->wm.skl_latency;
  3946. else
  3947. latencies = to_i915(dev)->wm.spr_latency;
  3948. return wm_latency_write(file, ubuf, len, offp, latencies);
  3949. }
  3950. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3951. size_t len, loff_t *offp)
  3952. {
  3953. struct seq_file *m = file->private_data;
  3954. struct drm_device *dev = m->private;
  3955. struct drm_i915_private *dev_priv = to_i915(dev);
  3956. uint16_t *latencies;
  3957. if (INTEL_INFO(dev)->gen >= 9)
  3958. latencies = dev_priv->wm.skl_latency;
  3959. else
  3960. latencies = to_i915(dev)->wm.cur_latency;
  3961. return wm_latency_write(file, ubuf, len, offp, latencies);
  3962. }
  3963. static const struct file_operations i915_pri_wm_latency_fops = {
  3964. .owner = THIS_MODULE,
  3965. .open = pri_wm_latency_open,
  3966. .read = seq_read,
  3967. .llseek = seq_lseek,
  3968. .release = single_release,
  3969. .write = pri_wm_latency_write
  3970. };
  3971. static const struct file_operations i915_spr_wm_latency_fops = {
  3972. .owner = THIS_MODULE,
  3973. .open = spr_wm_latency_open,
  3974. .read = seq_read,
  3975. .llseek = seq_lseek,
  3976. .release = single_release,
  3977. .write = spr_wm_latency_write
  3978. };
  3979. static const struct file_operations i915_cur_wm_latency_fops = {
  3980. .owner = THIS_MODULE,
  3981. .open = cur_wm_latency_open,
  3982. .read = seq_read,
  3983. .llseek = seq_lseek,
  3984. .release = single_release,
  3985. .write = cur_wm_latency_write
  3986. };
  3987. static int
  3988. i915_wedged_get(void *data, u64 *val)
  3989. {
  3990. struct drm_device *dev = data;
  3991. struct drm_i915_private *dev_priv = to_i915(dev);
  3992. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3993. return 0;
  3994. }
  3995. static int
  3996. i915_wedged_set(void *data, u64 val)
  3997. {
  3998. struct drm_device *dev = data;
  3999. struct drm_i915_private *dev_priv = to_i915(dev);
  4000. /*
  4001. * There is no safeguard against this debugfs entry colliding
  4002. * with the hangcheck calling same i915_handle_error() in
  4003. * parallel, causing an explosion. For now we assume that the
  4004. * test harness is responsible enough not to inject gpu hangs
  4005. * while it is writing to 'i915_wedged'
  4006. */
  4007. if (i915_reset_in_progress(&dev_priv->gpu_error))
  4008. return -EAGAIN;
  4009. intel_runtime_pm_get(dev_priv);
  4010. i915_handle_error(dev_priv, val,
  4011. "Manually setting wedged to %llu", val);
  4012. intel_runtime_pm_put(dev_priv);
  4013. return 0;
  4014. }
  4015. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  4016. i915_wedged_get, i915_wedged_set,
  4017. "%llu\n");
  4018. static int
  4019. i915_ring_missed_irq_get(void *data, u64 *val)
  4020. {
  4021. struct drm_device *dev = data;
  4022. struct drm_i915_private *dev_priv = to_i915(dev);
  4023. *val = dev_priv->gpu_error.missed_irq_rings;
  4024. return 0;
  4025. }
  4026. static int
  4027. i915_ring_missed_irq_set(void *data, u64 val)
  4028. {
  4029. struct drm_device *dev = data;
  4030. struct drm_i915_private *dev_priv = to_i915(dev);
  4031. int ret;
  4032. /* Lock against concurrent debugfs callers */
  4033. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4034. if (ret)
  4035. return ret;
  4036. dev_priv->gpu_error.missed_irq_rings = val;
  4037. mutex_unlock(&dev->struct_mutex);
  4038. return 0;
  4039. }
  4040. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  4041. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  4042. "0x%08llx\n");
  4043. static int
  4044. i915_ring_test_irq_get(void *data, u64 *val)
  4045. {
  4046. struct drm_device *dev = data;
  4047. struct drm_i915_private *dev_priv = to_i915(dev);
  4048. *val = dev_priv->gpu_error.test_irq_rings;
  4049. return 0;
  4050. }
  4051. static int
  4052. i915_ring_test_irq_set(void *data, u64 val)
  4053. {
  4054. struct drm_device *dev = data;
  4055. struct drm_i915_private *dev_priv = to_i915(dev);
  4056. val &= INTEL_INFO(dev_priv)->ring_mask;
  4057. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  4058. dev_priv->gpu_error.test_irq_rings = val;
  4059. return 0;
  4060. }
  4061. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  4062. i915_ring_test_irq_get, i915_ring_test_irq_set,
  4063. "0x%08llx\n");
  4064. #define DROP_UNBOUND 0x1
  4065. #define DROP_BOUND 0x2
  4066. #define DROP_RETIRE 0x4
  4067. #define DROP_ACTIVE 0x8
  4068. #define DROP_ALL (DROP_UNBOUND | \
  4069. DROP_BOUND | \
  4070. DROP_RETIRE | \
  4071. DROP_ACTIVE)
  4072. static int
  4073. i915_drop_caches_get(void *data, u64 *val)
  4074. {
  4075. *val = DROP_ALL;
  4076. return 0;
  4077. }
  4078. static int
  4079. i915_drop_caches_set(void *data, u64 val)
  4080. {
  4081. struct drm_device *dev = data;
  4082. struct drm_i915_private *dev_priv = to_i915(dev);
  4083. int ret;
  4084. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  4085. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  4086. * on ioctls on -EAGAIN. */
  4087. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4088. if (ret)
  4089. return ret;
  4090. if (val & DROP_ACTIVE) {
  4091. ret = i915_gem_wait_for_idle(dev_priv);
  4092. if (ret)
  4093. goto unlock;
  4094. }
  4095. if (val & (DROP_RETIRE | DROP_ACTIVE))
  4096. i915_gem_retire_requests(dev_priv);
  4097. if (val & DROP_BOUND)
  4098. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  4099. if (val & DROP_UNBOUND)
  4100. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  4101. unlock:
  4102. mutex_unlock(&dev->struct_mutex);
  4103. return ret;
  4104. }
  4105. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  4106. i915_drop_caches_get, i915_drop_caches_set,
  4107. "0x%08llx\n");
  4108. static int
  4109. i915_max_freq_get(void *data, u64 *val)
  4110. {
  4111. struct drm_device *dev = data;
  4112. struct drm_i915_private *dev_priv = to_i915(dev);
  4113. int ret;
  4114. if (INTEL_INFO(dev)->gen < 6)
  4115. return -ENODEV;
  4116. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4117. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4118. if (ret)
  4119. return ret;
  4120. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  4121. mutex_unlock(&dev_priv->rps.hw_lock);
  4122. return 0;
  4123. }
  4124. static int
  4125. i915_max_freq_set(void *data, u64 val)
  4126. {
  4127. struct drm_device *dev = data;
  4128. struct drm_i915_private *dev_priv = to_i915(dev);
  4129. u32 hw_max, hw_min;
  4130. int ret;
  4131. if (INTEL_INFO(dev)->gen < 6)
  4132. return -ENODEV;
  4133. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4134. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  4135. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4136. if (ret)
  4137. return ret;
  4138. /*
  4139. * Turbo will still be enabled, but won't go above the set value.
  4140. */
  4141. val = intel_freq_opcode(dev_priv, val);
  4142. hw_max = dev_priv->rps.max_freq;
  4143. hw_min = dev_priv->rps.min_freq;
  4144. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  4145. mutex_unlock(&dev_priv->rps.hw_lock);
  4146. return -EINVAL;
  4147. }
  4148. dev_priv->rps.max_freq_softlimit = val;
  4149. intel_set_rps(dev_priv, val);
  4150. mutex_unlock(&dev_priv->rps.hw_lock);
  4151. return 0;
  4152. }
  4153. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  4154. i915_max_freq_get, i915_max_freq_set,
  4155. "%llu\n");
  4156. static int
  4157. i915_min_freq_get(void *data, u64 *val)
  4158. {
  4159. struct drm_device *dev = data;
  4160. struct drm_i915_private *dev_priv = to_i915(dev);
  4161. int ret;
  4162. if (INTEL_INFO(dev)->gen < 6)
  4163. return -ENODEV;
  4164. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4165. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4166. if (ret)
  4167. return ret;
  4168. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  4169. mutex_unlock(&dev_priv->rps.hw_lock);
  4170. return 0;
  4171. }
  4172. static int
  4173. i915_min_freq_set(void *data, u64 val)
  4174. {
  4175. struct drm_device *dev = data;
  4176. struct drm_i915_private *dev_priv = to_i915(dev);
  4177. u32 hw_max, hw_min;
  4178. int ret;
  4179. if (INTEL_INFO(dev)->gen < 6)
  4180. return -ENODEV;
  4181. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4182. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  4183. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4184. if (ret)
  4185. return ret;
  4186. /*
  4187. * Turbo will still be enabled, but won't go below the set value.
  4188. */
  4189. val = intel_freq_opcode(dev_priv, val);
  4190. hw_max = dev_priv->rps.max_freq;
  4191. hw_min = dev_priv->rps.min_freq;
  4192. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  4193. mutex_unlock(&dev_priv->rps.hw_lock);
  4194. return -EINVAL;
  4195. }
  4196. dev_priv->rps.min_freq_softlimit = val;
  4197. intel_set_rps(dev_priv, val);
  4198. mutex_unlock(&dev_priv->rps.hw_lock);
  4199. return 0;
  4200. }
  4201. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  4202. i915_min_freq_get, i915_min_freq_set,
  4203. "%llu\n");
  4204. static int
  4205. i915_cache_sharing_get(void *data, u64 *val)
  4206. {
  4207. struct drm_device *dev = data;
  4208. struct drm_i915_private *dev_priv = to_i915(dev);
  4209. u32 snpcr;
  4210. int ret;
  4211. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4212. return -ENODEV;
  4213. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4214. if (ret)
  4215. return ret;
  4216. intel_runtime_pm_get(dev_priv);
  4217. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4218. intel_runtime_pm_put(dev_priv);
  4219. mutex_unlock(&dev_priv->drm.struct_mutex);
  4220. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  4221. return 0;
  4222. }
  4223. static int
  4224. i915_cache_sharing_set(void *data, u64 val)
  4225. {
  4226. struct drm_device *dev = data;
  4227. struct drm_i915_private *dev_priv = to_i915(dev);
  4228. u32 snpcr;
  4229. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4230. return -ENODEV;
  4231. if (val > 3)
  4232. return -EINVAL;
  4233. intel_runtime_pm_get(dev_priv);
  4234. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  4235. /* Update the cache sharing policy here as well */
  4236. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4237. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4238. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  4239. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4240. intel_runtime_pm_put(dev_priv);
  4241. return 0;
  4242. }
  4243. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  4244. i915_cache_sharing_get, i915_cache_sharing_set,
  4245. "%llu\n");
  4246. struct sseu_dev_status {
  4247. unsigned int slice_total;
  4248. unsigned int subslice_total;
  4249. unsigned int subslice_per_slice;
  4250. unsigned int eu_total;
  4251. unsigned int eu_per_subslice;
  4252. };
  4253. static void cherryview_sseu_device_status(struct drm_device *dev,
  4254. struct sseu_dev_status *stat)
  4255. {
  4256. struct drm_i915_private *dev_priv = to_i915(dev);
  4257. int ss_max = 2;
  4258. int ss;
  4259. u32 sig1[ss_max], sig2[ss_max];
  4260. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  4261. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  4262. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  4263. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  4264. for (ss = 0; ss < ss_max; ss++) {
  4265. unsigned int eu_cnt;
  4266. if (sig1[ss] & CHV_SS_PG_ENABLE)
  4267. /* skip disabled subslice */
  4268. continue;
  4269. stat->slice_total = 1;
  4270. stat->subslice_per_slice++;
  4271. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  4272. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  4273. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  4274. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  4275. stat->eu_total += eu_cnt;
  4276. stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
  4277. }
  4278. stat->subslice_total = stat->subslice_per_slice;
  4279. }
  4280. static void gen9_sseu_device_status(struct drm_device *dev,
  4281. struct sseu_dev_status *stat)
  4282. {
  4283. struct drm_i915_private *dev_priv = to_i915(dev);
  4284. int s_max = 3, ss_max = 4;
  4285. int s, ss;
  4286. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  4287. /* BXT has a single slice and at most 3 subslices. */
  4288. if (IS_BROXTON(dev)) {
  4289. s_max = 1;
  4290. ss_max = 3;
  4291. }
  4292. for (s = 0; s < s_max; s++) {
  4293. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  4294. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  4295. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  4296. }
  4297. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  4298. GEN9_PGCTL_SSA_EU19_ACK |
  4299. GEN9_PGCTL_SSA_EU210_ACK |
  4300. GEN9_PGCTL_SSA_EU311_ACK;
  4301. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  4302. GEN9_PGCTL_SSB_EU19_ACK |
  4303. GEN9_PGCTL_SSB_EU210_ACK |
  4304. GEN9_PGCTL_SSB_EU311_ACK;
  4305. for (s = 0; s < s_max; s++) {
  4306. unsigned int ss_cnt = 0;
  4307. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  4308. /* skip disabled slice */
  4309. continue;
  4310. stat->slice_total++;
  4311. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  4312. ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
  4313. for (ss = 0; ss < ss_max; ss++) {
  4314. unsigned int eu_cnt;
  4315. if (IS_BROXTON(dev) &&
  4316. !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  4317. /* skip disabled subslice */
  4318. continue;
  4319. if (IS_BROXTON(dev))
  4320. ss_cnt++;
  4321. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  4322. eu_mask[ss%2]);
  4323. stat->eu_total += eu_cnt;
  4324. stat->eu_per_subslice = max(stat->eu_per_subslice,
  4325. eu_cnt);
  4326. }
  4327. stat->subslice_total += ss_cnt;
  4328. stat->subslice_per_slice = max(stat->subslice_per_slice,
  4329. ss_cnt);
  4330. }
  4331. }
  4332. static void broadwell_sseu_device_status(struct drm_device *dev,
  4333. struct sseu_dev_status *stat)
  4334. {
  4335. struct drm_i915_private *dev_priv = to_i915(dev);
  4336. int s;
  4337. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  4338. stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
  4339. if (stat->slice_total) {
  4340. stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
  4341. stat->subslice_total = stat->slice_total *
  4342. stat->subslice_per_slice;
  4343. stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
  4344. stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
  4345. /* subtract fused off EU(s) from enabled slice(s) */
  4346. for (s = 0; s < stat->slice_total; s++) {
  4347. u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
  4348. stat->eu_total -= hweight8(subslice_7eu);
  4349. }
  4350. }
  4351. }
  4352. static int i915_sseu_status(struct seq_file *m, void *unused)
  4353. {
  4354. struct drm_info_node *node = (struct drm_info_node *) m->private;
  4355. struct drm_device *dev = node->minor->dev;
  4356. struct sseu_dev_status stat;
  4357. if (INTEL_INFO(dev)->gen < 8)
  4358. return -ENODEV;
  4359. seq_puts(m, "SSEU Device Info\n");
  4360. seq_printf(m, " Available Slice Total: %u\n",
  4361. INTEL_INFO(dev)->slice_total);
  4362. seq_printf(m, " Available Subslice Total: %u\n",
  4363. INTEL_INFO(dev)->subslice_total);
  4364. seq_printf(m, " Available Subslice Per Slice: %u\n",
  4365. INTEL_INFO(dev)->subslice_per_slice);
  4366. seq_printf(m, " Available EU Total: %u\n",
  4367. INTEL_INFO(dev)->eu_total);
  4368. seq_printf(m, " Available EU Per Subslice: %u\n",
  4369. INTEL_INFO(dev)->eu_per_subslice);
  4370. seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev)));
  4371. if (HAS_POOLED_EU(dev))
  4372. seq_printf(m, " Min EU in pool: %u\n",
  4373. INTEL_INFO(dev)->min_eu_in_pool);
  4374. seq_printf(m, " Has Slice Power Gating: %s\n",
  4375. yesno(INTEL_INFO(dev)->has_slice_pg));
  4376. seq_printf(m, " Has Subslice Power Gating: %s\n",
  4377. yesno(INTEL_INFO(dev)->has_subslice_pg));
  4378. seq_printf(m, " Has EU Power Gating: %s\n",
  4379. yesno(INTEL_INFO(dev)->has_eu_pg));
  4380. seq_puts(m, "SSEU Device Status\n");
  4381. memset(&stat, 0, sizeof(stat));
  4382. if (IS_CHERRYVIEW(dev)) {
  4383. cherryview_sseu_device_status(dev, &stat);
  4384. } else if (IS_BROADWELL(dev)) {
  4385. broadwell_sseu_device_status(dev, &stat);
  4386. } else if (INTEL_INFO(dev)->gen >= 9) {
  4387. gen9_sseu_device_status(dev, &stat);
  4388. }
  4389. seq_printf(m, " Enabled Slice Total: %u\n",
  4390. stat.slice_total);
  4391. seq_printf(m, " Enabled Subslice Total: %u\n",
  4392. stat.subslice_total);
  4393. seq_printf(m, " Enabled Subslice Per Slice: %u\n",
  4394. stat.subslice_per_slice);
  4395. seq_printf(m, " Enabled EU Total: %u\n",
  4396. stat.eu_total);
  4397. seq_printf(m, " Enabled EU Per Subslice: %u\n",
  4398. stat.eu_per_subslice);
  4399. return 0;
  4400. }
  4401. static int i915_forcewake_open(struct inode *inode, struct file *file)
  4402. {
  4403. struct drm_device *dev = inode->i_private;
  4404. struct drm_i915_private *dev_priv = to_i915(dev);
  4405. if (INTEL_INFO(dev)->gen < 6)
  4406. return 0;
  4407. intel_runtime_pm_get(dev_priv);
  4408. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4409. return 0;
  4410. }
  4411. static int i915_forcewake_release(struct inode *inode, struct file *file)
  4412. {
  4413. struct drm_device *dev = inode->i_private;
  4414. struct drm_i915_private *dev_priv = to_i915(dev);
  4415. if (INTEL_INFO(dev)->gen < 6)
  4416. return 0;
  4417. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4418. intel_runtime_pm_put(dev_priv);
  4419. return 0;
  4420. }
  4421. static const struct file_operations i915_forcewake_fops = {
  4422. .owner = THIS_MODULE,
  4423. .open = i915_forcewake_open,
  4424. .release = i915_forcewake_release,
  4425. };
  4426. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  4427. {
  4428. struct drm_device *dev = minor->dev;
  4429. struct dentry *ent;
  4430. ent = debugfs_create_file("i915_forcewake_user",
  4431. S_IRUSR,
  4432. root, dev,
  4433. &i915_forcewake_fops);
  4434. if (!ent)
  4435. return -ENOMEM;
  4436. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  4437. }
  4438. static int i915_debugfs_create(struct dentry *root,
  4439. struct drm_minor *minor,
  4440. const char *name,
  4441. const struct file_operations *fops)
  4442. {
  4443. struct drm_device *dev = minor->dev;
  4444. struct dentry *ent;
  4445. ent = debugfs_create_file(name,
  4446. S_IRUGO | S_IWUSR,
  4447. root, dev,
  4448. fops);
  4449. if (!ent)
  4450. return -ENOMEM;
  4451. return drm_add_fake_info_node(minor, ent, fops);
  4452. }
  4453. static const struct drm_info_list i915_debugfs_list[] = {
  4454. {"i915_capabilities", i915_capabilities, 0},
  4455. {"i915_gem_objects", i915_gem_object_info, 0},
  4456. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  4457. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  4458. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  4459. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  4460. {"i915_gem_stolen", i915_gem_stolen_list_info },
  4461. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  4462. {"i915_gem_request", i915_gem_request_info, 0},
  4463. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  4464. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  4465. {"i915_gem_interrupt", i915_interrupt_info, 0},
  4466. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  4467. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  4468. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  4469. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  4470. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  4471. {"i915_guc_info", i915_guc_info, 0},
  4472. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  4473. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  4474. {"i915_frequency_info", i915_frequency_info, 0},
  4475. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  4476. {"i915_drpc_info", i915_drpc_info, 0},
  4477. {"i915_emon_status", i915_emon_status, 0},
  4478. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  4479. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  4480. {"i915_fbc_status", i915_fbc_status, 0},
  4481. {"i915_ips_status", i915_ips_status, 0},
  4482. {"i915_sr_status", i915_sr_status, 0},
  4483. {"i915_opregion", i915_opregion, 0},
  4484. {"i915_vbt", i915_vbt, 0},
  4485. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  4486. {"i915_context_status", i915_context_status, 0},
  4487. {"i915_dump_lrc", i915_dump_lrc, 0},
  4488. {"i915_execlists", i915_execlists, 0},
  4489. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  4490. {"i915_swizzle_info", i915_swizzle_info, 0},
  4491. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  4492. {"i915_llc", i915_llc, 0},
  4493. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  4494. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  4495. {"i915_energy_uJ", i915_energy_uJ, 0},
  4496. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  4497. {"i915_power_domain_info", i915_power_domain_info, 0},
  4498. {"i915_dmc_info", i915_dmc_info, 0},
  4499. {"i915_display_info", i915_display_info, 0},
  4500. {"i915_semaphore_status", i915_semaphore_status, 0},
  4501. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  4502. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  4503. {"i915_wa_registers", i915_wa_registers, 0},
  4504. {"i915_ddb_info", i915_ddb_info, 0},
  4505. {"i915_sseu_status", i915_sseu_status, 0},
  4506. {"i915_drrs_status", i915_drrs_status, 0},
  4507. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  4508. };
  4509. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  4510. static const struct i915_debugfs_files {
  4511. const char *name;
  4512. const struct file_operations *fops;
  4513. } i915_debugfs_files[] = {
  4514. {"i915_wedged", &i915_wedged_fops},
  4515. {"i915_max_freq", &i915_max_freq_fops},
  4516. {"i915_min_freq", &i915_min_freq_fops},
  4517. {"i915_cache_sharing", &i915_cache_sharing_fops},
  4518. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  4519. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  4520. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  4521. {"i915_error_state", &i915_error_state_fops},
  4522. {"i915_next_seqno", &i915_next_seqno_fops},
  4523. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  4524. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  4525. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  4526. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  4527. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  4528. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  4529. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  4530. {"i915_dp_test_active", &i915_displayport_test_active_fops}
  4531. };
  4532. void intel_display_crc_init(struct drm_device *dev)
  4533. {
  4534. struct drm_i915_private *dev_priv = to_i915(dev);
  4535. enum pipe pipe;
  4536. for_each_pipe(dev_priv, pipe) {
  4537. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  4538. pipe_crc->opened = false;
  4539. spin_lock_init(&pipe_crc->lock);
  4540. init_waitqueue_head(&pipe_crc->wq);
  4541. }
  4542. }
  4543. int i915_debugfs_register(struct drm_i915_private *dev_priv)
  4544. {
  4545. struct drm_minor *minor = dev_priv->drm.primary;
  4546. int ret, i;
  4547. ret = i915_forcewake_create(minor->debugfs_root, minor);
  4548. if (ret)
  4549. return ret;
  4550. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4551. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  4552. if (ret)
  4553. return ret;
  4554. }
  4555. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4556. ret = i915_debugfs_create(minor->debugfs_root, minor,
  4557. i915_debugfs_files[i].name,
  4558. i915_debugfs_files[i].fops);
  4559. if (ret)
  4560. return ret;
  4561. }
  4562. return drm_debugfs_create_files(i915_debugfs_list,
  4563. I915_DEBUGFS_ENTRIES,
  4564. minor->debugfs_root, minor);
  4565. }
  4566. void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
  4567. {
  4568. struct drm_minor *minor = dev_priv->drm.primary;
  4569. int i;
  4570. drm_debugfs_remove_files(i915_debugfs_list,
  4571. I915_DEBUGFS_ENTRIES, minor);
  4572. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  4573. 1, minor);
  4574. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4575. struct drm_info_list *info_list =
  4576. (struct drm_info_list *)&i915_pipe_crc_data[i];
  4577. drm_debugfs_remove_files(info_list, 1, minor);
  4578. }
  4579. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4580. struct drm_info_list *info_list =
  4581. (struct drm_info_list *) i915_debugfs_files[i].fops;
  4582. drm_debugfs_remove_files(info_list, 1, minor);
  4583. }
  4584. }
  4585. struct dpcd_block {
  4586. /* DPCD dump start address. */
  4587. unsigned int offset;
  4588. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4589. unsigned int end;
  4590. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4591. size_t size;
  4592. /* Only valid for eDP. */
  4593. bool edp;
  4594. };
  4595. static const struct dpcd_block i915_dpcd_debug[] = {
  4596. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4597. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4598. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4599. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4600. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4601. { .offset = DP_SET_POWER },
  4602. { .offset = DP_EDP_DPCD_REV },
  4603. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4604. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4605. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4606. };
  4607. static int i915_dpcd_show(struct seq_file *m, void *data)
  4608. {
  4609. struct drm_connector *connector = m->private;
  4610. struct intel_dp *intel_dp =
  4611. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4612. uint8_t buf[16];
  4613. ssize_t err;
  4614. int i;
  4615. if (connector->status != connector_status_connected)
  4616. return -ENODEV;
  4617. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4618. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4619. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4620. if (b->edp &&
  4621. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4622. continue;
  4623. /* low tech for now */
  4624. if (WARN_ON(size > sizeof(buf)))
  4625. continue;
  4626. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4627. if (err <= 0) {
  4628. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4629. size, b->offset, err);
  4630. continue;
  4631. }
  4632. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4633. }
  4634. return 0;
  4635. }
  4636. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4637. {
  4638. return single_open(file, i915_dpcd_show, inode->i_private);
  4639. }
  4640. static const struct file_operations i915_dpcd_fops = {
  4641. .owner = THIS_MODULE,
  4642. .open = i915_dpcd_open,
  4643. .read = seq_read,
  4644. .llseek = seq_lseek,
  4645. .release = single_release,
  4646. };
  4647. /**
  4648. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4649. * @connector: pointer to a registered drm_connector
  4650. *
  4651. * Cleanup will be done by drm_connector_unregister() through a call to
  4652. * drm_debugfs_connector_remove().
  4653. *
  4654. * Returns 0 on success, negative error codes on error.
  4655. */
  4656. int i915_debugfs_connector_add(struct drm_connector *connector)
  4657. {
  4658. struct dentry *root = connector->debugfs_entry;
  4659. /* The connector must have been registered beforehands. */
  4660. if (!root)
  4661. return -ENODEV;
  4662. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4663. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4664. debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
  4665. &i915_dpcd_fops);
  4666. return 0;
  4667. }