k3dma.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852
  1. /*
  2. * Copyright (c) 2013 Linaro Ltd.
  3. * Copyright (c) 2013 Hisilicon Limited.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/sched.h>
  10. #include <linux/device.h>
  11. #include <linux/dmaengine.h>
  12. #include <linux/init.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/slab.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/of_device.h>
  20. #include <linux/of.h>
  21. #include <linux/clk.h>
  22. #include <linux/of_dma.h>
  23. #include "virt-dma.h"
  24. #define DRIVER_NAME "k3-dma"
  25. #define DMA_MAX_SIZE 0x1ffc
  26. #define INT_STAT 0x00
  27. #define INT_TC1 0x04
  28. #define INT_ERR1 0x0c
  29. #define INT_ERR2 0x10
  30. #define INT_TC1_MASK 0x18
  31. #define INT_ERR1_MASK 0x20
  32. #define INT_ERR2_MASK 0x24
  33. #define INT_TC1_RAW 0x600
  34. #define INT_ERR1_RAW 0x608
  35. #define INT_ERR2_RAW 0x610
  36. #define CH_PRI 0x688
  37. #define CH_STAT 0x690
  38. #define CX_CUR_CNT 0x704
  39. #define CX_LLI 0x800
  40. #define CX_CNT 0x810
  41. #define CX_SRC 0x814
  42. #define CX_DST 0x818
  43. #define CX_CFG 0x81c
  44. #define AXI_CFG 0x820
  45. #define AXI_CFG_DEFAULT 0x201201
  46. #define CX_LLI_CHAIN_EN 0x2
  47. #define CX_CFG_EN 0x1
  48. #define CX_CFG_MEM2PER (0x1 << 2)
  49. #define CX_CFG_PER2MEM (0x2 << 2)
  50. #define CX_CFG_SRCINCR (0x1 << 31)
  51. #define CX_CFG_DSTINCR (0x1 << 30)
  52. struct k3_desc_hw {
  53. u32 lli;
  54. u32 reserved[3];
  55. u32 count;
  56. u32 saddr;
  57. u32 daddr;
  58. u32 config;
  59. } __aligned(32);
  60. struct k3_dma_desc_sw {
  61. struct virt_dma_desc vd;
  62. dma_addr_t desc_hw_lli;
  63. size_t desc_num;
  64. size_t size;
  65. struct k3_desc_hw desc_hw[0];
  66. };
  67. struct k3_dma_phy;
  68. struct k3_dma_chan {
  69. u32 ccfg;
  70. struct virt_dma_chan vc;
  71. struct k3_dma_phy *phy;
  72. struct list_head node;
  73. enum dma_transfer_direction dir;
  74. dma_addr_t dev_addr;
  75. enum dma_status status;
  76. };
  77. struct k3_dma_phy {
  78. u32 idx;
  79. void __iomem *base;
  80. struct k3_dma_chan *vchan;
  81. struct k3_dma_desc_sw *ds_run;
  82. struct k3_dma_desc_sw *ds_done;
  83. };
  84. struct k3_dma_dev {
  85. struct dma_device slave;
  86. void __iomem *base;
  87. struct tasklet_struct task;
  88. spinlock_t lock;
  89. struct list_head chan_pending;
  90. struct k3_dma_phy *phy;
  91. struct k3_dma_chan *chans;
  92. struct clk *clk;
  93. u32 dma_channels;
  94. u32 dma_requests;
  95. unsigned int irq;
  96. };
  97. #define to_k3_dma(dmadev) container_of(dmadev, struct k3_dma_dev, slave)
  98. static struct k3_dma_chan *to_k3_chan(struct dma_chan *chan)
  99. {
  100. return container_of(chan, struct k3_dma_chan, vc.chan);
  101. }
  102. static void k3_dma_pause_dma(struct k3_dma_phy *phy, bool on)
  103. {
  104. u32 val = 0;
  105. if (on) {
  106. val = readl_relaxed(phy->base + CX_CFG);
  107. val |= CX_CFG_EN;
  108. writel_relaxed(val, phy->base + CX_CFG);
  109. } else {
  110. val = readl_relaxed(phy->base + CX_CFG);
  111. val &= ~CX_CFG_EN;
  112. writel_relaxed(val, phy->base + CX_CFG);
  113. }
  114. }
  115. static void k3_dma_terminate_chan(struct k3_dma_phy *phy, struct k3_dma_dev *d)
  116. {
  117. u32 val = 0;
  118. k3_dma_pause_dma(phy, false);
  119. val = 0x1 << phy->idx;
  120. writel_relaxed(val, d->base + INT_TC1_RAW);
  121. writel_relaxed(val, d->base + INT_ERR1_RAW);
  122. writel_relaxed(val, d->base + INT_ERR2_RAW);
  123. }
  124. static void k3_dma_set_desc(struct k3_dma_phy *phy, struct k3_desc_hw *hw)
  125. {
  126. writel_relaxed(hw->lli, phy->base + CX_LLI);
  127. writel_relaxed(hw->count, phy->base + CX_CNT);
  128. writel_relaxed(hw->saddr, phy->base + CX_SRC);
  129. writel_relaxed(hw->daddr, phy->base + CX_DST);
  130. writel_relaxed(AXI_CFG_DEFAULT, phy->base + AXI_CFG);
  131. writel_relaxed(hw->config, phy->base + CX_CFG);
  132. }
  133. static u32 k3_dma_get_curr_cnt(struct k3_dma_dev *d, struct k3_dma_phy *phy)
  134. {
  135. u32 cnt = 0;
  136. cnt = readl_relaxed(d->base + CX_CUR_CNT + phy->idx * 0x10);
  137. cnt &= 0xffff;
  138. return cnt;
  139. }
  140. static u32 k3_dma_get_curr_lli(struct k3_dma_phy *phy)
  141. {
  142. return readl_relaxed(phy->base + CX_LLI);
  143. }
  144. static u32 k3_dma_get_chan_stat(struct k3_dma_dev *d)
  145. {
  146. return readl_relaxed(d->base + CH_STAT);
  147. }
  148. static void k3_dma_enable_dma(struct k3_dma_dev *d, bool on)
  149. {
  150. if (on) {
  151. /* set same priority */
  152. writel_relaxed(0x0, d->base + CH_PRI);
  153. /* unmask irq */
  154. writel_relaxed(0xffff, d->base + INT_TC1_MASK);
  155. writel_relaxed(0xffff, d->base + INT_ERR1_MASK);
  156. writel_relaxed(0xffff, d->base + INT_ERR2_MASK);
  157. } else {
  158. /* mask irq */
  159. writel_relaxed(0x0, d->base + INT_TC1_MASK);
  160. writel_relaxed(0x0, d->base + INT_ERR1_MASK);
  161. writel_relaxed(0x0, d->base + INT_ERR2_MASK);
  162. }
  163. }
  164. static irqreturn_t k3_dma_int_handler(int irq, void *dev_id)
  165. {
  166. struct k3_dma_dev *d = (struct k3_dma_dev *)dev_id;
  167. struct k3_dma_phy *p;
  168. struct k3_dma_chan *c;
  169. u32 stat = readl_relaxed(d->base + INT_STAT);
  170. u32 tc1 = readl_relaxed(d->base + INT_TC1);
  171. u32 err1 = readl_relaxed(d->base + INT_ERR1);
  172. u32 err2 = readl_relaxed(d->base + INT_ERR2);
  173. u32 i, irq_chan = 0;
  174. while (stat) {
  175. i = __ffs(stat);
  176. stat &= (stat - 1);
  177. if (likely(tc1 & BIT(i))) {
  178. p = &d->phy[i];
  179. c = p->vchan;
  180. if (c) {
  181. unsigned long flags;
  182. spin_lock_irqsave(&c->vc.lock, flags);
  183. vchan_cookie_complete(&p->ds_run->vd);
  184. p->ds_done = p->ds_run;
  185. spin_unlock_irqrestore(&c->vc.lock, flags);
  186. }
  187. irq_chan |= BIT(i);
  188. }
  189. if (unlikely((err1 & BIT(i)) || (err2 & BIT(i))))
  190. dev_warn(d->slave.dev, "DMA ERR\n");
  191. }
  192. writel_relaxed(irq_chan, d->base + INT_TC1_RAW);
  193. writel_relaxed(err1, d->base + INT_ERR1_RAW);
  194. writel_relaxed(err2, d->base + INT_ERR2_RAW);
  195. if (irq_chan) {
  196. tasklet_schedule(&d->task);
  197. return IRQ_HANDLED;
  198. } else
  199. return IRQ_NONE;
  200. }
  201. static int k3_dma_start_txd(struct k3_dma_chan *c)
  202. {
  203. struct k3_dma_dev *d = to_k3_dma(c->vc.chan.device);
  204. struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
  205. if (!c->phy)
  206. return -EAGAIN;
  207. if (BIT(c->phy->idx) & k3_dma_get_chan_stat(d))
  208. return -EAGAIN;
  209. if (vd) {
  210. struct k3_dma_desc_sw *ds =
  211. container_of(vd, struct k3_dma_desc_sw, vd);
  212. /*
  213. * fetch and remove request from vc->desc_issued
  214. * so vc->desc_issued only contains desc pending
  215. */
  216. list_del(&ds->vd.node);
  217. c->phy->ds_run = ds;
  218. c->phy->ds_done = NULL;
  219. /* start dma */
  220. k3_dma_set_desc(c->phy, &ds->desc_hw[0]);
  221. return 0;
  222. }
  223. c->phy->ds_done = NULL;
  224. c->phy->ds_run = NULL;
  225. return -EAGAIN;
  226. }
  227. static void k3_dma_tasklet(unsigned long arg)
  228. {
  229. struct k3_dma_dev *d = (struct k3_dma_dev *)arg;
  230. struct k3_dma_phy *p;
  231. struct k3_dma_chan *c, *cn;
  232. unsigned pch, pch_alloc = 0;
  233. /* check new dma request of running channel in vc->desc_issued */
  234. list_for_each_entry_safe(c, cn, &d->slave.channels, vc.chan.device_node) {
  235. spin_lock_irq(&c->vc.lock);
  236. p = c->phy;
  237. if (p && p->ds_done) {
  238. if (k3_dma_start_txd(c)) {
  239. /* No current txd associated with this channel */
  240. dev_dbg(d->slave.dev, "pchan %u: free\n", p->idx);
  241. /* Mark this channel free */
  242. c->phy = NULL;
  243. p->vchan = NULL;
  244. }
  245. }
  246. spin_unlock_irq(&c->vc.lock);
  247. }
  248. /* check new channel request in d->chan_pending */
  249. spin_lock_irq(&d->lock);
  250. for (pch = 0; pch < d->dma_channels; pch++) {
  251. p = &d->phy[pch];
  252. if (p->vchan == NULL && !list_empty(&d->chan_pending)) {
  253. c = list_first_entry(&d->chan_pending,
  254. struct k3_dma_chan, node);
  255. /* remove from d->chan_pending */
  256. list_del_init(&c->node);
  257. pch_alloc |= 1 << pch;
  258. /* Mark this channel allocated */
  259. p->vchan = c;
  260. c->phy = p;
  261. dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, &c->vc);
  262. }
  263. }
  264. spin_unlock_irq(&d->lock);
  265. for (pch = 0; pch < d->dma_channels; pch++) {
  266. if (pch_alloc & (1 << pch)) {
  267. p = &d->phy[pch];
  268. c = p->vchan;
  269. if (c) {
  270. spin_lock_irq(&c->vc.lock);
  271. k3_dma_start_txd(c);
  272. spin_unlock_irq(&c->vc.lock);
  273. }
  274. }
  275. }
  276. }
  277. static void k3_dma_free_chan_resources(struct dma_chan *chan)
  278. {
  279. struct k3_dma_chan *c = to_k3_chan(chan);
  280. struct k3_dma_dev *d = to_k3_dma(chan->device);
  281. unsigned long flags;
  282. spin_lock_irqsave(&d->lock, flags);
  283. list_del_init(&c->node);
  284. spin_unlock_irqrestore(&d->lock, flags);
  285. vchan_free_chan_resources(&c->vc);
  286. c->ccfg = 0;
  287. }
  288. static enum dma_status k3_dma_tx_status(struct dma_chan *chan,
  289. dma_cookie_t cookie, struct dma_tx_state *state)
  290. {
  291. struct k3_dma_chan *c = to_k3_chan(chan);
  292. struct k3_dma_dev *d = to_k3_dma(chan->device);
  293. struct k3_dma_phy *p;
  294. struct virt_dma_desc *vd;
  295. unsigned long flags;
  296. enum dma_status ret;
  297. size_t bytes = 0;
  298. ret = dma_cookie_status(&c->vc.chan, cookie, state);
  299. if (ret == DMA_COMPLETE)
  300. return ret;
  301. spin_lock_irqsave(&c->vc.lock, flags);
  302. p = c->phy;
  303. ret = c->status;
  304. /*
  305. * If the cookie is on our issue queue, then the residue is
  306. * its total size.
  307. */
  308. vd = vchan_find_desc(&c->vc, cookie);
  309. if (vd) {
  310. bytes = container_of(vd, struct k3_dma_desc_sw, vd)->size;
  311. } else if ((!p) || (!p->ds_run)) {
  312. bytes = 0;
  313. } else {
  314. struct k3_dma_desc_sw *ds = p->ds_run;
  315. u32 clli = 0, index = 0;
  316. bytes = k3_dma_get_curr_cnt(d, p);
  317. clli = k3_dma_get_curr_lli(p);
  318. index = (clli - ds->desc_hw_lli) / sizeof(struct k3_desc_hw);
  319. for (; index < ds->desc_num; index++) {
  320. bytes += ds->desc_hw[index].count;
  321. /* end of lli */
  322. if (!ds->desc_hw[index].lli)
  323. break;
  324. }
  325. }
  326. spin_unlock_irqrestore(&c->vc.lock, flags);
  327. dma_set_residue(state, bytes);
  328. return ret;
  329. }
  330. static void k3_dma_issue_pending(struct dma_chan *chan)
  331. {
  332. struct k3_dma_chan *c = to_k3_chan(chan);
  333. struct k3_dma_dev *d = to_k3_dma(chan->device);
  334. unsigned long flags;
  335. spin_lock_irqsave(&c->vc.lock, flags);
  336. /* add request to vc->desc_issued */
  337. if (vchan_issue_pending(&c->vc)) {
  338. spin_lock(&d->lock);
  339. if (!c->phy) {
  340. if (list_empty(&c->node)) {
  341. /* if new channel, add chan_pending */
  342. list_add_tail(&c->node, &d->chan_pending);
  343. /* check in tasklet */
  344. tasklet_schedule(&d->task);
  345. dev_dbg(d->slave.dev, "vchan %p: issued\n", &c->vc);
  346. }
  347. }
  348. spin_unlock(&d->lock);
  349. } else
  350. dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", &c->vc);
  351. spin_unlock_irqrestore(&c->vc.lock, flags);
  352. }
  353. static void k3_dma_fill_desc(struct k3_dma_desc_sw *ds, dma_addr_t dst,
  354. dma_addr_t src, size_t len, u32 num, u32 ccfg)
  355. {
  356. if ((num + 1) < ds->desc_num)
  357. ds->desc_hw[num].lli = ds->desc_hw_lli + (num + 1) *
  358. sizeof(struct k3_desc_hw);
  359. ds->desc_hw[num].lli |= CX_LLI_CHAIN_EN;
  360. ds->desc_hw[num].count = len;
  361. ds->desc_hw[num].saddr = src;
  362. ds->desc_hw[num].daddr = dst;
  363. ds->desc_hw[num].config = ccfg;
  364. }
  365. static struct dma_async_tx_descriptor *k3_dma_prep_memcpy(
  366. struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
  367. size_t len, unsigned long flags)
  368. {
  369. struct k3_dma_chan *c = to_k3_chan(chan);
  370. struct k3_dma_desc_sw *ds;
  371. size_t copy = 0;
  372. int num = 0;
  373. if (!len)
  374. return NULL;
  375. num = DIV_ROUND_UP(len, DMA_MAX_SIZE);
  376. ds = kzalloc(sizeof(*ds) + num * sizeof(ds->desc_hw[0]), GFP_ATOMIC);
  377. if (!ds)
  378. return NULL;
  379. ds->desc_hw_lli = __virt_to_phys((unsigned long)&ds->desc_hw[0]);
  380. ds->size = len;
  381. ds->desc_num = num;
  382. num = 0;
  383. if (!c->ccfg) {
  384. /* default is memtomem, without calling device_config */
  385. c->ccfg = CX_CFG_SRCINCR | CX_CFG_DSTINCR | CX_CFG_EN;
  386. c->ccfg |= (0xf << 20) | (0xf << 24); /* burst = 16 */
  387. c->ccfg |= (0x3 << 12) | (0x3 << 16); /* width = 64 bit */
  388. }
  389. do {
  390. copy = min_t(size_t, len, DMA_MAX_SIZE);
  391. k3_dma_fill_desc(ds, dst, src, copy, num++, c->ccfg);
  392. if (c->dir == DMA_MEM_TO_DEV) {
  393. src += copy;
  394. } else if (c->dir == DMA_DEV_TO_MEM) {
  395. dst += copy;
  396. } else {
  397. src += copy;
  398. dst += copy;
  399. }
  400. len -= copy;
  401. } while (len);
  402. ds->desc_hw[num-1].lli = 0; /* end of link */
  403. return vchan_tx_prep(&c->vc, &ds->vd, flags);
  404. }
  405. static struct dma_async_tx_descriptor *k3_dma_prep_slave_sg(
  406. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sglen,
  407. enum dma_transfer_direction dir, unsigned long flags, void *context)
  408. {
  409. struct k3_dma_chan *c = to_k3_chan(chan);
  410. struct k3_dma_desc_sw *ds;
  411. size_t len, avail, total = 0;
  412. struct scatterlist *sg;
  413. dma_addr_t addr, src = 0, dst = 0;
  414. int num = sglen, i;
  415. if (sgl == NULL)
  416. return NULL;
  417. for_each_sg(sgl, sg, sglen, i) {
  418. avail = sg_dma_len(sg);
  419. if (avail > DMA_MAX_SIZE)
  420. num += DIV_ROUND_UP(avail, DMA_MAX_SIZE) - 1;
  421. }
  422. ds = kzalloc(sizeof(*ds) + num * sizeof(ds->desc_hw[0]), GFP_ATOMIC);
  423. if (!ds)
  424. return NULL;
  425. ds->desc_hw_lli = __virt_to_phys((unsigned long)&ds->desc_hw[0]);
  426. ds->desc_num = num;
  427. num = 0;
  428. for_each_sg(sgl, sg, sglen, i) {
  429. addr = sg_dma_address(sg);
  430. avail = sg_dma_len(sg);
  431. total += avail;
  432. do {
  433. len = min_t(size_t, avail, DMA_MAX_SIZE);
  434. if (dir == DMA_MEM_TO_DEV) {
  435. src = addr;
  436. dst = c->dev_addr;
  437. } else if (dir == DMA_DEV_TO_MEM) {
  438. src = c->dev_addr;
  439. dst = addr;
  440. }
  441. k3_dma_fill_desc(ds, dst, src, len, num++, c->ccfg);
  442. addr += len;
  443. avail -= len;
  444. } while (avail);
  445. }
  446. ds->desc_hw[num-1].lli = 0; /* end of link */
  447. ds->size = total;
  448. return vchan_tx_prep(&c->vc, &ds->vd, flags);
  449. }
  450. static int k3_dma_config(struct dma_chan *chan,
  451. struct dma_slave_config *cfg)
  452. {
  453. struct k3_dma_chan *c = to_k3_chan(chan);
  454. u32 maxburst = 0, val = 0;
  455. enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
  456. if (cfg == NULL)
  457. return -EINVAL;
  458. c->dir = cfg->direction;
  459. if (c->dir == DMA_DEV_TO_MEM) {
  460. c->ccfg = CX_CFG_DSTINCR;
  461. c->dev_addr = cfg->src_addr;
  462. maxburst = cfg->src_maxburst;
  463. width = cfg->src_addr_width;
  464. } else if (c->dir == DMA_MEM_TO_DEV) {
  465. c->ccfg = CX_CFG_SRCINCR;
  466. c->dev_addr = cfg->dst_addr;
  467. maxburst = cfg->dst_maxburst;
  468. width = cfg->dst_addr_width;
  469. }
  470. switch (width) {
  471. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  472. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  473. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  474. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  475. val = __ffs(width);
  476. break;
  477. default:
  478. val = 3;
  479. break;
  480. }
  481. c->ccfg |= (val << 12) | (val << 16);
  482. if ((maxburst == 0) || (maxburst > 16))
  483. val = 16;
  484. else
  485. val = maxburst - 1;
  486. c->ccfg |= (val << 20) | (val << 24);
  487. c->ccfg |= CX_CFG_MEM2PER | CX_CFG_EN;
  488. /* specific request line */
  489. c->ccfg |= c->vc.chan.chan_id << 4;
  490. return 0;
  491. }
  492. static int k3_dma_terminate_all(struct dma_chan *chan)
  493. {
  494. struct k3_dma_chan *c = to_k3_chan(chan);
  495. struct k3_dma_dev *d = to_k3_dma(chan->device);
  496. struct k3_dma_phy *p = c->phy;
  497. unsigned long flags;
  498. LIST_HEAD(head);
  499. dev_dbg(d->slave.dev, "vchan %p: terminate all\n", &c->vc);
  500. /* Prevent this channel being scheduled */
  501. spin_lock(&d->lock);
  502. list_del_init(&c->node);
  503. spin_unlock(&d->lock);
  504. /* Clear the tx descriptor lists */
  505. spin_lock_irqsave(&c->vc.lock, flags);
  506. vchan_get_all_descriptors(&c->vc, &head);
  507. if (p) {
  508. /* vchan is assigned to a pchan - stop the channel */
  509. k3_dma_terminate_chan(p, d);
  510. c->phy = NULL;
  511. p->vchan = NULL;
  512. p->ds_run = p->ds_done = NULL;
  513. }
  514. spin_unlock_irqrestore(&c->vc.lock, flags);
  515. vchan_dma_desc_free_list(&c->vc, &head);
  516. return 0;
  517. }
  518. static int k3_dma_transfer_pause(struct dma_chan *chan)
  519. {
  520. struct k3_dma_chan *c = to_k3_chan(chan);
  521. struct k3_dma_dev *d = to_k3_dma(chan->device);
  522. struct k3_dma_phy *p = c->phy;
  523. dev_dbg(d->slave.dev, "vchan %p: pause\n", &c->vc);
  524. if (c->status == DMA_IN_PROGRESS) {
  525. c->status = DMA_PAUSED;
  526. if (p) {
  527. k3_dma_pause_dma(p, false);
  528. } else {
  529. spin_lock(&d->lock);
  530. list_del_init(&c->node);
  531. spin_unlock(&d->lock);
  532. }
  533. }
  534. return 0;
  535. }
  536. static int k3_dma_transfer_resume(struct dma_chan *chan)
  537. {
  538. struct k3_dma_chan *c = to_k3_chan(chan);
  539. struct k3_dma_dev *d = to_k3_dma(chan->device);
  540. struct k3_dma_phy *p = c->phy;
  541. unsigned long flags;
  542. dev_dbg(d->slave.dev, "vchan %p: resume\n", &c->vc);
  543. spin_lock_irqsave(&c->vc.lock, flags);
  544. if (c->status == DMA_PAUSED) {
  545. c->status = DMA_IN_PROGRESS;
  546. if (p) {
  547. k3_dma_pause_dma(p, true);
  548. } else if (!list_empty(&c->vc.desc_issued)) {
  549. spin_lock(&d->lock);
  550. list_add_tail(&c->node, &d->chan_pending);
  551. spin_unlock(&d->lock);
  552. }
  553. }
  554. spin_unlock_irqrestore(&c->vc.lock, flags);
  555. return 0;
  556. }
  557. static void k3_dma_free_desc(struct virt_dma_desc *vd)
  558. {
  559. struct k3_dma_desc_sw *ds =
  560. container_of(vd, struct k3_dma_desc_sw, vd);
  561. kfree(ds);
  562. }
  563. static const struct of_device_id k3_pdma_dt_ids[] = {
  564. { .compatible = "hisilicon,k3-dma-1.0", },
  565. {}
  566. };
  567. MODULE_DEVICE_TABLE(of, k3_pdma_dt_ids);
  568. static struct dma_chan *k3_of_dma_simple_xlate(struct of_phandle_args *dma_spec,
  569. struct of_dma *ofdma)
  570. {
  571. struct k3_dma_dev *d = ofdma->of_dma_data;
  572. unsigned int request = dma_spec->args[0];
  573. if (request > d->dma_requests)
  574. return NULL;
  575. return dma_get_slave_channel(&(d->chans[request].vc.chan));
  576. }
  577. static int k3_dma_probe(struct platform_device *op)
  578. {
  579. struct k3_dma_dev *d;
  580. const struct of_device_id *of_id;
  581. struct resource *iores;
  582. int i, ret, irq = 0;
  583. iores = platform_get_resource(op, IORESOURCE_MEM, 0);
  584. if (!iores)
  585. return -EINVAL;
  586. d = devm_kzalloc(&op->dev, sizeof(*d), GFP_KERNEL);
  587. if (!d)
  588. return -ENOMEM;
  589. d->base = devm_ioremap_resource(&op->dev, iores);
  590. if (IS_ERR(d->base))
  591. return PTR_ERR(d->base);
  592. of_id = of_match_device(k3_pdma_dt_ids, &op->dev);
  593. if (of_id) {
  594. of_property_read_u32((&op->dev)->of_node,
  595. "dma-channels", &d->dma_channels);
  596. of_property_read_u32((&op->dev)->of_node,
  597. "dma-requests", &d->dma_requests);
  598. }
  599. d->clk = devm_clk_get(&op->dev, NULL);
  600. if (IS_ERR(d->clk)) {
  601. dev_err(&op->dev, "no dma clk\n");
  602. return PTR_ERR(d->clk);
  603. }
  604. irq = platform_get_irq(op, 0);
  605. ret = devm_request_irq(&op->dev, irq,
  606. k3_dma_int_handler, 0, DRIVER_NAME, d);
  607. if (ret)
  608. return ret;
  609. d->irq = irq;
  610. /* init phy channel */
  611. d->phy = devm_kzalloc(&op->dev,
  612. d->dma_channels * sizeof(struct k3_dma_phy), GFP_KERNEL);
  613. if (d->phy == NULL)
  614. return -ENOMEM;
  615. for (i = 0; i < d->dma_channels; i++) {
  616. struct k3_dma_phy *p = &d->phy[i];
  617. p->idx = i;
  618. p->base = d->base + i * 0x40;
  619. }
  620. INIT_LIST_HEAD(&d->slave.channels);
  621. dma_cap_set(DMA_SLAVE, d->slave.cap_mask);
  622. dma_cap_set(DMA_MEMCPY, d->slave.cap_mask);
  623. d->slave.dev = &op->dev;
  624. d->slave.device_free_chan_resources = k3_dma_free_chan_resources;
  625. d->slave.device_tx_status = k3_dma_tx_status;
  626. d->slave.device_prep_dma_memcpy = k3_dma_prep_memcpy;
  627. d->slave.device_prep_slave_sg = k3_dma_prep_slave_sg;
  628. d->slave.device_issue_pending = k3_dma_issue_pending;
  629. d->slave.device_config = k3_dma_config;
  630. d->slave.device_pause = k3_dma_transfer_pause;
  631. d->slave.device_resume = k3_dma_transfer_resume;
  632. d->slave.device_terminate_all = k3_dma_terminate_all;
  633. d->slave.copy_align = DMAENGINE_ALIGN_8_BYTES;
  634. /* init virtual channel */
  635. d->chans = devm_kzalloc(&op->dev,
  636. d->dma_requests * sizeof(struct k3_dma_chan), GFP_KERNEL);
  637. if (d->chans == NULL)
  638. return -ENOMEM;
  639. for (i = 0; i < d->dma_requests; i++) {
  640. struct k3_dma_chan *c = &d->chans[i];
  641. c->status = DMA_IN_PROGRESS;
  642. INIT_LIST_HEAD(&c->node);
  643. c->vc.desc_free = k3_dma_free_desc;
  644. vchan_init(&c->vc, &d->slave);
  645. }
  646. /* Enable clock before accessing registers */
  647. ret = clk_prepare_enable(d->clk);
  648. if (ret < 0) {
  649. dev_err(&op->dev, "clk_prepare_enable failed: %d\n", ret);
  650. return ret;
  651. }
  652. k3_dma_enable_dma(d, true);
  653. ret = dma_async_device_register(&d->slave);
  654. if (ret)
  655. goto dma_async_register_fail;
  656. ret = of_dma_controller_register((&op->dev)->of_node,
  657. k3_of_dma_simple_xlate, d);
  658. if (ret)
  659. goto of_dma_register_fail;
  660. spin_lock_init(&d->lock);
  661. INIT_LIST_HEAD(&d->chan_pending);
  662. tasklet_init(&d->task, k3_dma_tasklet, (unsigned long)d);
  663. platform_set_drvdata(op, d);
  664. dev_info(&op->dev, "initialized\n");
  665. return 0;
  666. of_dma_register_fail:
  667. dma_async_device_unregister(&d->slave);
  668. dma_async_register_fail:
  669. clk_disable_unprepare(d->clk);
  670. return ret;
  671. }
  672. static int k3_dma_remove(struct platform_device *op)
  673. {
  674. struct k3_dma_chan *c, *cn;
  675. struct k3_dma_dev *d = platform_get_drvdata(op);
  676. dma_async_device_unregister(&d->slave);
  677. of_dma_controller_free((&op->dev)->of_node);
  678. devm_free_irq(&op->dev, d->irq, d);
  679. list_for_each_entry_safe(c, cn, &d->slave.channels, vc.chan.device_node) {
  680. list_del(&c->vc.chan.device_node);
  681. tasklet_kill(&c->vc.task);
  682. }
  683. tasklet_kill(&d->task);
  684. clk_disable_unprepare(d->clk);
  685. return 0;
  686. }
  687. #ifdef CONFIG_PM_SLEEP
  688. static int k3_dma_suspend_dev(struct device *dev)
  689. {
  690. struct k3_dma_dev *d = dev_get_drvdata(dev);
  691. u32 stat = 0;
  692. stat = k3_dma_get_chan_stat(d);
  693. if (stat) {
  694. dev_warn(d->slave.dev,
  695. "chan %d is running fail to suspend\n", stat);
  696. return -1;
  697. }
  698. k3_dma_enable_dma(d, false);
  699. clk_disable_unprepare(d->clk);
  700. return 0;
  701. }
  702. static int k3_dma_resume_dev(struct device *dev)
  703. {
  704. struct k3_dma_dev *d = dev_get_drvdata(dev);
  705. int ret = 0;
  706. ret = clk_prepare_enable(d->clk);
  707. if (ret < 0) {
  708. dev_err(d->slave.dev, "clk_prepare_enable failed: %d\n", ret);
  709. return ret;
  710. }
  711. k3_dma_enable_dma(d, true);
  712. return 0;
  713. }
  714. #endif
  715. static SIMPLE_DEV_PM_OPS(k3_dma_pmops, k3_dma_suspend_dev, k3_dma_resume_dev);
  716. static struct platform_driver k3_pdma_driver = {
  717. .driver = {
  718. .name = DRIVER_NAME,
  719. .pm = &k3_dma_pmops,
  720. .of_match_table = k3_pdma_dt_ids,
  721. },
  722. .probe = k3_dma_probe,
  723. .remove = k3_dma_remove,
  724. };
  725. module_platform_driver(k3_pdma_driver);
  726. MODULE_DESCRIPTION("Hisilicon k3 DMA Driver");
  727. MODULE_ALIAS("platform:k3dma");
  728. MODULE_LICENSE("GPL v2");