dax.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573
  1. /*
  2. * Copyright(c) 2016 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of version 2 of the GNU General Public License as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. */
  13. #include <linux/pagemap.h>
  14. #include <linux/module.h>
  15. #include <linux/device.h>
  16. #include <linux/pfn_t.h>
  17. #include <linux/slab.h>
  18. #include <linux/dax.h>
  19. #include <linux/fs.h>
  20. #include <linux/mm.h>
  21. static int dax_major;
  22. static struct class *dax_class;
  23. static DEFINE_IDA(dax_minor_ida);
  24. /**
  25. * struct dax_region - mapping infrastructure for dax devices
  26. * @id: kernel-wide unique region for a memory range
  27. * @base: linear address corresponding to @res
  28. * @kref: to pin while other agents have a need to do lookups
  29. * @dev: parent device backing this region
  30. * @align: allocation and mapping alignment for child dax devices
  31. * @res: physical address range of the region
  32. * @pfn_flags: identify whether the pfns are paged back or not
  33. */
  34. struct dax_region {
  35. int id;
  36. struct ida ida;
  37. void *base;
  38. struct kref kref;
  39. struct device *dev;
  40. unsigned int align;
  41. struct resource res;
  42. unsigned long pfn_flags;
  43. };
  44. /**
  45. * struct dax_dev - subdivision of a dax region
  46. * @region - parent region
  47. * @dev - device backing the character device
  48. * @kref - enable this data to be tracked in filp->private_data
  49. * @alive - !alive + rcu grace period == no new mappings can be established
  50. * @id - child id in the region
  51. * @num_resources - number of physical address extents in this device
  52. * @res - array of physical address ranges
  53. */
  54. struct dax_dev {
  55. struct dax_region *region;
  56. struct device *dev;
  57. struct kref kref;
  58. bool alive;
  59. int id;
  60. int num_resources;
  61. struct resource res[0];
  62. };
  63. static void dax_region_free(struct kref *kref)
  64. {
  65. struct dax_region *dax_region;
  66. dax_region = container_of(kref, struct dax_region, kref);
  67. kfree(dax_region);
  68. }
  69. void dax_region_put(struct dax_region *dax_region)
  70. {
  71. kref_put(&dax_region->kref, dax_region_free);
  72. }
  73. EXPORT_SYMBOL_GPL(dax_region_put);
  74. static void dax_dev_free(struct kref *kref)
  75. {
  76. struct dax_dev *dax_dev;
  77. dax_dev = container_of(kref, struct dax_dev, kref);
  78. dax_region_put(dax_dev->region);
  79. kfree(dax_dev);
  80. }
  81. static void dax_dev_put(struct dax_dev *dax_dev)
  82. {
  83. kref_put(&dax_dev->kref, dax_dev_free);
  84. }
  85. struct dax_region *alloc_dax_region(struct device *parent, int region_id,
  86. struct resource *res, unsigned int align, void *addr,
  87. unsigned long pfn_flags)
  88. {
  89. struct dax_region *dax_region;
  90. dax_region = kzalloc(sizeof(*dax_region), GFP_KERNEL);
  91. if (!dax_region)
  92. return NULL;
  93. memcpy(&dax_region->res, res, sizeof(*res));
  94. dax_region->pfn_flags = pfn_flags;
  95. kref_init(&dax_region->kref);
  96. dax_region->id = region_id;
  97. ida_init(&dax_region->ida);
  98. dax_region->align = align;
  99. dax_region->dev = parent;
  100. dax_region->base = addr;
  101. return dax_region;
  102. }
  103. EXPORT_SYMBOL_GPL(alloc_dax_region);
  104. static ssize_t size_show(struct device *dev,
  105. struct device_attribute *attr, char *buf)
  106. {
  107. struct dax_dev *dax_dev = dev_get_drvdata(dev);
  108. unsigned long long size = 0;
  109. int i;
  110. for (i = 0; i < dax_dev->num_resources; i++)
  111. size += resource_size(&dax_dev->res[i]);
  112. return sprintf(buf, "%llu\n", size);
  113. }
  114. static DEVICE_ATTR_RO(size);
  115. static struct attribute *dax_device_attributes[] = {
  116. &dev_attr_size.attr,
  117. NULL,
  118. };
  119. static const struct attribute_group dax_device_attribute_group = {
  120. .attrs = dax_device_attributes,
  121. };
  122. static const struct attribute_group *dax_attribute_groups[] = {
  123. &dax_device_attribute_group,
  124. NULL,
  125. };
  126. static void unregister_dax_dev(void *_dev)
  127. {
  128. struct device *dev = _dev;
  129. struct dax_dev *dax_dev = dev_get_drvdata(dev);
  130. struct dax_region *dax_region = dax_dev->region;
  131. dev_dbg(dev, "%s\n", __func__);
  132. /*
  133. * Note, rcu is not protecting the liveness of dax_dev, rcu is
  134. * ensuring that any fault handlers that might have seen
  135. * dax_dev->alive == true, have completed. Any fault handlers
  136. * that start after synchronize_rcu() has started will abort
  137. * upon seeing dax_dev->alive == false.
  138. */
  139. dax_dev->alive = false;
  140. synchronize_rcu();
  141. get_device(dev);
  142. device_unregister(dev);
  143. ida_simple_remove(&dax_region->ida, dax_dev->id);
  144. ida_simple_remove(&dax_minor_ida, MINOR(dev->devt));
  145. put_device(dev);
  146. dax_dev_put(dax_dev);
  147. }
  148. int devm_create_dax_dev(struct dax_region *dax_region, struct resource *res,
  149. int count)
  150. {
  151. struct device *parent = dax_region->dev;
  152. struct dax_dev *dax_dev;
  153. struct device *dev;
  154. int rc, minor;
  155. dev_t dev_t;
  156. dax_dev = kzalloc(sizeof(*dax_dev) + sizeof(*res) * count, GFP_KERNEL);
  157. if (!dax_dev)
  158. return -ENOMEM;
  159. memcpy(dax_dev->res, res, sizeof(*res) * count);
  160. dax_dev->num_resources = count;
  161. kref_init(&dax_dev->kref);
  162. dax_dev->alive = true;
  163. dax_dev->region = dax_region;
  164. kref_get(&dax_region->kref);
  165. dax_dev->id = ida_simple_get(&dax_region->ida, 0, 0, GFP_KERNEL);
  166. if (dax_dev->id < 0) {
  167. rc = dax_dev->id;
  168. goto err_id;
  169. }
  170. minor = ida_simple_get(&dax_minor_ida, 0, 0, GFP_KERNEL);
  171. if (minor < 0) {
  172. rc = minor;
  173. goto err_minor;
  174. }
  175. dev_t = MKDEV(dax_major, minor);
  176. dev = device_create_with_groups(dax_class, parent, dev_t, dax_dev,
  177. dax_attribute_groups, "dax%d.%d", dax_region->id,
  178. dax_dev->id);
  179. if (IS_ERR(dev)) {
  180. rc = PTR_ERR(dev);
  181. goto err_create;
  182. }
  183. dax_dev->dev = dev;
  184. rc = devm_add_action_or_reset(dax_region->dev, unregister_dax_dev, dev);
  185. if (rc)
  186. return rc;
  187. return 0;
  188. err_create:
  189. ida_simple_remove(&dax_minor_ida, minor);
  190. err_minor:
  191. ida_simple_remove(&dax_region->ida, dax_dev->id);
  192. err_id:
  193. dax_dev_put(dax_dev);
  194. return rc;
  195. }
  196. EXPORT_SYMBOL_GPL(devm_create_dax_dev);
  197. /* return an unmapped area aligned to the dax region specified alignment */
  198. static unsigned long dax_dev_get_unmapped_area(struct file *filp,
  199. unsigned long addr, unsigned long len, unsigned long pgoff,
  200. unsigned long flags)
  201. {
  202. unsigned long off, off_end, off_align, len_align, addr_align, align;
  203. struct dax_dev *dax_dev = filp ? filp->private_data : NULL;
  204. struct dax_region *dax_region;
  205. if (!dax_dev || addr)
  206. goto out;
  207. dax_region = dax_dev->region;
  208. align = dax_region->align;
  209. off = pgoff << PAGE_SHIFT;
  210. off_end = off + len;
  211. off_align = round_up(off, align);
  212. if ((off_end <= off_align) || ((off_end - off_align) < align))
  213. goto out;
  214. len_align = len + align;
  215. if ((off + len_align) < off)
  216. goto out;
  217. addr_align = current->mm->get_unmapped_area(filp, addr, len_align,
  218. pgoff, flags);
  219. if (!IS_ERR_VALUE(addr_align)) {
  220. addr_align += (off - addr_align) & (align - 1);
  221. return addr_align;
  222. }
  223. out:
  224. return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
  225. }
  226. static int __match_devt(struct device *dev, const void *data)
  227. {
  228. const dev_t *devt = data;
  229. return dev->devt == *devt;
  230. }
  231. static struct device *dax_dev_find(dev_t dev_t)
  232. {
  233. return class_find_device(dax_class, NULL, &dev_t, __match_devt);
  234. }
  235. static int dax_dev_open(struct inode *inode, struct file *filp)
  236. {
  237. struct dax_dev *dax_dev = NULL;
  238. struct device *dev;
  239. dev = dax_dev_find(inode->i_rdev);
  240. if (!dev)
  241. return -ENXIO;
  242. device_lock(dev);
  243. dax_dev = dev_get_drvdata(dev);
  244. if (dax_dev) {
  245. dev_dbg(dev, "%s\n", __func__);
  246. filp->private_data = dax_dev;
  247. kref_get(&dax_dev->kref);
  248. inode->i_flags = S_DAX;
  249. }
  250. device_unlock(dev);
  251. if (!dax_dev) {
  252. put_device(dev);
  253. return -ENXIO;
  254. }
  255. return 0;
  256. }
  257. static int dax_dev_release(struct inode *inode, struct file *filp)
  258. {
  259. struct dax_dev *dax_dev = filp->private_data;
  260. struct device *dev = dax_dev->dev;
  261. dev_dbg(dax_dev->dev, "%s\n", __func__);
  262. dax_dev_put(dax_dev);
  263. put_device(dev);
  264. return 0;
  265. }
  266. static int check_vma(struct dax_dev *dax_dev, struct vm_area_struct *vma,
  267. const char *func)
  268. {
  269. struct dax_region *dax_region = dax_dev->region;
  270. struct device *dev = dax_dev->dev;
  271. unsigned long mask;
  272. if (!dax_dev->alive)
  273. return -ENXIO;
  274. /* prevent private / writable mappings from being established */
  275. if ((vma->vm_flags & (VM_NORESERVE|VM_SHARED|VM_WRITE)) == VM_WRITE) {
  276. dev_info(dev, "%s: %s: fail, attempted private mapping\n",
  277. current->comm, func);
  278. return -EINVAL;
  279. }
  280. mask = dax_region->align - 1;
  281. if (vma->vm_start & mask || vma->vm_end & mask) {
  282. dev_info(dev, "%s: %s: fail, unaligned vma (%#lx - %#lx, %#lx)\n",
  283. current->comm, func, vma->vm_start, vma->vm_end,
  284. mask);
  285. return -EINVAL;
  286. }
  287. if ((dax_region->pfn_flags & (PFN_DEV|PFN_MAP)) == PFN_DEV
  288. && (vma->vm_flags & VM_DONTCOPY) == 0) {
  289. dev_info(dev, "%s: %s: fail, dax range requires MADV_DONTFORK\n",
  290. current->comm, func);
  291. return -EINVAL;
  292. }
  293. if (!vma_is_dax(vma)) {
  294. dev_info(dev, "%s: %s: fail, vma is not DAX capable\n",
  295. current->comm, func);
  296. return -EINVAL;
  297. }
  298. return 0;
  299. }
  300. static phys_addr_t pgoff_to_phys(struct dax_dev *dax_dev, pgoff_t pgoff,
  301. unsigned long size)
  302. {
  303. struct resource *res;
  304. phys_addr_t phys;
  305. int i;
  306. for (i = 0; i < dax_dev->num_resources; i++) {
  307. res = &dax_dev->res[i];
  308. phys = pgoff * PAGE_SIZE + res->start;
  309. if (phys >= res->start && phys <= res->end)
  310. break;
  311. pgoff -= PHYS_PFN(resource_size(res));
  312. }
  313. if (i < dax_dev->num_resources) {
  314. res = &dax_dev->res[i];
  315. if (phys + size - 1 <= res->end)
  316. return phys;
  317. }
  318. return -1;
  319. }
  320. static int __dax_dev_fault(struct dax_dev *dax_dev, struct vm_area_struct *vma,
  321. struct vm_fault *vmf)
  322. {
  323. unsigned long vaddr = (unsigned long) vmf->virtual_address;
  324. struct device *dev = dax_dev->dev;
  325. struct dax_region *dax_region;
  326. int rc = VM_FAULT_SIGBUS;
  327. phys_addr_t phys;
  328. pfn_t pfn;
  329. if (check_vma(dax_dev, vma, __func__))
  330. return VM_FAULT_SIGBUS;
  331. dax_region = dax_dev->region;
  332. if (dax_region->align > PAGE_SIZE) {
  333. dev_dbg(dev, "%s: alignment > fault size\n", __func__);
  334. return VM_FAULT_SIGBUS;
  335. }
  336. phys = pgoff_to_phys(dax_dev, vmf->pgoff, PAGE_SIZE);
  337. if (phys == -1) {
  338. dev_dbg(dev, "%s: phys_to_pgoff(%#lx) failed\n", __func__,
  339. vmf->pgoff);
  340. return VM_FAULT_SIGBUS;
  341. }
  342. pfn = phys_to_pfn_t(phys, dax_region->pfn_flags);
  343. rc = vm_insert_mixed(vma, vaddr, pfn);
  344. if (rc == -ENOMEM)
  345. return VM_FAULT_OOM;
  346. if (rc < 0 && rc != -EBUSY)
  347. return VM_FAULT_SIGBUS;
  348. return VM_FAULT_NOPAGE;
  349. }
  350. static int dax_dev_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  351. {
  352. int rc;
  353. struct file *filp = vma->vm_file;
  354. struct dax_dev *dax_dev = filp->private_data;
  355. dev_dbg(dax_dev->dev, "%s: %s: %s (%#lx - %#lx)\n", __func__,
  356. current->comm, (vmf->flags & FAULT_FLAG_WRITE)
  357. ? "write" : "read", vma->vm_start, vma->vm_end);
  358. rcu_read_lock();
  359. rc = __dax_dev_fault(dax_dev, vma, vmf);
  360. rcu_read_unlock();
  361. return rc;
  362. }
  363. static int __dax_dev_pmd_fault(struct dax_dev *dax_dev,
  364. struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd,
  365. unsigned int flags)
  366. {
  367. unsigned long pmd_addr = addr & PMD_MASK;
  368. struct device *dev = dax_dev->dev;
  369. struct dax_region *dax_region;
  370. phys_addr_t phys;
  371. pgoff_t pgoff;
  372. pfn_t pfn;
  373. if (check_vma(dax_dev, vma, __func__))
  374. return VM_FAULT_SIGBUS;
  375. dax_region = dax_dev->region;
  376. if (dax_region->align > PMD_SIZE) {
  377. dev_dbg(dev, "%s: alignment > fault size\n", __func__);
  378. return VM_FAULT_SIGBUS;
  379. }
  380. /* dax pmd mappings require pfn_t_devmap() */
  381. if ((dax_region->pfn_flags & (PFN_DEV|PFN_MAP)) != (PFN_DEV|PFN_MAP)) {
  382. dev_dbg(dev, "%s: alignment > fault size\n", __func__);
  383. return VM_FAULT_SIGBUS;
  384. }
  385. pgoff = linear_page_index(vma, pmd_addr);
  386. phys = pgoff_to_phys(dax_dev, pgoff, PAGE_SIZE);
  387. if (phys == -1) {
  388. dev_dbg(dev, "%s: phys_to_pgoff(%#lx) failed\n", __func__,
  389. pgoff);
  390. return VM_FAULT_SIGBUS;
  391. }
  392. pfn = phys_to_pfn_t(phys, dax_region->pfn_flags);
  393. return vmf_insert_pfn_pmd(vma, addr, pmd, pfn,
  394. flags & FAULT_FLAG_WRITE);
  395. }
  396. static int dax_dev_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
  397. pmd_t *pmd, unsigned int flags)
  398. {
  399. int rc;
  400. struct file *filp = vma->vm_file;
  401. struct dax_dev *dax_dev = filp->private_data;
  402. dev_dbg(dax_dev->dev, "%s: %s: %s (%#lx - %#lx)\n", __func__,
  403. current->comm, (flags & FAULT_FLAG_WRITE)
  404. ? "write" : "read", vma->vm_start, vma->vm_end);
  405. rcu_read_lock();
  406. rc = __dax_dev_pmd_fault(dax_dev, vma, addr, pmd, flags);
  407. rcu_read_unlock();
  408. return rc;
  409. }
  410. static void dax_dev_vm_open(struct vm_area_struct *vma)
  411. {
  412. struct file *filp = vma->vm_file;
  413. struct dax_dev *dax_dev = filp->private_data;
  414. dev_dbg(dax_dev->dev, "%s\n", __func__);
  415. kref_get(&dax_dev->kref);
  416. }
  417. static void dax_dev_vm_close(struct vm_area_struct *vma)
  418. {
  419. struct file *filp = vma->vm_file;
  420. struct dax_dev *dax_dev = filp->private_data;
  421. dev_dbg(dax_dev->dev, "%s\n", __func__);
  422. dax_dev_put(dax_dev);
  423. }
  424. static const struct vm_operations_struct dax_dev_vm_ops = {
  425. .fault = dax_dev_fault,
  426. .pmd_fault = dax_dev_pmd_fault,
  427. .open = dax_dev_vm_open,
  428. .close = dax_dev_vm_close,
  429. };
  430. static int dax_dev_mmap(struct file *filp, struct vm_area_struct *vma)
  431. {
  432. struct dax_dev *dax_dev = filp->private_data;
  433. int rc;
  434. dev_dbg(dax_dev->dev, "%s\n", __func__);
  435. rc = check_vma(dax_dev, vma, __func__);
  436. if (rc)
  437. return rc;
  438. kref_get(&dax_dev->kref);
  439. vma->vm_ops = &dax_dev_vm_ops;
  440. vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
  441. return 0;
  442. }
  443. static const struct file_operations dax_fops = {
  444. .llseek = noop_llseek,
  445. .owner = THIS_MODULE,
  446. .open = dax_dev_open,
  447. .release = dax_dev_release,
  448. .get_unmapped_area = dax_dev_get_unmapped_area,
  449. .mmap = dax_dev_mmap,
  450. };
  451. static int __init dax_init(void)
  452. {
  453. int rc;
  454. rc = register_chrdev(0, "dax", &dax_fops);
  455. if (rc < 0)
  456. return rc;
  457. dax_major = rc;
  458. dax_class = class_create(THIS_MODULE, "dax");
  459. if (IS_ERR(dax_class)) {
  460. unregister_chrdev(dax_major, "dax");
  461. return PTR_ERR(dax_class);
  462. }
  463. return 0;
  464. }
  465. static void __exit dax_exit(void)
  466. {
  467. class_destroy(dax_class);
  468. unregister_chrdev(dax_major, "dax");
  469. ida_destroy(&dax_minor_ida);
  470. }
  471. MODULE_AUTHOR("Intel Corporation");
  472. MODULE_LICENSE("GPL v2");
  473. subsys_initcall(dax_init);
  474. module_exit(dax_exit);