omap-dma.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363
  1. /*
  2. * OMAP DMAengine support
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/delay.h>
  9. #include <linux/dmaengine.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/err.h>
  12. #include <linux/init.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/list.h>
  15. #include <linux/module.h>
  16. #include <linux/omap-dma.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/slab.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/of_dma.h>
  21. #include <linux/of_device.h>
  22. #include "virt-dma.h"
  23. #define OMAP_SDMA_REQUESTS 127
  24. #define OMAP_SDMA_CHANNELS 32
  25. struct omap_dmadev {
  26. struct dma_device ddev;
  27. spinlock_t lock;
  28. void __iomem *base;
  29. const struct omap_dma_reg *reg_map;
  30. struct omap_system_dma_plat_info *plat;
  31. bool legacy;
  32. unsigned dma_requests;
  33. spinlock_t irq_lock;
  34. uint32_t irq_enable_mask;
  35. struct omap_chan *lch_map[OMAP_SDMA_CHANNELS];
  36. };
  37. struct omap_chan {
  38. struct virt_dma_chan vc;
  39. void __iomem *channel_base;
  40. const struct omap_dma_reg *reg_map;
  41. uint32_t ccr;
  42. struct dma_slave_config cfg;
  43. unsigned dma_sig;
  44. bool cyclic;
  45. bool paused;
  46. bool running;
  47. int dma_ch;
  48. struct omap_desc *desc;
  49. unsigned sgidx;
  50. };
  51. struct omap_sg {
  52. dma_addr_t addr;
  53. uint32_t en; /* number of elements (24-bit) */
  54. uint32_t fn; /* number of frames (16-bit) */
  55. int32_t fi; /* for double indexing */
  56. int16_t ei; /* for double indexing */
  57. };
  58. struct omap_desc {
  59. struct virt_dma_desc vd;
  60. enum dma_transfer_direction dir;
  61. dma_addr_t dev_addr;
  62. int32_t fi; /* for OMAP_DMA_SYNC_PACKET / double indexing */
  63. int16_t ei; /* for double indexing */
  64. uint8_t es; /* CSDP_DATA_TYPE_xxx */
  65. uint32_t ccr; /* CCR value */
  66. uint16_t clnk_ctrl; /* CLNK_CTRL value */
  67. uint16_t cicr; /* CICR value */
  68. uint32_t csdp; /* CSDP value */
  69. unsigned sglen;
  70. struct omap_sg sg[0];
  71. };
  72. enum {
  73. CCR_FS = BIT(5),
  74. CCR_READ_PRIORITY = BIT(6),
  75. CCR_ENABLE = BIT(7),
  76. CCR_AUTO_INIT = BIT(8), /* OMAP1 only */
  77. CCR_REPEAT = BIT(9), /* OMAP1 only */
  78. CCR_OMAP31_DISABLE = BIT(10), /* OMAP1 only */
  79. CCR_SUSPEND_SENSITIVE = BIT(8), /* OMAP2+ only */
  80. CCR_RD_ACTIVE = BIT(9), /* OMAP2+ only */
  81. CCR_WR_ACTIVE = BIT(10), /* OMAP2+ only */
  82. CCR_SRC_AMODE_CONSTANT = 0 << 12,
  83. CCR_SRC_AMODE_POSTINC = 1 << 12,
  84. CCR_SRC_AMODE_SGLIDX = 2 << 12,
  85. CCR_SRC_AMODE_DBLIDX = 3 << 12,
  86. CCR_DST_AMODE_CONSTANT = 0 << 14,
  87. CCR_DST_AMODE_POSTINC = 1 << 14,
  88. CCR_DST_AMODE_SGLIDX = 2 << 14,
  89. CCR_DST_AMODE_DBLIDX = 3 << 14,
  90. CCR_CONSTANT_FILL = BIT(16),
  91. CCR_TRANSPARENT_COPY = BIT(17),
  92. CCR_BS = BIT(18),
  93. CCR_SUPERVISOR = BIT(22),
  94. CCR_PREFETCH = BIT(23),
  95. CCR_TRIGGER_SRC = BIT(24),
  96. CCR_BUFFERING_DISABLE = BIT(25),
  97. CCR_WRITE_PRIORITY = BIT(26),
  98. CCR_SYNC_ELEMENT = 0,
  99. CCR_SYNC_FRAME = CCR_FS,
  100. CCR_SYNC_BLOCK = CCR_BS,
  101. CCR_SYNC_PACKET = CCR_BS | CCR_FS,
  102. CSDP_DATA_TYPE_8 = 0,
  103. CSDP_DATA_TYPE_16 = 1,
  104. CSDP_DATA_TYPE_32 = 2,
  105. CSDP_SRC_PORT_EMIFF = 0 << 2, /* OMAP1 only */
  106. CSDP_SRC_PORT_EMIFS = 1 << 2, /* OMAP1 only */
  107. CSDP_SRC_PORT_OCP_T1 = 2 << 2, /* OMAP1 only */
  108. CSDP_SRC_PORT_TIPB = 3 << 2, /* OMAP1 only */
  109. CSDP_SRC_PORT_OCP_T2 = 4 << 2, /* OMAP1 only */
  110. CSDP_SRC_PORT_MPUI = 5 << 2, /* OMAP1 only */
  111. CSDP_SRC_PACKED = BIT(6),
  112. CSDP_SRC_BURST_1 = 0 << 7,
  113. CSDP_SRC_BURST_16 = 1 << 7,
  114. CSDP_SRC_BURST_32 = 2 << 7,
  115. CSDP_SRC_BURST_64 = 3 << 7,
  116. CSDP_DST_PORT_EMIFF = 0 << 9, /* OMAP1 only */
  117. CSDP_DST_PORT_EMIFS = 1 << 9, /* OMAP1 only */
  118. CSDP_DST_PORT_OCP_T1 = 2 << 9, /* OMAP1 only */
  119. CSDP_DST_PORT_TIPB = 3 << 9, /* OMAP1 only */
  120. CSDP_DST_PORT_OCP_T2 = 4 << 9, /* OMAP1 only */
  121. CSDP_DST_PORT_MPUI = 5 << 9, /* OMAP1 only */
  122. CSDP_DST_PACKED = BIT(13),
  123. CSDP_DST_BURST_1 = 0 << 14,
  124. CSDP_DST_BURST_16 = 1 << 14,
  125. CSDP_DST_BURST_32 = 2 << 14,
  126. CSDP_DST_BURST_64 = 3 << 14,
  127. CICR_TOUT_IE = BIT(0), /* OMAP1 only */
  128. CICR_DROP_IE = BIT(1),
  129. CICR_HALF_IE = BIT(2),
  130. CICR_FRAME_IE = BIT(3),
  131. CICR_LAST_IE = BIT(4),
  132. CICR_BLOCK_IE = BIT(5),
  133. CICR_PKT_IE = BIT(7), /* OMAP2+ only */
  134. CICR_TRANS_ERR_IE = BIT(8), /* OMAP2+ only */
  135. CICR_SUPERVISOR_ERR_IE = BIT(10), /* OMAP2+ only */
  136. CICR_MISALIGNED_ERR_IE = BIT(11), /* OMAP2+ only */
  137. CICR_DRAIN_IE = BIT(12), /* OMAP2+ only */
  138. CICR_SUPER_BLOCK_IE = BIT(14), /* OMAP2+ only */
  139. CLNK_CTRL_ENABLE_LNK = BIT(15),
  140. };
  141. static const unsigned es_bytes[] = {
  142. [CSDP_DATA_TYPE_8] = 1,
  143. [CSDP_DATA_TYPE_16] = 2,
  144. [CSDP_DATA_TYPE_32] = 4,
  145. };
  146. static struct of_dma_filter_info omap_dma_info = {
  147. .filter_fn = omap_dma_filter_fn,
  148. };
  149. static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
  150. {
  151. return container_of(d, struct omap_dmadev, ddev);
  152. }
  153. static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
  154. {
  155. return container_of(c, struct omap_chan, vc.chan);
  156. }
  157. static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
  158. {
  159. return container_of(t, struct omap_desc, vd.tx);
  160. }
  161. static void omap_dma_desc_free(struct virt_dma_desc *vd)
  162. {
  163. kfree(container_of(vd, struct omap_desc, vd));
  164. }
  165. static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
  166. {
  167. switch (type) {
  168. case OMAP_DMA_REG_16BIT:
  169. writew_relaxed(val, addr);
  170. break;
  171. case OMAP_DMA_REG_2X16BIT:
  172. writew_relaxed(val, addr);
  173. writew_relaxed(val >> 16, addr + 2);
  174. break;
  175. case OMAP_DMA_REG_32BIT:
  176. writel_relaxed(val, addr);
  177. break;
  178. default:
  179. WARN_ON(1);
  180. }
  181. }
  182. static unsigned omap_dma_read(unsigned type, void __iomem *addr)
  183. {
  184. unsigned val;
  185. switch (type) {
  186. case OMAP_DMA_REG_16BIT:
  187. val = readw_relaxed(addr);
  188. break;
  189. case OMAP_DMA_REG_2X16BIT:
  190. val = readw_relaxed(addr);
  191. val |= readw_relaxed(addr + 2) << 16;
  192. break;
  193. case OMAP_DMA_REG_32BIT:
  194. val = readl_relaxed(addr);
  195. break;
  196. default:
  197. WARN_ON(1);
  198. val = 0;
  199. }
  200. return val;
  201. }
  202. static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
  203. {
  204. const struct omap_dma_reg *r = od->reg_map + reg;
  205. WARN_ON(r->stride);
  206. omap_dma_write(val, r->type, od->base + r->offset);
  207. }
  208. static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
  209. {
  210. const struct omap_dma_reg *r = od->reg_map + reg;
  211. WARN_ON(r->stride);
  212. return omap_dma_read(r->type, od->base + r->offset);
  213. }
  214. static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
  215. {
  216. const struct omap_dma_reg *r = c->reg_map + reg;
  217. omap_dma_write(val, r->type, c->channel_base + r->offset);
  218. }
  219. static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
  220. {
  221. const struct omap_dma_reg *r = c->reg_map + reg;
  222. return omap_dma_read(r->type, c->channel_base + r->offset);
  223. }
  224. static void omap_dma_clear_csr(struct omap_chan *c)
  225. {
  226. if (dma_omap1())
  227. omap_dma_chan_read(c, CSR);
  228. else
  229. omap_dma_chan_write(c, CSR, ~0);
  230. }
  231. static unsigned omap_dma_get_csr(struct omap_chan *c)
  232. {
  233. unsigned val = omap_dma_chan_read(c, CSR);
  234. if (!dma_omap1())
  235. omap_dma_chan_write(c, CSR, val);
  236. return val;
  237. }
  238. static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
  239. unsigned lch)
  240. {
  241. c->channel_base = od->base + od->plat->channel_stride * lch;
  242. od->lch_map[lch] = c;
  243. }
  244. static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
  245. {
  246. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  247. if (__dma_omap15xx(od->plat->dma_attr))
  248. omap_dma_chan_write(c, CPC, 0);
  249. else
  250. omap_dma_chan_write(c, CDAC, 0);
  251. omap_dma_clear_csr(c);
  252. /* Enable interrupts */
  253. omap_dma_chan_write(c, CICR, d->cicr);
  254. /* Enable channel */
  255. omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
  256. c->running = true;
  257. }
  258. static void omap_dma_stop(struct omap_chan *c)
  259. {
  260. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  261. uint32_t val;
  262. /* disable irq */
  263. omap_dma_chan_write(c, CICR, 0);
  264. omap_dma_clear_csr(c);
  265. val = omap_dma_chan_read(c, CCR);
  266. if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
  267. uint32_t sysconfig;
  268. unsigned i;
  269. sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
  270. val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
  271. val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
  272. omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
  273. val = omap_dma_chan_read(c, CCR);
  274. val &= ~CCR_ENABLE;
  275. omap_dma_chan_write(c, CCR, val);
  276. /* Wait for sDMA FIFO to drain */
  277. for (i = 0; ; i++) {
  278. val = omap_dma_chan_read(c, CCR);
  279. if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
  280. break;
  281. if (i > 100)
  282. break;
  283. udelay(5);
  284. }
  285. if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
  286. dev_err(c->vc.chan.device->dev,
  287. "DMA drain did not complete on lch %d\n",
  288. c->dma_ch);
  289. omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
  290. } else {
  291. val &= ~CCR_ENABLE;
  292. omap_dma_chan_write(c, CCR, val);
  293. }
  294. mb();
  295. if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
  296. val = omap_dma_chan_read(c, CLNK_CTRL);
  297. if (dma_omap1())
  298. val |= 1 << 14; /* set the STOP_LNK bit */
  299. else
  300. val &= ~CLNK_CTRL_ENABLE_LNK;
  301. omap_dma_chan_write(c, CLNK_CTRL, val);
  302. }
  303. c->running = false;
  304. }
  305. static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d,
  306. unsigned idx)
  307. {
  308. struct omap_sg *sg = d->sg + idx;
  309. unsigned cxsa, cxei, cxfi;
  310. if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
  311. cxsa = CDSA;
  312. cxei = CDEI;
  313. cxfi = CDFI;
  314. } else {
  315. cxsa = CSSA;
  316. cxei = CSEI;
  317. cxfi = CSFI;
  318. }
  319. omap_dma_chan_write(c, cxsa, sg->addr);
  320. omap_dma_chan_write(c, cxei, sg->ei);
  321. omap_dma_chan_write(c, cxfi, sg->fi);
  322. omap_dma_chan_write(c, CEN, sg->en);
  323. omap_dma_chan_write(c, CFN, sg->fn);
  324. omap_dma_start(c, d);
  325. }
  326. static void omap_dma_start_desc(struct omap_chan *c)
  327. {
  328. struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
  329. struct omap_desc *d;
  330. unsigned cxsa, cxei, cxfi;
  331. if (!vd) {
  332. c->desc = NULL;
  333. return;
  334. }
  335. list_del(&vd->node);
  336. c->desc = d = to_omap_dma_desc(&vd->tx);
  337. c->sgidx = 0;
  338. /*
  339. * This provides the necessary barrier to ensure data held in
  340. * DMA coherent memory is visible to the DMA engine prior to
  341. * the transfer starting.
  342. */
  343. mb();
  344. omap_dma_chan_write(c, CCR, d->ccr);
  345. if (dma_omap1())
  346. omap_dma_chan_write(c, CCR2, d->ccr >> 16);
  347. if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
  348. cxsa = CSSA;
  349. cxei = CSEI;
  350. cxfi = CSFI;
  351. } else {
  352. cxsa = CDSA;
  353. cxei = CDEI;
  354. cxfi = CDFI;
  355. }
  356. omap_dma_chan_write(c, cxsa, d->dev_addr);
  357. omap_dma_chan_write(c, cxei, d->ei);
  358. omap_dma_chan_write(c, cxfi, d->fi);
  359. omap_dma_chan_write(c, CSDP, d->csdp);
  360. omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
  361. omap_dma_start_sg(c, d, 0);
  362. }
  363. static void omap_dma_callback(int ch, u16 status, void *data)
  364. {
  365. struct omap_chan *c = data;
  366. struct omap_desc *d;
  367. unsigned long flags;
  368. spin_lock_irqsave(&c->vc.lock, flags);
  369. d = c->desc;
  370. if (d) {
  371. if (!c->cyclic) {
  372. if (++c->sgidx < d->sglen) {
  373. omap_dma_start_sg(c, d, c->sgidx);
  374. } else {
  375. omap_dma_start_desc(c);
  376. vchan_cookie_complete(&d->vd);
  377. }
  378. } else {
  379. vchan_cyclic_callback(&d->vd);
  380. }
  381. }
  382. spin_unlock_irqrestore(&c->vc.lock, flags);
  383. }
  384. static irqreturn_t omap_dma_irq(int irq, void *devid)
  385. {
  386. struct omap_dmadev *od = devid;
  387. unsigned status, channel;
  388. spin_lock(&od->irq_lock);
  389. status = omap_dma_glbl_read(od, IRQSTATUS_L1);
  390. status &= od->irq_enable_mask;
  391. if (status == 0) {
  392. spin_unlock(&od->irq_lock);
  393. return IRQ_NONE;
  394. }
  395. while ((channel = ffs(status)) != 0) {
  396. unsigned mask, csr;
  397. struct omap_chan *c;
  398. channel -= 1;
  399. mask = BIT(channel);
  400. status &= ~mask;
  401. c = od->lch_map[channel];
  402. if (c == NULL) {
  403. /* This should never happen */
  404. dev_err(od->ddev.dev, "invalid channel %u\n", channel);
  405. continue;
  406. }
  407. csr = omap_dma_get_csr(c);
  408. omap_dma_glbl_write(od, IRQSTATUS_L1, mask);
  409. omap_dma_callback(channel, csr, c);
  410. }
  411. spin_unlock(&od->irq_lock);
  412. return IRQ_HANDLED;
  413. }
  414. static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
  415. {
  416. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  417. struct omap_chan *c = to_omap_dma_chan(chan);
  418. int ret;
  419. if (od->legacy) {
  420. ret = omap_request_dma(c->dma_sig, "DMA engine",
  421. omap_dma_callback, c, &c->dma_ch);
  422. } else {
  423. ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
  424. &c->dma_ch);
  425. }
  426. dev_dbg(od->ddev.dev, "allocating channel %u for %u\n",
  427. c->dma_ch, c->dma_sig);
  428. if (ret >= 0) {
  429. omap_dma_assign(od, c, c->dma_ch);
  430. if (!od->legacy) {
  431. unsigned val;
  432. spin_lock_irq(&od->irq_lock);
  433. val = BIT(c->dma_ch);
  434. omap_dma_glbl_write(od, IRQSTATUS_L1, val);
  435. od->irq_enable_mask |= val;
  436. omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
  437. val = omap_dma_glbl_read(od, IRQENABLE_L0);
  438. val &= ~BIT(c->dma_ch);
  439. omap_dma_glbl_write(od, IRQENABLE_L0, val);
  440. spin_unlock_irq(&od->irq_lock);
  441. }
  442. }
  443. if (dma_omap1()) {
  444. if (__dma_omap16xx(od->plat->dma_attr)) {
  445. c->ccr = CCR_OMAP31_DISABLE;
  446. /* Duplicate what plat-omap/dma.c does */
  447. c->ccr |= c->dma_ch + 1;
  448. } else {
  449. c->ccr = c->dma_sig & 0x1f;
  450. }
  451. } else {
  452. c->ccr = c->dma_sig & 0x1f;
  453. c->ccr |= (c->dma_sig & ~0x1f) << 14;
  454. }
  455. if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
  456. c->ccr |= CCR_BUFFERING_DISABLE;
  457. return ret;
  458. }
  459. static void omap_dma_free_chan_resources(struct dma_chan *chan)
  460. {
  461. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  462. struct omap_chan *c = to_omap_dma_chan(chan);
  463. if (!od->legacy) {
  464. spin_lock_irq(&od->irq_lock);
  465. od->irq_enable_mask &= ~BIT(c->dma_ch);
  466. omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
  467. spin_unlock_irq(&od->irq_lock);
  468. }
  469. c->channel_base = NULL;
  470. od->lch_map[c->dma_ch] = NULL;
  471. vchan_free_chan_resources(&c->vc);
  472. omap_free_dma(c->dma_ch);
  473. dev_dbg(od->ddev.dev, "freeing channel for %u\n", c->dma_sig);
  474. c->dma_sig = 0;
  475. }
  476. static size_t omap_dma_sg_size(struct omap_sg *sg)
  477. {
  478. return sg->en * sg->fn;
  479. }
  480. static size_t omap_dma_desc_size(struct omap_desc *d)
  481. {
  482. unsigned i;
  483. size_t size;
  484. for (size = i = 0; i < d->sglen; i++)
  485. size += omap_dma_sg_size(&d->sg[i]);
  486. return size * es_bytes[d->es];
  487. }
  488. static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
  489. {
  490. unsigned i;
  491. size_t size, es_size = es_bytes[d->es];
  492. for (size = i = 0; i < d->sglen; i++) {
  493. size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
  494. if (size)
  495. size += this_size;
  496. else if (addr >= d->sg[i].addr &&
  497. addr < d->sg[i].addr + this_size)
  498. size += d->sg[i].addr + this_size - addr;
  499. }
  500. return size;
  501. }
  502. /*
  503. * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
  504. * read before the DMA controller finished disabling the channel.
  505. */
  506. static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
  507. {
  508. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  509. uint32_t val;
  510. val = omap_dma_chan_read(c, reg);
  511. if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
  512. val = omap_dma_chan_read(c, reg);
  513. return val;
  514. }
  515. static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
  516. {
  517. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  518. dma_addr_t addr, cdac;
  519. if (__dma_omap15xx(od->plat->dma_attr)) {
  520. addr = omap_dma_chan_read(c, CPC);
  521. } else {
  522. addr = omap_dma_chan_read_3_3(c, CSAC);
  523. cdac = omap_dma_chan_read_3_3(c, CDAC);
  524. /*
  525. * CDAC == 0 indicates that the DMA transfer on the channel has
  526. * not been started (no data has been transferred so far).
  527. * Return the programmed source start address in this case.
  528. */
  529. if (cdac == 0)
  530. addr = omap_dma_chan_read(c, CSSA);
  531. }
  532. if (dma_omap1())
  533. addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
  534. return addr;
  535. }
  536. static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
  537. {
  538. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  539. dma_addr_t addr;
  540. if (__dma_omap15xx(od->plat->dma_attr)) {
  541. addr = omap_dma_chan_read(c, CPC);
  542. } else {
  543. addr = omap_dma_chan_read_3_3(c, CDAC);
  544. /*
  545. * CDAC == 0 indicates that the DMA transfer on the channel
  546. * has not been started (no data has been transferred so
  547. * far). Return the programmed destination start address in
  548. * this case.
  549. */
  550. if (addr == 0)
  551. addr = omap_dma_chan_read(c, CDSA);
  552. }
  553. if (dma_omap1())
  554. addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
  555. return addr;
  556. }
  557. static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
  558. dma_cookie_t cookie, struct dma_tx_state *txstate)
  559. {
  560. struct omap_chan *c = to_omap_dma_chan(chan);
  561. struct virt_dma_desc *vd;
  562. enum dma_status ret;
  563. unsigned long flags;
  564. ret = dma_cookie_status(chan, cookie, txstate);
  565. if (!c->paused && c->running) {
  566. uint32_t ccr = omap_dma_chan_read(c, CCR);
  567. /*
  568. * The channel is no longer active, set the return value
  569. * accordingly
  570. */
  571. if (!(ccr & CCR_ENABLE))
  572. ret = DMA_COMPLETE;
  573. }
  574. if (ret == DMA_COMPLETE || !txstate)
  575. return ret;
  576. spin_lock_irqsave(&c->vc.lock, flags);
  577. vd = vchan_find_desc(&c->vc, cookie);
  578. if (vd) {
  579. txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
  580. } else if (c->desc && c->desc->vd.tx.cookie == cookie) {
  581. struct omap_desc *d = c->desc;
  582. dma_addr_t pos;
  583. if (d->dir == DMA_MEM_TO_DEV)
  584. pos = omap_dma_get_src_pos(c);
  585. else if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM)
  586. pos = omap_dma_get_dst_pos(c);
  587. else
  588. pos = 0;
  589. txstate->residue = omap_dma_desc_size_pos(d, pos);
  590. } else {
  591. txstate->residue = 0;
  592. }
  593. spin_unlock_irqrestore(&c->vc.lock, flags);
  594. return ret;
  595. }
  596. static void omap_dma_issue_pending(struct dma_chan *chan)
  597. {
  598. struct omap_chan *c = to_omap_dma_chan(chan);
  599. unsigned long flags;
  600. spin_lock_irqsave(&c->vc.lock, flags);
  601. if (vchan_issue_pending(&c->vc) && !c->desc)
  602. omap_dma_start_desc(c);
  603. spin_unlock_irqrestore(&c->vc.lock, flags);
  604. }
  605. static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
  606. struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
  607. enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
  608. {
  609. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  610. struct omap_chan *c = to_omap_dma_chan(chan);
  611. enum dma_slave_buswidth dev_width;
  612. struct scatterlist *sgent;
  613. struct omap_desc *d;
  614. dma_addr_t dev_addr;
  615. unsigned i, es, en, frame_bytes;
  616. u32 burst;
  617. if (dir == DMA_DEV_TO_MEM) {
  618. dev_addr = c->cfg.src_addr;
  619. dev_width = c->cfg.src_addr_width;
  620. burst = c->cfg.src_maxburst;
  621. } else if (dir == DMA_MEM_TO_DEV) {
  622. dev_addr = c->cfg.dst_addr;
  623. dev_width = c->cfg.dst_addr_width;
  624. burst = c->cfg.dst_maxburst;
  625. } else {
  626. dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
  627. return NULL;
  628. }
  629. /* Bus width translates to the element size (ES) */
  630. switch (dev_width) {
  631. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  632. es = CSDP_DATA_TYPE_8;
  633. break;
  634. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  635. es = CSDP_DATA_TYPE_16;
  636. break;
  637. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  638. es = CSDP_DATA_TYPE_32;
  639. break;
  640. default: /* not reached */
  641. return NULL;
  642. }
  643. /* Now allocate and setup the descriptor. */
  644. d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
  645. if (!d)
  646. return NULL;
  647. d->dir = dir;
  648. d->dev_addr = dev_addr;
  649. d->es = es;
  650. d->ccr = c->ccr | CCR_SYNC_FRAME;
  651. if (dir == DMA_DEV_TO_MEM)
  652. d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
  653. else
  654. d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
  655. d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
  656. d->csdp = es;
  657. if (dma_omap1()) {
  658. d->cicr |= CICR_TOUT_IE;
  659. if (dir == DMA_DEV_TO_MEM)
  660. d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
  661. else
  662. d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
  663. } else {
  664. if (dir == DMA_DEV_TO_MEM)
  665. d->ccr |= CCR_TRIGGER_SRC;
  666. d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
  667. }
  668. if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
  669. d->clnk_ctrl = c->dma_ch;
  670. /*
  671. * Build our scatterlist entries: each contains the address,
  672. * the number of elements (EN) in each frame, and the number of
  673. * frames (FN). Number of bytes for this entry = ES * EN * FN.
  674. *
  675. * Burst size translates to number of elements with frame sync.
  676. * Note: DMA engine defines burst to be the number of dev-width
  677. * transfers.
  678. */
  679. en = burst;
  680. frame_bytes = es_bytes[es] * en;
  681. for_each_sg(sgl, sgent, sglen, i) {
  682. d->sg[i].addr = sg_dma_address(sgent);
  683. d->sg[i].en = en;
  684. d->sg[i].fn = sg_dma_len(sgent) / frame_bytes;
  685. }
  686. d->sglen = sglen;
  687. return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
  688. }
  689. static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
  690. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  691. size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
  692. {
  693. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  694. struct omap_chan *c = to_omap_dma_chan(chan);
  695. enum dma_slave_buswidth dev_width;
  696. struct omap_desc *d;
  697. dma_addr_t dev_addr;
  698. unsigned es;
  699. u32 burst;
  700. if (dir == DMA_DEV_TO_MEM) {
  701. dev_addr = c->cfg.src_addr;
  702. dev_width = c->cfg.src_addr_width;
  703. burst = c->cfg.src_maxburst;
  704. } else if (dir == DMA_MEM_TO_DEV) {
  705. dev_addr = c->cfg.dst_addr;
  706. dev_width = c->cfg.dst_addr_width;
  707. burst = c->cfg.dst_maxburst;
  708. } else {
  709. dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
  710. return NULL;
  711. }
  712. /* Bus width translates to the element size (ES) */
  713. switch (dev_width) {
  714. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  715. es = CSDP_DATA_TYPE_8;
  716. break;
  717. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  718. es = CSDP_DATA_TYPE_16;
  719. break;
  720. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  721. es = CSDP_DATA_TYPE_32;
  722. break;
  723. default: /* not reached */
  724. return NULL;
  725. }
  726. /* Now allocate and setup the descriptor. */
  727. d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
  728. if (!d)
  729. return NULL;
  730. d->dir = dir;
  731. d->dev_addr = dev_addr;
  732. d->fi = burst;
  733. d->es = es;
  734. d->sg[0].addr = buf_addr;
  735. d->sg[0].en = period_len / es_bytes[es];
  736. d->sg[0].fn = buf_len / period_len;
  737. d->sglen = 1;
  738. d->ccr = c->ccr;
  739. if (dir == DMA_DEV_TO_MEM)
  740. d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
  741. else
  742. d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
  743. d->cicr = CICR_DROP_IE;
  744. if (flags & DMA_PREP_INTERRUPT)
  745. d->cicr |= CICR_FRAME_IE;
  746. d->csdp = es;
  747. if (dma_omap1()) {
  748. d->cicr |= CICR_TOUT_IE;
  749. if (dir == DMA_DEV_TO_MEM)
  750. d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
  751. else
  752. d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
  753. } else {
  754. if (burst)
  755. d->ccr |= CCR_SYNC_PACKET;
  756. else
  757. d->ccr |= CCR_SYNC_ELEMENT;
  758. if (dir == DMA_DEV_TO_MEM) {
  759. d->ccr |= CCR_TRIGGER_SRC;
  760. d->csdp |= CSDP_DST_PACKED;
  761. } else {
  762. d->csdp |= CSDP_SRC_PACKED;
  763. }
  764. d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
  765. d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
  766. }
  767. if (__dma_omap15xx(od->plat->dma_attr))
  768. d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
  769. else
  770. d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;
  771. c->cyclic = true;
  772. return vchan_tx_prep(&c->vc, &d->vd, flags);
  773. }
  774. static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
  775. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  776. size_t len, unsigned long tx_flags)
  777. {
  778. struct omap_chan *c = to_omap_dma_chan(chan);
  779. struct omap_desc *d;
  780. uint8_t data_type;
  781. d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
  782. if (!d)
  783. return NULL;
  784. data_type = __ffs((src | dest | len));
  785. if (data_type > CSDP_DATA_TYPE_32)
  786. data_type = CSDP_DATA_TYPE_32;
  787. d->dir = DMA_MEM_TO_MEM;
  788. d->dev_addr = src;
  789. d->fi = 0;
  790. d->es = data_type;
  791. d->sg[0].en = len / BIT(data_type);
  792. d->sg[0].fn = 1;
  793. d->sg[0].addr = dest;
  794. d->sglen = 1;
  795. d->ccr = c->ccr;
  796. d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;
  797. d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
  798. d->csdp = data_type;
  799. if (dma_omap1()) {
  800. d->cicr |= CICR_TOUT_IE;
  801. d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
  802. } else {
  803. d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
  804. d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
  805. d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
  806. }
  807. return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
  808. }
  809. static struct dma_async_tx_descriptor *omap_dma_prep_dma_interleaved(
  810. struct dma_chan *chan, struct dma_interleaved_template *xt,
  811. unsigned long flags)
  812. {
  813. struct omap_chan *c = to_omap_dma_chan(chan);
  814. struct omap_desc *d;
  815. struct omap_sg *sg;
  816. uint8_t data_type;
  817. size_t src_icg, dst_icg;
  818. /* Slave mode is not supported */
  819. if (is_slave_direction(xt->dir))
  820. return NULL;
  821. if (xt->frame_size != 1 || xt->numf == 0)
  822. return NULL;
  823. d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
  824. if (!d)
  825. return NULL;
  826. data_type = __ffs((xt->src_start | xt->dst_start | xt->sgl[0].size));
  827. if (data_type > CSDP_DATA_TYPE_32)
  828. data_type = CSDP_DATA_TYPE_32;
  829. sg = &d->sg[0];
  830. d->dir = DMA_MEM_TO_MEM;
  831. d->dev_addr = xt->src_start;
  832. d->es = data_type;
  833. sg->en = xt->sgl[0].size / BIT(data_type);
  834. sg->fn = xt->numf;
  835. sg->addr = xt->dst_start;
  836. d->sglen = 1;
  837. d->ccr = c->ccr;
  838. src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
  839. dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
  840. if (src_icg) {
  841. d->ccr |= CCR_SRC_AMODE_DBLIDX;
  842. d->ei = 1;
  843. d->fi = src_icg;
  844. } else if (xt->src_inc) {
  845. d->ccr |= CCR_SRC_AMODE_POSTINC;
  846. d->fi = 0;
  847. } else {
  848. dev_err(chan->device->dev,
  849. "%s: SRC constant addressing is not supported\n",
  850. __func__);
  851. kfree(d);
  852. return NULL;
  853. }
  854. if (dst_icg) {
  855. d->ccr |= CCR_DST_AMODE_DBLIDX;
  856. sg->ei = 1;
  857. sg->fi = dst_icg;
  858. } else if (xt->dst_inc) {
  859. d->ccr |= CCR_DST_AMODE_POSTINC;
  860. sg->fi = 0;
  861. } else {
  862. dev_err(chan->device->dev,
  863. "%s: DST constant addressing is not supported\n",
  864. __func__);
  865. kfree(d);
  866. return NULL;
  867. }
  868. d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
  869. d->csdp = data_type;
  870. if (dma_omap1()) {
  871. d->cicr |= CICR_TOUT_IE;
  872. d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
  873. } else {
  874. d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
  875. d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
  876. d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
  877. }
  878. return vchan_tx_prep(&c->vc, &d->vd, flags);
  879. }
  880. static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
  881. {
  882. struct omap_chan *c = to_omap_dma_chan(chan);
  883. if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
  884. cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
  885. return -EINVAL;
  886. memcpy(&c->cfg, cfg, sizeof(c->cfg));
  887. return 0;
  888. }
  889. static int omap_dma_terminate_all(struct dma_chan *chan)
  890. {
  891. struct omap_chan *c = to_omap_dma_chan(chan);
  892. unsigned long flags;
  893. LIST_HEAD(head);
  894. spin_lock_irqsave(&c->vc.lock, flags);
  895. /*
  896. * Stop DMA activity: we assume the callback will not be called
  897. * after omap_dma_stop() returns (even if it does, it will see
  898. * c->desc is NULL and exit.)
  899. */
  900. if (c->desc) {
  901. omap_dma_desc_free(&c->desc->vd);
  902. c->desc = NULL;
  903. /* Avoid stopping the dma twice */
  904. if (!c->paused)
  905. omap_dma_stop(c);
  906. }
  907. if (c->cyclic) {
  908. c->cyclic = false;
  909. c->paused = false;
  910. }
  911. vchan_get_all_descriptors(&c->vc, &head);
  912. spin_unlock_irqrestore(&c->vc.lock, flags);
  913. vchan_dma_desc_free_list(&c->vc, &head);
  914. return 0;
  915. }
  916. static void omap_dma_synchronize(struct dma_chan *chan)
  917. {
  918. struct omap_chan *c = to_omap_dma_chan(chan);
  919. vchan_synchronize(&c->vc);
  920. }
  921. static int omap_dma_pause(struct dma_chan *chan)
  922. {
  923. struct omap_chan *c = to_omap_dma_chan(chan);
  924. /* Pause/Resume only allowed with cyclic mode */
  925. if (!c->cyclic)
  926. return -EINVAL;
  927. if (!c->paused) {
  928. omap_dma_stop(c);
  929. c->paused = true;
  930. }
  931. return 0;
  932. }
  933. static int omap_dma_resume(struct dma_chan *chan)
  934. {
  935. struct omap_chan *c = to_omap_dma_chan(chan);
  936. /* Pause/Resume only allowed with cyclic mode */
  937. if (!c->cyclic)
  938. return -EINVAL;
  939. if (c->paused) {
  940. mb();
  941. /* Restore channel link register */
  942. omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);
  943. omap_dma_start(c, c->desc);
  944. c->paused = false;
  945. }
  946. return 0;
  947. }
  948. static int omap_dma_chan_init(struct omap_dmadev *od)
  949. {
  950. struct omap_chan *c;
  951. c = kzalloc(sizeof(*c), GFP_KERNEL);
  952. if (!c)
  953. return -ENOMEM;
  954. c->reg_map = od->reg_map;
  955. c->vc.desc_free = omap_dma_desc_free;
  956. vchan_init(&c->vc, &od->ddev);
  957. return 0;
  958. }
  959. static void omap_dma_free(struct omap_dmadev *od)
  960. {
  961. while (!list_empty(&od->ddev.channels)) {
  962. struct omap_chan *c = list_first_entry(&od->ddev.channels,
  963. struct omap_chan, vc.chan.device_node);
  964. list_del(&c->vc.chan.device_node);
  965. tasklet_kill(&c->vc.task);
  966. kfree(c);
  967. }
  968. }
  969. #define OMAP_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  970. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  971. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
  972. static int omap_dma_probe(struct platform_device *pdev)
  973. {
  974. struct omap_dmadev *od;
  975. struct resource *res;
  976. int rc, i, irq;
  977. od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
  978. if (!od)
  979. return -ENOMEM;
  980. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  981. od->base = devm_ioremap_resource(&pdev->dev, res);
  982. if (IS_ERR(od->base))
  983. return PTR_ERR(od->base);
  984. od->plat = omap_get_plat_info();
  985. if (!od->plat)
  986. return -EPROBE_DEFER;
  987. od->reg_map = od->plat->reg_map;
  988. dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
  989. dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
  990. dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
  991. dma_cap_set(DMA_INTERLEAVE, od->ddev.cap_mask);
  992. od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
  993. od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
  994. od->ddev.device_tx_status = omap_dma_tx_status;
  995. od->ddev.device_issue_pending = omap_dma_issue_pending;
  996. od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
  997. od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
  998. od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
  999. od->ddev.device_prep_interleaved_dma = omap_dma_prep_dma_interleaved;
  1000. od->ddev.device_config = omap_dma_slave_config;
  1001. od->ddev.device_pause = omap_dma_pause;
  1002. od->ddev.device_resume = omap_dma_resume;
  1003. od->ddev.device_terminate_all = omap_dma_terminate_all;
  1004. od->ddev.device_synchronize = omap_dma_synchronize;
  1005. od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
  1006. od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
  1007. od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  1008. od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  1009. od->ddev.dev = &pdev->dev;
  1010. INIT_LIST_HEAD(&od->ddev.channels);
  1011. spin_lock_init(&od->lock);
  1012. spin_lock_init(&od->irq_lock);
  1013. od->dma_requests = OMAP_SDMA_REQUESTS;
  1014. if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
  1015. "dma-requests",
  1016. &od->dma_requests)) {
  1017. dev_info(&pdev->dev,
  1018. "Missing dma-requests property, using %u.\n",
  1019. OMAP_SDMA_REQUESTS);
  1020. }
  1021. for (i = 0; i < OMAP_SDMA_CHANNELS; i++) {
  1022. rc = omap_dma_chan_init(od);
  1023. if (rc) {
  1024. omap_dma_free(od);
  1025. return rc;
  1026. }
  1027. }
  1028. irq = platform_get_irq(pdev, 1);
  1029. if (irq <= 0) {
  1030. dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
  1031. od->legacy = true;
  1032. } else {
  1033. /* Disable all interrupts */
  1034. od->irq_enable_mask = 0;
  1035. omap_dma_glbl_write(od, IRQENABLE_L1, 0);
  1036. rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
  1037. IRQF_SHARED, "omap-dma-engine", od);
  1038. if (rc)
  1039. return rc;
  1040. }
  1041. od->ddev.filter.map = od->plat->slave_map;
  1042. od->ddev.filter.mapcnt = od->plat->slavecnt;
  1043. od->ddev.filter.fn = omap_dma_filter_fn;
  1044. rc = dma_async_device_register(&od->ddev);
  1045. if (rc) {
  1046. pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
  1047. rc);
  1048. omap_dma_free(od);
  1049. return rc;
  1050. }
  1051. platform_set_drvdata(pdev, od);
  1052. if (pdev->dev.of_node) {
  1053. omap_dma_info.dma_cap = od->ddev.cap_mask;
  1054. /* Device-tree DMA controller registration */
  1055. rc = of_dma_controller_register(pdev->dev.of_node,
  1056. of_dma_simple_xlate, &omap_dma_info);
  1057. if (rc) {
  1058. pr_warn("OMAP-DMA: failed to register DMA controller\n");
  1059. dma_async_device_unregister(&od->ddev);
  1060. omap_dma_free(od);
  1061. }
  1062. }
  1063. dev_info(&pdev->dev, "OMAP DMA engine driver\n");
  1064. return rc;
  1065. }
  1066. static int omap_dma_remove(struct platform_device *pdev)
  1067. {
  1068. struct omap_dmadev *od = platform_get_drvdata(pdev);
  1069. int irq;
  1070. if (pdev->dev.of_node)
  1071. of_dma_controller_free(pdev->dev.of_node);
  1072. irq = platform_get_irq(pdev, 1);
  1073. devm_free_irq(&pdev->dev, irq, od);
  1074. dma_async_device_unregister(&od->ddev);
  1075. if (!od->legacy) {
  1076. /* Disable all interrupts */
  1077. omap_dma_glbl_write(od, IRQENABLE_L0, 0);
  1078. }
  1079. omap_dma_free(od);
  1080. return 0;
  1081. }
  1082. static const struct of_device_id omap_dma_match[] = {
  1083. { .compatible = "ti,omap2420-sdma", },
  1084. { .compatible = "ti,omap2430-sdma", },
  1085. { .compatible = "ti,omap3430-sdma", },
  1086. { .compatible = "ti,omap3630-sdma", },
  1087. { .compatible = "ti,omap4430-sdma", },
  1088. {},
  1089. };
  1090. MODULE_DEVICE_TABLE(of, omap_dma_match);
  1091. static struct platform_driver omap_dma_driver = {
  1092. .probe = omap_dma_probe,
  1093. .remove = omap_dma_remove,
  1094. .driver = {
  1095. .name = "omap-dma-engine",
  1096. .of_match_table = of_match_ptr(omap_dma_match),
  1097. },
  1098. };
  1099. bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
  1100. {
  1101. if (chan->device->dev->driver == &omap_dma_driver.driver) {
  1102. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  1103. struct omap_chan *c = to_omap_dma_chan(chan);
  1104. unsigned req = *(unsigned *)param;
  1105. if (req <= od->dma_requests) {
  1106. c->dma_sig = req;
  1107. return true;
  1108. }
  1109. }
  1110. return false;
  1111. }
  1112. EXPORT_SYMBOL_GPL(omap_dma_filter_fn);
  1113. static int omap_dma_init(void)
  1114. {
  1115. return platform_driver_register(&omap_dma_driver);
  1116. }
  1117. subsys_initcall(omap_dma_init);
  1118. static void __exit omap_dma_exit(void)
  1119. {
  1120. platform_driver_unregister(&omap_dma_driver);
  1121. }
  1122. module_exit(omap_dma_exit);
  1123. MODULE_AUTHOR("Russell King");
  1124. MODULE_LICENSE("GPL");